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Abstract

Although plasma proteins may serve as important markers of disease risk in neurological conditions,
the molecular mechanisms responsible for inter-individual variation in plasma protein levels are
poorly understood. In this study, we conducted genome- and epigenome-wide association studies on
the levels of 92 neurological proteins to identify genetic and epigenetic loci associated with their
plasma concentrations (n = 750). We identified 62 independent genome-wide significant loci for 37
proteins (P < 5.4 x 101% and 68 epigenome-wide significant sites associated with the levels of 7
proteins (P < 3.9 x 10'1%). Using this information, we identified biological pathways in which putative
neurological biomarkers are implicated as well as molecular mechanisms through which genetic
variation may perturb plasma protein levels. Additionally, we found evidence that poliovirus receptor
is causally associated with Alzheimer’s disease. In conclusion, we identified many novel genetic and
epigenetic factors that are associated with neurological protein levels which may inform disease

biology and establish causal relationships between biomarkers and neurological diseases.
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1. Introduction

Plasma proteins execute diverse biological processes and aberrant levels of these proteins are
implicated in various disease states. Consequently, plasma proteins may serve as biomarkers,
contributing to individual disease risk prediction and personalised clinical management strategies
(Geyer et al., 2017). Identifying circulating biomarkers is of particular importance in neurological
disease states in which access to diseased neural tissue in vivo is almost impossible. Furthermore, in
neurodegenerative disorders, symptomatology may appear in only advanced clinical states,
necessitating early detection and intervention (Polivka et al., 2016). Elucidating the factors which
underpin inter-individual variation in plasma protein levels can inform disease biology and also
identify proteins with likely causal roles in a given disease, augmenting their value as predictive
biomarkers. Indeed, studies have characterised genetic variants (protein quantitative trait loci; pQTLs)
associated with circulating protein levels and utilised such genetic information to identify proteins
with causal roles in conditions such as cardiovascular diseases (Yao et al., 2018, Sun et al., 2018, Suhre
et al., 2017). However, studies which have aimed to examine the genetic architecture of neurology-
related proteins in human plasma are limited (Kim et al., 2011, Kauwe et al., 2014, Sasayama et al.,
2017). Furthermore, few studies have combined genetic with epigenetic data to provide an additional
layer of information regarding the molecular mechanisms responsible for regulating blood protein
levels (Ahsan et al., 2017). Therefore, the goal of the present study was to characterise the genetic
and epigenetic (using DNA methylation) architectures of putative neurology-related protein

biomarkers in order to identify potential molecular determinants which regulate their plasma levels.

Here, genome- and epigenome-wide association studies (GWAS/EWAS) are carried out on the plasma
levels of 92 neurological proteins in 750 participants from the Lothian Birth Cohort 1936 study (levels
adjusted for age, sex, population structure and array plate; hereafter simply referred to as protein

levels). These proteins represent the Olink® neurology panel and encompass a mixture of proteins
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with established links to neurobiological processes (such as axon guidance and synaptic function) and
neurological diseases (such as Alzheimer’s disease (AD)), as well as exploratory proteins with roles in
processes including cellular regulation, immunology and development. Following the identification of
genotype-protein associations (pQTLs), functional enrichment analyses are performed on
independent pQTL variants. Upon identification of epigenetic factors associated with protein levels,
tissue specificity and pathway enrichment analyses are conducted to reveal possible biological
pathways in which neurological proteins are implicated. Protein QTL data are integrated with publicly
available expression QTL data to probe the molecular mechanisms which may modulate circulating
protein levels. Finally, GWAS summary data for proteins and disease states are integrated using two-
sample Mendelian Randomisation to determine whether selected proteins are causally associated

with neurological disease states.

2. Results

2.1 Genetic architecture of neurological protein biomarkers

For the GWAS, a Bonferroni P value threshold of 5.4 x 10°° (genome-wide significance level: 5.0 x 10°
8/92 proteins) was set. The GWAS analysis in 750 older adults identified 2,734 significant SNPs
associated with 37 proteins (P < 5.4 x 10™%) (Figure 1a; Supplementary Table 1). Pruning of pQTL
variants (LD r?>< 0.1) using the SNP2GENE function in FUMA (FUnctional Mapping and Annotation
analysis) yielded 62 independent variants (Supplementary Table 2). Of these 62 variants, 56 (90.3%)
were cis pQTLs (SNP within 10 Mb of the transcription start site (TSS) of the gene) and 6 (9.7%) were
trans variants. Furthermore, cis only associations were present for 31/37 proteins (83.8%), compared
to trans only associations for 4/37 proteins (10.8%). Two proteins (5.4%) were associated with both
cis and trans pQTLs (CD200R and Siglec-9). For all independent cis pQTLs associated with a given
protein, the pQTL with the lowest P value was denoted as the sentinel variant (n = 33). The significance

of cis associations decreased as the distance of the sentinel variant from the TSS increased (Figure 1b).


