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Abstract 

Current dominant views hold that perceptual confidence reflects the probability that a decision is 

correct. Although these views have enjoyed some empirical support, recent behavioral results 

indicate that confidence and the probability of being correct can be dissociated. An alternative 

hypothesis suggests that confidence instead reflects the magnitude of evidence in favor of a 

decision while being relatively insensitive to the evidence opposing the decision. We considered 

how this alternative hypothesis might be biologically instantiated by developing a simple leaky 

competing accumulator neural network model incorporating a known property of sensory 

neurons: tuned normalization. The key idea of the model is that each accumulator neuron’s 

normalization ‘tuning’ dictates its contribution to perceptual decisions versus confidence 

judgments. We demonstrate that this biologically plausible model can account for several 

counterintuitive findings reported in the literature, where confidence and decision accuracy were 

shown to dissociate -- and that the differential contribution a neuron makes to decisions versus 

confidence judgments based on its normalization tuning is vital to capturing some of these 

effects. One critical prediction of the model is that systematic variability in normalization tuning 

exists not only in sensory cortices but also in the decision-making circuitry. We tested and 

validated this prediction in macaque superior colliculus (SC; a region implicated in decision-

making). The confirmation of this novel prediction provides direct support for our model. These 

findings suggest that the brain has developed and implements this alternative, heuristic theory of 

perceptual confidence computation by capitalizing on the diversity of neural resources available. 
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Significance 

The dominant view of perceptual confidence proposes that confidence optimally reflects the 

probability that a decision is correct. But recent empirical evidence suggests that perceptual 

confidence exhibits a suboptimal ‘confirmation bias’, just as in human decision-making in 

general. We tested how this ‘bias’ might be neurally implemented by building a biologically 

plausible neural network model, and showed that the ‘bias’ emerges when each neuron’s degree 

of divisive normalization dictates how it drives decisions versus confidence judgments. We 

confirmed the model’s biological substrate using electrophysiological recordings in monkeys. 

These results challenge the dominant model, suggesting that the brain instead capitalizes on the 

diversity of available machinery (i.e., neuronal resources) to implement heuristic -- not optimal -

- strategies to compute subjective confidence.  
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Tuned normalization in perceptual decision-making circuits can explain seemingly suboptimal 

confidence behavior 

 

A dominant idea in the study of perceptual decision-making is that confidence judgments 

optimally reflect the probability that a decision is correct (Fetsch et al., 2014; Kiani et al., 2014; 

Pouget et al., 2016; Sanders et al., 2016; Zylberberg et al., 2016). Several models specifically 

stipulate that confidence is calculated via implementation of a diffusion framework: a decision is 

made when evidence for a decision reaches a certain threshold, and confidence reflects an 

optimal readout of the same information (Ratcliff and Rouder, 1998; Ratcliff and McKoon, 

2008; Pleskac and Busemeyer, 2010; Tsetsos et al., 2012; Fetsch et al., 2014; Kiani et al., 2014; 

Zylberberg et al., 2016).  

 

While this optimal ‘probability correct’ account of confidence has enjoyed significant empirical 

support, it seems difficult for it to account for cases where task performance and confidence 

dissociate (Rahnev et al., 2011, 2012b; Koizumi et al., 2015; Maniscalco et al., 2016; Samaha et 

al., 2016; Peters et al., 2017a; Odegaard et al., 2018). Seemingly suboptimal behaviors have also 

been observed in post-decisional perceptual judgments other than confidence (Stocker and 

Simoncelli, 2008; Luu and Stocker, 2018), leading these authors to hypothesize that these 

suboptimalities may stem from limitations on computational (i.e., neural) resources or a drive 

towards self-consistent behavior. One alternative theory of confidence, therefore, proposes that 

subjective confidence relies primarily on the magnitude of evidence supporting an observer’s 

decision, while ignoring or downplaying evidence supporting alternative, unchosen decisions 

(Zylberberg et al., 2012; Aitchison et al., 2015; Koizumi et al., 2015; Maniscalco et al., 2016; 
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Samaha et al., 2016, 2017). In other words, to compute confidence the system uses a suboptimal 

heuristic that overly relies on decision-congruent evidence magnitude rather than optimal 

computations. Indeed, a recent study reported evidence for these decision-congruent evidence 

confidence computations using human intracranial electrocorticography (Peters et al., 2017b).  

 

However, to date no biologically plausible mechanism has been proposed that might explain 

these dissociations between confidence and performance, or the decision-congruent confidence 

computations on which they seem to depend. We therefore developed a simple leaky competing 

accumulator network model (Usher and McClelland, 2001) to test a new hypothesis of how these 

computations might be implemented. This model extends previous work to incorporate a known 

property of perceptual circuitry: tuned normalization (Ni et al., 2012; Ruff et al., 2016; Verhoef 

and Maunsell, 2017), meaning each neuron is characterized by the specific degree to which it is 

normalized (i.e., inhibited) by surrounding network activity (Reynolds and Heeger, 2009; 

Carandini and Heeger, 2012), and specifically by units with opposing tuning preferences. We 

hypothesized that each neuron’s degree of tuned normalization dictates how it differentially 

participates in discrimination decisions versus confidence judgments. Specifically, we reasoned 

that highly normalized evidence accumulation neurons encode the balance of evidence for 

various perceptual interpretations (e.g. net evidence for leftwards or rightwards motion 

direction), and thus are ideally suited for making discrimination judgments. By contrast, less 

normalized evidence accumulation neurons encode evidence in favor of one perceptual 

interpretation (e.g. leftward motion) while ignoring evidence for alternative interpretations (e.g. 

rightward motion), and thus are ideally suited for implementing decision-congruent confidence 

computations. Therefore, the simple design principle that more normalized accumulator neurons 
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drive decisions and less normalized accumulator neurons drive confidence may be sufficient to 

account for some of the most counterintuitive empirical findings on confidence in perceptual 

decision-making. 

 

We tested key predictions of a Differential Tuned Normalization model instantiating this 

hypothesis using computational modeling and single neuron physiology. Model simulations 

show strong support for our hypothesis: the model reproduces multiple empirical findings when 

confidence is computed primarily from less normalized units, but not when computed primarily 

from more normalized units. Furthermore, we confirmed a critical prediction of the model -- that 

neurons in perceptual decision-making areas ought to exhibit tuned normalization -- using 

recordings from Rhesus macaque superior colliculus (a subcortical area involved in perceptual 

decision-making (Gold and Shadlen, 2000; Horwitz et al., 2004; Smith and Ratcliff, 2004; Kim 

and Basso, 2008). Our results suggest that tuned normalization may play a crucial role in how the 

brain differentially computes perceptual decisions and subjective confidence, revealing an 

important psychological function of this neuronal property. 

 

Materials and Methods 

 

1. The Differential Tuned Normalization model: a leaky competing accumulator network with 

tuned normalization, where differently normalized units differentially contribute to perceptual 

decisions and confidence 
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To investigate how decision-congruent evidence might be biologically implemented, we began 

by considering known properties of perceptual decision-making circuitry. It is well known that 

divisive normalization is a canonical neural computation throughout the cortex (Simoncelli and 

Heeger, 1998; Reynolds and Heeger, 2009; Churchland, 2011; Ohshiro et al., 2011; Carandini 

and Heeger, 2012; Ling and Blake, 2012; Nassi et al., 2014). Further, it was recently reported 

that neurons in primary sensory areas exhibit tuned normalization, i.e. that each neuron possesses 

a unique, consistent degree of normalization: some neurons are very sensitive to activity of other 

units in the network (especially those which have different tuning preferences), while others 

operate more independently (Ni et al., 2012; Ruff et al., 2016; Verhoef and Maunsell, 2017). 

Previous implementations of evidence accumulation models for perceptual decisions have 

typically considered how a single level of normalization can account for behavioral data (Ratcliff 

and Rouder, 1998; Usher and McClelland, 2001; Ratcliff and McKoon, 2008; Tsetsos et al., 

2012; Zylberberg et al., 2012, 2016; Fetsch et al., 2014; Kiani et al., 2014). However, we now 

know that a range of normalization tuning exists, at least in sensory cortices. We hypothesized 

that these neuron-by-neuron variations in normalization may reflect not noise or measurement 

error, but meaningful properties of the perceptual decision-making circuitry (Ni et al., 2012; Ruff 

et al., 2016; Verhoef and Maunsell, 2017). We refer to this model as the Differential Tuned 

Normalization model, or the Tuned Normalization model for short. 

 

But how might tuned normalization be utilized in a behaving organism? To answer this, we 

should consider the tasks an organism must successfully execute in an ecologically valid 

environment. The ability to discriminate among multiple possible stimulus identities is certainly 

important, and for this type of task an observer ought to rely on a system that is able to average 
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out noise, i.e. is less susceptible to random fluctuations in signal. Thus, for these discrimination-

type tasks, a strong degree of lateral inhibition would be desirable, as it has been shown that 

neurons with stronger tuned normalization do exhibit weaker pairwise correlations (Ruff et al., 

2016; Verhoef and Maunsell, 2017). But it is equally important that an organism also be able to 

detect a stimulus in the first place, regardless of its identity. For these detection-type tasks, such 

strong inhibition would be actually undesirable, as minute evidence amounts may be 

informative; therefore, weakly divisively normalized neurons ought to play a stronger role in 

detection-type tasks. As both of these task types are critical for an organism’s survival, it seems 

unlikely that a system would only be optimized for one or the other, which could in theory 

explain the presence of tuned normalization. 

 

In light of this discussion, and of the empirically observed tuned normalization in cortical areas, 

a biologically plausible model of sensory evidence accumulation ought to implement more than 

one level of lateral inhibition and consider how such tuned normalization may affect a neuron’s 

role in the circuitry. Further, such stratification of tuned normalization could provide a neural 

mechanism to explain findings that confidence judgments rely on the magnitude of decision-

congruent evidence (Zylberberg et al., 2012; Aitchison et al., 2015; Koizumi et al., 2015; 

Maniscalco et al., 2016; Peters et al., 2017b; Samaha et al., 2017). Specifically, the output of less 

normalized ‘detection’ neurons could be used to index decision-congruent evidence and 

therefore be used for confidence rating. This suggests that normalization tuning provides a 

biologically plausible mechanism to keep track of decision-congruent evidence independently of 

evidence favoring other possible choices by relying on the less normalized portion of the 

circuitry, while allowing the system to still capitalize on the beneficial consequences of divisive 
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normalization by relying on the more normalized portion when discriminating among possible 

stimulus identities. We therefore hypothesized that normalization tuning might specifically 

dictate a neuron’s contribution to discrimination versus confidence judgments in decision-

making circuitry. 

