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Abstract

Electroencephalographic (EEG) source imaging depends upon sophisticated signal processing algorithms to deal
with the problems of data cleaning, source separation, and localization. Typically, these problems are sequentially
addressed by independent heuristics, limiting the use of EEG images on a variety of applications. Here, we propose
a unifying empirical Bayes framework in which these dissimilar problems can be solved using a single algorithm.
We use spatial sparsity constraints to adaptively segregate brain sources into maximally independent components
with known anatomical support, while minimally overlapping artifactual activity. The framework yields a recursive
inverse spatiotemporal filter that can be used for offline and online applications. We call this filter Recursive Sparse
Bayesian Learning (RSBL). Of theoretical relevance, we demonstrate the connections between Infomax Independent
Component Analysis and RSBL. We use simulations to show that RSBL can separate and localize cortical and artifact
components that overlap in space and time from noisy data. On real data, we use RSBL to analyze single-trial
error-related potentials, finding sources in the cingulate gyrus. We further benchmark our algorithm on two unrelated
EEG studies showing that: 1) it outperforms Infomax for source separation on short time-scales and 2), unlike
the popular Artifact Subspace Removal algorithm, it can reduce artifacts without significantly distorting clean
epochs. Finally, we analyze mobile brain/body imaging data to characterize the brain dynamics supporting heading
computation during full-body rotations, replicating the main findings of previous experimental literature.

Keywords: Electroencephalographic source imaging, Sparse Bayesian Learning, block-sparse learning, Infomax,
Independent Component Analysis, ICA, EEG, subspace, artifact, rejection, mobile brain/body imaging, MoBI.
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1. Introduction

The electroencephalogram (EEG) is a noninvasive
functional brain imaging modality that allows the study
of brain electrical activity with excellent temporal resolu-
tion. Compared to other noninvasive imaging modalities
such as fMRI, PET, SPECT, and MEG, EEG acqui-
sition can be mobile and more affordable (Mcdowell
et al., 2013; Mehta and Parasuraman, 2013), allowing
the widespread study of human cognition and behavior
under more ecologically valid experimental conditions
(Makeig et al., 2009). Imaging cognitive processes while
participants engage naturally with their environment
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(natural cognition in action (Gramann et al., 2014)) has
potential for developing a new generation of applica-
tions in brain-computer interfaces (BCI), mental health,
rehabilitation, and neuroergonomics (Mishra and Gazza-
ley, 2014; Mishra et al., 2016; Jungnickel and Gramann,
2016; Wagner et al., 2016). However, despite impressive
methodological advances in the estimation of the electri-
cal activity of the cortex from EEG voltages recorded on
the scalp, a number of practical and theoretical issues
remain unsolved.

Imaging EEG source activity (also known as elec-
tromagnetic source imaging or ESI) is challenging for
several reasons. First, since many configurations of
currents in the brain can elicit the same EEG scalp to-
pography (Michel and Murray, 2012), it entails solving
an ill-posed inverse problem (Lopes da Silva, 2013). Sec-
ond, the EEG signal is often contaminated by artifacts
of non-brain origin such as electrooculographic (EOG)
and electromyographic (EMG) activity that need to be
identified and removed. Third, due to the low spatial res-
olution of the EEG, traditional inverse solvers produce
estimates that can be a (distorted) mixture of the true
source maps (Biscay et al., 2018). These problems are
usually addressed separately using a variety of heuris-
tics, making it difficult to systematize a methodology for
obtaining biologically plausible single-trial EEG source
estimates in the presence of artifacts. The objective of
this paper is to develop a unifying Bayesian framework
in which these, apparently dissimilar, problems can be
understood and solved in a principled manner using a
single algorithm.

The problem of EEG source estimation is even harder
if we consider that there is evidence that brain re-
sponses are generated by time-varying network dynamics
that can exhibit nonlinear features (Breakspear, 2017;
Khambhati et al., 2018), which renders the simplifying
assumptions of linearity and stationarity used by most
inverse methods hard to justify. Thus, the objective of
our framework is to produce a spatiotemporal inverse
filter that can map each EEG sample to the source
space, minimizing source mixing, and factoring out the
corrupting effect of artifacts in an adaptive manner.

To cope with the ill-posed nature of the inverse prob-
lem and ensure functional images with biological rele-
vance, several inverse algorithms have been proposed
that seek to estimate EEG sources subject to neurophys-
iologically reasonable spatial (Haufe et al., 2011; Friston
et al., 2008; Trujillo-Barreto et al., 2004; Pascual-Marqui
et al., 2002; Baillet et al., 2001; Hämäläinen and Il-
moniemi, 1994), spatiotemporal (Mart́ınez-Vargas et al.,
2015; Valdés-Sosa et al., 2009; Trujillo-Barreto et al.,
2008), and frequency-domain (Gramfort et al., 2013)
constraints, just to mention a few examples. These ap-
proaches can work relatively well when the EEG samples
are corrupted by Gaussian noise and the signal to noise
ratio (SNR) is high. In practice, however, raw EEG data
are affected by many other types of noise such as inter-
ference from the 50/60 Hz AC line, pseudo-random mus-
cle activity, and mechanically induced artifacts, among
others. Thus, before source estimation, non-Gaussian
artifacts need to be removed from the data.

There is a plethora of methods for dealing with arti-

facts corrupting the EEG signal (see reviews by Mannan
et al. (2018); Islam et al. (2016)). Popular approaches
used in BCI applications are based on adaptive noise
cancellation (Kilicarslan et al., 2016) or Artifact Sub-
space Removal (ASR) (Mullen et al., 2015) algorithms.
The former has the inconvenience that an additional
channel recording purely artifactual activity (i.e., EOG
or EMG activity not admixed with EEG) needs to be
provided, while the latter rests on the assumption that
the statistics of data and artifacts stay the same after
an initial calibration phase. In studies where the data
can be analyzed offline, artifactual components can be
largely removed using Independent Component Analysis
(ICA) (Jung et al., 2000). ICA-based cleaning, however,
has the drawback that non-brain components need to be
identified for removal, which is usually done manually
based on the practitioner’s experience.

ICA is a special case of blind source separation (BSS)
method (Cichocki and Amari, 2002) that can be used to
linearly decompose EEG data into components that are
maximally statistically independent. ICA has been used
to analyze event-related potentials (ERP) under the
assumptions that during the task 1) the decomposition
is stationary and 2) that brain components can be mod-
eled as a predefined number of dipolar point processes
with fixed spatial location and orientation (Makeig and
Onton, 2011). The stationarity assumption can be re-
laxed using a mixture of ICA models (Palmer et al.,
2011) while the selection of brain scalp projections is
typically done either manually or automatically based
on the residual variance afforded by a dipole fitting algo-
rithm. The practical use of ICA has been limited by its
computational cost and the need for user intervention.
Only recently, a real-time recursive ICA algorithm has
been proposed (Hsu et al., 2016), as well as a number
of automatic methods for minimizing the subjectivity
of manual component selection (Tamburro et al., 2018;
Pion-Tonachini et al., 2017; Radüntz et al., 2017). De-
spite these advances, turning ICA into a brain imaging
modality requires that after source separation, we solve
the inverse problem of localizing the set of identified
brain components into the cortical space.

One way of estimating EEG sources subject to mul-
tiple assumptions (constraints) in a principled manner
is to use the framework of parametric empirical Bayes
(PEB) (Morris, 1983; Casella, 1985). In this framework,
constraints are used to furnish prior probability density
functions (pdfs). Empirical Bayes methods use data
to infer the parameters controlling the priors (hyper-
parameters), such that those assumptions that are not
supported by the data can be automatically discarded
without user intervention. Here we use priors to “en-
courage” source images to belong to a functional space
with biological relevance, but the exact form of those
priors is determined by the data (empirically).

In the context of sparsity-inducing priors, PEB is
sometimes referred to as Sparse Bayesian Learning
(SBL) (Tipping, 2001). The PEB/SBL framework for
EEG/MEG has been proposed for recovering instanta-
neous responses in the context of event-related potential
(ERP) experiments (Owen et al., 2012; Henson et al.,
2011; Friston et al., 2008). However, there are many
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applications of interest where source mapping needs to
operate as a filter on the continuous EEG signal (e.g.,
brain monitoring and BCI). One way of extending the
instantaneous approach is to introduce additional tem-
poral constraints on the source dynamics in the form of a
spatiotemporal prior. With the inclusion of a source dy-
namics model, the probabilistic generative model (PGM)
of the EEG signal can be naturally expressed in the
state-space framework (Kalman, 1960).

In recent decades, the state-space framework has been
exploited by several authors to solve the inverse prob-
lem of the EEG in online fashion. Yamashita et al.
(2004) proposed modeling the source dynamics with
a nearest neighbor autoregressive model, leading to a
Recursive Penalized Least Squares (RPLS) algorithm.
Galka et al. (2004) extended RPLS by adding a spa-
tial whitening transformation that made the application
of the Kalman filter tractable. Lamus et al. (2012)
used a source model similar to the one in (Yamashita
et al., 2004) to implement a Kalman filter with online
hyperparameter updates. Such an approach, however,
can be computationally intractable due to the need to
compute a high-dimensional source (state) covariance
matrix. Long et al. (2011) sidestepped this limitation
with an implementation that can take advantage of a
supercomputer parallel architecture. In the presence of
oversimplified neurodynamical models, however, the use
of the standard Kalman filter formulas may lead to ac-
cumulation of errors and divergent behavior (Anderson
and Moore, 2012). We expand on this point in Section
2.4.

