

1 Repertoire-wide phylogenetic models of B cell molecular evolution reveal evolutionary
2 signatures of aging and vaccination

3
4
5 Kenneth B Hoehn¹, Jason A. Vander Heiden², Julian Q. Zhou³, Gerton Lunter⁴, Oliver G.
6 Pybus^{5*+}, Steven H. Kleinstein^{1,3*+}
7

8 ¹Department of Pathology, Yale School of Medicine, New Haven, CT, USA
9

10 ² Department of Bioinformatics & Computational Biology, Genentech, South San Francisco, CA,
11 USA

12
13 ³Interdepartmental Program in Computational Biology and Bioinformatics, Yale University,
14 New Haven, CT, USA

15
16 ⁴Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK

17
18 ⁵Department of Zoology, University of Oxford, OX1 3PS, United Kingdom

19 * Authors contributed equally

20 + To whom correspondence should be addressed

21

1 Abstract

2
3 In order to produce effective antibodies, B cells undergo rapid somatic hypermutation (SHM)
4 and selection for binding affinity to antigen via a process called affinity maturation. The
5 similarities between this process and evolution by natural selection have led many groups to use
6 evolutionary and phylogenetic methods to characterize the development of immunological
7 memory, vaccination, and other processes that depend on affinity maturation. However, these
8 applications are limited by several features of affinity maturation that violate assumptions in
9 standard phylogenetic models. Further, most phylogenetic models are designed to be applied to
10 individual lineages comprising genetically diverse sequences, while B cell repertoires often
11 consist of hundreds to thousands of separate low-diversity lineages. Here, we introduce a
12 hierarchical phylogenetic framework that incorporates the unique features of SHM, and
13 integrates information from all lineages in a repertoire to more precisely estimate model
14 parameters. We demonstrate the power of this approach by characterizing previously un-
15 described phenomena in affinity maturation. First, we find evidence consistent with age related
16 changes in SHM hot- and cold-spot motifs. Second, we identify a consistent relationship between
17 increased tree length and signs of increased negative selection, apparent in the repertoires of both
18 healthy subjects and those undergoing active immune responses. This suggests that B cell
19 lineages shift towards negative selection over time as a general feature of affinity maturation.
20 Our study provides a framework for undertaking repertoire-wide phylogenetic testing of SHM
21 hypotheses, and provides a new means of characterizing the process of mutation and selection
22 during affinity maturation.

1 **Introduction**

2

3 B cell receptors (BCRs) are membrane-bound immunoglobulins (Ig) expressed on the surfaces of

4 B cells that bind to antigen and may be released as antibodies to fight infection. BCRs are

5 generated through the shuffling of Ig gene segments by V(D)J recombination and, if the cell

6 expressing them is activated, by a second process of BCR modification called affinity maturation

7 (Murphy *et al.* 2012). Affinity maturation consists of repeated rounds of somatic hypermutation

8 (SHM) of the BCR, cell proliferation, and selection for antigen binding affinity (Murphy *et al.*

9 2012). These processes give rise to clonal lineages of B cells that each descend from a progenitor

10 cell, from which they differ predominately by point mutations. The BCR sequence, and the

11 nature of the mutations introduced during affinity maturation, can be investigated in detail using

12 high-throughput next generation BCR sequencing (Boyd *et al.* 2009; Greiff *et al.* 2015b; Yaari

13 and Kleinstein 2015).

14

15 The fact that affinity maturation is analogous to the process of evolution by natural selection

16 suggests that methods from molecular evolutionary biology, particularly phylogenetics, could

17 have broad utility in studying affinity maturation. This has stimulated the development of

18 methods of evolutionary sequence analysis designed specifically for BCR sequences, particularly

19 phylogenetic approaches (Barak *et al.* 2008; Kepler 2013; Hoehn *et al.* 2017; DeWitt *et al.*

20 2018). These methods have shown promise in elucidating information about the adaptive

21 immune response in humans, such as the sequence of mutations that occur during antibody co-

22 evolution with HIV (Liao *et al.* 2013) and the migration of B cells in multiple sclerosis (Stern *et*

23 *al.* 2014).

1
2 There are a number of challenges in adapting phylogenetic techniques to B cell clonal lineage
3 analysis. For example, the biology of affinity maturation violates fundamental assumptions in
4 most phylogenetic substitution models, such as independent change at each nucleotide site and
5 time-reversibility of substitution rates (Hoehn *et al.* 2016). To address these issues we previously
6 introduced the HLP17 substitution model, which weights codon substitutions by the presence of
7 SHM hot/cold-spot motifs, and does not assume that substitution rates are time reversible (Hoehn
8 *et al.* 2017).

9
10 Phylogenetic techniques are typically used to analyze individual, genetically-diverse B cell
11 lineages (Felsenstein 1981; Liao *et al.* 2013). However, B cell repertoires are typically profiled
12 by next-generation sequencing and consist of many – potentially thousands of – expanded clonal
13 lineages, each of which may contain only a few unique sequences (Weinstein *et al.* 2009; Jiang
14 *et al.* 2013; Greiff *et al.* 2015a). In light of this, many analyses have used non-phylogenetic
15 summary statistics to characterize BCR repertoires, such as the distribution of sequences per
16 clone (e.g. Bashford-Rogers *et al.* 2013; Greiff *et al.* 2015a; Hoehn *et al.* 2015). Others have
17 used non-phylogenetic approaches to study somatic hypermutation biases (Yaari *et al.* 2013) and
18 signatures of clonal selection (Yaari *et al.* 2012), which represent B cell clonal lineages by
19 selecting or constructing a single representative sequence. SHM biases have also recently been
20 incorporated into a phylogenetic framework under Feng *et al.* (2017). By explicitly modeling
21 shared ancestry among sequences within the same clone, phylogenetic approaches potentially
22 offer a more powerful means of understanding somatic hypermutation and affinity maturation by
23 using the full set of substitutions expected to have occurred in a repertoire. However, standard

1 phylogenetic approaches are limited to single lineages, and give imprecise parameter estimates,
2 except when applied to unusually long-lived or highly-diverse B cell lineages (e.g. Hoehn *et al.*
3 2017).

