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Abstract

In order to produce effective antibodies, B cells undergo rapid somatic hypermutation (SHM)
and selection for binding affinity to antigen via a process called affinity maturation. The
similarities between this process and evolution by natural selection have led many groups to use
evolutionary and phylogenetic methods to characterize the development of immunological
memory, vaccination, and other processes that depend on affinity maturation. However, these
applications are limited by several features of affinity maturation that violate assumptions in
standard phylogenetic models. Further, most phylogenetic models are designed to be applied to
individual lineages comprising genetically diverse sequences, while B cell repertoires often
consist of hundreds to thousands of separate low-diversity lineages. Here, we introduce a
hierarchical phylogenetic framework that incorporates the unique features of SHM, and
integrates information from all lineages in a repertoire to more precisely estimate model
parameters. We demonstrate the power of this approach by characterizing previously un-
described phenomena in affinity maturation. First, we find evidence consistent with age related
changes in SHM hot- and cold-spot motifs. Second, we identify a consistent relationship between
increased tree length and signs of increased negative selection, apparent in the repertoires of both
healthy subjects and those undergoing active immune responses. This suggests that B cell
lineages shift towards negative selection over time as a general feature of affinity maturation.
Our study provides a framework for undertaking repertoire-wide phylogenetic testing of SHM
hypotheses, and provides a new means of charactering the process of mutation and selection
during affinity maturation.
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Introduction

B cell receptors (BCRs) are membrane-bound immunoglobulins (Ig) expressed on the surfaces of
B cells that bind to antigen and may be released as antibodies to fight infection. BCRs are
generated through the shuffling of Ig gene segments by V(D)J recombination and, if the cell
expressing them is activated, by a second process of BCR modification called affinity maturation
(Murphy et al. 2012). Affinity maturation consists of repeated rounds of somatic hypermutation
(SHM) of the BCR, cell proliferation, and selection for antigen binding affinity (Murphy et al.
2012). These processes give rise to clonal lineages of B cells that each descend from a progenitor
cell, from which they differ predominately by point mutations. The BCR sequence, and the
nature of the mutations introduced during affinity maturation, can be investigated in detail using
high-throughput next generation BCR sequencing (Boyd et al. 2009; Greiff et al. 2015b; Yaari

and Kleinstein 2015).

The fact that affinity maturation is analogous to the process of evolution by natural selection
suggests that methods from molecular evolutionary biology, particularly phylogenetics, could
have broad utility in studying affinity maturation. This has stimulated the development of
methods of evolutionary sequence analysis designed specifically for BCR sequences, particularly
phylogenetic approaches (Barak et al. 2008; Kepler 2013; Hoehn et al. 2017; DeWitt et al.
2018). These methods have shown promise in elucidating information about the adaptive
immune response in humans, such as the sequence of mutations that occur during antibody co-
evolution with HIV (Liao et al. 2013) and the migration of B cells in multiple sclerosis (Stern et

al. 2014).
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There are a number of challenges in adapting phylogenetic techniques to B cell clonal lineage
analysis. For example, the biology of affinity maturation violates fundamental assumptions in
most phylogenetic substitution models, such as independent change at each nucleotide site and
time-reversibility of substitution rates (Hoehn et al. 2016). To address these issues we previously
introduced the HLP17 substitution model, which weights codon substitutions by the presence of
SHM hot/cold-spot motifs, and does not assume that substitution rates are time reversible (Hoehn

et al. 2017).

Phylogenetic techniques are typically used to analyze individual, genetically-diverse B cell
lineages (Felsenstein 1981; Liao et al. 2013). However, B cell repertoires are typically profiled
by next-generation sequencing and consist of many — potentially thousands of — expanded clonal
lineages, each of which may contain only a few unique sequences (Weinstein et al. 2009; Jiang
et al. 2013; Greiff et al. 2015a). In light of this, many analyses have used non-phylogenetic
summary statistics to characterize BCR repertoires, such as the distribution of sequences per
clone (e.g. Bashford-Rogers et al. 2013; Greiff et al. 2015a; Hoehn et al. 2015). Others have
used non-phylogenetic approaches to study somatic hypermutation biases (Yaari et al. 2013) and
signatures of clonal selection (Yaari et al. 2012), which represent B cell clonal lineages by
selecting or constructing a single representative sequence. SHM biases have also recently been
incorporated into a phylogenetic framework under Feng et al. (2017). By explicitly modeling
shared ancestry among sequences within the same clone, phylogenetic approaches potentially
offer a more powerful means of understanding somatic hypermutation and affinity maturation by

using the full set of substitutions expected to have occurred in a repertoire. However, standard
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phylogenetic approaches are limited to single lineages, and give imprecise parameter estimates,
except when applied to unusually long-lived or highly-diverse B cell lineages (e.g. Hoehn et al.

2017).