 

We examined this hypothesis by incorporating tuned normalization (Ni et al., 2012; Ruff et al., 

2016) into a leaky competing accumulator network (Usher and McClelland, 2001) (Figure 1). 

Intuitively, this network’s architecture can be summarized as follows. Accumulator units (with 

self-excitation and leak) tuned to varying stimulus alternatives accumulate momentary stimulus 

evidence and inhibit other units that have opposing tuning preferences. Units differ in the degree 

to which they are inhibited: the more normalized units are the ones that receive stronger 

inhibition. A discrimination decision is made when a linear combination of accumulator unit 

activity for a given tuning preference reaches a threshold level of evidence, and confidence is 

evaluated by reference to a linear combination of accumulator unit activity for the chosen 

stimulus alternative.  

 

Crucially, the weighting of accumulator units in these linear combinations depends on their level 

of normalization tuning, and this weighting differs for discrimination decisions and confidence 

ratings. More normalized units are weighted more heavily for discrimination decisions, since 

they effectively encode the balance of evidence for one stimulus alternative versus the others by 

virtue of their normalization. By contrast, less normalized units are weighted more heavily for 

confidence ratings, since they effectively encode a more faithful representation of the raw 

magnitude of evidence supporting each decision alternative, regardless of evidence supporting 
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other possible decisions (Figure 1c & 1d). Details of model implementation and all simulations 

follows in the next sections.  

 

1.1. Accumulation of evidence 

 

Extending previous work (Usher and McClelland, 2001), at each timestep we simulate the 

change in firing rate dx for each accumulation unit x with stimulus tuning preference i and 

normalization tuning level k (where i and k range from minimum values of 1 to maximum values 

of I and K, respectively) as  

 

 𝑑𝑥𝑖𝑘 = 𝐵0 + [𝑆𝑖 + 𝜀𝑎𝑑𝑑 + 𝜀𝑚𝑢𝑙𝑡] − (𝜆 − 𝜌)𝑥𝑖𝑘 − 𝛽𝑘 ∑ 𝐷𝑖𝑗 (
1

𝐾
∑ 𝑥𝑗𝑙

𝑙
)

𝑗
 (1) 

 

The components contributing to each unit’s momentary change in firing rate dx can be grouped 

as follows. 

 

Spontaneous firing rate : B0  

B0 is a Poisson random variable such that B0 ~ Poiss(b). 

 

Stimulus drive and associated noise : 𝑆𝑖, 𝜀𝑎𝑑𝑑, and 𝜀𝑚𝑢𝑙𝑡 

𝑆𝑖 is the momentary magnitude of the stimulus drive to the unit with tuning preference i. The 

momentary stimulus drive is corrupted by two sources of noise: an additive Gaussian noise term 

𝜀𝑎𝑑𝑑~ N(0, σadd), and a multiplicative Gaussian noise term 𝜀𝑚𝑢𝑙𝑡 ~ N(0, σmult[𝑆𝑖+ 𝜀𝑎𝑑𝑑]). 
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Balance of self-excitation and leak : −(𝜆 − 𝜌)𝑥𝑖𝑘 

𝜌is self-excitation and 𝜆is leak. When 𝜆 > 𝜌, the accumulator unit “leaks” firing rate to a degree 

proportional to its current firing rate x. 

 

Lateral inhibition: −𝛽𝑘 ∑ 𝐷𝑖𝑗(1

𝐾
∑ 𝑥𝑗𝑙𝑙 )𝑗  

The term for lateral inhibition can be decomposed into two components.  

 

1. Whole-population activation of inhibitory interneurons : 𝐼𝑛ℎ𝐼𝑛𝑡𝑗 = 1

𝐾
∑ 𝑥𝑗𝑙𝑙  

Every accumulator unit with tuning preference j and normalization tuning level l activates an 

inhibitory interneuron with the same tuning preference j, 𝐼𝑛ℎ𝐼𝑛𝑡𝑗 , to a degree proportional to its 

current firing rate 𝑥𝑗𝑙. (Subscripts j and l are used here rather than i and k because the units 

subscripted with j and l are summed over the whole population of neurons in determining the 

effect of the population on a single unit with particular tuning preference i and normalization 

tuning level k, i.e. in determining 𝑑𝑥𝑖𝑘). The summed activation across all normalization tuning 

levels l is divided by the overall number of tuning levels implemented in the simulation K. Thus, 

𝐼𝑛ℎ𝐼𝑛𝑡𝑗  is effectively an average of the activity of all accumulator units with tuning preference j 

computed across all normalization tuning levels l. 

 

2. Inhibitory interneuron inhibition of single units : 𝐼𝑛ℎ_𝑥𝑖𝑘 = −𝛽𝑘 ∑ 𝐷𝑖𝑗𝑗 𝐼𝑛ℎ𝐼𝑛𝑡𝑗 

Each inhibitory interneuron in turn inhibits each accumulator unit. The degree of inhibition 

depends on the dissimilarity in their respective tuning preferences j and i, according to the 

equation 
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 𝐷𝑖𝑗 = 1 − (
1

2
 𝑐𝑜𝑠(2𝜋(𝑖 − 𝑗)/𝐼)  +

1

2
) (2) 

 

where I is the number of tuning preferences implemented in the simulation. 𝐷𝑖𝑗is thus a 

sinusoidal function varying between 0 and 1 that represents the dissimilarity in tuning preference 

between the accumulator unit with tuning preference i and the inhibitory interneuron with tuning 

preference  j (Deneve et al., 1999). Tuning preference dissimilarity is maximal when | (i - j) / I | = 

½ (i.e. when the accumulator unit and inhibitory interneuron have diametrically opposing tuning 

preferences, such as “motion left” vs “motion right”) and minimal when i = j (i.e. when they 

have the same tuning preference). 

 

Inhibitory interneuron inhibition of accumulator units is further modulated by 𝛽𝑘. The magnitude 

of 𝛽𝑘 is inversely proportional to normalization tuning level k, from a maximum value of 1 at k = 

1 (full normalization tuning) to a minimum value of 0 at k = K (no normalization):   

 

 𝛽𝑘 = 1 −
𝑘−1

𝐾−1
 (3) 

 

When 𝛽𝑘= 0, a unit receives no lateral inhibition and is thus not normalized. When 𝛽𝑘= 1, a unit 

is “fully normalized” in the sense that it receives momentary inhibition from the average activity 

of all units with opposite tuning preference (for which 𝐷𝑖𝑗= 1). Intermediate levels of 𝛽𝑘 reflect 

intermediate levels of normalization. 

 

A schematic of the model’s implementation of lateral inhibition is presented in Figure 2. 
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1.2. Decisions and Confidence judgments 

 

We can now examine how the network described above might perform a perceptual decision-

making task and then provide a confidence judgment about its decision. Assuming a classic two-

choice discrimination task (e.g., “Is the dot motion predominantly leftward or rightward?”), we 

can simulate units that have various tuning preferences and varying levels of normalization 

tuning. For the network to perform this two-choice discrimination task, we will assign the first 

stimulus alternative (e.g., “leftward motion”) as S1, and the second stimulus alternative (e.g., 

“rightward motion”) as S2. 

 

The accumulating variables for the Decision between these two alternatives and the Confidence 

judgment about this decision are then defined as functions of weighted linear sums of network 

activity. The accumulated evidence E in favor of selecting stimulus alternative Si  at time t is 

defined as 

 

 𝐸𝑆𝑖
(𝑡) = ∑ 𝑤𝑘𝑥𝑖𝑘(𝑡)𝑘   (4) 

 

where xik(t) refers to the activity at time t of the unit with tuning preference i (i.e., centered on 

stimulus Si) and normalization tuning level k. The weight for units with normalization level k, wk, 

is defined as being exponentially proportional to those units’ level of normalization tuning, i.e. 

 

 𝑤𝑘 =
𝑒−(𝑘−1)

𝛴𝑘 𝑒−(𝑘−1)  (5) 
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where the wk are normalized so that all weights sum to 1.  

 

The two-choice discrimination decision is then made when the value of the decision variable E 

for one of the stimuli alternatives reaches a threshold T, i.e. when for either Si 

 

 𝐸𝑆𝑖
(𝑡𝑅𝑇) ≥ 𝑇  (6) 

 

with tRT referring to the first time t at which Equation 6 is satisfied. The chosen stimulus is 

defined as the stimulus that produced the ‘winning’ decision variable value at this ‘reaction time’ 

tRT, i.e., 𝑆𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑆(𝐸𝑆(𝑡𝑅𝑇)).  

 

At the time when the perceptual decision is reached, confidence is read out as the accumulated 

confidence variable C favoring the selected stimulus alternative, i.e. the Decision-Congruent 

evidence, where the value of C at time t for stimulus alternative Sselected is defined similarly to 

Equation 4 as 

 

 𝐶𝑆𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
(𝑡𝑅𝑇) = ∑ 𝑣𝑘𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑,𝑘(𝑡𝑅𝑇)𝑘   (7) 

 

where the subscript changes from xik(t) in Equation S4 to xselected,k(tRT) to reflect that confidence 

depends only on units whose tuning preferences are congruent with the selected stimulus, and the 

specification of tRT indicates that confidence is reported based on the state of accumulator units 

at the time when the stimulus is chosen.  
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Crucially, whereas stimulus evidence E is computed using weights 𝑤𝑘 ∝ 𝑒−𝑘, confidence C is 

computed using alternative weights 𝑣𝑘where 

 

 𝑣𝑘 = 1 − 𝑤𝑘  (8) 

 

Thus, while the contributions of accumulator units to stimulus evidence E are directly 

proportional to their degree of normalization tuning (more normalization → more weight), the 

contributions of accumulator units to confidence C are inversely proportional to their degree of 

normalization tuning (more normalization → less weight).  

 

To assess the importance of using the 𝑣𝑘 weights in Equation 8 for capturing empirical 

dissociations in confidence, in every trial of every simulation we also computed a secondary 

confidence variable C* using the same 𝑤𝑘 weights used to compute stimulus evidence E: 

 

 𝐶𝑆𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

∗ (𝑡𝑅𝑇) = ∑ 𝑤𝑘𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑,𝑘(𝑡𝑅𝑇)𝑘   (9) 

 

We used the confidence variable C* to compute confidence for all Null model simulations 

reported in the manuscript. The fact that the model was able to capture empirical patterns when 

computing confidence from C but not C* indicates that usage of the 𝑣𝑘 = 1 − 𝑤𝑘 weights in C 

was crucial for capturing those empirical patterns.  