https://doi.org/10.1101/558940
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/558940; this version posted February 26, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

The minor allele frequency of independent pQTL variants was inversely associated with effect size
(Figure 1c). Notably, this association may be, in part, due to ascertainment bias as rarer variants (with
lower minor allele frequencies) must have large effect sizes to attain the same level of power as more
common variants. Independent pQTLs explained between 5.3% (rs2706505; CLM-6; P = 3.4 x 109
and 54.6% (rs9349050; MDGA1; P = 6.6 x 10°!) of the phenotypic variance in plasma protein levels
(Supplementary Table 2; Figure 1d). The majority of pQTL variants were located in intergenic and
intronic regions (Supplementary Table 2; Figure 1e). The number of independent loci associated per
protein is shown in Figure 1f. No independent pQTL was associated with more than one protein.
However, 28 non-independent trans pQTLs were associated with levels of Siglec-9 and CD200R. These
variants were annotated to the ST3GAL6-AS1 gene. Figure 2 demonstrates the effect of genetic
variation at the most significant cis pQTL (rs9349050; MDGA1) and trans pQTL (rs12496730; Siglec-9)

on protein levels.

We also used an alternative method, conditional and joint (COJO) analysis, to find independent
pQTLs. This approach identified 40 significant pQTLs associated with the levels of 35 proteins (87.5%
cis and 12.5% trans effects; Bonferroni-corrected level of significance: P < 5.4 x 10°) (Supplementary
Table 3). Seven independent pQTLs associated with the levels of 6 proteins were found using both
approaches whereas the remaining SNPs identified by COJO for a given protein were located within

the same locus as corresponding SNPs identified by FUMA.
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2.2 Colocalisation of cis pQTLs with cis eQTLs

Of the 33 sentinel cis pQTL variants, 13 (39.3%) were cis eQTLs for the same gene in blood tissue. For
5/13 proteins, there was strong evidence (posterior probability (PP) > 0.75) for colocalisation of cis
pQTLs and cis eQTLs and for 1 protein, NAAA, there was weaker evidence (PP > 0.5) for colocalisation.
For 6/13 proteins, there was evidence (PP > 0.75) for two distinct causal variants affecting transcript
and protein levels in the locus. Finally, for CLM-6, there was strong evidence (PP > 0.75) for a causal

variant for gene expression only in the locus (Supplementary Table 4).

For the 5 proteins with strong evidence in favour of a shared causal variant for gene expression and
plasma protein levels, two-sample Mendelian randomisation was performed to test for a causal
association between perturbations in gene expression (using data from eQTLGen Consortium) and
plasma protein levels (using our GWAS data). Pruned cis QTL variants (linkage disequilibrium (LD)
r2<0.1) were used as instrumental variables for MR analyses. MR analyses were conducted using MR-
Base (Hemani et al., 2018). For each trait, the intercept from MR Egger regression was non-significant,
which does not suggest strong evidence for directional pleiotropy (DRAXIN: P = 0.82; Siglec-9: P =0.41;
MDGA1: P = 0.38; KYNU: P = 0.36; LAIR-2: P = 0.56). For 4 proteins, variation in gene expression was
causally associated with plasma protein levels (Inverse variance-weighted method; Siglec-9: beta =
0.76, se =0.26, P = 3.1 x 10°%; MDGA1: beta = 0.99, se = 0.49, P = 0.02; KYNU: beta = 1.05, se = 0.22, P
= 2.2 x 10 LAIR-2: beta = 1.53, se = 0.51, P = 3.0 x 103). While gene expression of DRAXIN was not
causally associated with changes in plasma protein levels (Inverse variance-weighted method; beta =
-0.98, se =0.62, P = 0.10), altered plasma protein levels were causally associated with changes in gene

expression (beta=-0.72,se =0.07, P =1.2 x 1023).
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2.3 Epigenetic architecture of neurological protein biomarkers