We propose here that it is possible to combine some of the benefits of phylogenetic and summary
statistic approaches of B cell repertoire analysis, by using hierarchical phylogenetic models.
These approaches contain multiple levels of parameters, some of which are shared among
lineages, while others are estimated for each lineage individually (Suchard et al. 2003). For
example, Rodrigo et al. (2003) applied one such hierarchical phylogenetic approach to a set of
HIV sequences from infected patients in order to jointly estimate both the virus substitution rate
and the proportion of individuals that did not respond to antiretroviral therapy. However,
previous applications of hierarchical phylogenetic models to virus genomes do not address the

abovementioned model assumptions that are violated by the biology of B cell affinity maturation.

A hierarchical approach that is specifically tailored to B cell sequence evolution has the potential
to dramatically improve accuracy of parameter estimation. By assuming that B cell lineages
within a particular repertoire experience broadly similar patterns of substitution (e.g., hot- and
cold-spot sequence motifs that experience altered mutation rates under SHM), a hierarchical
approach is able to share information across B cell lineages and thereby take advantage of the
large genetic diversity of the entire repertoire, despite the fact that each individual lineage within
the BCR repertoire data may exhibit low diversity. Here, we develop a hierarchical phylogenetic
framework capable of characterizing entire B cell repertoires by jointly estimating parameters

and lineage tree topologies for all lineages within a repertoire. We first introduce the HLP19
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model, an improved form of the HLP17 model that accounts for changing codon frequencies
during affinity maturation, and validate our hierarchical approach through simulation. We then
apply this new framework to characterize the effects of aging on B cell repertoire development
and B cell responses to influenza vaccination. We demonstrate that hierarchical approaches can
quantify variation in SHM features both across individuals and within the same individual
through time. Our results reveal previously uncharacterized immunological phenomena
underlying aging and vaccination. We discover (i) evidence of changes in SHM hot/cold-spot
mutation biases associated with age, (ii) evidence of negative selection acting on
complementarity-determining regions (CDRs) associated with the human immune response to
influenza vaccination, and (iii) a consistent relationship between increased lineage tree length

and signatures of negative selection across our datasets.
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Methods

A nonstationary, nonreversible phylogenetic substitution model for B cell evolution

The process of nucleotide change along a given phylogenetic tree is modeled as a Markov
process, such that the rate of transitioning into any state at each instant in time is dependent only
on the current state of the model (Felsenstein 1981). Here, we characterize codon change in Ig
sequences using a 61x61 element matrix (Q matrix) that describes the instantaneous rates of
change between all non-stop codons. In the HLP17 model (Hoehn et al. 2017), these
instantaneous rates are parameterized by the nonsynonymous/synonymous mutation rate ratio
(w), transition/transversion mutation rate ratio (x), codon frequencies (), and modified
substitution rates h? where a is an SHM hot- or cold-spot motif, such as WRC (Peled et al.

2008); W=A/T, R=A/G; only the underlined base experiences increased substitution).

The HLP17 model makes a salient approximation (as do almost all other substitution models)
that nucleotide or codon frequencies are constant over time at a stationary distribution. However,
the codon composition of B cell sequences begins substantially far away from equilibrium and
changes over time (Sheng et al. 2016), making this assumption inappropriate. Hoehn et al.
(2017) attempted to address this problem by using maximum likelihood (ML) to estimate codon
frequencies. Whilst this approach may be better than empirical estimates of codon frequencies, at
least in some instances, it more than doubles the number of model parameters. Here, we
introduce HLP19, a modified HLP17 substitution model which, among other minor adjustments
(see Supplemental File 1), uses the predicted codon frequencies at the midpoint of phylogeny in

question. HLP19 is fully detailed in Supplemental File 1. Overall, HLP19 has less than half the
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1 number of free parameters as HLP17 and exhibits improved branch length estimates, generally

2 better estimates of certain substitution model parameters such as o (Supplemental File 3), and is
3 structurally more similar to other non-reversible substitution models (Yang 1994; Kaehler et al.
4 2017). Further, certain approximations in HLP19 (detailed in Supplemental File 1) give

5 significantly improved runtime compared to HLP17.

7 Hierarchical phylogenetic models for B cell repertoires
8  Under standard ML phylogenetics (Felsenstein 1981), a single multiple sequence alignment X is
9 specified, and the goal is to find the tree topology and branch lengths T, and the set of
10  substitution parameters, that maximize the likelihood of X. For B cell lineage phylogenies, the
11  sequence alignment is supplemented with a predicted germline sequence G that acts as an
12 outgroup and adds direction to the tree. In this study we extend this approach by calculating the
13 likelihood of the entire B cell repertoire, which we define as the product of the tree likelihoods
14  for each of n lineages, using each lineage i’s tree topology (Ti), substitution parameters (wi, «i,
15  hj), sequence data (Xi) and predicted germline sequence (Gi) (equation 1). This approach
16  therefore assumes that mutations in each lineage are independent from each other:
17

n
18 L(T,(D,K,th, G) = HL(Ti,a)i, Kl-,hile-, Gl) (1)

=1
19
20  The goal of our phylogenetic repertoire analysis is to find the tree topologies, branch lengths, and
21  substitution parameters that maximize the product on the left-hand side of equation 1, whereas

22 the goal of typical ML phylogenetic analysis is to maximize individually each phylogenetic
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likelihood on the right-hand side. In hierarchical models, parameters may be constrained to be
identical across lineages, allowing them to be estimated at the repertoire level. For instance, we
may estimate a repertoire-wide transition/transversion rate ratio by constraining k1=k2 = ... Kn.
Constraining parameters in this way will lower the overall likelihood of the repertoire compared
to optimizing parameters for each lineage individually (because there will be fewer degrees of
freedom) but will decrease the number of parameters and thereby reduce parameter estimation
variance. For the analyses presented here, we constrain all substitution parameters to be identical

across lineages within a repertoire.