 

Because the stimulus evidence variable E relies heavily on more normalized units, it can be 

thought of as a readout of the balance of evidence for S1 versus S2. In contrast, because of its 
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heavier reliance on less normalized units, the confidence variable C provides a better measure of 

exactly how much information has been collected for each stimulus alternative individually, 

regardless of the accumulated information for the opposing stimulus. In this way, the confidence 

variable C provides more information about the absolute magnitude of information in the 

environment than the stimulus evidence variable E and the alternative confidence variable C*.  

 

Finally, to convert the continuous C and C* variables to discrete confidence ratings on an ordinal 

rating scale with Nratings possible options, we defined a threshold parameter 𝑈𝑟 where the 

subscript r ranges from 1 to Nratings - 1. The conversion of C to a discrete rating R can then be 

computed as 

 

 

 𝑅 = 1 + 𝛴 𝑟 (𝐶 > 𝑈𝑟)  (10) 

 

where (𝐶 > 𝑈𝑟) is a logical comparison evaluating to 1 if the inequality is true and 0 otherwise. 

Thus, R is a simple count of how many of the confidence thresholds 𝑈𝑟 are surpassed by C, with 

the constant 1 added to set 1 as the minimum confidence rating value. 

 

1.3. Parameter setting and specifics of model implementation 

 

Rather than attempt to fit the many parameters of the model to each individual data set, we 

adopted a simplified approach in which we fixed most model parameters for all simulations. 

Model parameters used for different simulations therefore differed only by (1) parameter values 
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used for stimulus strength, (2) a single parameter coding across-condition differences in evidence 

accumulation noise ((Rahnev et al., 2012b) simulation; Figure 3) or stimulus volatility 

((Zylberberg et al., 2016) simulation; Figure 4), and (3) confidence thresholds 𝑈𝑟. Conceptually, 

the simulations were therefore set up as if the same observer with the same neural network were 

performing separate experiments with separate stimulus inputs and experimental manipulations. 

This approach was in line with our principle aim for this modeling project -- to capture 

qualitative patterns in behavioral effects reported in the literature and thereby provide a proof of 

concept that those patterns can be explained by the biologically plausible mechanisms of the 

Tuned Normalization model. This simplifying approach also helps prevent overfitting and eases 

comparison of modeling results across simulations. A full list of parameter values used in all 

simulations is listed in Table 1.  

 

General Model Settings 

Parameter Meaning Value 

I # of simulated stimulus tuning preferences 2 

K # of simulated tuned normalization levels 8 

Ntrials # of trials simulated per experimental condition 100,000 

tmax 

maximum # of evidence accumulation steps allowed before 

forced termination of trial 

1e8 

Nratings # of confidence rating scale options varies by task 
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Evidence Accumulation Parameters 

Parameter Meaning Value 

b 

𝜆 parameter for Poisson distribution determining 

spontaneous firing rate 

0.01 

Si stimulus strength driving units with tuning preference i varies by task 

σadd additive evidence accumulation noise 1 

σmult multiplicative evidence accumulation noise 0.1 

𝜆 Leak 0.33 

𝜌 recurrent self-excitation 0.03 

𝐷𝑖𝑗 dissimilarity between tuning preferences i and j see Eq. 2 

𝛽𝑘 
lateral inhibition scaling factor for unit with tuned 

normalization level k 

see Eq. 3 

Decision and Confidence Parameters 

Parameter Meaning Value 

𝑤𝑘 

weighting of unit with tuned normalization level k for 

computing stimulus evidence 

see Eq. 5 

𝑣𝑘 

weighting of unit with tuned normalization level k for 

computing confidence 

see Eq. 8 
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T perceptual decision threshold 5 

𝑈𝑟 confidence rating thresholds varies by task 

 

Table 1. Model parameters fixed across all simulations. 

 

General Model Settings 

We chose K = 8 to model a range of normalization tuning levels, and I = 2 for simplicity. We 

verified that model results were reproducible using I = 4, K = 4, and K = 16. We set Ntrials and 

tmax to high values to ensure the robustness of simulation output and to mitigate the effect of 

premature termination of evidence accumulation on model output. Nratings was varied to match 

the confidence rating scale used in the empirical data being simulated. 

 

Evidence Accumulation and Decision Parameters 

The leak and recurrent self-excitation parameters were set according to values established by 

(Usher and McClelland, 2001). All other parameter values were determined by the authors, as 

follows. 

 

We set the values of 𝐷𝑖𝑗 and 𝛽𝑘 on a priori grounds. Both variables range from 0 to 1 and so 

represent simple scaling variables. 𝐷𝑖𝑗 scales the magnitude of inhibition exerted on an 

accumulator unit 𝑥𝑖𝑘 by an inhibitory interneuron according to the dissimilarity of their tuning 

preferences i and j, and 𝛽𝑘 scales this inhibition further according to 𝑥𝑖𝑘’s normalization tuning 

level k.  
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The values of 𝑤𝑘 and 𝑣𝑘 were similarly set on a priori grounds. 𝑤𝑘 was chosen to be 

exponentially proportional to k as a mathematically convenient way to capture the idea that 

evidence accumulation is dominated by highly normalized units, while still allowing for less 

normalized units to have some influence. 𝑣𝑘 was defined as 1 − 𝑤𝑘 as a mathematically simple 

way to capture the complementary idea that confidence rating is dominated by less normalized 

units, while still allowing for highly normalized units to have some influence. 

 

The remaining parameters b, 𝜎𝑎𝑑𝑑, 𝜎𝑚𝑢𝑙𝑡, and T had no clear empirical or a priori motivations 

for defining parameter values. (We discuss 𝑈𝑟, which transforms continuous confidence values 

to discrete confidence ratings, below.) Therefore, we simply set 𝜎𝑎𝑑𝑑 = 1 arbitrarily and 

manually searched for values of the remaining parameters that, given the fixed values for the 

parameters already mentioned, would reliably yield intermediate levels of task performance (e.g. 

d’ ≈ 2) within a reasonable number of accumulation steps (~1000) for ‘mock’ simulations not 

directly based on any of the empirical studies being simulated. The model produced reasonable 

output across a wide range of parameter settings, and thus does not depend critically on the 

specific parameter values chosen here. 

 

With the main model parameters thus determined, values for the stimulus strength parameter 𝑆𝑖 

in individual simulations were determined by manual parameter search yielding task 

performance (d’ or percent correct) closely resembling empirical data. Importantly, values for 

stimulus strength parameters in each simulation were not altered after matching task performance 
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to the relevant empirical data; in other words, confidence effects were merely ‘read out’ after 

task performance was best matched to the intended behavioral effect. 

 

Confidence thresholds 𝑈𝑟 were set after running the simulation and obtaining the distribution of 

values of the confidence variable C across all simulated trials. 𝑈𝑟 was initialized as an evenly 

spaced set of quantile values on the distribution of C across all trials, and then manually adjusted 

to yield mean confidence rating output resembling the empirical data to be fitted. Thus, the same 

confidence thresholds 𝑈𝑟 were applied to all trials of all conditions within a given simulation, 

and these thresholds were chosen so as to approximately evenly span the full distribution of 

continuous confidence values produced by the simulation. A similar procedure was performed 

separately on the distribution of C* across all trials to determine confidence ratings based upon 

C*. 

 

Because the same 𝑈𝑟 were applied to all trials of a given simulation, any between-condition 

differences in confidence arose purely from the influence of network activity on C (or C*), 

independently of the choice of 𝑈𝑟. Changing confidence thresholds mainly affected mean 

confidence values, while retaining similar standard deviations and between-condition 

differences. Therefore, the effect size of differences in confidence between conditions was robust 

against choice of confidence thresholds. 

 

2. Task-specific model settings 
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2.1. Controlling positive and negative evidence to yield equal performance and unequal 

confidence 

 

In Experiments 1A and 2A of (Koizumi et al., 2015)), subjects performed a grating tilt 

discrimination task. However, stimuli were actually composed of two superimposed gratings 

tilting in opposite directions, one with higher contrast (“Positive Evidence” or “PE” for short) 

and one with lower contrast (“Negative Evidence” or “NE”) (Figure 3a). Subjects had to indicate 

whether the higher contrast grating was tilting left or right and rate confidence. The key 

experimental manipulation was the introduction of High PE and Low PE conditions, in which the 

contrast of the NE gratings was set to 0.7*(PE grating contrast) and 0.35*(PE grating contrast), 

respectively, and PE grating contrast was controlled by thresholding procedures to achieve a 

criterion level of task performance. The High PE and Low PE conditions yielded similar task 

performance, but confidence was higher for High PE stimuli. Koizumi et al. collected data for 

the High PE and Low PE conditions at two levels of task difficulty. 

 

We modeled this task as follows. On every trial, the evidence accumulated for the stimulus 

alternatives 𝑆1 and 𝑆2 (corresponding here to left and right tilt) was driven by the corresponding 

PE and NE values, call them 𝑆𝑃𝐸 and 𝑆𝑁𝐸. For half of all trials, we set 𝑆1 = 𝑆𝑃𝐸 and 𝑆2 = 𝑆𝑁𝐸, 

and vice versa for the other half. As in Koizumi et al., we defined 𝑆𝑁𝐸 = 0.7 ∗ 𝑆𝑃𝐸 in the High 

PE condition and 𝑆𝑁𝐸 = 0.35 ∗ 𝑆𝑃𝐸 in the Low PE condition. PE values were chosen to yield 

simulated d’ values closely matching the empirical values (Table 2). 
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To convert the model’s continuous confidence variables C to confidence ratings, we set Nratings = 

4 to match the confidence scale used in Koizumi et al., and chose𝑈𝑟 values to yield simulated 

mean confidence values closely matching the empirical values. The 𝑈𝑟 values thus chosen 

corresponded to the 0.3812, 0.5875, and 0.7937 quantiles of the distribution of C. For deriving 

confidence ratings from C*, we used the same quantile-based definition of 𝑈𝑟 as applied to the 

distribution of C*. 