For the EWAS, a Bonferroni P value threshold of 3.9 x 10'1° (genome-wide significance level: 3.6 x 10°
8/92 proteins) was set (Saffari et al., 2018). We identified 68 genome-wide significant CpG sites
associated with the levels of 7 neurological proteins (P < 3.9 x 101%). Of these associations, 52 were
trans effects (76.5%) and 16 associations were cis effects (23.5%) (Figure 3; Supplementary Table 5).
The majority of the protein-CpG associations were attributable to CRTAM (Cytotoxic and Regulatory T
Cell Molecule; 43/68; 63.2%; Figure 3), which is upregulated in CD4* and CD8* cells (Takeuchi et al.,

2016).

Three proteins exhibited both genome-wide significant SNP and CpG site associations: MATN3,
MDGA1 and NEP (Figure 4). For MATN3, the cis pQTL identified in this study (rs1147118) has previously
been identified as a methylation QTL (mQTL) for the single cis CpG site associated with MATN3 levels
identified by our EWAS (cg24416238) (Bonder et al., 2017). Similarly, the 6 cis pQTLs for differential
blood MDGA1 concentrations in our study have been significantly associated with methylation levels
of cis CpG sites identified by our EWAS on MDGA1 levels (Bonder et al., 2017). Finally, for NEP, we
identified a sole independent trans pQTL (rs35004449) annotated to the ITIH4 gene (beta: -0.53; effect
allele: G) as well as three trans genome-wide significant CpG sites (cg18404041, cg11645453 and
cg06690548 annotated to ITIH1, ITIH4 and SLC7A11, respectively). In addition to lower circulating
levels of NEP, this SNP has previously been associated with higher methylation levels of cg18404041
(ITIH4; beta: 0.93; effect allele: G; P =4.20 x 10'Y7) and lower methylation levels of cg11645453 (ITIH1;

beta: -0.84; effect allele: G; P = 1.20 x 10°%) (Gaunt et al., 2016).

We conducted tissue specificity and pathway enrichment analyses (KEGG and GO — see methods for
details) based on genes identified by methylation for each of the 7 proteins with genome-wide

significant CpG associations. Tissue-specific patterns of expression were observed for 6/7 proteins
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(Supplementary Data 1). Neural tissue was the most common tissue type in which genes were
differentially expressed (n = 5/6 proteins), followed by cardiac and splenic tissue (n = 4/6 proteins).
Additionally, KEGG pathway analysis revealed that genes identified in the EWAS on CRTAM levels were
enriched for neuroactive ligand-receptor interaction, axon guidance and cancer-related pathways
(Supplementary Table 6; FDR-adjusted P value < 0.05). Gene ontology analyses revealed that genes
incorporating CpG sites associated with CRTAM and GZMA levels are over-represented in
neurogenesis, cell and neuronal differentiation, and synaptic organisation pathways (Supplementary
Table 7-8; FDR-adjusted P value < 0.05). Furthermore, genes annotated to CpG sites associated with
circulating SIGLEC1 and G-CSF levels are over-represented in immune system processes, viral response
and cytokine response pathways (Supplementary Table 9-10; FDR-adjusted P value < 0.05). Finally,
genes incorporating CpG sites associated with NEP levels are over-represented in metabolic pathways
involving extracellular matrix components (Supplementary Table 11; FDR-adjusted P value < 0.05). For

MDGA1 and MATN3, there were no significant results following multiple testing correction.

2.4 Correlation between genetic architecture of Olink neurology proteins and neurological

phenotypes

Weak correlations were observed between all protein levels and 13 neurological phenotype polygenic
risk scores (range: r = -0.11 to 0.11; Figure 5, Supplementary Table 12). Across all protein-polygenic
risk score (PRS) comparisons, the most positive correlation was between CDH3 and the PRS for
attention-deficit hyperactivity-disorder (r=0.11, 95% Cl: 0.04 —0.19, P = 9.0 x 10™*). The most negative
correlation was between NCAN and the PRS for depression as diagnosed by criteria stipulated by
International Classification of Diseases 9/10 (r = -0.11, 95% Cl: -0.04 — -0.18, P = 2.4 x 103). No
relationship remained significant after correction for multiple testing (Bonferroni threshold: 0.05/(13

phenotypes x 92 proteins) = 0.05/1196 = 4.2 x 10).
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2.5 Causal evaluation of biomarkers in neurological disease

As the pQTL GWAS identified a cis association for poliovirus receptor (PVR), and given that the PVR
gene has been implicated in AD (Porcellini et al., 2010), colocalisation analysis was performed to test
if the same SNP variant might be driving both associations. A 200kb region surrounding the sentinel
cis pQTL for PVR was extracted from GWAS summary statistics for PVR levels as well as AD (Jansen et
al., 2019). Default priors were applied. There was evidence to suggest that there are two distinct

causal variants for altered protein levels and AD risk within the region (PP3 > 0.99).