In this paper, we extend the pioneering work of Ya-
mashita et al. (2004) along two important directions.
First, we augment the PGM of the EEG to include
the effects of non-brain (artifact) source dynamics. Sec-
ond, we use spatial sparsity constraints to adaptively
segregate brain sources into maximally independent com-
ponents while minimally overlapping artifactual activity.
Henceforth, we refer to this new approach as Recursive
Sparse Bayesian Learning (RSBL). Our main contribu-
tion is that, by explicitly modeling non-brain sources, we
can unify three of the most common problems in EEG
analysis: data cleaning, source separation, and source
imaging. Furthermore, we show that by updating the
parameters of our model online, we can adapt the spatial
resolution of our inverse filter so that each EEG sample
is optimally localized without temporal discontinuities,
thereby showing potential for tracking non-stationary
brain dynamics. On the theoretical side, we point out
the connections between distributed source imaging and
ICA, two popular approaches that are often perceived
to be at odds with one another.

Throughout this paper we use lowercase and uppercase
bold characters and symbols to denote column-vectors
and matrices respectively, â is an estimate of the param-
eter vector a, and IN is a N ×N identity matrix.

2. Methods

It has been shown that popular instantaneous source
estimation algorithms used in ESI such as weighted min-
imum l2-norm (Baillet et al., 2001), FOCUSS (Cotter

et al., 2005; Gorodnitsky and Rao, 1997), minimum
current estimation (Huang et al., 2006), sLORETA
(Pascual-Marqui et al., 2002), beamforming (Van Veen
et al., 1997), variational Bayes (Friston et al., 2008),
and others can be expressed in a unifying Bayesian
framework (Wipf and Nagarajan, 2009). We extend this
framework by 1) explicitly modeling non-brain artifact
sources and 2) introducing a temporal constraint to yield
continuous source time series estimates.

2.1. Cortical and artifact source modeling
In source imaging, the neural activity is often referred

to as the primary current density (PCD) (Baillet et al.,
2001) and it is defined on a dense grid of known cortical
locations (the source space). Typically, a vector of Ny
EEG measurements at sample k, yk ∈ RNy , relates
to the activity of Ng sources, gk ∈ R3Ng , through the
following instantaneous linear equation (Dale and Sereno,
1993),

yk = Lgk + ek, k = 1, . . . , N (1)

where gk is the vector of PCD values along the three
orthogonal directions and ek ∈ RNy represents the
measurement noise vector. The PCD is projected to
the sensor space through the lead field matrix L =
[lx1 , ly1 , lz1 . . . , lxNg , lyNg , lzNg ] ∈ RNy×3Ng (Ny � Ng)
where each column li denotes the scalp projection of the
ith unitary current dipole along a canonical axis. The
lead field matrix is usually precomputed for a given elec-
trical model of the head derived from a subject-specific
MRI (Hallez et al., 2007). Alternatively, if an individual
MRI is not available, an approximated lead field matrix
obtained from a high-resolution template can be used
(Huang et al., 2016). Then, the instantaneous inverse
problem of the EEG can be stated as the estimation of
a source configuration ĝk that is likely to produce the
scalp topography yk.

In the generative model presented above, the noise
term ek is assumed to be Gaussian and spatially uncor-
related with variance λk. This simplification is accept-
able as long as EEG topographies are not affected by
non-Gaussian pseudo-random artifacts generated by eye
blinks, lateral eye movements, facial and neck muscle
activity, body movement, among others. Therefore, be-
fore source estimation, EEG data are usually heavily
preprocessed and cleaned (Bigdely-Shamlo et al., 2015).
Since artifacts contribute linearly to the sensors, ideally,
one would like to characterize their scalp projections to
describe the signal acquisition more accurately. To this
end, we propose the following generalization of Eq (1),

yk = Lgk + Aνννk + ek (2)

where ννν ∈ RNν is a vector of Nν artifact sources and
A = [a1, . . . ,aNν

] ∈ RNy×Nν is a dictionary of artifact
scalp projections (see Fig 1).

Although the entries of A that correspond to muscle
activity may be obtained based on a detailed electrome-
chanical model of the body (Böl et al., 2011), in most
studies this approach may not be feasible due to compu-
tational and budgetary constraints. Janani et al. (2017)
modelled A by expanding the lead field matrix to ac-
count for the contribution of putative scalp sources,
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Figure 1: Proposed augmented generative model of the EEG. The model postulates that the EEG scalp topography yk arises from the
linear superposition of brain gi,k and artifact νj,k components weighted by their respective scalp projections li and aj, corrupted by
spatially uncorrelated Gaussian noise ek.

which were assumed to be the generators of EMG activ-
ity. They used sLORETA to estimate brain and scalp
sources simultaneously. Although this approach was
shown to be as effective as ICA-based artifact removal,
it was suggested by the authors that the use of the
non-sparse solver sLORETA may lead to unrealistic con-
figurations of brain and non-brain sources. Similarly,
Fujiwara et al. (2009) augmented the magnetic lead field
matrix to model the scalp contribution of two current
dipoles located behind the eyes and used a Bayesian ap-
proach, that has similarities with ours, to estimate brain
and eye source activity from MEG data. Although suc-
cessful for removing EOG activity, in their formulation,
Fujiwara et al. (2009) ignored other types of artifacts
that are harder to model such as those produced by
muscular activity.

In this paper, we take an empirical view inspired by
the success of ICA-based artifact removal approaches.
We propose constructing the dictionary A using a set
of stereotypical artifact scalp projections such as those
obtained from running ICA on a database of EEG record-
ings (Bigdely-Shamlo et al., 2013a). Then we rewrite
Eq (2) in a compact manner as follows,

yk = Hxk + ek (3)

where H , [L,A] is an observation operator and xk ,
[gTk , νννTk ]T is the augmented vector of hidden (latent)
brain and artifact sources (see Fig 1).

Note that, structurally, the standard generative model
in Eq (1) and the augmented one in Eq (3) are identical.
However, they differ in that in Eq (3) we are explic-
itly modeling the instantaneous spatial contribution of
non-brain sources to the scalp topography yk. There-
fore, in theory, we could dispense with computationally
expensive preprocessing data cleaning procedures. The
assumption of Gaussian measurement noise yields the
following likelihood function,

p(yk|xk, λk) = N(yk|Hxk, λkINy ) (4)

2.1.1. Parameterization of the observation operator
To obtain the observation operator H for a given

subject, we need head models and channel positions of
that subject and those in the EEG database. As we
mentioned earlier, a database of stereotypical artifact
scalp projections can be obtained by running ICA on a

large collection of EEG data sets. The database could
include data from different studies, populations, and
montages so that a “universal” artifact dictionary can
be compiled offline.

Note that the key idea is to use the precomputed ar-
tifact dictionary to approximate the scalp projection of
stereotypical artifact components of new subjects with-
out actually running ICA on their data. Towards that
end, ideally, each subject would have their companion
structural MRI and digitized channel locations fully de-
scribing the anatomical support on which EEG data
were collected. If only sensor positions were available,
the procedure proposed by Darvas et al. (2006) could
be used to obtain individualized head models using a
single template head.

Most EEG studies, however, do not include MRI data
or subject-specific sensor positions, but just the sensor
labels. Here we propose a co-registration procedure that
requires sensor positions only, either measured with a
digitizer or pulled from a standard montage file, and a
template head model. We use a four-layer (scalp, outer
skull, inner skull, and cortex) head model derived from
the “Colin27” MRI template with fiducial landmarks
(nasion, inion, vertex, left and right preauricular points)
and 339 sensors located on the surface of the scalp. The
sensors are placed and named according to a superset
of the 10/20 system.

Before starting data collection, we use the fiducial
points marked on the participant’s head to estimate an
affine transformation from the individual space to the
space of the template. If fiducial points are not available,
a common set of sensors between the template and the
individual montage can be used to estimate the trans-
formation. We use the affine transformation to map the
montage of the participant onto the skin surface of the
template; this is what we call in Fig. 2 “individualized
head model”. We compute the lead field matrix L us-
ing the boundary element method implemented in the
software OpenMEEG (Gramfort et al., 2010).

Next, we identify the subjects in the database con-
taining stereotypical artifact ICs (see next section) and
co-register each of them with the individualized head
model. We linearly map the artifact IC scalp projections
to the sensor space of the participant using the trans-
formation obtained during co-registration so that each
warped IC has the same column-length as L, and can be
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Figure 2: Procedure to obtain the lead field L and the dictionary of artifact scalp projections A.

appended to it. Finally, we divide each column of H by
its norm so that the relative contribution to each source
is determined by the amplitude of the source activation
vector xk only.

2.1.2. Identification of artifact scalp projections
Several algorithms can be used to automatically iden-

tify stereotypical artifact scalp projections derived from
ICA (Pion-Tonachini et al., 2017; Winkler et al., 2011).
As a proof of principle, however, here we rely on the
expertise of the authors. Since inspecting each IC in a
large database is a cumbersome task, we propose the
following simplification. We first co-register each sub-
ject in the database with the head model template to
map ICs defined on different sensor spaces to a common
space. We collect the mapped ICs in a matrix of 339
(number of channels of the template) by the number of
total ICs. We reduce dimensionality by applying the k-
means algorithm to the columns of the IC matrix. After
inspecting the cluster centroids we label them as Brain,
EOG, EMG, or Unknown (cluster of scalp maps of un-
known origin). Finally, we store the indices of the EOG
and EMG cluster centroid nearest neighbors for further
use in the automatic creation of the A dictionary.