 

 Difficult Easy 

 Low PE High PE Low PE High PE 

𝑆𝑃𝐸 0.1382 0.3384 0.2231 0.4562 

𝑆𝑁𝐸 0.35 ∗ 𝑆𝑃𝐸 0.7 ∗ 𝑆𝑃𝐸 0.35 ∗ 𝑆𝑃𝐸 0.7 ∗ 𝑆𝑃𝐸 

 

Table 2. Simulation-specific values used for simulating the results of (Koizumi et al., 2015). 

Values for 𝑆𝑁𝐸 are presented as functions of 𝑆𝑃𝐸 to emphasize that these were fixed rather than 

free parameters. 

 

For a similar demonstration of dissociating confidence from task performance by controlling 

positive evidence, see (Samaha et al., 2016). 

 

2.2. Introducing noise: TMS, inattention, or microstimulation 
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Our simulation capturing the effect of increased perceptual noise due to TMS, inattention, or 

microstimulation focused on the representative study of (Rahnev et al., 2012b), which is 

conceptually similar to (Fetsch et al., 2014), (Peters et al., 2017a), and (Rahnev et al., 2011) 

discrimination tasks. In (Rahnev et al., 2012b), subjects performed a visual discrimination task in 

a control condition (vertex TMS) and a condition introducing increased perceptual noise 

(occipital TMS). They found that with increased noise, task performance decreased but 

confidence increased. 

 

We modeled this task as follows. On every trial, the evidence accumulated for the stimulus 

alternatives 𝑆1 and 𝑆2 (corresponding here to left and right tilt of a small bar) was driven by the 

corresponding stimulus-present and stimulus-absent values, call them 𝑆𝑠𝑡𝑖𝑚 and 𝑆𝑛𝑢𝑙𝑙. For half of 

all trials, we set 𝑆1 = 𝑆𝑠𝑡𝑖𝑚 and 𝑆2 = 𝑆𝑛𝑢𝑙𝑙, and vice versa for the other half. We set 𝑆𝑛𝑢𝑙𝑙 = 0 

and chose the value for 𝑆𝑠𝑡𝑖𝑚 that yielded a simulated d’ value closely matching the empirical 

value of d’ in the vertex (control) TMS condition of (Rahnev et al., 2012b). Then, holding 𝑆𝑠𝑡𝑖𝑚 

constant, we increased the value of the additive evidence accumulation noise parameter 𝜎𝑎𝑑𝑑 so 

as to yield a simulated d’ value closely matching the empirical d’ in the occipital TMS condition. 

These parameter settings are summarized in Table 3. 

 

To convert the model’s continuous confidence variable C to confidence ratings, we set Nratings = 2 

to match the confidence scale used in Rahnev et al., and chose𝑈𝑟 to yield simulated mean 

confidence in the vertex TMS condition closely matching the empirical value. The 𝑈𝑟 value thus 

chosen corresponded to the 0.52 quantile of the distribution of C. For deriving confidence ratings 

from C*, we used the same quantile-based definition of 𝑈𝑟 as applied to the distribution of C*. 
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 Baseline Added Noise 

𝑆𝑛𝑢𝑙𝑙 0 0 

𝑆𝑠𝑡𝑖𝑚 0.115 0.115 

𝜎𝑎𝑑𝑑 1 1.05 

 

Table 3. Simulation-specific parameter values used for simulating the results of (Rahnev et al., 

2012b). The columns labeled Baseline and Added Noise correspond to the vertex TMS and 

occipital TMS conditions of Rahnev et al.’s study. 

 

2.3. Stimulus volatility leads to equal performance but increasing confidence 

 

In (Zylberberg et al., 2016), subjects performed a motion discrimination task at varying levels of 

motion coherence. In the Low Volatility condition, motion coherence was constant throughout a 

trial, whereas in the High Volatility condition, motion coherence changed over the course of a 

trial. Specifically, motion coherence on each frame was randomly drawn from a Gaussian 

distribution of possible values. Task performance was unaffected by stimulus volatility, but 

confidence at weak motion coherences was higher in the High Volatility condition. 

 

We modeled this task as follows. On every trial, the evidence accumulated for the stimulus 

alternatives 𝑆1 and 𝑆2 (corresponding here to left and right motion direction) was driven by the 

corresponding stimulus-present and stimulus-absent values, call them 𝑆𝑠𝑡𝑖𝑚 and 𝑆𝑛𝑢𝑙𝑙. For half of 
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all trials, we set 𝑆1 = 𝑆𝑠𝑡𝑖𝑚 and 𝑆2 = 𝑆𝑛𝑢𝑙𝑙, and vice versa for the other half. We set 𝑆𝑛𝑢𝑙𝑙 = 0 

and chose the value for 𝑆𝑠𝑡𝑖𝑚 that yielded simulated p(correct) values increasing from chance to 

strong performance (~90% correct), similar to empirical values in Zylberberg et al. (2016). Then, 

to simulate the High Volatility condition, we introduced a new model parameter, 𝜎𝑠𝑡𝑖𝑚. At each 

time step of evidence accumulation, we defined the instantaneous value of stimulus strength as a 

random sample from a Gaussian distribution, 𝑆𝑠𝑡𝑖𝑚
𝑖𝑛𝑠𝑡 ∼ 𝑁(𝑆𝑠𝑡𝑖𝑚, 𝜎𝑠𝑡𝑖𝑚). Following the methods of 

Zylberberg et al., in cases where 𝑆𝑠𝑡𝑖𝑚
𝑖𝑛𝑠𝑡 < 0, we set 𝑆𝑠𝑡𝑖𝑚 = 0 and 𝑆𝑛𝑢𝑙𝑙 = −𝑆𝑠𝑡𝑖𝑚

𝑖𝑛𝑠𝑡  (corresponding 

to momentary stimulus evidence for the incorrect stimulus choice). Because the range of 

simulated confidence values was small compared to the empirical values in Zylberberg et al., we 

did not focus on achieving an exact fit to the data but simply selected a value for 𝜎𝑠𝑡𝑖𝑚 that could 

reproduce the qualitative patterns in the confidence data. These parameter settings are 

summarized in Table 4. 

 

To convert the model’s continuous confidence variable C to confidence ratings, we set Nratings = 2 

to match the confidence scale used in Zylberberg et al. Because it was not possible to achieve a 

close numerical fit to the empirical data, we arbitrarily set 𝑈𝑟 to the median of the confidence 

distribution of C, and similarly for C*.  

 

 Level of stimulus strength 

 1 2 3 4 5 

𝑆𝑛𝑢𝑙𝑙 0 0 0 0 0 
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𝑆𝑠𝑡𝑖𝑚 0 0.0375 0.075 0.1125 0.1650 

 Volatility 

                   Low High 

𝜎𝑠𝑡𝑖𝑚                   0 0.11 

 

Table 4. Simulation-specific parameter values used for simulating the results of (Zylberberg et 

al., 2016).  

 

3. Rhesus macaque electrophysiology  

 

3.1. Behavioral task 

 

The task was a classic dot-motion discrimination task. One monkey observed random dot motion 

stimuli and made saccades to targets on the screen to indicate its choice about the dot motion 

direction. On each trial, after an initial fixation period two choice targets appeared for a random 

time around 500 ms (drawn from an exponential distribution to avoid prediction, Figure 5a). A 

random dot motion stimulus subsequently appeared at the center of the screen with some 

percentage of dots moving in the same direction; this is the ‘coherence’ of the dot motion. After 

the dot motion stimulus offset, the monkey made a saccade either towards the Target (in the 

recorded neurons’ response field) or towards a Distractor (opposing the response field). 
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Head restrained monkeys (see below) sat in a custom-sized chair facing a CRT monitor (1024 x 

768 pixel resolution, 85 Hz refresh rate) at a distance of 37 cm. A photocell secured to the 

monitor sent a transistor-transistor logic pulse to the PC used to display stimuli to provide an 

accurate measure of stimulus event timing. Each trial began by the monkey looking at a white 

dot that appeared at the center of the monitor. After a brief delay of ~500 ms, randomized from 

an exponential distribution to prevent prediction, a red target appeared in one hemifield, and a 

green target appeared in the other. Targets were isoluminant (13 cd/m2), and the hemifield in 

which the red or the green choice target appeared varied randomly from trial-to-trial (Ferrera et 

al., 2009; Bennur and Gold, 2011). After a second randomized delay (600-1050 ms), a random 

dot motion kinematogram stimulus (pattern diameter = 60, 26 cd/m2; dot size=0.10; dot 

separation=0.1820; total density=5 dots/deg2) appeared at the center of the monitor together with 

the white fixation point and remained on the screen for 200 ms. The stimulus’s disappearance 

was followed by a 500-600 ms delay (the exact value was drawn from an exponential 

distribution to avoid prediction), at which point the fixation point also disappeared, instructing 

the monkey to report its choice with an eye movement. 

 

Although there were other trial types presented for the purposes of the experiment for which the 

data were originally collected, for our analysis we focused on the ‘catch trials’ in which 100% of 

the dots were moving in the preferred direction (i.e., toward the Target, ‘100% Preferred’ trials) 

or 50% toward the Target and 50% toward the Distractor (‘50-50% Preferred + Non-Preferred’ 

trials). These 100% preferred and 50-50% motion ‘catch trials’ were sparsely interspersed among 

other trial types in the main task, so the monkey completed 154 100% ‘Preferred’ trials and 149 

50-50% ‘Preferred + Non-Preferred’ trials in total across eight days. However, because the 
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electrode was placed in a different location on each recording day, on average only 19.25 100% 

‘Preferred’ and 18.63 50-50% ‘Preferred + Non-Preferred’ trials were collected for each unit 

(Table 5). Unfortunately, electrode placement techniques also precluded precise neuroanatomical 

localization of the electrode -- and thus the recorded neurons -- on each recording day. 