B cell repertoire datasets

We use hierarchical phylogenetic models to characterize B cell repertoires in two previously
published data sets obtained from peripheral blood samples. The first dataset (Age) consists of
samples taken from 27 healthy individuals in two consecutive years (Wang et al. 2013). Subjects
varied in age from 20 to 81 years old and both male and female subjects were included. Our
second dataset (\Vaccine) consists of samples from three male donors at 10 time points: -8 days, -
2 days, -1 hour, +1 hour, +1 day, +3 days, +7 days, +14 days, and +28 days relative to seasonal
influenza vaccination (Laserson et al. 2014). Quality control and data processing for both of
these datasets is detailed in Supplemental File 1. Samples in the VVaccine dataset had between
141 and 15,763 (mean 6,272.7) unique sequences in non-singleton clones (i.e. clones containing
>1 unique sequence). Because of this large variation, the repertoires in the Vaccine dataset were
subsampled to a depth of 3,000 sequences in non-singleton clones (Supplemental File 1).

Sequence depth in the Age dataset was more even, with between 370 and 2,065 (mean 1,126)
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unique sequences in non-singleton clones, so the repertoires in the Age dataset were not

subsampled.

Phylogenetic model parameter and topology estimation

We used a single-linkage hierarchical clustering approach, detailed in Supplemental File 1, to
assign sequences into clonal lineages, each of which were assumed to descend from a single
naive B cell ancestor. Because we were not able to reliably predict the junction regions of
germline sequences (Gupta et al. 2015), we removed the CDR3 from all sequences analyzed. We
then used the hierarchical phylogenetic model described above to quantify effects of BCR

mutation and selection in the Age and Vaccine datasets.

Phylogenetic model parameters are an important source of information about evolutionary
dynamics. For example, the amino acid replacement vs. silent mutation rate ratio (») can be used
to distinguish positive and negative selection (Nielsen and Yang 1998), while the relative rate of
transitions to transversions (k) can be informative about mutation biases. We first estimated
maximum likelihood tree topologies and branch lengths for each B cell lineage using the GY94
(Goldman and Yang 1994; Nielsen and Yang 1998) substitution model, in which single, shared
o and k parameters were estimated for each repertoire, and codon frequencies were set to their
empirical frequencies across all sequences within each repertoire. For computational efficiency,
we used these estimated topologies to estimate branch lengths and substitution parameters of the
HLP19 model at the repertoire level; namely, we estimated k, wrwr, mcor (separate o values for

CDR and FWRs), and individual h® values (altered relative mutation rate) for WRC, GYW, WA,

10
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TW, SYC, and GRS hot- and cold-spot motifs (see Hoehn et al. (2017) for more details on these

parameters).

Hypotheses concerning substitution model parameter estimates can be tested in a phylogenetic
framework using a likelihood ratio test (Huelsenbeck and Rannala 1997). For models that differ
only by one free parameter, a p value of 0.05 corresponds to a log-likelihood difference of 1.92
between the alternative (ML estimated) and null (fixed value) model (Huelsenbeck and Rannala
1997). The log-likelihood ratio test allows estimation of 95% confidence intervals for parameter
estimates using profile likelihood curves. Each point on a profile likelihood curve is created by
calculating the maximum likelihood obtained when the parameter of interest is fixed to a
particular value and all other parameters are optimized. We used a straightforward binary search
and linear interpolation approach to estimate the 95% confidence interval either side of the ML

estimate.

Dataset simulation

As a means of validation, simulations (detailed in Supplemental File 2) were performed to test
(1) the performance of the HLP19 model relative to the previous HLP17 and GY94 models
(Supplemental File 3) and (ii) the effects of estimating parameters using a hierarchical
phylogenetic model compared to inference from individual lineage trees (Supplemental File 4).
To verify that the trends we observe in the Age and Vaccine datasets are not simply the result of
biases in our parameter estimation procedure, we performed simulations using pre-specified
substitution parameters (k = 2, wrwr = 0.4, ocor = 0.7, hWRC =4 hCYW =6 hWA =4 hTW =2,

hSYC = -0.6, and h®RS = -0.6) and the same tree topologies and branch lengths as the empirical

11
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1 trees from the Age and Vaccine datasets. We then repeated the analyses performed in each

2 section on these simulated datasets (Supplemental File 6).