In addition to the colocalisation analysis, two-sample Mendelian randomisation was used to test for
putatively causal associations between plasma PVR levels and AD (Lambert et al., 2013). After LD
pruning, only one independent SNP remained (rs7255066; F-statistic: 15.88). Therefore, causal effect
estimates were determined using the Wald ratio test, i.e., a ratio of effect per risk allele on AD to
effect per risk allele on PVR levels. MR analyses indicated that PVR levels were causally associated with
AD (beta =0.17, se = 0.02, P = 5.2 x 10°%% Wald ratio test). Testing for horizontal pleiotropy was not
possible owing to an insufficient number of instruments. Conversely, AD risk was not causally
associated with PVR levels (number of SNPs: 5; Inverse variance-weighted method: beta = 0.38, se =
0.29, P = 0.34). The intercept from MR Egger regression was -0.08 (se: 0.08; P = 0.42) which does not

provide strong evidence for directional pleiotropy.

2.6 Replication of previous pQTL studies

Replication of the pQTL findings was carried out via lookup of genotype-protein summary statistics
from existing pQTL studies (Sun et al., 2018, Suhre et al., 2017, Di Narzo et al., 2017, Lourdusamy et

al., 2012). Of the 37 proteins with a pQTL in the present study, 16 (with 24 QTLs) were available for
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lookup. In total, 9/23 (39.1%) pQTLs replicated at P < 1.25 x 107 (denoting the least conservative

threshold across all studies) (Supplementary Table 13).

3. Discussion

Using a multi-omics approach, we identified 62 independent genome-wide significant pQTLs and 68
genome-wide significant CpG sites associated with circulating neurological protein levels. To probe
the molecular mechanisms which modulate plasma protein levels, we integrated pQTL and eQTL data
allowing for the examination of whether pQTLs affect gene expression. For five proteins, we found
strong evidence that a common causal variant underpinned changes in transcript and protein levels.
Mendelian randomisation analyses suggested that variants for four of these proteins (Siglec-9,
MDGA1, KYNU and LAIR-2) influence protein levels by altering gene expression. However, for one
protein (DRAXIN), the converse may be true as our data suggested that altered plasma protein levels
of this neurodevelopmental protein may affect gene expression, perhaps through a feedback
mechanism. Genotype-protein associations for other proteins may exert their influence on protein
levels through modulation of protein clearance, degradation, binding or secretion. Methylation data
revealed that neurological proteins were implicated in immune, neurological development and
synaptic functionality pathways. Finally, we found evidence of a causal association between poliovirus

receptor protein and AD.

In addition to leveraging methylation data to identify pathway enrichment for plasma proteins,
identification of trans pQTLs may highlight previously unidentified pathways relevant to disease
processes. For instance, we found that genetic variation at the inter-alpha-trypsin inhibitor heavy
chain family member 4 locus (/TIH4) is associated with differential NEP levels (trans pQTL:

rs35004449). Additionally, two CpG sites annotated to /TIH4 and ITHI1 (cg18404041 and cg11645453,
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respectively) were associated with NEP levels. Methylation QTL analyses revealed that the SNP
rs35004449 has been previously associated with higher methylation levels of cg18404041 (/T/IH4) and
lower DNA methylation levels of cg11645453 (/TIH1) (Gaunt et al., 2016). Similarly, this SNP has been
associated with lower gene expression of ITIH4 (Consortium, 2015) and higher protein levels of ITIH1
(Sun et al., 2018). Together, these data suggests that the expression of NEP, ITIH4 and ITIH1 may be
co-regulated, involving inverse relationships between NEP and ITIH4 with ITIH1. Given that mutations
in NEP have been linked to Alzheimer’s pathology and that upregulation of ITIH4 has been
demonstrated in sera of AD patients (Yang et al., 2012b), mechanistic studies relating to co-expression

of these proteins are merited in pathological states.