 

3.2. Electrophysiological recordings 

 

Surgical procedures  

 

One male rhesus monkey weighing approximately 10 kg was prepared for electrophysiological 

recordings and measurement of eye movements. A headpost was implanted to secure the head, 

and an MRI-compatible recording chamber (Crist instruments, MD) was placed at AP +3, ML 0 

and angled 38° posteriorly to access the superior colliculus (SC). Precise positioning of the 

headpost and the recording chamber was obtained using MRI-guided surgical software 

(BrainSight, Rogue Research, Montreal, CA). To track eye movements, eye position was 

monitored with an iView camera (Sensomotoric instruments, Boston, MA). All surgical 

procedures were performed under general anesthesia using aseptic procedures. Anesthesia was 

induced with ketamine and midazolam (5.0 mg/kg and 0.2 mg/kg, i.m.). Atropine (0.04 mg/kg, 

i.m.) was provided to reduce salivation. The monkey was intubated and maintained under general 

anesthesia with isoflurane. One hour before the procedure, the animal received buprenorphine 

(0.01 mg/kg, i.m) and the antibiotic Excede (20 mg/kg, i.m; 7 days slow release) and then 

meloxicam (0.3 mg/kg, i.m) at the conclusion of the procedure. Meloxicam (0.2 mg/kg, i.m) and 

buprenorphine (0.01mg/kg, i.m) were administered for 3 days post-surgically for multimodal 
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analgesia. All experimental protocols were approved by the UCLA Chancellor’s Animal 

Research Committee (IACUC) and complied with and generally exceeded standards set by the 

Public Health Service policy on the humane care and use of laboratory animals. 

 

Eye movement recordings 

 

Experiments used a QNX-based real-time experimental data acquisition and visual stimulus 

generation system, Rex and Vex, developed and distributed by the Laboratory of Sensorimotor 

Research National Eye Institute in Bethesda MD (Hays et al., 1982) to create the behavioral 

paradigm and acquire eye position data. The camera acquired eye position signals were filtered 

digitally using a built-in bilateral filter. We used an automated procedure to define the onset of 

saccadic eye movements using eye velocity (20°/s) and acceleration criteria (5000°/s2), 

respectively. The adequacy of the algorithm was verified and adjusted as necessary on a trial-by-

trial basis by the experimenter. 

 

Neuronal recordings 

 

We recorded single neurons and multineuron activity in the SC with a 16 channel 

platinum/iridium V Probe coated with polyimide (Plexon, Dallas, TX), with an impedance of 275 

(±50) kΩ. The V Probe was inserted through a guide tube, perpendicular to the surface of the SC, 

positioned with a grid system (Crist et al., 1988) and advanced using an electronic microdrive 

system controlled by a graphical user interface (Nan Instruments, Israel). Action potential 

waveforms were bandpass filtered (250 Hz - 5 kHz; 4 pole Butterworth), and amplified using the 
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BlackRock NSP hardware system controlled by the Cerebus software suite (BlackRock 

Microsystems, Utah). Neurons were isolated online using time and amplitude windowing 

criteria. The times of occurrence of action potentials were digitized at 16 bit resolution and 

sampled at 1 kHz and saved to disk. Neuronal waveform data were digitized at 16 bit resolution 

and sampled at 30 kHz and saved to disk for offline analysis using Plexon offline sorting 

algorithms (Plexon, Dallas, TX). 

 

Response fields (RF) of SC neurons were mapped online. Mapping was done by moving a spot 

around the monitor and having monkeys make delayed saccades to the different spots. During 

this mapping procedure, on each trial a fixation spot appeared initially at the center of the screen, 

and monkeys fixated for 500-1000 ms. A second spot then appeared peripherally while monkeys 

remained fixated for another 200-400 ms until the fixation spot disappeared; the location of this 

dot was controlled by mouse movements, and could be anywhere on the screen. Delay times 

were randomized, drawn from an exponential distribution to prevent prediction. The fixation 

spot’s disappearance cued the monkey to make a saccade to the peripheral target. If he made a 

correct saccade (within a window of 2º diameter), he received a fluid reward of 0.1mls. 

 

We listened for maximal discharge for each saccade on-line. The center of the RF was 

considered to be the location at which a saccade was associated with maximal audible discharge 

of the neuron. The center of the RF was confirmed by plotting the discharge rate as a heat map in 

Cartesian coordinates. Only neurons with RF eccentricities between 7 and 20⁰ were selected for 

further study in order to ensure no overlap of the RF with the centrally-located motion cue 

stimulus. Although electrode penetration was aimed at the SC perpendicular to its surface, we 
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noticed slight differences in the RF of each recording site of the V-Probe, during the same 

penetration. Therefore, the RF was optimized for at least one recording site on each experimental 

day.  

 

Day # units # ‘Preferred’ trials # ‘Preferred + Non-Preferred’ trials 

1 31 15 13 

2 24 19 16 

3 16 20 20 

4 15 20 20 

5 18 20 20 

6 17 20 20 

7 19 20 20 

8 16 20 20 

 

Table 5. Daily specifics for recordings from macaque superior colliculus (SC): number of SC 

neurons recorded after spike-sorting (see Methods, main text), and number of trials of ‘Preferred’ 

and ‘Preferred + Non-Preferred’ stimuli, respectively. 

 

3.3. Calculating normalization tuning via the Modulation Index 
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Drawing from previous work (Ni et al., 2012; Ruff et al., 2016; Verhoef and Maunsell, 2017), we 

calculated the normalization tuning Modulation Index (MI) as: 

 

 𝑀𝐼 =
(𝐹𝑅𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 − 𝐹𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) − (𝐹𝑅𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑+𝑛𝑜𝑛−𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 − 𝐹𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

(𝐹𝑅𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 − 𝐹𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) + (𝐹𝑅𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑+𝑛𝑜𝑛−𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 − 𝐹𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
 (11) 

 

For the baseline firing rate, we took advantage of the fact that the conditions of interest were 

interspersed in a larger dataset, such that there were many other trials we could use to calculate 

baseline. Therefore, we calculated each neuron’s baseline firing rate as the average firing rate 

across all trials (including those in the unrelated task) in the 400 ms prior to the motion cue 

onset. We calculated the firing rate during the presentation of ‘Preferred’ or ‘Preferred + Non-

Preferred’ motion as as the average firing rate across trials during the first 400 ms after motion 

onset in the relevant trial types. We acknowledge that this definition of Modulation Index in 

some ways departs from that used in some previous reports to identify normalization tunedness 

(Ni et al., 2012; Ruff et al., 2016; Verhoef and Maunsell, 2017); however, the small number of 

relevant trials in this existing dataset unfortunately precluded adoption of previously-used 

metrics. 

 

Action potential waveforms were sorted offline using the Plexon Offline Sorter (Offline Sorter, 

Plexon Inc). In total, usable signal was recorded from 156 neurons. Because we were interested 

in the degree to which a neuron modulates its firing rate in the presence of ‘Preferred’ versus 

‘Preferred + Non-Preferred’ motion stimuli, we excluded neurons that demonstrated no 

significant response to dot motion stimulus onset, defined as a firing rate during stimulus 
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presentation equal to or less than the baseline firing rate. This left 125 neurons for the calculation 

of MI.  

 

We calculated MI for all trials, and also split trials randomly by whether the trial was an even- or 

odd-numbered trial and calculated MI separately for these subsets of trials. To check for the 

presence of normalization tuning, we correlated the MI calculated for even versus odd numbered 

trials across all neurons. 

 

4.3. Code and Data Accessibility 

 

Code for the Tuned Normalization model simulations, as well as data and code for the monkey 

electrophysiology, will be shared upon reasonable request. 
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Results 

 

The Differential Tuned Normalization model accounts for behavioral findings 

 

We examined model predictions for three different behavioral effects reported in the literature by 

simulating the tasks described in those papers with the Differential Tuned Normalization model. 

For each report from the literature, we selected inputs that would mimic the stimulus seen by 

human or monkey observers, and ran a simulated ‘observer’ through 100,000 simulated trials per 

condition.  

 

Critically, we fixed all internal parameters of the model for all simulations, such that the network 

architecture was identical for all tasks and only the inputs (i.e., ‘stimuli’), and confidence 

thresholds tuned to those inputs, changed from one simulation to the next. Confidence thresholds 

were chosen for each simulation to approximate the fitted data. For a given simulation and 

choice of internal confidence variable C (Equations 7 and 9), the same confidence thresholds 

were applied to simulated data from all stimulus conditions, so that any between-condition 

differences in confidence arose purely from the influence of network activity on C. Changing 

confidence thresholds mainly affects the mean confidence values, while retaining similar 

standard deviations and between-condition differences. Therefore, the effect size of differences 

in confidence between conditions was robust to choice of confidence thresholds. 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/558858doi: bioRxiv preprint 

https://doi.org/10.1101/558858
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

36 

As discussed above, our central hypothesis is that decision-congruent evidence effects in 

confidence rating could arise as a result of less normalized units being weighted more heavily in 

the computation of confidence than in the computation of perceptual decisions. To assess this 

hypothesis, we conducted control simulations in which the confidence decision variable was 

identical to the decision variable used for stimulus discrimination, i.e. one in which more 

normalized units rather than less normalized units were weighted most heavily. If our hypothesis 

is correct, then we would expect to find that decision-congruent confidence effects are more 

pronounced when confidence is rated using less normalized units.  

 

To anticipate, we found that when confidence more heavily depended on less normalized units, 

our model simulations could reproduce decision-congruent confidence effects found in the 

literature. By contrast, when confidence more heavily depended on more normalized units, 

decision-congruent confidence effects were almost completely abolished. These findings lend 

support to the hypothesis that differential contributions of differently normalized neurons to 

stimulus discrimination and confidence can provide a neural mechanism for decision-congruent 

confidence effects. 

 

(1) Controlling positive and negative evidence to yield equal performance and unequal 

confidence 

 

Koizumi and colleagues (Koizumi et al., 2015) reported that certain stimulus conditions can 

produce the same decisional accuracy but different confidence. Human observers viewed 

compound stimuli consisting of two superimposed oriented sinusoidal grating targets embedded 
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in noise, with one grating (“positive” evidence) at higher contrast than the other (“negative” 

evidence) (Figure 3a). Observers indicated whether each stimulus’ primary orientation was tilted 

left or right of vertical and provided a confidence judgment. Four conditions were presented in a 

2x2 design: High or Low Positive Evidence, and Difficult or Easy. Orientation discrimination 

task performance was equivalent across the “High Positive Evidence” and “Low Positive 

Evidence” conditions within a difficulty level, but the “High Positive Evidence” condition led to 

higher confidence judgments (Figure 3b).  

 

We simulated two Difficult and two Easy conditions, crossed with Low versus High Positive 

Evidence (Table 2). We treated stimulus strength for positive evidence in the four conditions as 

free parameters. Following the methods in Koizumi et al., we constrained stimulus strength for 

negative evidence to be NE = 0.7*PE in the High Positive Evidence conditions and NE = 

0.35*PE in the Low Positive Evidence conditions. We found that the Tuned Normalization 

model reproduced all aspects of the behavior reported by Koizumi and colleagues (Koizumi et 

al., 2015): easier conditions led to higher confidence, and High Positive Evidence led to higher 

confidence than Low Positive Evidence (Figure 3c). 