12
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Results

Repertoire-wide phylogenetic models improve parameter estimation

Phylogenetic substitution model parameters can be an important source of information about the
evolutionary dynamics of lineages; for instance, the amino acid replacement vs. silent mutation
rate ratio (o) is used to characterize natural selection operating on genetic sequences (Nielsen
and Yang 1998). The HLP19 model parameters are informative about the process of B cell
affinity maturation. The model includes separate w parameters for the framework (FWR) and
complementarity determining (CDR) regions (mrwr and wcpr), the transition/transversion rate
ratio (), and a set of altered substitution rates at SHM hot/cold-spot motifs (hWRC, hGYW hWA
h™, hSYC hGRS; nucleotides represented using the International Union of Pure and Applied

Chemistry (IUPAC) coding scheme, only underlined bases experience altered rates).

The small size of most B cell lineages poses a problem for accurate estimation of phylogenetic
model parameters for individual B cell lineages. Namely, the size distributions of clonal lineages
within B cell repertoires, particularly those derived from blood samples, typically follow a
power-law distribution and are dominated by many lineages that each carry only a few unique
sequences (Weinstein et al. 2009; Jiang et al. 2013). We confirmed this pattern using blood
sample-derived BCR repertoires from 27 healthy subjects (Age dataset; Wang et al. 2013).
Across these subjects 88 to 96% (mean: 92.3%) of lineages comprised a single unique sequence,
and between 98 to 99.8% (mean: 99.3%) of lineages contained < 5 unique sequences. To test our

ability to estimate phylogenetic substitution model parameters from small lineages such as these,

13
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we simulated B cell repertoire datasets using a model of SHM sequence evolution, and re-
estimated HLP19 model parameters for each lineage individually (Supplemental File 4). These
results confirm that model parameter estimation is highly inaccurate for most individual B cell
lineages within this dataset, with mean proportional error rates ranging from 3.37 for h&"W to

211.35 for wcor (Figure 1; Supplemental File 4).

Given the overrepresentation of small lineages in B cell repertoires, we sought to increase the
precision of parameter estimation using a hierarchical phylogenetic framework. As outlined in
Methods, this is done by constraining model parameters to be identical among lineages, and then
estimating the set of parameter values that maximizes the likelihood of the entire repertoire.
Applying this hierarchical framework to the same simulation data as above (Supplemental File
4), we found that sharing parameters across lineages substantially reduced error in estimates for
all substitution model parameters compared to individual estimates, often by multiple orders of
magnitude (Figure 1; Supplemental File 4). Thus, a repertoire-wide phylogenetic approach
leverages the information available across all lineages in the repertoire and more precisely

estimates biological parameters relating to affinity maturation.

To test the strengths and weaknesses of different phylogenetic models in our hierarchical
framework, we compared the performance of three codon substitution models: GY94 (Goldman
and Yang 1994), which does not include SHM hot- or cold-spot motifs, HLP17 (Hoehn et al
2017), which is a modification of the GY94 model that incorporates hot- and cold-spot biases,
and HLP19, which is a modification of the HLP17 introduced herein (Supplemental File 1) that

incorporates codon frequencies in a manner that is more interpretable and formally similar to

14
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previous nonreversible models (Kaehler et al. 2017). Simulation analyses performed using
multiple tree topologies and parameter values (Supplemental File 3) revealed that parameter
estimates under HLP19 had a lower mean absolute bias across all parameters (0.03) than HLP17
(0.08) and GY94 (0.16; Supplemental File 3). For parameters relating to mutation (i, h values),
HLP19 showed a slightly lower mean absolute bias (0.04) compared to HLP17 (0.06;
Supplemental File 3). HLP19 and GY 94 models had similar absolute bias in branch lengths (<
0.002), which was lower than that of HLP17 (0.11; Supplemental File 3). HLP17 performed
worse than GY94 in branch length estimation, which is surprising given Hoehn et al. (2017)
showed that the HLP17 model improved branch length estimates compared to GY94. However,
we have since determined that the simulations performed in Hoehn et al. (2017) were
unintentionally but unfairly biased towards the HLP17 model (see detailed explanation in
Supplemental File 2). The simulations performed here do not have this issue, and show that
HLP19 largely addresses the weaknesses of on HLP17 in branch length estimation
(Supplemental File 3). Perhaps most importantly, for parameters relating to selection (wrwr and
wcor) HLP19 showed significantly lower mean absolute bias (0.02) compared to HLP17 (0.1)
and GY94 (0.29; Supplemental File 3). Mean bias of wcpr estimates were especially high under
the GY 94 model (range: 0.38 to 0.59) and increased in simulations with higher hot-spot mutation
rates and longer branch lengths (Supplemental File 3). This echoes previous findings; models
that fail to account for altered mutation rates of SHM motifs (e.g. GY94) can significantly bias
estimates of  (dN/dS) in BCR lineages towards detecting positive selection in the CDRs (Dunn-
Walters and Spencer 1998; Hershberg et al. 2008). Overall, we found the HLP19 model
improves upon the GY94 and HLP17 models, particularly when estimating wcor and branch

lengths, respectively.
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To further compare the appropriateness of the GY94, HLP17, and HLP19 models when applied
to BCR repertoire data, we estimated how well each model fit our empirical datasets using the
Akaike information criterion (AIC; Akaike 1974). The AIC uses the maximum log-likelihood
estimated using a model, penalized by the number of freely estimated parameters. Smaller AIC
values are generally interpreted as better model fit. In all 27 subjects AIC was highest under
GY94 and lowest under HLP19, indicating that the HLP19 model had a significantly better fit to

all subjects compared to the GY94 and HLP17 models (Supplemental File 5).