In this study, no independent pQTL was associated with more than one protein. However, prior to
pruning of SNPs to identify independent signals, 28 SNPs were shared between CD200R and Siglec-9.
These polymorphisms mapped to the ST3GAL6-AS1 gene and included the sentinel SNP for Siglec-9,
but not CD200R1. ST3GAL6-AS1 is a long-coding RNA which is associated with increased expression of
ST3GALS6, an enzyme responsible for catalysing the addition of sialic acid to cell surfaces (Bull et al.,
2014). Upregulation of ST3GAL6 has been reported in multiple myeloma (Shen et al., 2018, Glavey et
al., 2014); this permits evasion of immune responses against cancer cells through binding of sialic acid
to Siglec receptor proteins, such as Siglec-9. The recognition of sialic acid by Siglec proteins ignites
signalling cascades which promotes immune inhibitory responses (Jandus et al., 2014, Adams et al.,
2018). Furthermore, CD200-CD200R interaction results in the inhibition of immune responses against
multiple myeloma cells (Conticello et al., 2013). Therefore, as polymorphisms in ST3GAL6-AS1 are
associated with altered expression of Siglec-9 and CD200R, this may provide further evidence for co-
regulation of these proteins in pathological milieux, such as tumorigenesis in cancers including

multiple myeloma. Polymorphisms in such trans pQTLs may also be used to predict disease risk,
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progression and provide pharmacogenomic information in predicting individual patient responses to

inhibition of these co-regulated proteins.

By using cis pQTLs as instruments for MR analyses, it is possible test whether plasma proteins are
associated causally with disease states (Zheng et al., 2017). PVR is a component of the AD risk-
associated APOE/TOMMAO0 cluster on chromosome 19 and has been hypothesised to influence risk of
AD through susceptibility to viral infections (Porcellini et al., 2010). However, it is unknown whether
PVR is causally linked to the disease. MR analyses suggested that circulating PVR levels may be causally
associated with AD and not vice versa. However, an insufficient number of instruments were available
to permit testing for potential pleiotropic effects. Furthermore, colocalisation analysis revealed that
independent variants in the PVR locus are likely causally associated with altered plasma PVR levels
and AD risk. One possible explanation for this is that variation at a pQTL is associated with circulating
PVR levels but may not reflect disease-relevant mechanisms, such as altered PVR expression in neural
tissue. Indeed, genetic variation at a distinct site in the locus may directly influence AD risk through a
distinct neuropathological mechanism leading to development of the disease. Further studies are
merited to define possible pleiotropic effects, as well as the precise relationship between genetic

variation in the PVR locus and susceptibility to AD to refine its potential as a biomarker for the disease.

The discrepancy in replication of pQTLs reported in previous studies may be due to a number of
factors. Firstly, the sample sizes of these studies (n < 100 (Lourdusamy et al., 2012, Di Narzo et al.,
2017); n> 1,000 (Suhre et al., 2017, Sun et al., 2018)) are different from that of the present study (n =
750) leading to differences in statistical power. Secondly, diverse proteomic platforms may result in
the detection of different genotype-protein associations. Depending on platform technology,
susceptibility to cross-reactive events and detection of proteins in their free, versus complexed, forms

can result in inappropriate readouts. SOMAmer technology, employed in the previous pQTL studies is
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a highly sensitive, aptamer-based platform which overcomes limitations associated with antibody-
based methods, such as cross-reactivity (Gold et al., 2010). Moreover, Olink® technology is particularly
effective in limiting the reporting of cross-reactive events. However, when compared to these
platforms, other technologies such as mass-spectrometry can produce highly accurate measurements
but with low sensitivity (Hathout, 2015). Lack of standardisation amongst proteomic platforms,
insufficient power to detect associations and differences in study demographics may all contribute to
variability in the detection of pQTLs for a given protein. Additionally, we performed both FUMA (LD-
based method) and COJO (stepwise conditional regression) to identify independent pQTL-protein
associations and found a small overlap (17%) between SNPs identified by both methods. However,
SNPs which were differentially identified by COJO and FUMA for a given protein were located within
the same region. Indeed, the maximum distance between discordant SNPs for a given protein was 3

Mb.