 

In the control simulation where more heavily normalized units determined confidence, the effect 

of High vs Low Positive Evidence on confidence was nearly abolished (Figure 3d). We 

quantified this by computing Cohen’s d for confidence in the High vs Low Positive Evidence 

conditions separately for the Difficult and Easy conditions. The main model simulations yielded 

Cohen’s d values of 0.29 and 0.40 in the Difficult and Easy conditions, whereas these values 

decreased to near-zero values of 0.06 and 0.08 in the control simulations.  
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Interestingly, despite the highly constrained nature of the model parameter specifications, 

including the a priori specification of the ratio of stimulus strength for positive and negative 

evidence values, the Cohen’s d for confidence effects in the simulations was similar to the 

average within-subject1 Cohen’s d for confidence effects in the empirical data (0.33 and 0.26 in 

the Difficult and Easy conditions, respectively, as computed from raw data provided by the 

authors; cf. simulated values of 0.29 and 0.40, respectively).  

 

(2) Introducing noise: TMS, inattention, or microstimulation 

 

It has been reported that TMS to visual cortex reduces human observers’ ability to perform an 

objective discrimination task, but increases their confidence/visibility judgments (Rahnev et al., 

2012b; Peters et al., 2017a). Another similar approach used attention to manipulate the precision 

of the perceptual signal (Rahnev et al., 2011). After matching discrimination performance for 

attended versus unattended Gabor patch stimuli embedded in noise, the authors found that 

observers tended to report higher visibility for the unattended (i.e., noisier) stimuli. These effects 

also appear similar to the recent report that microstimulation to neurons can increase confidence 

while slightly reducing objective task performance (Fetsch et al., 2014). Rhesus macaques 

performed a dot-motion discrimination task in which some trials provided an opt-out sure-reward 

                                                
1 We compared the simulation effect size to the average within-subject effect size in the 

empirical data, rather than the between-subject effect size, because the simulation effect size is 

computed as the difference in the mean confidence scaled by the pooled across-trial standard 

deviation of confidence. Thus, the simulation is effectively a simulation of a single subject who 

exhibits behavior resembling the across-subject average in empirical data, and the effect size 

computed for the simulated data is effectively a within-subject effect size that should be 

compared to empirical within-subject effect sizes.  
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option; it is assumed monkeys selected this opt-out option when they were unsure of the 

direction of the dot motion (Kiani and Shadlen, 2009). On some trials, microstimulation was 

applied to neurons in area MT/MST. Microstimulation slightly reduced task performance, but 

caused monkeys to opt out less often, meaning they had higher confidence.  

 

We hypothesized that these effects all depend on a similar computational mechanism, and that 

the Tuned Normalization model would likely be able to predict them all. To test this, we 

simulated a discrimination task in which stimulus strength remained constant across two 

conditions, but one condition had increased levels of additive noise in evidence accumulation 

(Table 3), mimicking the effects of TMS (Rahnev et al., 2012b; Peters et al., 2017a), inattention 

(Rahnev et al., 2011), and microstimulation (Fetsch et al., 2014). We present the results in 

comparison to figures reproduced from Rahnev et al. (Rahnev et al., 2012b), since they provide a 

succinct summary of this behavioral effect (Figure 4a). For the Tuned Normalization model, 

increased evidence accumulation noise led to lower objective discrimination performance 

(Figure 4b) but higher confidence (Figure 4c), mimicking empirical effects on performance and 

confidence induced by TMS, inattention, and microstimulation. Importantly, the choice of the 

single parameter (evidence accumulation noise σadd) selected to yield closest match to the 

empirical difference in d’ between the “noisier” (i.e., TMS, inattention, or microstimulation) 

versus “less noisy” conditions simultaneously yielded a close match to the empirical difference 

in confidence without any further intervention in model parameters. That is, we did not fit this 

σadd parameter separately to the objective d’ and confidence results; rather, the confidence results 

follow directly from selecting the σadd magnitude that best fits the objective d’ behavior. 
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In the control simulation where more heavily normalized units determined confidence, the effect 

of added evidence accumulation noise on confidence was nearly abolished (Figure 4d). We 

quantified this by computing Cohen’s d for confidence in the Added Noise vs Baseline 

conditions (corresponding to the Occipital TMS vs Vertex TMS conditions in Rahnev et al. 

2012). The main model simulation yielded Cohen’s d = 0.1, whereas this value decreased by half 

to 0.05 in the control simulation. We conducted additional simulations to verify that Cohen’s d 

was robustly larger in the main simulation than in the control. In the simulation results reported 

above, the additive stimulus noise parameter of the model, σadd, was increased from 1 in the 

Baseline condition to 1.05 in the Added Noise condition. In five supplementary simulations, we 

set σadd to values of 1.1, 1.15, 1.2, 1.25, and 1.3 and recorded the Cohen’s d in the main and 

control simulations. Across-condition differences in simulated d’ and confidence increased with 

increasing σadd. Cohen’s d reached a maximum value of 0.56 at the maximum tested value of σadd 

= 1.3, and was twice as large as Cohen’s d in each control simulation (regression slope = 2.02). 

Thus, for a given level of difference in task performance, the effect size of the difference in 

confidence was robustly larger when confidence was computed primarily from less rather than 

more heavily normalized units. 

 

(3) Stimulus volatility leads to equal performance but increasing confidence  

 

Zylberberg and colleagues (Zylberberg et al., 2016) reported that introducing stimulus volatility 

produced negligible decrement in objective performance capacity, but an overall increase in 

confidence in the more volatile conditions. To introduce stimulus volatility, they used a random 

dot motion stimulus in which the coherence of the dot motion was held constant in the Low 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2019. ; https://doi.org/10.1101/558858doi: bioRxiv preprint 

https://paperpile.com/c/Q8GTpl/6us8C
https://doi.org/10.1101/558858
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

41 

Volatility condition, whereas in the High Volatility condition this coherence represented the 

mean of a distribution of possible coherences that could change on a frame-by-frame basis. 

Macaques and human observers judged the primary direction of the dot motion and either rated 

confidence (humans) or used an opt-out sure-reward target to indicate confidence (monkeys). 

Higher stimulus volatility led to only a small decrease in objective performance but an increase 

in confidence, particularly at lower levels of stimulus strength (Figure 5a). We simulated their 

task by introducing variability in stimulus strength in each time step of the evidence 

accumulation process (Table 4), and found that the Tuned Normalization model was able to 

capture the qualitative patterns in Zylberberg et al.’s findings (Figure 5b, c).  

 

In the control simulation where more heavily normalized units determined confidence, the effect 

of added stimulus volatility on confidence was nearly abolished (Figure 5d). We quantified this 

by computing Cohen’s d for confidence in the High Volatility vs Low Volatility conditions. The 

main model simulation yielded Cohen’s d = 0.064, 0.040, 0.016, 0.018, and 0.010 across the five 

levels of stimulus strength. These values decreased to 0.012, 0.007, 0.008, 0.012, and 0.005 in 

the control simulations. Thus, at the two lowest levels of stimulus strength in which confidence 

effects due to volatility in the main model were most apparent, the effect size of volatility was 

over five times greater than in the control simulations. At the higher stimulus strength levels, 

confidence effects remained about two times greater in the main model simulations than in the 

control simulations. 

 

Tuned normalization in a decision-making area: the superior colliculus 
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Based on the results of our simulations, one may expect that neurons in decision-making areas 

show this pattern of tuned normalization. Although tuned normalization has been observed in 

primary sensory cortical areas, including V1, V4, and MT/MST (Ni et al., 2012; Ruff et al., 

2016; Verhoef and Maunsell, 2017), until now it has not been observed in cortical areas known 

to contain neurons that accumulate evidence (e.g., LIP, FEF) or any subcortical structures, 

including those with similar function (e.g., superior colliculus; (Gold and Shadlen, 2000; 

Horwitz et al., 2004; Smith and Ratcliff, 2004; Kim and Basso, 2008)). 

 

We capitalized on an existing dataset to look for tuned normalization in Rhesus macaque 

superior colliculus (SC). In a task designed for a different study, one Rhesus macaque engaged in 

a dot motion direction discrimination task (Figure 6a) while data were recorded from 156 SC 

neurons using a multi-channel V-probe. The response fields of the SC neurons had previously 

been mapped, and saccade targets that the monkey could use to indicate its dot motion direction 

choice were placed either in each neuron’s response field (‘Target’) or in a location on the 

opposite side of the screen (‘Distractor’). On each trial, a Target and Distractor appeared on the 

screen followed by centrally-presented dot motion, and the monkey made saccades to the Target 

or Distractor to indicate its choice (Figure 6a).  

 

‘Catch trials’ of 100% coherent dot motion in the ‘Preferred’ direction (i.e., the direction of 

motion that should lead to a saccade towards the Target) of each SC neuron, and other catch 

trials consisting of transparent motion that was 50% ‘Preferred’ and 50% ‘Non-Preferred’ (i.e., 

the direction of motion that should lead to a saccade towards the Distractor) were interspersed 

among the trials for that separate study (Figure 6b). We measured the firing rate responses of SC 
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neurons in response to the ‘Preferred’ and 50-50% ‘Preferred + Non-Preferred’ dot motion 

stimuli in these catch trials, as well as their baseline firing rates, and focused on neurons that 

exhibited evidence accumulation.  

 

As expected, neurons showed stronger and earlier spiking for ‘Preferred’ stimuli than for 

‘Preferred + Non-Preferred’ (Figure 6c). The average of both of these firing rates in the first 400 

ms after stimulus onset were above baseline firing rates (Figure 6e). 

 

Importantly, these trial types can be used to examine normalization tuning via calculation of a 

‘Modulation Index’ (MI) for each recorded neuron (Equation 11). Following previous 

convention (Ni et al., 2012; Ruff et al., 2016; Verhoef and Maunsell, 2017), the MI quantifies the 

degree to which an accumulation neuron with a given tuning preference (i.e., response field) 

exhibits modulation in its firing rate due to lateral inhibition when presented with simultaneous 

‘Preferred + Non-Preferred’ versus ‘Preferred’ stimuli alone. Smaller MI means a cell is less 

normalized, because the neuron’s response to Preferred stimuli is relatively independent of the 

presence of Non-Preferred stimuli; in contrast, larger MI indicates a cell is more normalized, 

because the neuron’s firing rate is strongly reduced in the presence of simultaneous Preferred and 

Non-Preferred motion over its firing rate to Preferred motion alone.  