Variation of model parameters within and among subjects

We tested whether repertoire-wide parameter estimates can reproduce known features of somatic
hypermutation targeting, such as hot/cold-spot targeting (Yaari et al. 2013) by estimating HLP19
model parameters from BCR repertoire data that was obtained from 27 healthy individuals of
varying age and sex (Age dataset; Wang et al. 2013). While the values of parameter estimates
varied, all subjects exhibited the same overall pattern in model parameters that relate to SHM
targeting (Figure 2). In all subjects, GYW motifs exhibited the largest substitution rate increases
of the all motifs considered (h-°"W values were 4 to 6), followed by the WRC (h¥RC ~3), WA
("2 ~3) and TW (h™~1) motifs. Symmetrical SYC and GRS motifs were estimated to be
mutational cold-spots (hSY€ and h&RS ~ -0.6). We compared these parameter estimates to
mutability estimates under the S5F model (Yaari et al. 2013), which describes the relative
mutation rate of sequence pentamers during SHM in an independent and separate cohort of
healthy subjects. When averaging over pentamers within particular SHM motifs under uniform
pentamer frequencies, the S5F model predicts the same ranking as we obtained using the HLP19

model: GYW (mean mutability= 2.46) > WRC (1.87) = WA (1.71) > TW (1.19) > SYC (0.23) =
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GRS (0.22).The transition/transversion rate ratio (i) estimated by our repertoire-wide model was
~2, which is also consistent with previous findings (Betz et al. 1993; Cowell and Kepler 2000).
Overall, these results show that repertoire-wide parameter estimates obtained using a hierarchical

phylogenetic approach are broadly consistent with previous expectations in healthy individuals.

Age is associated with changes in SHM mutation biases

Age and sex are associated with substantial differences in the immune system; for example, older
individuals are more vulnerable to infection (Castle 2000; Fink et al. 2018), while females are at
a higher risk of developing auto-immune diseases (Ansar Ahmed et al. 1985). We sought to
investigate whether the mutation and selection processes underlying SHM might contribute to

these differences.

To investigate potential age- and sex-related differences in SHM targeting, we analyzed the 27
subjects surveyed by Wang et al (2013; Age dataset), which included both male and female
subjects with an age range of 21 to 88 years at the time of sampling. We used multiple linear
regression to investigate the effects of age and sex on estimated model parameters. Age and sex
were modeled as interaction variables against the estimated substitution rate biases of SHM
motifs (i.e. the HLP19 model h values; Supplemental File 1). Because we conducted 18 tests in
all (two dependent and nine independent variables), we used Benjamini-Hochberg (Benjamini
and Hochberg 1995) multiple hypothesis test correction to adjust p-values. Substitution rates in
WA (h2) were significantly negatively associated with age in both male (coefficient=-0.011;
adjusted p=0.001), and female subjects (coefficient=-0.006; adjusted p=0.03). No other

parameter showed a significant interaction with age in either sex after p-value adjustment. These
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results are consistent with a model in which older individuals have reduced mutation bias

towards WA hot-spots, possibly reflecting a difference in SHM mechanism in these individuals.

We performed simulation analyses to test whether the observed trends between h"A and age
could be due to biases in our parameter estimation procedure (Methods; Supplemental File 6).
For all 20 simulated repetitions of the Age dataset, the h"A slope coefficients for males and
females were closer to zero than their respective empirical estimates (Supplemental File 6a).
These results demonstrate that these trends are due to factors other than biases in parameter

estimation, given the underlying structure of our datasets and predicted germline sequences.

Variation in signatures of selection is uncorrelated with age, sex, EBV, and CMV status
Antigen-driven selection plays a major role in shaping BCR repertoire diversity. In molecular
evolutionary biology, selective dynamics are often characterized by estimating the relative rate
of substitutions that change amino acids versus those that do not, often called dN/dS or o
(Nielsen and Yang 1998). Low o values are indicative of fewer amino acid changes than
expected, which is generally interpreted as resulting from negative selection. We estimate ®
separately for the complementarity determining regions (CDRs) and framework regions (FWR).
Estimates of wrwr are expected to be lower than those of wcor because FWRs are more
structurally constrained than CDRs (Shlomchik et al. 1989), which are primarily used in antigen
binding (Murphy et al. 2012; Yaari et al. 2012). Consistent with this expectation, we found that
in the Age dataset, estimated wcor values (range: 0.52 — 0.87, mean: 0.68) were higher than
estimated wrwr values (range: 0.44 — 0.56, mean: 0.51) in all 27 subjects (p < 0.001; paired

Wilcoxon test; Figure 2). mcopr estimates were also more varied among subjects than wrwr
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values, perhaps representing different individual histories of antigenic stimulation. However, we
were unable to find a clear biological correlate of mcor in the Age dataset among the variables
provided with the data (Wang et al. 2013). Specifically, values of wcor did not show a
significant relationship with age (slope p-value = 0.66; least squares regression; Figure 3), sex (p
= 1.0; Wilcoxon rank sum test), Epstein-Barr virus seropositivity (p = 0.19; Wilcoxon rank sum

test), or cytomegalovirus seropositivity (p = 0.19; Wilcoxon rank sum test).