We acknowledge several limitations in the present study. Firstly, analyses were restricted to
individuals of European descent, complicating the generalisability of our findings to individuals of
other ethnic backgrounds. Secondly, functional enrichment analyses indicated that a number of cis
pQTL variants alter the amino acid sequence of the coded protein which may impact the quantitative
protein assay. Finally, as our findings pertain to whole blood samples, studies examining the genetic

and epigenetic regulation of neurological proteins in post-mortem brain tissue are warranted.

In conclusion, we have identified genetic and epigenetic factors associated with neurological proteins
in an older-age population. We have shown that use of a multi-omics approach can help define
whether such proteins are causal in disease processes. Importantly, we have shown that PVR may be
causally associated with AD. Furthermore, we have provided a platform upon which future studies can

interrogate pathophysiological mechanisms underlying neurological conditions. Together, this
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information may help inform disease biology as well as aid in the prediction of disease risk and

progression in clinical settings.

4. Online Methods

4.1 The Lothian Birth Cohort 1936

The Lothian Birth Cohort 1936 (LBC1936) comprises Scottish individuals born in 1936, most of whom
took part in the Scottish Mental Survey 1947 at age 11. Participants who were living within Edinburgh
and the Lothians were re-contacted approximately 60 years later, 1,091 consented and joined the
LBC1936. Upon recruitment, participants were approximately 70 years of age (mean age: 69.6 + 0.8
years). Participants subsequently attended four additional waves of clinical examinations every three
years. Detailed genetic, epigenetic, physical, psychosocial, cognitive, health and lifestyle data are
available for members of the LBC1936. Recruitment and testing of the LBC1936 cohort have been

described previously (Deary et al., 2007, Taylor et al., 2018).

4.2 Protein Measurements in the Lothian Birth Cohort 1936

Plasma was extracted from 816 blood samples collected in citrate tubes at mean age 72.5 + 0.7 years
(Wave 2). Plasma samples were analysed using a 92-plex proximity extension assay (Olink® Bioscience,
Uppsala Sweden). The proteins assayed constitute the Olink® neurology biomarker panel. In brief, 1
uL of sample was incubated in the presence of proximity antibody pairs linked to DNA reporter
molecules. Upon binding of an antibody pair to their corresponding antigen, the respective DNA tails
form an amplicon by proximity extension, which can be quantified by high-throughput real-time PCR.
This method limits the reporting of cross-reactive events. The data were pre-processed by Olink® using
NPX Manager software. Protein levels were transformed by rank-based inverse normalisation.
Normalised plasma protein levels were then regressed onto age, sex, four genetic principal

components of ancestry derived from the lllumina 610-Quadvl genotype array (to control for
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population structure) and Olink® array plate. Standardised residuals from these linear regression

models were used in our genome- and epigenome-wide association studies.

4.3 Methylation preparation in the Lothian Birth Cohort 1936

DNA from whole blood was assessed using the Illumina 450K methylation array at the Edinburgh
Clinical Research Facility (Wave 2; n = 895; mean age: 72.5 + 0.7 years). Details of quality control
procedures have been described elsewhere (Shah et al., 2014). Briefly, raw intensity data were
background-corrected and normalised using internal controls. Following background correction,
manual inspection permitted removal of low quality samples presenting issues relating to bisulphite
conversion, staining signal, inadequate hybridisation or nucleotide extension. Quality control analyses
were performed to remove probes with low detection rate i.e. <95% at P < 0.01. Samples with a low
call rate (samples with < 450,000 probes detected at p-values of less than 0.01) were also eliminated.
Furthermore, samples were removed if they had a poor match between genotype and SNP control

probes, or incorrect DNA methylation-predicted sex.

4.4 Genotyping in the Lothian Birth Cohort 1936

LBC1936 DNA samples were genotyped at the Edinburgh Clinical Research Facility using the Illumina
610-Quadv1l array (Wave 2; n = 1,005; mean age: 72.5 + 0.7 years; San Diego). Preparation and quality
control steps have been reported previously (Davies et al., 2011). Individuals were excluded on the
basis of sex discrepancies, relatedness, SNP call rate of less than 0.95, and evidence of non-Caucasian
descent. SNPs with a call rate of greater than 0.98, minor allele frequency in excess of 0.01, and Hardy-

Weinberg equilibrium test with P > 0.001 were included in analyses.