 

125 neurons demonstrated meaningful responses to dot motion stimulus presentation and 

evidence accumulation properties (Figure 6c; see also Materials & Methods, Section 3). The 

distribution of MI for these neurons was centered above zero (μ = 0.1063, σ = 0.1747) (Figure 

6d). Because a Lilliefors test revealed that MI significantly deviated from a normal distribution, 
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we used the Wilcoxon signed-rank test (Wilcoxon, 1945) to demonstrate that this distribution is 

centered significantly higher than zero (z = 6.9224, p < .001). This indicates that SC neurons 

exhibit divisive normalization as expected, congruent with previous reports (Schiller and 

Koerner, 1971; Sterling, 1971; Goldberg and Wurtz, 1972; Moors and Vendrik, 1979; Basso and 

Wurtz, 1998; Li and Basso, 2005; Phongphanphanee et al., 2014; Vokoun et al., 2014). 

 

To determine the extent to which fluctuations in MI reflected tuned normalization (i.e., different 

and consistent degrees of normalization tuning for each individual neuron) and not just random 

noise, we split trials into even versus odd trial numbers and calculated MI for each disjoint 

subset of trials. We then examined the correlation between even and odd trials as a robust way to 

identify tuned normalization as distinct from noise. Importantly, this revealed a highly significant 

correlation between even and odd trials (R = 0.4880, p < .001), indicating that the tuned 

normalization exhibited by each neuron is highly consistent across trials (Figure 6f).  

 

These results demonstrate that tuned normalization exists in evidence-accumulation neurons in 

decision-making circuits, suggesting that the Tuned Normalization model framework proposed 

here may indeed be capable of implementing the calculation of subjective confidence. We do 

acknowledge that these preliminary results depend on relatively few trials (in an existing dataset) 

and in some ways depart from other methods by which tuned normalization has been identified 

in previous reports (Ni et al., 2012; Ruff et al., 2016; Verhoef and Maunsell, 2017); further, we 

also note that the observation of tuned normalization in accumulation neurons does not 

necessitate that such neurons must encode decisions versus confidence in the manner 

hypothesized here. However, these results provide an initial proof of concept, paving the way for 
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future electrophysiological studies examining the predictions of our model in areas previously 

related to perceptual confidence, such as LIP (Kiani and Shadlen, 2009). Our findings also 

provide the first demonstration of normalization tuning (as opposed to just the presence of 

normalization) in a subcortical structure, as previously it has been observed only in cortical areas 

(Ni et al., 2012; Ruff et al., 2016; Verhoef and Maunsell, 2017).  

 

Discussion 

 

How the brain calculates subjective decision confidence is still a topic of active debate (Ma et al., 

2006; Fleming and Dolan, 2012; Yeung and Summerfield, 2012; Charles et al., 2013; Orbán et 

al., 2016; Pouget et al., 2016; Sanders et al., 2016). Although dominant models suggest that 

confidence reflects an optimal readout of the probability that a decision is correct (Ratcliff and 

Rouder, 1998; Ratcliff and McKoon, 2008; Pleskac and Busemeyer, 2010; Tsetsos et al., 2012; 

Fetsch et al., 2014; Kiani et al., 2014; Pouget et al., 2016; Sanders et al., 2016; Zylberberg et al., 

2016), it appears challenging for such models to account for counterintuitive behaviors in which 

confidence and accuracy do not covary (Rahnev et al., 2011, 2012a, 2012b; Koizumi et al., 2015; 

Maniscalco et al., 2016; Samaha et al., 2016). An alternative hypothesis suggesting that 

confidence reflects a heuristic reliance on decision-congruent evidence (Zylberberg et al., 2012; 

Koizumi et al., 2015; Maniscalco et al., 2016; Samaha et al., 2016, 2017) captures many of these 

behaviors, and is supported by human intracranial electrophysiology (Peters et al., 2017b).  

 

Here, we considered how decision-congruent computations of perceptual confidence might be 

biologically implemented based on known properties of perceptual circuitry. We hypothesized 
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that tuned normalization (Ni et al., 2012; Ruff et al., 2016; Verhoef and Maunsell, 2017) 

differentially influences a neuron’s role in perceptual decision-making and confidence, such that 

more normalized units (corresponding to the net evidence for a perceptual choice) drive 

decisions and less normalized units (corresponding to decision-congruent evidence) drive 

confidence. We developed the Differential Tuned Normalization model to test this hypothesis.  

Our results show that such a network can explain counterintuitive behaviors reported in the 

literature (Rahnev et al., 2011, 2012a; Fetsch et al., 2014; Koizumi et al., 2015; Samaha et al., 

2016; Zylberberg et al., 2016). We further demonstrate that the model’s special property of 

weighting less normalized units more heavily in computing confidence is the key to capturing 

empirical findings, since control simulations demonstrate that the model fails to reproduce these 

findings when instead more normalized units drive confidence. Finally, we used 

electrophysiological recordings in monkeys to reveal this neuronal property in an area containing 

the type of evidence accumulation neurons typically assumed to be involved in perceptual 

decision-making (Ratcliff and Rouder, 1998; Usher and McClelland, 2001; Ratcliff and 

McKoon, 2008; Pleskac and Busemeyer, 2010; Yeung and Summerfield, 2012, 2014; Kiani et 

al., 2014). This provides preliminary but converging evidence that decision-congruent 

confidence computations may be implemented via tuned normalization. 

 

It might be argued that some over-simplified optimal diffusion-type models (Ratcliff and 

Rouder, 1998; Ratcliff and McKoon, 2008; Pleskac and Busemeyer, 2010) should not be 

expected to account for counterintuitive behaviors due to their simplicity. A modification of 

these optimal diffusion-type models was recently proposed, suggesting that the optimal 

confidence readout must also depend on the time it took for evidence to accumulate (Fetsch et 
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al., 2014; Kiani et al., 2014; Zylberberg et al., 2016). Although it has been suggested that 

neurons in lateral intraparietal cortex (LIP) may encode elapsed time (Leon and Shadlen, 2003; 

Janssen and Shadlen, 2005; Finnerty et al., 2015), these neurons’ activity has not yet been 

causally or directly linked to subjective confidence (see also (Bang and Fleming, 2018)). This 

suggests that how this time-dependent diffusion framework might be biologically implemented is 

nontrivial, inspiring the work presented here. 

 

It should be noted that we did not perform exhaustive fitting of model parameters to each 

individual data set. Instead, we took the simpler approach of fixing most model parameters 

across all simulations (see Materials and Methods, Section 1; Table 1). The only parameters free 

to vary across simulations were (1) within-condition stimulus strength (to fit task performance), 

(2) within-condition noise in neural activity (simulation 2) or stimulus strength (simulation 3) (to 

fit across-condition differences in task performance and confidence), and (3) confidence 

thresholds constrained to be identical across all conditions within a simulation (to scale overall 

confidence values) (see Materials and Methods, Section 2; Tables 2-5).  

 

Importantly, these modeling decisions revealed that the Tuned Normalization model can 

reproduce the quantitative and qualitative effects reported in the literature with a single set of 

parameters controlling network dynamics: only the task-specific inputs changed from one 

simulation to the next (mimicking the different stimuli and confidence scales in each behavioral 

task), while the internal network architecture remained identical across simulations. Our 

simplified approach to model fitting had the further virtue of converting a potentially 

underconstrained model fitting project into a highly constrained one that mitigated against 
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overfitting and facilitated comparison of results across simulations. Our goal with this model, 

therefore, was to provide a proof of concept that tuned normalization in sensory circuits can 

provide a biologically plausible mechanism for implementing decision-congruent confidence 

computations. It is therefore somewhat remarkable that, in spite of these parameter fitting 

constraints, the model was able to closely capture exact empirical quantities in two simulations 

(Figures 3 and 4) as well as the qualitative pattern of data in a third simulation (Figure 5).  

 

Importantly, our results suggest a potential adaptive purpose for tuned normalization (Ni et al., 

2012; Ruff et al., 2016; Verhoef and Maunsell, 2017) within a behaving organism. It appears that 

the presence of both more and less normalized neurons within a perceptual decision-making 

circuit may allow an organism to better solve both fine-grained discrimination and detection 

tasks. When making fine-grained discrimination or identification judgments about an object or 

stimulus (“What is that thing?”), an organism should rely on a system that is not as sensitive to 

random fluctuations, i.e. a more strongly normalized system. But when making detection 

decisions (“Is there something out there?”), such strong lateral inhibition would be highly 

undesirable, so an organism should rely on less normalized parts of the network. Both of these 

tasks are important for an organism to execute, and so it seems unlikely that a system would only 

be optimized for one or the other.  

 

The question then becomes why the system would opt to recruit the ‘detection’ portions of its 

circuitry to compute confidence, specifically relying on the magnitude of decision-congruent 

evidence. One reason may simply be heuristic, that the detectability and identifiability of a 

stimulus are almost always perfectly correlated in the real world: perfectly detectable but not 
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discriminable (or vice versa) stimuli are rare outside the laboratory. Indeed, it has been noted that 

the width of the posterior distribution in a probabilistic population code (Ma et al., 2006, 2008) 

covaries with the overall firing rate of a population (Bays, 2016); less normalized ‘detection’ 

neurons would more readily affect a population’s overall firing rate, suggesting a potential neural 

substrate for this heuristic. Perhaps, in the interest of computational efficiency, the system has 

come to rely on this heuristic, which minimizes the need to retain information about unchosen 

stimulus identity possibilities once a perceptual inference has been made (Peters et al., 2017b). 

Indeed, such over-reliance on decision-congruent evidence -- i.e., a “confirmation bias” 

(Abrahamyan et al., 2016) -- has also been observed in other post-decisional (non-metacognitive) 

perceptual judgments (Stocker and Simoncelli, 2008; Luu and Stocker, 2018), value judgments 

(Brehm, 1956; Festinger, 1957; Gerard and White, 1983; Steele et al., 1993; Heine and Lehman, 

1997; Koster et al., 2015), and metamemory (Koriat, 2012; Zawadzka et al., 2016), suggesting it 

may be a domain-general strategy that serves also to reduce cognitive dissonance and improve 

self-consistency. 