Post-influenza vaccination repertoires show signs of negative selection and longer tree length
Influenza vaccination substantially perturbs the B cell repertoire. A large, antigen-specific
plasmablast response is observed in the blood ~7 days post-vaccination which subsides
approximately one week later (Wrammert et al. 2008; Jackson et al. 2014). To investigate the
selective dynamics of this process, we estimated HLP19 substitution model parameters using the
repertoires of three otherwise healthy subjects who were sampled 10 times over the course of
influenza vaccination, beginning 8 days prior to vaccination and ending 28 days afterwards
(Laserson et al. 2014). Because we were primarily interested in selection and genetic diversity of
these samples, we focused on changes in wcor, the relative rate of nonsynonymous/synonymous
substitutions, and tree length (the total expected substitutions per site within an individual

lineage phylogeny).

We found a variety of responses among the subjects. PGP1, the oldest subject of the three, did
not show any clear patterns of change over time, in either mean tree length or wcor. Notably, this

subject at day +14 had only 141 sequences and consequently very wide 95% confidence
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intervals, illustrating the importance of correctly estimating model uncertainty in analysis of

BCR sequence data.

In contrast to PGP1, subjects 4201V and hu420143 both showed increased tree length at day+7
compared to one hour prior to vaccination (-1h), consistent with the expected burst of BCR
genetic diversity 7 days post-vaccination (Wrammert et al. 2008). The estimated mean tree
length within a sample was highest at day+7 for subjects 4201V and hu420143, with a fold
increase of 2.38 and 1.18 compared to one hour prior to vaccination (-1h) (Figure 4). Consistent
with this, multiple large clones in subjects 4201V and hu420143 arose at day+7 (Supplemental
File 8). In addition to increased tree length, day+7 was associated with a significant decrease in
wcor in both these subjects (Figure 4). For 4201V at -1h, ocpr = 0.64 (95% CI: 0.6, 0.66) and at
day+7 wcor = 0.47 (95% CI: 0.45, 0.50). For hu420143 at -1h, wcor = 0.57 (95% CI: 0.54, 0.59)

and at day +7 wcor = 0.49 (95% CI: 0.46, 0.51). Interestingly, though 4201V and hu420139 had

different pre-vaccination estimates of wcor (0.64 and 0.57, respectively) their estimates were
similar at day+7 (0.47 and 0.49), day+14 (0.62 and 0.61), and day+21 (0.60 and 0.60; Figure 4).
Overall, this indicates that, at the expected date of peak vaccine response, the repertoires of these
two subjects were characterized by an increase in genetically-diverse BCR lineages and

signatures of increased negative selection.

We performed simulation analyses to test whether decreased wcor at day+7 in subjects

hu420139 and 4201V were due to biases in our parameter estimation procedure (Methods,
Supplemental File 6). None of the 20 simulation repetitions performed using the Vaccine

dataset were able to reproduce the observed change in wcpr at day+7 compared to the pre-
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vaccination time point (-1h; Supplemental File 6b and 6c), demonstrating that these trends are
due to factors besides biases in parameter estimation, given the underlying structure of our

datasets and their predicted germline sequences.

Increased tree length is associated with signatures of negative selection

Our analysis of the Vaccine dataset indicated that, in two subjects, there was a concurrent
increase in mean tree length and decrease in wcor, at day +7 following influenza vaccination.
We hypothesized that this relationship between wcor and tree length might be more general, and
tested this hypothesis using log-linear regression across all 27 subjects of the Age dataset and all
30 samples (10 time points from three subjects) of the Vaccine dataset. Across both datasets we
observed a consistent and significant negative relationship between both wcorand orwr, and
mean repertoire tree length (i.e. the average expected substitutions per codon site across all
lineages within the repertoire; Figure 5). This trend was surprisingly similar between datasets,
with slopes of linear regressions having overlapping 95% confidence intervals, and was
particularly strong in the CDRs. For the Age dataset, the slope of a linear regression of wcor
against the In(mean tree length) was -0.24 (95% CI = -0.35, -0.14; p < 6x107°), while for the
Vaccine dataset the corresponding slope was -0.26 (95% CI = -0.29, -0.23; p < 4x106). Overall,
these regressions show a 32.1% and 41.4% decrease in wcor over the range of mean tree length
observed in the Age and Vaccine datasets, respectively. A similar, if weaker, relationship was
found between wrwr and In(mean tree length) (Figure 5; details in caption). This indicates that
repertoires with longer (i.e. more diverged) lineages are associated with signatures of increased