4.5 Polygenic risk scoring in the Lothian Birth Cohort 1936

Polygenic risk scores for 13 psychiatric and neurological traits were calculated using the PRSice
software program with LD clumping parameters set to R?> 0.25 over 250 kilobase sliding windows

(Supplementary Table 14) (Euesden et al., 2015). Polygenic scores were constructed using all SNPs (P
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< 1) from discovery GWAS (Davies et al., 2018, Sawcer et al., 2011, Schizophrenia Working Group of
the Psychiatric Genomics, 2014, Howard et al., 2018, Cross-Disorder Group of the Psychiatric
Genomics, 2013, Woo et al., 2014, International League Against Epilepsy Consortium on Complex

Epilepsies. Electronic address, 2014, Jansen et al., 2019).

4.6 Genome-wide association studies

SNPs were imputed to the 1000G reference panel (phase 1, version 3). Genome-wide association
analyses were conducted on 8,683,751 autosomal variants against protein residuals in 750
individuals from the Lothian Birth Cohort 1936. Linear regression was used to assess the effect of

each genetic variant on the protein residuals using mach2qtl (Li et al., 2009, Li et al., 2010).

4.7 Epigenome-wide association studies

Epigenome-wide association analyses were conducted by regressing each of 459,309 CpG sites on
transformed protein levels using linear regression with adjustments for age, sex, measured white
blood cell counts (basophils, eosinophils, neutrophils, lymphocytes, monocytes) and technical
covariates (plate, position, array, hybridisation, date). Outliers for white blood cell counts (n = 22)
were excluded prior to analyses. Complete methylation and proteomic data were available for 692
individuals. Genome-wide significant CpG associations mapped to sites with underlying
polymorphisms were excluded, as well as those predicted to cross-hybridise based on findings by Chen

et al. (Chen et al., 2013). Analyses were performed using the limma package in R (Ritchie et al., 2015).

Pathway enrichment was assessed among KEGG pathways and Gene Ontology (GO) terms via
hypergeometric tests using the phyper function in R. Furthermore, tissue specificity analyses were
conducted using the GENE2FUNC function in FUnctional Mapping and Annotation (FUMA; outlined in

the next section). Differentially expressed gene sets with Bonferroni-corrected P values of < 0.05 and
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an absolute log-fold change of > 0.58 (default settings) were considered to be enriched in a given

tissue type (GTEx v7).

4.8 Functional mapping and annotation of pQTLs

The identification of independent pQTL variants from the GWAS which yielded significant genotype-
protein associations, and their subsequent functional annotation, were performed using the
independent SNP algorithm implemented FUMA analysis (Watanabe et al., 2017). Initial independent
significant SNPs were identified using the SNP2GENE function. These were defined as variants with a
P value of < 5 x 107 that were independent of other genome-wide significant SNPs at r>< 0.6. Lead
independent SNPs, brought forward for this study, were further defined as the initial independent
significant SNPs that were independent from each other at r> < 0.1. Independent significant SNPs were

functionally annotated using ANNOVAR (Wang et al., 2010) and Ensembl genes (build 85).

4.9 Conditional analysis

In addition to FUMA, we performed approximate genome-wide stepwise conditional analysis through
GCTA-COJO using the ‘cojo-slct’ option in order to identify independent associations (Yang et al.,
2012a). Conditional analyses were run per chromosome or per locus with the default settings of the

software.

4.10 Characterisation of cis and trans effects

Genome-wide significant pQTLs and CpG sites were categorised into cis and trans effects. Cis
associations were defined as loci which reside within 10 Mb of the TSS of the gene encoding the
protein of interest. Trans effects were defined as those loci which lay outside of this region or were
located on a chromosome distinct from that which harboured the gene TSS. TSS positions were

defined using the biomaRt package in R (Durinck et al., 2009, Durinck et al., 2005) and Ensembl v83.

17


https://doi.org/10.1101/558940
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/558940; this version posted February 26, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

4.11 Identification of overlap between cis pQTLs and eQTLs

We cross-referenced sentinel cis pQTLs with publicly available cis eQTL data from the eQTLGen
consortium (Vdsa et al., 2018). Cis eQTLs were filtered to retain only variants with P < 5.4 x 10%°,
Furthermore, only cis eQTLs for the same gene as the cis pQTL protein were retained. These

associations were then tested for colocalisation.