2.2. Spatiotemporal constraints
Since Eq (3) does not have a unique solution, to obtain

approximated source maps with biological interpreta-

tion, we introduce constraints. One way of incorporating
constraints in a principled manner is to express them in
the form of the prior pdf of the sources p(xk). Since the
neural generators of the EEG are assumed to be the elec-
trical currents produced by distributed neural masses
that become locally synchronized in space and time
(Nunez and Srinivasan, 2006), here we seek to parame-
terized the prior p(xk) such that it induces source maps
that are globally sparse (seeking to explain the observed
scalp topography by a few spots of cortical activity) and
locally correlated (so that we obtain spatially smooth
maps as opposed to maps formed by scattered isolated
sources) in space and time. Artifactual sources, on the
other hand, can be assumed to be spatially uncorrelated
from one another and from true brain sources.

A natural way to introduce the spatiotemporal con-
straints mentioned above into ESI is to model the source
dynamics in the state-space framework. In this frame-
work, Eq. (3) represents the observation equation and we
assume the following state (source) transition equation,

xk = F (xk−1, k) + wk (5)

where the vector function F = [Fg(·)T , Fν(·)T ]T models
how the source activity evolves from one sample to the
next and wk is a perturbation vector.

Several linear (Yang et al., 2016; Fukushima et al.,
2015, 2012; Lamus et al., 2012; Cheung et al., 2010;
Galka et al., 2004) and nonlinear (Olier et al., 2013;
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Giraldo et al., 2010; Valdes-Sosa et al., 2009; Daunizeau
et al., 2009) models have been proposed for the brain
state transition function Fg(gk, k). For simplicity, here
we use the linear model proposed by Yamashita et al.
(2004) in which Fg(gk, k) is reduced to a time-invariant
linear operator describing the dynamics of the cortical
activity due to nearby source interactions. In this ap-
proach, the evolution of the ith source gi,k is given by
the following first order autoregressive model,

gi,k = αgi,k−1 + β

(
1
ni

∑
j∈N (i)

gj,k−1 − gi,k−1

)
(6)

where the constants α and β are set to yield an ob-
servable system (Galka et al., 2004), N (i) contains the
indices of the direct neighbors of dipole i and ni is
its total number of neighbors. Dipole neighbours can
be extracted from the tessellation of the cortical sur-
face. In the absence any other obvious transition model
for artifact sources, we propose a simple random walk,
which together with Eq. (6) yields the following linear
transition function,

F (xk−1, k) = Fxk−1 =
[
Fg 0
0 ζIν

] [
gk−1
νννk−1

]
(7)

where the constant damping parameter ζ = 0.99 has the
function of stabilizing the random walk model.

The state perturbation process wk encompasses mod-
eling errors as well as random inputs coming from distant
sources, which we assume to be Gaussian and serially
uncorrelated, wk ∼ N(wk|0,Qk). We model the state
noise covariance matrix Qk with the following block-
diagonal structure

Qk =
[
ΣΣΣg,k

ΣΣΣν,k

]
(8)

where the component of the covariance affecting brain
sources are defined as follows,

ΣΣΣg,k =

γ1,kC1
. . .

γNROI ,kCNROI

 (9)

and ΣΣΣν,k = diag(γNROI+1,k, . . . , γNROI+Nν ,k) is the co-
variance of the noise component affecting artifact sources.
We use this parameterization because it has been shown
to induce group-sparse source estimates (Zhang and
Rao, 2013). The matrices Ci ∈ RNi×Ni encode the
intra-group brain source covariances and are precom-
puted based on source distance taking into account the
local folding of the cortex as described in (Ojeda et al.,
2018). γγγk ∈ RNROI+Nν denotes a nonnegative scale
vector that encodes the sparsity profile of the group of
sources. Here we define NROI = 68 groups based on
anatomical regions of interest (ROI) obtained from the
Desikan-Killiany cortical atlas (Desikan et al., 2006).
These assumptions together with the state transition
model yield the following conditional source prior,

p(xk|xk−1, γγγk) = N(xk|Fxk−1,FPk−1FT + Qk) (10)

where Pk−1 is the state covariance at k − 1 and we
assume p(x0|x−1, γγγ0) = N(x0|0,Q0).

We complete our PGM by specifying priors on the
hyperparameters λk and γγγk (hyperpriors). Assuming
that λk and γi,k are independent yields the factorization

p(λk, γ1,k, . . . , γNROI+Nν ,k) = p(λk)
∏
i

p(γi,k) (11)

And since they are scale hyperparameters, we follow the
popular choice of assuming Gamma hyperpriors with
noninformative scale and shape parameters on a log-
scale of λ−1 and γ−1

i (Tipping, 2001). This choice of
hyperprior has the effect of assigning a high probability
to low values of γi, which, in the static case (no transi-
tion equation), has been shown to shrink the irrelevant
components of xk to zero (Wipf and Nagarajan, 2008),
thereby leading to a sparsifying behavior know as Au-
tomatic Relevance Determination (ARD) (Neal, 1996;
MacKay, 1992).

We remark that although we are not the first to pro-
pose modeling the inverse solution of the EEG in the
state-space framework, to our knowledge, we are the
first to include artifact sources in the model and group-
sparsity constraints. Fig. 3 shows the graphical repre-
sentation of the proposed PGM.

γγγk−1 γγγk γγγk+1

· · · xk−1 xk xk+1 · · ·

yk−1 yk yk+1

λk−1 λk λk+1

Figure 3: Graphical representation of the proposed generative
model. Square, circle, and shaded circle symbols represent con-
stant, hidden, and measured quantities respectively.

2.3. The Kalman filter

Our generative model belongs to the family of linear
Gaussian dynamic systems (LGDS). In this type of
systems, the source time series can be estimated from
data optimally using the Kalman filter (Kalman, 1960).
Because our algorithm is closely related to the Kalman
filter, next we briefly outline this approach. To keep
the notation uncluttered, in this section we remove the
sample index k from the hyperparameters λ and γγγ.

Using the Bayes theorem we write the posterior of the
sources as follows,

p(xk|yk, λ,γγγ) = p(yk|xk, λ)p(xk|γγγ)
p(yk|λ,γγγ) (12)

from which we have removed the dependency on the pre-
vious state, xk−1, by computing the predictive density

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 20, 2019. ; https://doi.org/10.1101/559450doi: bioRxiv preprint 

https://doi.org/10.1101/559450
http://creativecommons.org/licenses/by-nc-nd/4.0/


p(xk|γγγ) =
∫
p(xk−1|yk−1, λ,γγγ)p(xk|xk−1, γγγ)dxk−1

(13)
where p(xk−1|yk−1, λ,γγγ) is the source posterior already
determined in the previous time step, k− 1. In a LGDS,
the predictive density is also Gaussian with the following
mean and covariance (Ozaki, 2012),

x̂k|k−1 = E[xk|yk−1] = Fx̂k−1|k−1

P̂k|k−1 = E[xkxTk |yk−1] = FP̂k−1|k−1FT + Qk

(14)

where we use the subindex n|m (with n ≥ m) to denote
quantities estimated in the step n using data up to the
m sample. Eq. (14) is known as the time update.

Since the numerator of Eq. (12) is the product of two
Gaussian distributions, the posterior is also a Gaussian
with the following mean and covariance (Ozaki, 2012),

x̂k|k = E[xk|yk] = x̂k|k−1 + Kk(yk −Hx̂k|k−1)
P̂k|k = E[xkxTk |yk] = P̂k|k−1 −KkHP̂k|k−1

(15)

where Kk represents the Kalman gain,

Kk = P̂k|k−1HTS−1
k (16)

and Sk is the covariance of the data sequence yk.
Eq. (15) is known as the measurement update. Using
Eq. (14)-(16), we write the Kalman filter as the following
recursive formula,

x̂k|k = Fx̂k−1|k−1 + Kk(yk −HFx̂k−1|k−1) (17)

2.4. The RSBL filter
Yamashita et al. (2004) pointed out that the use of the

Kalman filter in the context of ESI can be prohibitively
expensive due to the necessity to estimate the Nx ×
Nx state covariance matrix Pk. In that paper, the
authors proposed that a tractable approximation to
sidestep this problem is to remove the contribution of
the neurodynamic model from the evolution of the state
covariance, FP̂k−1|k−1FT → 0, in Eq. (14). With this
modification, we propose the use of the main recursive
formula of the Kalman filter in Eq. (17) subject to the
following gain and data covariance matrices,

Kk = Q(γ̂̂γ̂γk)HTS−1
k

Sk = λ̂kINy + HQ(γ̂̂γ̂γk)HT
(18)

where λ̂k and γ̂̂γ̂γk are optimal hyperparameter estimates
obtained through the SBL algorithm outlined in Section
2.6. We summarize the RSBL filter in Algorithm 1 below.

It is important to note that unlike most common use
cases of the Kalman filter, in ESI we do not have access
to a perfect description of the brain dynamics that is
computationally tractable. Thus, we usually rely on
approximate neurodynamic models, of which Eq. (6) is
an example. We point out that our transition function
is designed to provide a simple local spatiotemporal fil-
tering effect that can be justified on the basis of nearby
source interactions. However, the actual neurodynamic

Algorithm 1 RSBL filter
Input: yk . EEG measurement
Output: x̂k|k . Source estimate

1: x̂k|k−1 = F (x̂k−1|k−1) . Time update
2: ỹk = yk −Hx̂k|k−1 . Compute innovations
3: λ̂, γ̂̂γ̂γ = arg minλ,γγγ −2 log p(yk|λ,γγγ) . Model learning
4: Sk = λ̂kINy + HQ(γ̂̂γ̂γk)HT . Update Sk
5: Kk = Q(γ̂γγ)HTS−1

k . Update Kk

6: x̂k|k = x̂k|k−1 + Kkỹk . Measurement update

model may be far more complex. Since modeling errors
are unavoidable, we argue that it makes sense from a
practical standpoint to downplay the role of the neuro-
dynamic model in the update of the state covariance.
To compensate for this additional approximation, we
exploit the block structure of the state vector induced by
the hyperparameter vector γγγ to constrain the correction
of the measurement update to regions of the state-space
with biological significance.