negative selection, particularly in the CDRs.
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We performed simulation analyses to test whether the observed trends between ® and mean tree
length were due to biases in our parameter estimation procedure (Methods, Supplemental File
6). In none of 20 simulations, using both datasets, did we observe a significant relationship
between of wcpr and mean tree length or mrwr and mean tree length (Supplemental File 6d-e).
However, the simulations in Supplemental File 6 were performed under a fully-context
dependent version of the HLP19 model, which does not completely represent the biased nature
of SHM. To test whether a richer model of SHM could potentially reproduce our results, we
performed simulations using the S5F model (Yaari et al. 2013), using the tree topologies and
branch lengths estimated using maximum parsimony (dnapars v3.679; Felsenstein 2002) and the
predicted germline sequences of the Age dataset (detailed in Supplemental File 7). None of 50
such simulation repetitions showed a negative slope between wcor and mean tree length as large
as that observed for the empirical data; only one simulation repetition showed a more negative
slope than observed between wrwr and mean tree length (Supplemental File 7). We therefore
conclude that the negative relationship between mean tree length and wcopr observed in Figure 5

is not due simply to inherent biases in our parameter estimation procedure.
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Discussion

Phylogenetic techniques have been used to study B cell lineages for many years (Shlomchik et
al. 1987) and continue to be a powerful tool in understanding affinity maturation (Vieira et al.
2018). Two fundamental issues that arise from the application of phylogenetic techniques to B
cell repertoires are (i) the biology underlying B cell affinity maturation violates key assumptions
of most phylogenetic models, and (ii) phylogenetic models are designed typically to work on
lineages originating from a common ancestor, but B cell repertoires are composed of multiple
lineages with separate ancestries, many of which are composed of only a few unique sequences.
If such lineages are each analyzed independently then parameter estimates will be noisy and
highly uncertain. Here we introduce a hierarchical approach to B cell phylogenetics that
addresses these issues. We extend phylogenetic models of SHM evolution so that they are
consistent with the known biology of B cell affinity maturation, and can share parameters of the
sequence evolution process across all lineages within a repertoire. This approach outperforms the
alternative of estimating parameters for each lineage individually. By applying our new approach
to empirical data we find evidence consistent with dysregulation of SHM in older subjects,
increased negative selection during influenza vaccine response, and a relationship between mean

tree lengths and signatures of negative selection.

We first used our hierarchical framework to demonstrate a negative association between age and
the estimated mutability of WA hot-spot motifs in males and females. Previous studies have
shown that aging is associated with a decrease in the affinity, specificity and diversity of

antibodies produced (LeMaoult et al. 1997; Dunn-Walters et al. 2003; Weiskopf et al. 2009;
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Dunn-Walters 2016), as well as with a number of changes at the repertoire level, including
longer CDR3s, higher levels of SHM, and persistent clonal lineages in the blood (Wang et al.
2013). It is possible that age-related dysregulation of SHM machinery plays a role in phenomena
associated with immunosenescence. Our finding that older individuals tend to have altered
mutability of WA motifs is consistent with this hypothesis. However, we note that this effect is
observed only in a small cohort, and while the linear regression slopes we observed were
significant, the overall change in WA mutability was modest. While we were unable to
reproduce this relationship in simulations under a null model (Supplemental File 6), it is
possible this trend is driven by other confounding factors we have not considered. Future

analyses with more subjects are needed to validate this trend generally.

We further used our hierarchical phylogenetic approach to characterize BCR molecular evolution
during vaccination. B cell receptors during affinity maturation are subject to multiple selective
pressures; positive selection to introduce new affinity-increasing amino acid variants (higher ®)
and negative selection to remove affinity-decreasing variants (lower o). A priori, we might
expect positive selection to predominate during vaccine response. However, in our analysis we
found that lineages present at the time of peak influenza vaccine response show signs of
increased negative selection (lower ) on CDRs. We suggest this is because B-cell lineages with
a history of affinity maturation during influenza infection/vaccination will likely have already
evolved effective or nearly effective neutralization at the time of vaccination, resulting in a
greater proportion of amino acid changes being deleterious (Clarke et al. 1985). This would

result in lower wcor values, which may be particularly marked during influenza vaccine
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response, since B cells activated by influenza vaccination in adults are expected to derive from

re-activated memory B cell lineages (Vollmers et al. 2013).

We also observed a negative relationship between tree length and wcor across both of our
datasets (Figure 5). This relationship is remarkably consistent given that our combined datasets
contain a total of 30 subjects of different age, sex, and treatment status. None of the simulation
analyses performed under a null model were able to reproduce this result (Supplemental File 6
and 7), so this relationship is unlikely to be due to a bias or intrinsic correlation between these
variables in our estimation procedure. In the absence of other obvious confounding factors, we
posit a simple biological explanation: as B cell clones accumulate mutations through repeated
rounds of affinity maturation, their binding affinity to target antigen increases and consequently
the benefit of random amino acid changes (i.e. new mutations) decreases (Clarke et al. 1985).
This idea that the rate of fitness-increasing mutations decreases is a straightforward implication
of a population nearing a “peak” within a fitness landscape (Wright 1932). Sheng et al. (2016)
demonstrated evidence of this process (which they termed the “affinity maturation selection”
model) in anti-HIV broadly neutralizing antibody (bnAb) lineages. This explanation is also
consistent with the findings of Yaari et al. (2015) showing that mutations earlier in B cell lineage
trees from healthy subjects show clearer signs of positive selection than more recent mutations.
Our results suggest that decreased rates of non-synonymous mutations relative to synonymous
mutations, as observed in HIV bnAb lineages (Sheng et al. 2016), BCR repertoires during
vaccine response (Figures 4 and 5), and even in healthy subjects with no obvious signs of
infection (Figure 5; Yaari et al. 2015), are all special cases of a general feature of affinity