4.12 Colocalisation analysis

To test the hypothesis that a single causal variant might underlie both an eQTL and pQTL, resulting in
modulation of transcript and protein levels, we conducted Bayesian tests of colocalisation.
Colocalisation analyses were performed using the coloc package in R (Giambartolomei et al., 2014).
For each pQTL variant, a 200 kb region (upstream and downstream) was extracted from our GWAS
summary statistics for each protein of interest. This window previously has been recommended in
order to capture cis eQTLs, which often lie within 100 kb of their target gene (Guo et al., 2015).
Expression QTLs for genes within this region were extracted from eQTLGen consortium summary
statistics and subset to the gene encoding the protein of interest (V&sa et al., 2018). All SNPs shared
by transcripts and proteins were used to determine the posterior probability for five distinct
hypothesis. Default priors were applied. Posterior probabilities (PP) > 0.75 provided strong evidence
in favour of a given hypothesis. Hypothesis 4 states that two association signals were attributable to
the same causal variant. Associations with PP4 > 0.75 were deemed highly likely to colocalise.
Associations with PP3 > 0.75 provided strong evidence for hypothesis 3 that there were independent
causal variants for protein level and gene expression. In this study, hypothesis 2 referred to a causal
variant for condition 2 (gene expression only) whereas hypothesis 1 represented a causal variant for
protein levels only. Associations with PPO > 0.75 (for hypothesis 0) indicated that it is highly likely there

were no causal variants for either trait in the region.
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4.13 Ethical approval

Ethical permission for the LBC1936 was obtained from the Multi-Centre Research Ethics Committee
for Scotland (MREC/01/0/56) and the Lothian Research Ethics Committee (LREC/2003/2/29). Written

informed consent was obtained from all participants.
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Figure 1. (a) Chromosomal locations of pQTLs. The x-axis represents the chromosomal location of independent cis and
trans SNPs associated with the levels of Olink® neurology proteins. The y-axis represents the position of the gene
encoding the associated protein. Cis (red); trans (blue). (b) Significance of sentinel cis variants versus distance of variants
from the gene transcription start site. (c) Absolute effect size (per standard deviation of difference in protein level per
effect allele) of independent pQTLs versus minor allele frequency. Cis (red); trans (blue). (d) Variance in protein levels
explained by independent pQTLs. It is important to note that these estimates may be inflated owing to winner’s curse
or over-fitting in the discovery GWAS (e) Classification of pQTL variants by function as defined by functional enrichment
analysis in FUMA. (f) Number of loci significantly associated with independent pQTL variants per Olink® neurology

protein.
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Figure 2. Effect of genetic variation on neurological protein levels. (a) Box plot of MDGAL1 levels as a function of
genotype (rs9349050, effect allele: T, other allele: C, beta = 1.03, se =0.05). (b) Box plot of Siglec-9 levels as a function
of genotype (rs12496730, effect allele: C, other allele: G, beta = -0.68, se = 0.06). Standard error (se).
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Figure 3. Genomic locations of CpG sites associated with differential neurological protein levels. The x-axis
represents the chromosomal location of CpG sites associated with the levels of Olink® neurology biomarkers.
The y-axis represents the position of the gene encoding the associated protein. Notably, cis CpG sites (n = 16)
identified by our EWAS on protein levels lay within the same cluster for a given protein. These CpG sites lay too
close to discriminate, resulting in the appearance of 3 CpG clusters in this figure. The protein on Chromosome
11 which constitutes the majority of methylome-protein associations is annotated (CRTAM). Cis (red); trans
(blue).
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Figure 4. Miami plots of three neurological proteins with both genome-wide significant SNP and genome-wide
significant CpG associations. The top half of the plot (skyline) shows the results from the GWAS on protein levels,
whereas the bottom half (waterfront) shows the results from the EWAS. Blue lines indicate suggestive
associations; red lines indicate epigenome-wide significant associations. (a) Miami plot for MATN3
(chromosome 2: 20,191,813-20,212,455). (b) Miami plot for MDGA1 (chromosome 6: 37,600,284-37,667,082).
(c) Miami plot for NEP (chromosome 3: 154,741,913-154,901,518).
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Figure 5. Correlation of polygenic risk scores for neurological phenotypes versus neurological protein levels.
Weak correlations were observed between all polygenic risk scores and protein levels (r: -0.1 to 0.1). Red tiles
indicate negative correlations whereas yellow tiles indicate positive correlations. ICD (International Classification
of Diseases); ICH (Intracerebral Haemorrhage).

28


https://doi.org/10.1101/558940
http://creativecommons.org/licenses/by/4.0/