Our approach differs from the one proposed by Ya-
mashita et al. (2004) in two ways. First, they regularize
the same amount everywhere in the source space (equiv-
alent to considering a single γ parameter for the whole
cortex) while we do so in groups of nearby sources en-
couraging sparsity in the ROI domain. Second, they do
not consider time-varying hyperparameters and we do
(λk, γγγk). Fixed hyperparameters may limit the applica-
bility of this approach to experiments where the sparsity
profile of the sources remains constant (e.g., steady state
dynamics).

2.5. Data cleaning and source separation

The RSBL filter proposed above can be used to obtain
a cleaned version of the EEG signal ȳk, e.g. for visual-
ization or scalp ERP analysis. To that end, we subtract
the artifact components from the data as follows

ȳk = yk −Aν̂ννk|k (19)

where ν̂ννk|k is obtained by selecting the last Nν elements
of the state vector x̂k|k.

Likewise, the estimated source vector ĝk|k is obtained
by selecting the first Ng elements of x̂k|k. The source ac-
tivity specific to the the ith ROI, ĝik|k, can be extracted
from ĝk|k using the indices pulled from the cortical atlas.
In some cases, further analysis of the source time series
(e.g., source ERP and connectivity analysis) may be
be carried out in the ROI space calculating the mean
(or RMS mean if the dipole directions can be ignored)
source activity within ROIs,

Mean: ḡik = 1
ni

∑
j∈ROIi

ĝjk|k

RMS Mean: ḡik =
√

1
ni

∑
j∈ROIi

(ĝjk|k)2
(20)

where ROIi ⊂ {1, . . . , Ng} is the subset of indices that
belong to the ith ROI and ni is the total number of
sources within it.
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2.6. Sparse model learning
The source estimates and cleaned data can be obtained

analytically by evaluating the formulas given in Eq (17)-
(20). These formulas, however, depend on the specific
values taken by the hyperparameters that control our
PGM, λk and γγγk. In this section we outline the SBL
algorithm for learning those.

The density function in the denominator of Eq. (12),
p(yk|λk, γγγk), is known as the model evidence (MacKay,
2008b) and its optimization allows us to reshape our
modeling assumptions in a data-driven manner. Since
we used noninformative hyperpriors (see Section 2.2),
to obtain source estimates conditioned on the optimal
model we optimize the evidence,

λ̂k, γ̂̂γ̂γk = arg max
λ,γγγ

p(yk|λk, γγγk) (21)

The evidence of a linear Gaussian model like ours is
readily expressed as follows,

p(yk|λk, γγγk) ∝
exp

(
− 1

2 ỹTk S−1
k ỹk

)
|Sk|−1/2 (22)

where ỹk = yk −Hx̂k|k−1 is the innovation sequence.
The maximization of the model evidence is equivalent

to minimizing the Type-II Maximum Likelihood (ML-II)
cost function, which is obtained by applying −2 log(·)
to Eq (22),

L(λk, γγγk) = log |Sk|︸ ︷︷ ︸
Complexity

+ ỹTk S−1
k ỹk︸ ︷︷ ︸

Accuracy

(23)

Eq (23) embodies a tradeoff between model complexity
and accuracy. Geometrically, the complexity term rep-
resents the volume of an ellipsoid defined by Sk. When
the axes of the ellipsoid shrink due to the pruning of
irrelevant sources, the volume is reduced. The second
term is a squared Mahalanobis distance that measures
model accuracy.

Eq (23) can be minimized very efficiently with a two-
stage SBL algorithm proposed by Ojeda et al. (2018).
In the first stage we learn a coarse-grained non-sparse
model by solving the constrained optimization problem:

λ̂, γ̂F = arg max
λ,γF
L(λk, γγγk)

subject to γi = γF > 0
(24)

In the second stage we fix λ to the value λ̂ and, starting
from the value γi = γ̂F , we learn the sparse model by
solving the optimization problem:

γ̂γγ = arg max
γγγ
L(λ̂, γγγ), subject to γγγ � 0 (25)

Intuitively, this process can be seen as an initial fast
and reasonable, albeit coarse-grained, estimation, fol-
lowed by a fine tuning step. We point the reader inter-
ested in the details of this approach to (Ojeda et al.,
2018) while MATLAB code and examples can be freely
downloaded from the Distributed Source Imaging (DSI)
toolbox repository1.

1https://github.com/aojeda/dsi

2.7. Independent Component Analysis
In the analysis presented above, the matrix H is pre-

specified. In this section, we analyze the generative
model of Eq. (3) from the ICA viewpoint. ICA is a
blind source separation method that seeks to estimate
the source time series (called activations in the ICA liter-
ature) xk from the data time series yk without knowing
the gain (mixing) matrix H. In ICA, we assume that the
latent sources are instantaneously independent, which
yields the following prior distribution,

p(xk) =
Nx∏
i=1

pi(xi,k) (26)

To simplify the exposition, we assume the same num-
ber of sensors and sources, Ny = Nx, and the interested
reader can find the case Ny < Nx in (Le et al., 2011;
Lewicki and Sejnowski, 1998). From these premises,
the objective of the algorithm is to learn the unmixing
matrix H−1 such that we can estimate the sources with
x̂k = Ĥ−1yk. The unmixing matrix Ĥ−1 can be learned
up to a permutation and rescaling factor, which has the
inconvenience that the order of the learned components
can change depending on the starting point of the algo-
rithm and data quality. We can use a data block Y to
write the likelihood function,

p(Y|H, λ) =
∏
k=1

p(yk|H, λ) (27)

under the assumption of independent data collection.
We should point out that in the case of EEG, the signal
is not iid because of the short term autocorrelations
produced by the underlying source dynamics. To allevi-
ate this situation the data are usually whitened during
preprocessing. We obtain each factor in Eq (27) by
integrating out the sources as follows,

p(yk|H, λ) =
∫
p(yk|xk,H, λ)p(xk)dxk (28)

As noted by MacKay (2008a), assuming that the data
are collected in the noiseless limit, λ → 0, transforms
the Gaussian likelihood p(yk|xk,H, λ) into a Dirac delta
function, in which case Eq (28) leads to the Infomax
algorithm of Bell and Sejnowski (1995). The learning
algorithm essentially consists in finding the gradient
of the log likelihood, log p(Y|H, λ), with respect to H
and updating H on every iteration such that the likeli-
hood of the data increases. As pointed out by Comon
(1994), the ICA model is uniquely identifiable only if
at most one component of xk is Gaussian. Therefore,
the prior densities pi(xi,k) are usually assumed to ex-
hibit heavier tails than the Gaussian and, in particular,
the prior pi(xi,k) ∝ cosh−1 xi,k yields the popular ICA
contrast function tanh(H−1yk). Note that this prior is
not motivated by a biological consideration but by a
mathematical necessity.

It is remarkable that ICA can learn columns of Ĥ that
are consistent with bipolar (single or bilaterally sym-
metric) cortical current source scalp projections without
using any anatomical or biophysical constraint what-
soever (Makeig et al., 1997). Onton et al. (2006) have
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shown that other columns may correspond to differ-
ent stereotypical artifact scalp projections as well as a
set of residual scalp maps that are difficult to explain
from a biological standpoint. Delorme et al. (2012) have
shown that the best ICA algorithms can identify approxi-
mately 30% of dipolar brain components (approximately
21 brain components out of 71 possible in a 71-channel
montage). Although ICA has proven to be a useful
technique for the study of brain dynamics (Makeig and
Onton, 2011), we must wonder if its performance can
be improved, perhaps by making BSS of EEG data less
“blind”. In other words, if we know a priori what kind
of source activity we are looking for (dipolar cortical
activity, EOG and EMG artifacts and so on), why limit
ourselves to a purely blind decomposition?

In this paper, we advocate the use of as much informa-
tion as we can to help solve the ill-posed inverse problem.
In that sense, the use of a prespecified lead field matrix
in the generative model of the EEG forces inverse algo-
rithms to explain the data in terms of dipolar sources,
because the lead field is precisely an overcomplete dic-
tionary of dipolar projections of every possible source
there is in a discretized model of the cortex. It has been
shown that source estimation can greatly benefit from
the use of geometrically realistic subject-specific (Cus-
pineda et al., 2009) or, alternatively, population-based
approximated lead fields matrices (Valdés-Hernández
et al., 2009). Furthermore, augmenting the lead field
dictionary with a set of stereotypical artifact projections,
as proposed in Section 2.1, furnishes a more realistic
generative model of the EEG in a way that renders blind
decomposition unnecessary or at least suboptimal for
brain imaging.

2.8. Independent source separation through RSBL
It has been pointed out that, due to the volume con-

duction effect, the source estimates obtained from EEG
are still a mixture of the actual source activity (Biscay
et al., 2018). To guard against this problem, ideally,
we would like the RSBL algorithm to exhibit the ICA
property of yielding maximally independent (demixed)
source time series. Recently, Biscay et al. (2018) used
arguments complementary to those given in this section
to show that, in the static case, the use of source ROI
constraints induces the desired unmixing effect. Next,
we show that this is indeed the case when source dy-
namics are considered and that it is a consequence of
parameterizing the sources with sparse priors. We start
by rewriting the biologically motivated source prior of
Eq (13) as follows,

p(xk|γ) =
Nγ∏
i=1

pi(xi,k|γi) (29)

where each factor is a Gaussian pdf and i indexes a
group of sources or an artifact component. To write
Eq (29) as the ICA prior in Eq (26) we need to integrate
out the hyperparameter γi from each factor as follows:

p(xk) =
Nγ∏
i=1

∫
pi(xi,k|γi)p(γi)dγi︸ ︷︷ ︸

pi(xi,k) is a Student t-distribution

(30)

which, given our choice of hyperprior on γi, renders
each marginalized prior pi(xi,k) a heavy-tailed Student
t-distribution (Tipping, 2001). We note that in our
development we take the route of optimizing the γi
hyperparameters rather than integrating them out be-
cause the former approach yields a simpler algorithm
and tends to produce more accurate results in ill-posed
inverse problems (MacKay, 1996). The optimization of
γi allows for automatic removal of irrelevant brain and
artifact components that are not supported by the data,
thereby eliminating the subjectivity implicit in manual
component selection. Assuming the prior in Eq (29), the
ICA data likelihood of Eq (28) becomes exactly the evi-
dence of Eq (22), with the difference that in the RSBL
filter the H matrix is known and the evidence is opti-
mized on every sample, which gives our algorithm the
ability to run online and to capture transient dynamics.