maturation.
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There are several limitations to the hierarchical phylogenetic approach introduced here. The most
obvious is that by constraining parameter values so that they are identical for all lineages within
a repertoire, we mask any potential parameter variation among lineages. Estimating separate
parameter values for one or a set of lineages within a repertoire may be easily accommodated
within the hierarchical framework (Suchard et al. 2003). This may be useful for parameters such
as wcor, which might reflect lineage-specific histories of antigen-driven selection (Horns et al.
2019). As an example of this approach, we explore heterogeneity in estimates of mcor among
lineages of different sizes for one repertoire (Supplemental File 9). It is unclear whether
estimation of individual k and h# values would yield useful insights, since these parameters relate
primarily to biases resulting from SHM, and there is little a priori reason to believe they might
vary among B cell lineages within an individual. However, it is clear that estimating parameters
(e.g. wcor) for each lineage individually will lead to issues with over-fitting (e.g., when all CDR
mutations within a lineage are non-synonymous). Further work will be needed to resolve lineage

heterogeneity within individual repertoires.

A hierarchical phylogenetic approach to BCR phylogenetics is justified theoretically and
represents a step forward in the statistical analysis of B cell repertoires. Our new methods are

implemented in the program IgPhyML (v1.0.7; https://bitbucket.org/kbhoehn/igphyml), which is

freely available and integrated into the Immcantation suite (http://immcantation.org).
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Figures

Figure 1: Increased precision of repertoire-wide parameter estimates
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Figure 1: Increased precision of repertoire-wide parameter estimates (a) Proportional error in
estimates of the wcpr parameter under the HLP19 model. (b) Proportional error in estimates of
the wrwr parameter under the HLP19 model. In both panels, the black dots show the values
estimated from each individual lineage B cell lineage and the red lines shows the estimate
obtained from all lineages combined using a hierarchical model. Data were generated from a
simulated repertoire using tree topologies from subject 97 in the Age dataset (see Supplemental
File 4 for full details and results).
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Figure 2: Variation of model parameter estimates by subject and time
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Figure 2: Variation of parameter estimates by subject and time in the Age and Vaccine datasets
(a) HLP19 parameter estimates from each subject in the Age dataset, ordered by sex and age. (b)
HLP19 parameter estimates for the Vaccine dataset, ordered by subject and sample time relative
to influenza vaccination. The upper box in both (a) and (b) shows the model parameters that
relate to somatic hypermutation (motif targeting, transition/transversion ratio). The lower box
shows estimates of wcor and wrwr, Which relate to selection. Note that values in the lower box
are scaled differently from those in the upper panel (see legends on right hand side).
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Figure 3: Lower SHM motif mutability in older subjects
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Figure 3: Change in SHM motif mutation rates with age. Linear regressions of age against
model parameters under the HLP19 model, estimated using maximum likelihood. Separate
regressions are shown for male (blue) and female (red) subjects. The h'"WA parameter shows a
significant decrease with age in males and females.
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Figure 4: Signatures of selection and diversity following influenza vaccination
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Figure 4: Signatures of selection and diversity following influenza vaccination (a) Estimates of
the mcor parameter of the HLP19 model over the course of influenza vaccination. (b) Estimates
of mean tree length (total substitutions per codon within a lineage, averaged across all lineages
within a repertoire) over the course of influenza vaccination. The x-axis shows the number of
days since vaccination; the vertical dashed line represents day 7 post-vaccination. The shaded
areas in panel (a) represent the 95% confidence intervals for each parameter estimate, calculated
using profile likelihood curves.
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Figure 5: Negative relationship between w and mean tree length
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Figure 5: Negative relationship between o and mean tree length (a) Linear regression between
estimates of wcor (purple) and wrwr (orange) and the natural log of mean tree length for each
subject in the Age dataset. The slope and intercept of wcpr against In(mean tree length) were -
0.24 (95% CI = -0.35, -0.14) and 0.39, respectively (p < 6x10° for both). The corresponding
slope and intercept of wrwr were -0.09 (95% CI = -0.14, -0.04) and 0.4 (p < 0.002 for both). (b)
Linear regression between estimates of wcor (purple) and wrwr (orange) and the natural log of
mean tree length for each sample in the VVaccine dataset (three subjects, 10 samples each). The
slope and intercept of mcor against In(mean tree length) were -0.26 (95% CI = -0.29, -0.23) and
0.36, respectively (p < 4x10°1¢ for both). The corresponding slope and intercept of wrwr were -
0.08 (95% CI =-0.1, -0.05) and 0.43 (p < 4x107 for both). Grey shaded areas in both panels
show standard error estimates of the log-linear regression.
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