 

Using the absolute strength of decision-congruent evidence to judge confidence could also 

indicate that a confidence judgment attempts to infer the possible cause of the signals that led to 

the perceptual inference as externally- or internally-generated (Körding and Tenenbaum, 2007; 

Wei and Körding, 2011): Are these signals strong enough to indicate an external stimulus, or are 

they likely to simply reflect internal noise fluctuations? A mechanism that keeps track of the 

absolute amount of evidence, regardless of the balance, would be critical to successfully solving 

such a causal inference problem by allowing the system to differentiate between strong versus 

weak signals even when the signals themselves are equally ambiguous (i.e., equally favor one 
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versus another possible stimulus identity). And finally, that ‘detection’ circuitry might contribute 

to metacognitive judgments is also supported by reports of neurons coding for the detectability 

(or lack thereof) of a stimulus in prefrontal cortex (Merten and Nieder, 2012), an area known to 

be involved in metacognitive computations (including judgments of ‘visibility, i.e. awareness) in 

perception and memory (Janowsky et al., 1989; Schnyer et al., 2004; Kao et al., 2005; Pannu and 

Kaszniak, 2005; Lau and Passingham, 2006; Fleming et al., 2010, 2012; Lau and Rosenthal, 

2011; Fleming and Dolan, 2012; Middlebrooks and Sommer, 2012; McCurdy et al., 2013; 

Fleming and Lau, 2014). 

 

Here we demonstrated that normalization tuning provides a biologically plausible mechanism for 

implementing confidence computations that demonstrate an over-reliance on decision-congruent 

information. Our findings lead to testable hypotheses about the role of tuned normalization in a 

neuron’s contribution to a decision versus a confidence judgment: activity of more normalized 

units should reflect an observer’s objective decisions more than confidence judgments, while the 

opposite should be true for less normalized neurons. Future electrophysiological studies should 

explore the extent to which this hypothesis can be verified in the neurobiology of perceptual 

decision-making circuitry. It has also been reported that tuned normalization is spatially 

‘clumped’, i.e. that nearby neurons have more similar normalization profiles than neurons 

separated by longer distances (Ruff et al., 2016). The present findings thus pave the way for 

noninvasive neuroscience techniques, such as spatially coarser functional MRI in humans, to 

clarify the role of normalization tuning in perceptual and cognitive decisions and metacognitive 

evaluations of these choices. 
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Figures 

 

 

Figure 1. Tuned Normalization model architecture. (a) An observer views a stimulus that 

contains noisy information, with more information favoring S2 (red) than S1 (blue). (b) The 

network consists of accumulator units, each one of which has a specific and consistent degree of 

tuned normalization: more normalized units are more strongly inhibited by units that have 

opposing tuning preferences, whereas less normalized units operate relatively independently, 

neither inhibiting nor exciting other units in the circuit. Following convention (Usher and 

McClelland, 2001), all units also possess biologically plausible self-excitation and leak. (c) The 

more normalized units (upper) contribute more to the Decision variables favoring one or the 

other stimulus alternative, as these units’ activity represents the difference in accumulated 

evidence for the stimulus alternatives. A choice is made when one of these Decision variables 

reaches a boundary, indicating that the balance of evidence is sufficient for the observer to make 

a decision. In this example, the observer decides S2 (red), because the evidence for S2 was 
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stronger than for S1. (d) Confidence is then read out as the magnitude of a Confidence variable 

for the winning alternative, relying more on activity of the less normalized units (lower), as these 

units’ activity represents the absolute magnitude of accumulated evidence for each stimulus 

alternative regardless of other information present in the stimulus. The model’s dynamics are 

fully mathematically described in Methods (Section S1). 
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Figure 2. Schematic of lateral inhibition in the model. (A) Inhibitory interneuron units. There are 

accumulator units with tuning preference j at each level of normalization tuning l. Activity in 

these units is integrated into a single inhibitory interneuron unit with the same tuning preference, 

InhIntj, where the weighting factor on each unit is set to a constant 1/K, where K is the number 

of normalization tuning levels (8 in this example). (B) Inhibition of accumulator units according 

to stimulus tuning preference dissimilarity. Inhibitory interneuron pools InhIntj inhibit 

accumulator units xik as a sinusoidal function of the similarity in tuning preferences i and j, Dij. 

For instance, for a set of I = 4 circularly arranged tuning preferences (corresponding e.g. to 

motion directions left, up, right, down), an accumulator unit with tuning preference i = 1 receives 

weakest inhibition from inhibitory interneuron pools with the same tuning preference j = 1, and 

strongest inhibition from inhibitory interneuron pools with the opposite tuning preference j = 3. 

Here we illustrate an example using I = 4, although in the actual simulations we set I = 2 for 

simplicity, corresponding to diametrically opposed stimulus properties, e.g. motion directions 

left vs. right. The overall inhibition strength 𝛽𝑘 depends on normalization tuning level k, with 

more normalized units receiving stronger inhibition.  
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Figure 3. The Tuned Normalization model can account for effects of Positive and Negative 

Evidence on confidence. (a) (Koizumi et al., 2015) presented subjects with superimposed left-

tilting and right-tilting gratings, where the task was to determine the predominant (highest 

contrast) tilt in the stimulus. Positive Evidence (PE) corresponded to the contrast of the target 

(higher-contrast) grating and Negative Evidence (NE) corresponded to the contrast of the 

distractor (lower-contrast) grating. Two levels of task difficulty were created by adjusting the PE 
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/ NE ratio. High and low PE conditions were created for each difficulty level. (b) Koizumi et al’s 

results  showed that confidence in High Positive Evidence (High PE) conditions was higher than 

in Low Evidence (Low PE) conditions, and higher for Easy than for Difficult trials. (b) The 

Tuned Normalization model reproduces the observation that High Positive Evidence leads to 

higher confidence than Low Positive Evidence, and that Easy conditions produce higher 

confidence than Difficult conditions. (c) Confidence effects are almost completely abolished in 

control simulations in which more normalized units are weighted more heavily for computing 

confidence, suggesting that the result in (b) critically depends on confidence being computed 

primarily from less normalized units. Cohen’s d for confidence effects in the main model 

simulations were about 5 times greater than in the control simulations, and more closely matched 

the empirical effect sizes reported by Koizumi et al. (2015). 
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Figure 4. The Tuned Normalization model can account for effects of evidence accumulation 

noise on task performance and confidence. (a) Rahnev and colleagues (Rahnev et al., 2012) 

showed that occipital TMS decreased performance but increased confidence in a visual 

discrimination task, in line with other studies showing similar effects as a result of TMS (Rahnev 

et al., 2012b; Peters et al., 2017a), inattention (Rahnev et al., 2011), and microstimulation 

(Fetsch et al., 2014). (b, c) The Tuned Normalization model reproduces the observation that 

added evidence accumulation noise decreases task performance but increases confidence. Here 

we show a model fit to Rahnev et al.’s representative findings, thereby establishing the model’s 

ability to account for the general pattern in all the previously mentioned studies in which 

increasing noise decreases task performance while increasing confidence. (d) Confidence effects 

are almost completely abolished in control simulations in which more normalized units are 

weighted more heavily for computing confidence, suggesting that the result in (b) critically 
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depends on confidence being computed primarily from less normalized units. Cohen’s d for 

confidence effects in the main model simulations were twice as large as in the control 

simulations across several levels of simulated noise, including larger noise levels that yielded 

larger behavioral effects than in the Rahnev et al. data set (see Results; extra simulations not 

shown). 

 

 

 

 

Figure 5. The Tuned Normalization model predicts the effect reported by Zylberberg and 

colleagues (Zylberberg et al., 2016). (a) The authors showed that increased stimulus volatility 
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leads to similar objective performance but increased confidence ratings, especially at low 

objective performance levels. This figure is reproduced from (Zylberberg et al., 2016). (b, c) The 

Tuned Normalization model qualitatively reproduces these effects. (d) The effect of stimulus 

volatility on confidence was nearly abolished in control simulations in which more normalized 

units are weighted more heavily for computing confidence, suggesting that the result in (b) 

critically depends on confidence being computed primarily from less normalized units. Cohen’s 

d for confidence effects in the main model simulations was ~1.5 - 6 times greater than in the 

control simulations across all levels of stimulus strength. 
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Figure 6. Tuned normalization can be observed in macaque superior colliculus (SC). (a) We took 

advantage of an existing dataset in which one monkey performed a dot motion discrimination 

task. The monkey’s SC neurons’ response fields (RF) were mapped prior to the beginning of the 

task on each day. On each trial, following a fixation period a brief dot motion stimulus appeared. 

The monkey observed the stimulus, and then after a delay period made a saccade to the target 

indicating its dot motion direction discrimination decision. (b) To look for tuned normalization, 

we focused on ‘catch trials’ in which 100% ‘Preferred’ motion (indicating a saccade towards the 

neuron’s RF) or 50-50% ‘Preferred + Non-Preferred’ motion was presented to the monkey. 

These trials allowed us to calculate each neuron’s Modulation Index (MI; see Online Methods, 
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Section S2.3) to measure each neuron’s degree of tuned normalization. (c,e) As expected, 

neurons showed higher firing rates to ‘Preferred’ stimuli than to mixed ‘Preferred + Non-

Preferred’ stimuli in the post-stimulus window. These were also higher than the baseline (pre-

stimulus) firing rate. Mean firing rates in (e) were computed from the 400 ms before (baseline) 

and after (Preferred and Preferred + Non-Preferred) stimulus onset. (d) We observed a wide 

distribution of MI values for the SC neurons we recorded, with a median significantly greater 

than 0 (Wilcoxon sign-rank test: z = 6.9224, p < .001). (f) To confirm that the observed 

distribution of MI reflected tuned normalization and not random variation, we split the trials 

randomly into those with even versus odd trial numbers, and re-calculated MI for each neuron. 

These disjoint datasets produced MI values that were strongly correlated across even versus odd 

trials (R = .4880, p < .001), indicating that the degree to which a neuron is normalized is both 

different across neurons and consistent within individual neurons. These results provide evidence 

of tuned normalization outside the cortex, and that it exists in evidence-accumulation neurons as 

opposed to just in primary sensory neurons as previously observed (Ni et al., 2012; Ruff et al., 

2016; Verhoef and Maunsell, 2017). 
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