We summarize the advantages of using the RSBL filter
over ICA for source separation and imaging of EEG data
as follows:

• First and foremost, artifact removal, source separa-
tion, and imaging can be obtained simultaneously
as a consequence of optimizing the evidence of a
biologically informed generative model.

• It deals gracefully with the overcomplete case
(Ny � Nx) by finding a regularized source esti-
mator, which always exists even in the presence of
rank-deficient data, e.g., after removing the com-
mon average reference.

• It deals with the redundancy in brain responses by
inducing independence over groups of sources.

• The use of the ARD prior allows for the automatic
selection of components in a data-driven manner.

• It can adapt to non-stationary dynamics by updat-
ing the model on every sample.

• It can be used in online applications by leveraging
fast evidence optimization algorithms.

• It facilitates subject-level analysis because we esti-
mate the same number of cortical source activations
per subject, each of which has known anatomical
support. This eliminates the complications of clus-
tering ICs and dealing with missing components
(Bigdely-Shamlo et al., 2013b) while allowing the
use of more straightforward and widespread statis-
tical parametric mapping techniques (Penny et al.,
2007).

3. Results

In this section we first describe the data used to obtain
the artifact dictionary. In Section 3.2 we test the RSBL
algorithm on simulated data. In sections 3.3-3.7 we test
the algorithm on real data.
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3.1. Empirical characterization of artifact scalp projec-
tions

To construct the artifact dictionary we used data from
two different studies made public under the umbrella of
the BNCI Horizon 2020 project2 (Brunner et al., 2015).
We briefly describe these data sets next.

Data set 1: Error related potentials
The first study, 013-2015, provided EEG data from

6 subjects (2 independent sessions per subject and 10
blocks per session) collected by Chavarriaga and del
R. Millán (2010) using an experimental protocol de-
signed to study error potentials (ErrP) during a BCI
task. EEG samples were acquired at a rate of 512 Hz
using a Biosemi ActiveTwo system and a 64-channels
montage placed according to the extended 10/20 system.

Data set 2: Covert shifts of attention
The second study, 005-2015, provided EEG and EOG

data from 8 subjects collected by Treder et al. (2011) us-
ing an experimental protocol designed to study the EEG
correlates of shifts in attention. The EEG was recorded
using a Brain Products actiCAP system, digitized at a
sampling rate of 1000 Hz. The montage employed had
64 channels placed according to the 10/10 system refer-
enced to the nose. In addition, an EOG channel (labeled
as EOGvu) was placed below the right eye. To measure
vertical and horizontal eye movements, from the total of
64 EEG channels, two were converted into bipolar EOG
channels by referencing Fp2 against EOGvu, and F10
against F9, thereby yielding a final montage of 62 EEG
channels.

Data preprocessing and IC scalp map clustering
After transforming each data file to the .set format,

both studies were processed using the same pipeline
written in MATLAB (R2017b The MathWorks, Inc.,
USA) using the EEGLAB toolbox (Delorme et al., 2011).
The pipeline consisted of a 0.5 Hz high-pass forward-
backward FIR filter and re-referencing to the common
average, followed by the Infomax ICA decomposition
of the continuous data. We pooled all the preprocessed
files from all subjects in both data sets and randomly
assigned them to one of two groups: 80 % to the training
set and 20 % to the test set. The training set was used to
construct the EEG database and the artifact dictionary
while the test set was used to evaluate the performance
of the RSBL algorithm on real data in subsections 3.3-
3.5. Note that in this approach, we use the testing set to
simulate new subjects whose artifacts are not explicitly
characterized in the database. Finally, we calculated the
lead field of the subjects in the testing set as described
in Section 2.1.1.

To select artifact ICs we used the training set and
followed the procedure outlined in Section 2.1.2. Af-
ter performing the co-registration to the template, the
training set resulted in a matrix of 339 channels by 6774
independent scalp maps (101 sessions and blocks yielding
64 ICs each plus 5 sessions yielding 62 ICs each). Fig 4

2http://bnci-horizon-2020.eu/database/data-sets
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Figure 4: t-sne visualization of IC scalp map clusters. We used
the t-sne algorithm to represent each 64-dimensional scalp map
as a dot in a 2D space in a way that similar and dissimilar
scalp maps are modeled by nearby and distant points respectively
with high probability. The clusters were estimated using the k-
means algorithm. The grey points indicate mostly non-brain or
mislabeled scalp projections.

shows a visualization of the IC scalp maps using the
t-distributed stochastic neighbor embedding (t-sne) al-
gorithm (Van Der Maaten and Hinton, 2008). The t-sne
algorithm allows us to represent each 339-dimensional
IC scalp map as a dot in a 2D space in a way that
similar and dissimilar scalp maps are modeled by nearby
and distant points respectively with high probability.
We ran the k-means algorithm with several numbers of
clusters stopping at 13 after noticing that many small
islands scattered at the periphery of Fig 4 started to
be either mislabeled as Brain or labeled consistently as
EOG, EMG or Unknown. Unknown clusters were not
further used in this paper. The grey points in the figure
denote most of the scalp maps labeled as non-brain.

After the artifact selection and co-registration pro-
cesses, we obtained the following A dictionary for each
individualized head model in the testing set:

A =
[
aEOGv ,aEOGh ,aEMG1 , . . . ,aEMG11 , INy

]
(31)

where aEOGv and aEOGh are the respective scalp projec-
tions of the vertical and horizontal EOG ICs, aEMGi are
the projections of 11 representative EMG ICs, and we
modeled spike artifacts affecting each individual channel
with the columns of the identity matrix INy .

3.2. Performance on simulated data
We used the time series of sources in two ROIs to sim-

ulate 2 seconds of evoked EEG data contaminated by the
activity of two artifact sources (see Fig. 5). The objec-
tive of this experiment was to unmix the EEG signal and
recover all four sources under different common-mode
noise conditions. To that end, we placed brain sources
in the anterior (ACC) and posterior (PCC) cingulate
cortex. We designed their time courses to simulate the
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distribution of scalp voltages observed during ErrP stud-
ies (Gehring et al., 2012). ErrP are characterized by a
negativity (Ne component) in the frontocentral channels
within 100 msec after an erroneous response followed
by a positivity (Pe component) in the centroparietal
channels around the 250 msec. The timing of these
components can be reliably identified by inspecting the
EEG activity of frontocentral channels (Fz, FCz, Cz)
time-locked to the erroneous responses.

We simulated Ne and Pe spatial profiles with the
column vectors gA and gP, which contained 1 only in
the entries corresponding to dipoles in ACC or PCC
respectively and 0 elsewhere. The temporal profiles, tNe
and tPe were simulated using Gamma functions. We
simulated the cortical activity by multiplying the spatial
and temporal profiles as follows,

G = gAt
T
Ne + gPt

T
Pe

The two artifact sources simulated a lateral eye move-
ment (-750 msec to 250 msec) and eye blink (0 msec to
400 msec) events. All other artifact sources were set to 0.
The ratios between the maximum amplitude of artifacts,
EOGh and EOGv, to cortical source activity were set
to 5 and 10 respectively. The simulated source activity
X = [xt1 , . . . ,xtn ] was generated by concatenating the
cortical G and artifact source matrices. Scalp data was
generated by projecting X to the sensors and adding
white Gaussian noise. The variance of the noise was
calculated with respect to the variance of the sensor
data before adding EOG artifacts. We simulated the
sensor space with a 64-channels montage placed accord-
ing to the extended 10/20 system and computed H as
described in Section 2.1.1.

Table 1 summarizes the performance of the RSBL al-
gorithm for different levels of noise. Column one shows
the SNR in dB units and column two shows the equiv-
alent EEG signal to noise amplitude ratio (AR). The
columns headed by ACC, PCC, EOGv, and EOGh re-
port the correlation value between their respective sim-
ulated and estimated sources; high values indicate good
estimation accuracy. The columns headed by \ACC and
\PCC report the mean correlation between simulated
ACC and PCC sources and every other estimated cor-
tical source; low correlation values indicate low source
leakage. We note that for extremely aggressive noise
conditions (i.e., SNR values between -10 dB and 0 dB)
the algorithm failed to consistently reconstruct all the
simulated sources accurately. However, once the ampli-
tude of the EEG was at least one and a half or higher
than the amplitude of the noise, we obtained correlations
in the 0.63-0.99 range. In all cases, the leakage was low
as indicated by correlation values below 0.04.

Fig. 5 illustrates the simulated data and results for
SNR=6 dB. The traces in panel A represent the raw,
cleaned, and simulated EEG time series for a subset of
channels. The cleaned EEG traces were obtained by
subtracting out the estimated EOG activity. The panels
on the right show the ground truth and estimated source
activity in the ACC (B), PCC (C) areas, as well as EOG
artifacts (D). Note that the estimated source time series
are sparse in space and time (see also Fig. 6). In par-
ticular, panels B and C demonstrate that source values
that randomly oscillate at the noise level are ignored by
the algorithm. That does not mean that those cortical
areas are silent, but that the postsynaptic potentials
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Figure 5: Example of RSBL spatiotemporal filtering on simulated data for a common mode SNR = 6 dB. A: Raw, simulated and
estimated scalp time series for a subset of channels. B, C, D: Simulated and estimated time series of the magnitude of different cortical
and artifact sources. The common mode SNR was defined with respect to the projection of the true cortical source activity before EOG
artifacts were introduced. A common mode SNR of 6 dB indicates that that the amplitude of the simulated EEG signal was, on average,
twice higher than the amplitude of the sensor noise.
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SNR1 (dB) AR2 ACC \ACC PCC \PCC EOGv EOGh
-10 0.316 0.0032 0.0200 0.016 0.0241 0.096 0.099
-6 0.5 0.0200 0.0382 0.765 0.0327 0.109 0.111
0 1 0.1678 0.0189 0.964 0.0078 0.715 0.496
3 1.4 0.6325 0.0175 0.921 0.0175 0.739 0.803
6 2 0.8808 0.0129 0.869 0.0137 0.881 0.949
10 3.16 0.7211 0.0131 0.991 0.0098 0.969 0.983
20 10 0.8805 0.0121 0.993 0.0109 0.974 0.998

1. Signal to noise ratio.
2. EEG signal to amplitude ratio.

Table 1: RSBL performance for different SNR values. The columns
ACC and PCC report the correlation between the simulated
and the estimated sources of each respective ROI. The grayed-
out columns with the \ symbol in the header report the mean
correlation between the simulated sources and all other estimated
sources removing the respective ACC or PCC ROI; low values in
this columns indicate low source leakage. The last two columns
report the correlation between simulated and recovered artifact
sources.

produced by the collective firing of pyramidal cells in
those places are not coherent enough to create signals
that can be reliably measured by the scalp sensors.

Fig. 6 shows a snapshot of the scalp and source activi-
ties at the peak of the Ne and Pe components displayed
in Fig. 5. We linearly extrapolated the sensor values to
the portion of head covered by the EEG cap, so that the
topographic maps could be rendered on the 3D surface.
In the top row, we see that although all the simulated
sources within an ROI have the same amplitude, in the
recovered maps (bottom row) the nontrivial dipole PCD
values are not identical (though correlated). The panels
in the bottom row show the EEG scalp maps with the
artifact activity subtracted out. Note that even when
the scalp data is severely affected by the eye blink ar-
tifact at the peak of the Ne component (t = 44 msec),
the algorithm correctly estimated the orientation and
location of its generators in the ACC.

3.3. Single-trial analysis on real data

In this section, we demonstrate RSBL single-trial
source analysis on real data. To that end, we selected a
subject from the testing set that belonged to the ErrP
study (data set 1 above). In the experimental protocol
used by Chavarriaga and del R. Millán (2010), the sub-
jects were tasked with moving a cursor towards a target
location either using a keyboard or mental commands.
The authors of that paper found consistent evoked po-
tentials produced by errors induced by the computer.
In other words, subjects elicited error potentials after
watching the computer execute the wrong moves; this is
sometimes referred to as feedback error-related negativ-
ity/positivity (Ward et al., 2013). These error potentials
were characterized by two frontocentral positive peaks
around 200 msec and 320 msec after the feedback, a
frontocentral negativity around 250 msec, and a broader
frontocentral negative deflection about 450 msec.

Fig. 7 summarizes the results of applying the RSBL
filter to a single-trial of the experiment. Panel A shows
the EEG signal of three frontocentral sensors (Fz, FCz,
and Cz). Panel B shows the source magnitude time
series averaged within the ACC and PCC regions, C
shows the scalp and cortical maps at the latency of the
Ne and Pe components, and D shows the maximum

Figure 6: Simulated (top row) and estimated (bottom row) scalp
and cortical maps at the peak of the Ne (44 msec) and Pe (202
msec) waves. We applied transparency to the head surfaces so
that the cortical maps can be seen in the interior layer. The
cortical maps show a view of the right hemisphere, exposing the
activations in the cingulate gyrus. The color of the scalp maps
represent EEG voltages. The color of the cortical maps represent
the magnitude of the PCD at every cortical location. The arrows
represent the average direction of dipoles inside each ROI. In the
bottom row, we have removed the contribution of the estimated
EOG activity to the scalp EEG.

intensity projection of each source map in C in the
sagittal plane. Panels B and C reveal that the error
components observed at the scalp level are mostly gen-
erated by a complicated interplay of sources in the ACC
and PCC regions. The sagittal maximum intensity pro-
jections, however, indicate that other cortical sources
also contribute to the observed EEG signal, although
a lesser amount. This is common in single-trial analy-
ses, and usually, those sources that are not related to
errors clear out after trial averaging. We note that the
result that both ACC and PCC sources contribute to Ne
and Pe scalp topographies is in agreement with recent
experimental findings (Buzzell et al., 2017).

3.4. EOG artifact removal on real data
In this example, we applied the RSBL algorithm to

a trial contaminated by a lateral eye movement and
eye blink activity. We used data from the same subject
selected for the experiment in the previous section, but
this time we analyzed an epoch with no error-related
activity so that we could appreciate the artifact rejection
performance of the algorithm minimizing task-related
confounds. Fig. 8 summarizes the data and results.

In Fig. 8, panel A shows a subset of the raw and
reconstructed (cleaned) EEG traces in black and red
respectively. There is a lateral eye movement artifact
between -1250 msec and -800 msec and an eye blink
between -250 msec and 1000 msec. Panel B shows
the estimated EOGv and EOGh artifact source activity
in blue and orange, respectively. We note that these
artifact sources were active at the latencies where the
EEG is affected and mostly zero elsewhere. This is a
desired feature of the algorithms because this way it
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Figure 7: Example of RSBL single-trial source analysis. A: EEG data of frontocentral channels. B: Source magnitude times series
averaged within ACC and PCC regions. C: EEG scalp maps and cortical estimates at the peak of the Ne and Pe components. D:
Maximum intensity projection maps of the cortical activations in panel C along the sagittal plane.

P10
P2

TP8
C2

FC4
F6

AFz
Fpz
Oz

PO7
P3

CP5
C3

FC5
F3

Fp1

EEG ( V)

Raw

Cleaned

-1500 -1000 -500 0 500 1000 1500

Time (msec)

0

200

400

Estimated EOG activity

EOG
v

EOG
h

-1500 -1000 -500 0 500 1000 1500

Time (msec)

-110

-100

-90

-80
Log evidence (dB)

Artifact modeling On

Artifact modeling Off

O
ff

Axial Sagittal

0

Max

L R

O
n

S
o

u
rc

e
 e

s
ti

m
a

te
s

 a
t 

0
 m

s
e

c

  
  

  
 A

rt
if

a
c

t 
m

o
d

e
li

n
g

  

P A

Maximum intensity projectionsA                                                                                                           C                                     

B                                                                                                           D

Figure 8: Example of RSBL artifact cleaning of an EEG epoch with lateral eye movement and eye blink artifacts. A: Subset of raw and
cleaned EEG channels. B: Estimated EOGv and EOGh artifact source activity. C: Maximum intensity projection maps of the source
map at the latency of the peak eye blink artifact with artifact modeling turned off (top row) and on (bottom row). D: Log evidence time
series obtained by the algorithm with artifact modeling turned off and on.

only “fixes” the affected segments while leaving clean
data unchanged (this result is generalized to several
subjects and epochs in Section 3.5). In C we show

the maximum intensity projection maps of the source
map at the latency of the peak eye blink artifact, 0
msec. Each column displays a different projection. The
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rows display source estimates without and with artifact
modeling enabled. Panel D shows the time series of the
log evidence for generative models with artifact modeling
on and off. In panel D, both traces differ mostly only
when artifacts occur, where higher log evidence of the
blue trace indicates that source estimation benefits from
modeling artifacts. This is not a striking finding, but
it illustrates the practical utility of the evidence metric
for data modeling.

Visual inspection of the bottom row of panel C reveals
that some residual eye blink activity may have leaked
into the frontal pole. We point out that, in practice, it
is extremely hard to totally remove artifactual activity
because: 1) the use of a lead field matrix derived from
a template head model may misfit the anatomy of the
subject, introducing errors in the L dictionary, 2) errors
in the sensor locations can cause the EEG topography
to shift with respect to the expected brain and artifact
source projections, 3) EMG scalp projections are difficult
to characterize due to their variability, as opposed to
EOG projections that are more stereotyped, and 4) un-
modeled artifactual activity, such as muscle projections
towards the back of the head that were largely ignored in
this study, may be suboptimally accounted for. Despite
all these issues, Fig. 8 demonstrate that RSBL can yield
reasonably robust source estimates in the presence of
high amplitude artifacts. Furthermore, panel D suggests
that we could use dips in the log evidence to inform
subsequent processing stages of artifactual events that
were not successfully dealt with.

3.5. Data cleaning performance: benchmark against
ASR

Next, we benchmarked the data cleaning performance
of the RSBL algorithm against ASR. The ASR algorithm
has gained popularity in recent years for its ability to

remove a variety of high amplitude artifacts in an un-
supervised manner, thereby enabling automatic artifact
rejection for offline as well as real-time EEG-based BCI
applications. Since in real data we do not have a ground
truth for artifactual activity, we compare both methods
according to the correlation between raw and cleaned
data samples in blocks with negligible or no artifactual
activity, where low correlation values indicate needless
distortion of the brain activity.

We ran both algorithms for each subject in the test
set and collected the following quantities on subsequent
blocks of 40 msec: 1) the correlation between raw and
cleaned data (computed as the correlation between the
correspondent data blocks vectorized across channels
and time points) and 2) the maximum RMS artifact
power yielded by RSBL. ASR’s performance depends
on multiple parameters, but it has been shown that the
most critical one is the cutoff (Chang et al., 2018). In
this experiment we used a cutoff equal to 5, which was
the default value of EEGLAB’s ASR plugin at the time
of preparing this publication.

In Fig 9, the left and right panels show the empirical
kernel pdf estimation of the correlation as a function of
the artifact’s power for the ASR and RSBL algorithms,
respectively. We see that in both methods, the correla-
tion decreases as artifact power increases. This effect is
expected and desired because cleaning algorithms are
supposed to modify contaminated raw data. Towards
low power artifact regions, however, ASR exhibits a sig-
nificant amount of probability mass that spreads down
to low correlation values while RSBL seems to have
most of its probability mass bounded from below at
around 0.8. This result indicates that, at a cutoff of 5,
ASR cleaning is overly aggressive to the point of signif-
icantly modifying the data in the absence of artifacts.
These findings are in agreement with what was recently
reported by Chang et al. (2018). In that paper, the
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Figure 9: Data cleaning performance. Kernel pdf estimation of the correlation between raw and cleaned data as a function of artifact
power. Left: Data cleaned by ASR using cutoff=5 (default). Right: Data cleaned by RSBL. Note that, as expected, in both algorithms
the correlation drops as artifacts increase. Towards low amplitude artifacts, however, ASR significantly distorts the data while RSBL does
not.
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authors determined that the optimal cutoff parameter
of ASR may be between 10 and 100. We remark, how-
ever, that a practical advantage of RSBL over ASR is
that in the former, all the parameters are automatically
learned from the data thereby removing the need for
user intervention or calibration.

3.6. Source separation performance: benchmark against
Infomax ICA

In this section, we investigated the source separation
performance of the RSBL algorithm. For this, we used
the test set to benchmark RSBL against Infomax ICA
regarding volume conduction unmixing as a function of
the data size. We assessed the unmixing performance
by calculating the mutual information reduction (MIR)
achieved by each algorithm on data blocks of increasing
sizes.

The MIR is an information theoretic metric that mea-
sures the total reduction in information shared between
the components of two sets of multivariate time series.
The mutual information (MI) between two given time
series xi,k and xj,k, I(xi, xj), can be defined as the
Kullback-Leibler (KL) divergence between their joint
and marginal distributions:

I(xi, xj) = DKL[p(xi, xj) ‖ p(xi), p(xj)] (32)

where I(xi, xj) > 0 indicates that processes xi and xj
share information while I(xi, xj) = 0 indicates that they
are statistically independent such that

p(xi, xj) = p(xi)p(xj)���
��:0

p(xi|xj)

We define the MIR of source separation algorithm A
with respect to B, as the difference in normalized total
pairwise MI (PMI) achieved by each decomposition:

MIRA,B = 2
NA(NA − 1)

NA∑
i=2

i−1∑
j=1

I(xAi , xAj )−

2
NB(NB − 1)

NB∑
i=2

i−1∑
j=1

I(xBi , xBj )

(33)

where xAi and xBi are the set of components yielded
by each method and NA and NB are the number of
components afforded by each decomposition. We note
that to obtain a PMI that is not biased by the number
of components, we normalize each summation by the
number of unique (i, j) pairs. Here we calculated the
MI using the empirical estimates of the distributions
in Eq (32) for the the multichannel EEG data, the
ROI-collapsed sources estimated by RSBL, and the ICs
obtained by Infomax.

In Fig 10, the left panel shows a box plot of the MIR
of RSBL and Infomax calculated with respect to the
MI of channel data. As indicated by the x-axis, we ran
the experiment multiple times increasing the data sizes
from 2 to 500 seconds (∼ 8 minutes). As expected, both
algorithms reduced source MI, thereby reversing to some
extent the mixing effect of the volume conduction. We
see also that, on average, when the MIR is calculated in
short blocks of data, RSBL exhibited higher unmixing

performance while Infomax did better on longer blocks.
This effect is more clearly represented in the panel on the
right, which shows the box plot of the MIR of RSBL with
respect to Infomax. In that panel, distributions with
entire positive (orange) or negative (blue) values indicate
a significant source crosstalk reduction performance in
favor of the RSBL or Infomax algorithms respectively.

This result suggests that RSBL can resolve transient
sources that may be active for short periods of time.
This is not surprising because in RSBL we optimally
adjust the resolution of the unmixing matrix (matrix
Kk in Eq. (18)) on a millisecond time-scale, which is
possible because of all the structure built into our model
(see Fig. 3). Infomax (and most ICA algorithms) on the
other hand, requires larger data blocks to learn a global
factorization of mixing matrix and source activations
of reasonable quality. Moreover, Fig 10 suggests that
the estimation of a global ICA model is suitable for
identifying components that remain stationary over the
whole experiment, but otherwise, it is suboptimal for
capturing transient dynamics such as those important
for BCI applications.

3.7. MoBI example: study of heading computation dur-
ing full-body rotations

We finalize this research with an application of the
RSBL algorithm to MoBI data. MoBI experiments are
notoriously difficult to analyze due to the amount of
motion-induced artifacts as well as the presence of tran-
sient and stationary brain dynamics of variable duration
across trials. Here, we try to replicate the main findings
of a study that looked into the dynamics of the retros-
plenial cortex (RSC) supporting heading computation
during full-body rotations (Gramann et al., 2018).

Heading computation is key for successful spatial ori-
entation in humans and other animals. The registra-
tion of ongoing changes in the environment, perceived
through an egocentric first-person perspective has to be
integrated with allocentric, viewer-independent spatial
information to allow complex navigation behaviors. The
RSC provides the neural mechanisms to integrate ego-
centric and allocentric spatial information by providing
an allocentric reference direction that contains the sub-
ject’s current heading relative to the environment (Byrne
et al., 2007). Single-cell recordings in freely behaving
animals have shown that the RSC is also implicated
in heading computation (Sharp et al., 2001). And al-
though there is fMRI evidence that points to the same
conclusion in humans that navigate in a virtual environ-
ment (Baumann and Mattingley, 2010), verifying this
hypothesis in more naturalistic settings has remained
elusive.

Recently, Gramann et al. (2018) used EEG synchro-
nized to motion capture recordings combined with vir-
tual reality (VR) to investigate the role of the RSC in
heading computation of actively moving humans. Data
were recorded from 19 participants using 157 active elec-
trodes sampled at 1000 Hz and band-pass filtered from
0.016 Hz to 500 Hz using a BrainAmp Move System
(Brain Products, Gilching, Germany). 129 electrodes
were placed equidistant on the scalp and 28 were placed
around the neck using a custom neckband. In that
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Figure 10: Source separation performance. Left: Box plot of MIR with respect to channel data computed on blocks of various sizes.
Right: Box plot of MIR of RSBL with respect to Infomax ICA for the same data blocks shown on the left. On each box, the central
mark indicates the median, and the bottom and top edges indicate the 25th and 75th percentiles respectively. The whiskers extend to
the most extreme data points not considered outliers, and the outliers are plotted individually using the + symbol. On the right, the
distributions with entire positive (orange) or negative (blue) values indicate a significant source crosstalk reduction in favor of the RSBL
or Infomax algorithms respectively.

study, data from physically rotating participants were
contrasted with rotations based on visual flow. In the
physical rotation condition, participants wore a Vive
HTC head-mounted display (HTC Vive; 2× 1080× 1200
resolution, 90 Hz refresh rate, 110◦ field of view). They
were placed in a sparse VR environment devoid of any
landmark information facing an orienting beacon at the
beginning of each trial. The beacon was then replaced
by a sphere that started rotating around them to the
left or the right at a fixed distance with two different,
randomly selected, velocity profiles on each trial. Par-
ticipants were instructed to rotate on the spot to follow
the sphere and keep it in the center of their visual field.
The sphere movement was completed at an eccentricity
randomly selected between 30◦ and 150◦ relative to the
initial heading. When the sphere stopped, they had
to rotate back and press a controller button to indi-
cate when they believed to have reached their initial
heading orientation. After the button press, the beacon
would reappear and participants had to rotate to face
the beacon and to start the next trial. In the joystick
rotation condition, participants stood in front of a large
TV screen (1.5 m viewing distance, HD resolution, 60
Hz refresh rate, 40′′ diagonal size) controlling a gaming
joystick to rotate in the same VR environment with an
otherwise identical trial structure.

Using an ICA/dipole fitting approach, the data was
analyzed with a focus on oscillatory activity of ICs lo-
cated in or near the RSC. ICs were clustered using
repetitive k-means clustering optimized to the RSC as
the region of interest. Four subjects without an IC
in the RSC were excluded from the analysis (21% of
all participants). Subsequently, the wavelet (Morlet)
time-frequency decomposition was computed for each
IC in the RSC cluster for the rotation periods. The
spectral baseline was defined as the 200 msec period
before stimulus onset and subtracted from each time-
frequency decomposition. To account for different trial
durations, single-trial time-frequency maps were linearly
time-warped with respect to the presentation of the

stimulus and rotation onset and offset to create time-
warped event-related spectral perturbations (ERSPs).
Using this approach, the data from the RSC cluster in
the joystick rotation condition replicated previous stud-
ies using desktop navigation protocols and comparable
data analysis approaches (Gramann et al., 2010; Chiu
et al., 2012; Lin et al., 2015, 2018), exhibiting 1) a theta
burst between stimulus onset and movement onset and
2) alpha and beta desynchronization during the rotation.
The physical rotation, however, had drastically different
properties: no clear theta burst was present before move-
ment onset, and only minor desynchronization in higher
beta bands, but synchronization in the alpha and low
beta bands after movement onset and delta and theta
bands during the rotation (see Fig 11 A-B).

Here, we used the RSBL algorithm to re-analyze the
data. To this end, we further down-sampled the data
to 250 Hz, removed the neck channels, applied a 0.5
Hz high-pass forward and backward FIR filter, and sub-
tracted the common average reference. We co-registered
each subject-specific 129-channels montage with the
head surface of the “Colin27” template and computed a
lead field matrix and artifact dictionary for each individ-
ualized head model. Then we ran the RSBL algorithm
for each condition and computed the ERSPs of the
centroid source activity averaged within the RSC. The
computation of ERSPs was identical to the previous one,
only the IC activity of the RSC cluster was replaced by
RSBL-resolved RSC source activity of all subjects.

Fig 11 C-D shows the RSBL group ERSP for the
joystick and physical rotation conditions as well as their
difference. The top panel shows in red the location
of the RSC in our template brain. Despite the differ-
ences between the two methodologies, our results largely
replicate those in (Gramann et al., 2018) displayed in
panels A-B. A few differences between the two results
are worth mentioning though. We point out that the
differences in ERSP scales exhibited in panels B and
D may be explained by different scales of the sources
obtained by ICA and RSBL. Also, we note that the
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Figure 11: Event-related spectral perturbations (ERSPs) in the RSC. Panels A and B are adapted from Gramann et al. (2018). A:
Cluster of IC equivalent current dipoles in or near the RSC. B: ICA derived ERSPs of the joystick and physical rotation conditions and
their difference. C: Location of the RSC in the cortical surface of our template. D: RSBL derived ERSPs of the joystick and physical
rotation conditions and their difference. The x-axes at the bottom of panels B and D are annotated with the stimulus onset (Stm),
movement onset (Start), percentage of the head rotation cycle, and movement offset (End).

low-frequency power increase towards the end of the
head rotation cycle in panel D Joystick condition can be
explained by artifacts improperly removed near the end
of a few trials. It should be emphasized that, unlike the
approach used by Gramann et al. (2018), ours has the
advantage of using data from all subjects without any
pre-cleaning steps in the time, channel, or trial domains,
except for the inherent cleaning capabilities of the RSBL
algorithm. To increase the robustness to residual arti-
facts, Fig 8 D suggests that a future research direction
could explore the use of the log evidence yield by RSBL
to automatically downplay the influence of artifactual
trials into post hoc statistical summaries.

4. Conclusions

In this paper, we have extended the Sparse Bayesian
Learning (SBL) framework previously proposed for in-
stantaneous electrophysiological source imaging (Wipf
and Nagarajan, 2009) in two ways. First, we augmented
the standard generative model of the EEG with a dic-
tionary of artifact scalp projections obtained empiri-

cally. In our model, we captured EOG, EMG, and
single-channel spike artifacts. Second, we introduced a
temporal dynamic constraint and spatial group sparsity
constraints based on an anatomical atlas to parameter-
ize the source prior. This parameterization encourages
sparsity in the number of active cortical regions, which
has the desired property of inducing the segregation
of the cortical electrical activity into a few maximally
independent components with known anatomical sup-
port, while minimally overlapping artifact-related activ-
ity. We used these elements to develop the recursive SBL
(RSBL) inverse filtering algorithm. Under the proposed
framework, dissimilar problems such as data cleaning,
source separation, and imaging can be understood and
solved in a principled manner using a single algorithm.
Furthermore, we used our framework to point out the
connections between distributed source imaging and In-
dependent Component Analysis (ICA), two of the most
popular approaches for EEG analysis that are often
perceived to be at odds with one another.

We used simulated data to show that the RSBL filter
can successfully recover the temporal and spatial profile
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of cortical and artifact sources, even in extremely noisy
conditions. We used real data from two independent
studies to further test the proposed algorithm. On
real data we showed that RSBL: 1) can yield single-
trial source estimates of error-related potentials that
are in agreement with the experimental literature, 2)
can significantly reduce EOG artifacts, 3) unlike the
popular Artifact Subspace Removal algorithm, it can
reduce artifacts without significantly distorting epochs of
clean data, and 4) outperforms Infomax ICA for source
separation on short blocks of data, thereby showing
potential for tracking non-stationary cortical dynamics.
Furthermore, we analyzed MoBI data with RSBL, and
we were able to replicate the main finding of a study
that investigated the dynamics of the retrosplenial cortex
(RSC) supporting heading computation during full-body
rotations.

The ability to estimate the time series of EEG sources
that correspond to known anatomical locations account-
ing for the influence of artifacts without user interven-
tion, as well as its online adaptation, makes the RSBL
algorithm appealing for established ERP paradigms as
well as MoBI. We believe that the proposed algorithm
can help to solve basic research questions employing
EEG as the functional imaging modality, and at the
same time constitute a biologically-grounded signal pro-
cessing tool that can be useful to translational efforts.

5. Acknowledgements

We thank Jason Palmer for sharing his code for com-
puting mutual information reduction. We also thank
Rosalyn Moran and Martin Seeber for their valuable
comments on an earlier version of this paper. This re-
search was supported by NIMH training fellowships in
Cognitive Neuroscience T32MH020002 and Biological
Psychiatry and Neuroscience T32MH18399 (AO), UC
San Diego Chancellor’s Research Excellence Scholarship
(JM, AO), and UC San Diego School of Medicine start-
up funds (JM). The RSBL algorithm is copyrighted for
commercial use (UC San Diego Copyright #SD2019-810)
and free for research and educational purposes.

6. References
Anderson, B.D.O., Moore, J.B., 2012. Optimal Filtering. Dover

Publications. reprint of edition.
Baillet, S., Mosher, J.C., Leahy, R.M., 2001. Electromagnetic

brain mapping. IEEE Signal Processing Magazine 18, 14–30.
Baumann, O., Mattingley, J.B., 2010. Medial Parietal Cortex

Encodes Perceived Heading Direction in Humans. Journal of
Neuroscience 30, 12897–901.

Bell, A.J., Sejnowski, T.J., 1995. An information-maximization
approach to blind separation and blind deconvolution. Neural
Computation 7, 1129–1159.

Bigdely-Shamlo, N., Kreutz-Delgado, K., Kothe, C., Makeig, S.,
2013a. EyeCatch: Data-mining over half a million EEG indepen-
dent components to construct a fully-automated eye-component
detector, in: 2013 35th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC),
IEEE. pp. 5845–5848.

Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.M., Robbins,
K.A., 2015. The PREP pipeline: standardized preprocessing
for large-scale EEG analysis. Frontiers in Neuroinformatics .

Bigdely-Shamlo, N., Mullen, T., Kreutz-Delgado, K., Makeig,
S., 2013b. Measure projection analysis: A probabilistic ap-
proach to EEG source comparison and multi-subject inference.
NeuroImage .

Biscay, R.J., Bosch-Bayard, J.F., Pascual-Marqui, R.D., 2018.
Unmixing EEG Inverse solutions based on brain segmentation.
Frontiers in Neuroscience .

Böl, M., Weikert, R., Weichert, C., 2011. A coupled electromechan-
ical model for the excitation-dependent contraction of skeletal
muscle. Journal of the Mechanical Behavior of Biomedical
Materials .

Breakspear, M., 2017. Dynamic models of large-scale brain activity.
Nature neuroscience .

Brunner, C., Birbaumer, N., Blankertz, B., Guger, C., Kübler,
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Kochen, S., Alemán-Gómez, Y., Muravchik, C., Valdés-Sosa,
P.A., 2009. Approximate average head models for EEG source
imaging. Journal of Neuroscience Methods 185, 125–132.

Valdes-Sosa, P.A., Sanchez-Bornot, J.M., Sotero, R.C., Iturria-
Medina, Y., Aleman-Gomez, Y., Bosch-Bayard, J., Carbonell,
F., Ozaki, T., 2009. Model driven EEG/fMRI fusion of brain
oscillations.

Valdés-Sosa, P.A., Vega-Hernández, M., Sánchez-Bornot, J.M.,
Mart́ınez-Montes, E., Bobes, M.A., 2009. EEG source imaging
with spatio-temporal tomographic nonnegative independent
component analysis. Human Brain Mapping 30, 1898–1910.

Van Der Maaten, L., Hinton, G., 2008. Visualizing Data using

t-SNE. Journal of Machine Learning Research .
Van Veen, B.D., van Drongelen, W., Yuchtman, M., Suzuki, A.,

1997. Localization of brain electrical activity via linearly con-
strained minimum variance spatial filtering. IEEE Transactions
on Biomedical Engineering .

Wagner, J., Makeig, S., Gola, M., Neuper, C., Muller-Putz, G.,
2016. Distinct Band Oscillatory Networks Subserving Motor
and Cognitive Control during Gait Adaptation. Journal of
Neuroscience 36, 2212–2226.

Ward, T., Bernier, R., Mukerji, C., Perszyk, D., McPartland,
J.C., Johnson, E., Faja, S., Nevers, M., Frazier, T., Howlin, P.,
Savage, S., Zane, T., Lanner, T., Myers, M., VanBergeijk, E.,
Huestis, S., Bauminger-Zviely, N., Doehring, P., Voorst, G.,
Macy, K., Kwon, J.M., McNulty, E., Chapman, S.M., Crowley,
M.J., Bean, A., Hyman, S., Scahill, L.D., Wing, L., Catania,
A.C., Thorne, J., Kini, U., Moyle, M., Plowgian, C., Happé,
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