4

5 We propose here that it is possible to combine some of the benefits of phylogenetic and summary
6 statistic approaches of B cell repertoire analysis, by using hierarchical phylogenetic models.

7 These approaches contain multiple levels of parameters, some of which are shared among
8 lineages, while others are estimated for each lineage individually (Suchard *et al.* 2003). For
9 example, Rodrigo *et al.* (2003) applied one such hierarchical phylogenetic approach to a set of
10 HIV sequences from infected patients in order to jointly estimate both the virus substitution rate
11 and the proportion of individuals that did not respond to antiretroviral therapy. However,
12 previous applications of hierarchical phylogenetic models to virus genomes do not address the
13 abovementioned model assumptions that are violated by the biology of B cell affinity maturation.

14

15 A hierarchical approach that is specifically tailored to B cell sequence evolution has the potential
16 to dramatically improve accuracy of parameter estimation. By assuming that B cell lineages
17 within a particular repertoire experience broadly similar patterns of substitution (e.g., hot- and
18 cold-spot sequence motifs that experience altered mutation rates under SHM), a hierarchical
19 approach is able to share information across B cell lineages and thereby take advantage of the
20 large genetic diversity of the entire repertoire, despite the fact that each individual lineage within
21 the BCR repertoire data may exhibit low diversity. Here, we develop a hierarchical phylogenetic
22 framework capable of characterizing entire B cell repertoires by jointly estimating parameters
23 and lineage tree topologies for all lineages within a repertoire. We first introduce the HLP19

1 model, an improved form of the HLP17 model that accounts for changing codon frequencies
2 during affinity maturation, and validate our hierarchical approach through simulation. We then
3 apply this new framework to characterize the effects of aging on B cell repertoire development
4 and B cell responses to influenza vaccination. We demonstrate that hierarchical approaches can
5 quantify variation in SHM features both across individuals and within the same individual
6 through time. Our results reveal previously uncharacterized immunological phenomena
7 underlying aging and vaccination. We discover (i) evidence of changes in SHM hot/cold-spot
8 mutation biases associated with age, (ii) evidence of negative selection acting on
9 complementarity-determining regions (CDRs) associated with the human immune response to
10 influenza vaccination, and (iii) a consistent relationship between increased lineage tree length
11 and signatures of negative selection across our datasets.

12

13

1 **Methods**

2

3 *A nonstationary, nonreversible phylogenetic substitution model for B cell evolution*

4 The process of nucleotide change along a given phylogenetic tree is modeled as a Markov

5 process, such that the rate of transitioning into any state at each instant in time is dependent only

6 on the current state of the model (Felsenstein 1981). Here, we characterize codon change in Ig

7 sequences using a 61x61 element matrix (**Q** matrix) that describes the instantaneous rates of

8 change between all non-stop codons. In the HLP17 model (Hoehn *et al.* 2017), these

9 instantaneous rates are parameterized by the nonsynonymous/synonymous mutation rate ratio

10 (ω), transition/transversion mutation rate ratio (κ), codon frequencies (π), and modified

11 substitution rates h^a where a is an SHM hot- or cold-spot motif, such as WRC (Peled *et al.*

12 2008); W=A/T, R=A/G; only the underlined base experiences increased substitution).

13

14 The HLP17 model makes a salient approximation (as do almost all other substitution models)

15 that nucleotide or codon frequencies are constant over time at a stationary distribution. However,

16 the codon composition of B cell sequences begins substantially far away from equilibrium and

17 changes over time (Sheng *et al.* 2016), making this assumption inappropriate. Hoehn *et al.*

18 (2017) attempted to address this problem by using maximum likelihood (ML) to estimate codon

19 frequencies. Whilst this approach may be better than empirical estimates of codon frequencies, at

20 least in some instances, it more than doubles the number of model parameters. Here, we

21 introduce HLP19, a modified HLP17 substitution model which, among other minor adjustments

22 (see **Supplemental File 1**), uses the predicted codon frequencies at the midpoint of phylogeny in

23 question. HLP19 is fully detailed in **Supplemental File 1**. Overall, HLP19 has less than half the

1 number of free parameters as HLP17 and exhibits improved branch length estimates, generally
2 better estimates of certain substitution model parameters such as ω (**Supplemental File 3**), and is
3 structurally more similar to other non-reversible substitution models (Yang 1994; Kaehler *et al.*
4 2017). Further, certain approximations in HLP19 (detailed in **Supplemental File 1**) give
5 significantly improved runtime compared to HLP17.

6

7 *Hierarchical phylogenetic models for B cell repertoires*

8 Under standard ML phylogenetics (Felsenstein 1981), a single multiple sequence alignment \mathbf{X} is
9 specified, and the goal is to find the tree topology and branch lengths \mathbf{T} , and the set of
10 substitution parameters, that maximize the likelihood of \mathbf{X} . For B cell lineage phylogenies, the
11 sequence alignment is supplemented with a predicted germline sequence \mathbf{G} that acts as an
12 outgroup and adds direction to the tree. In this study we extend this approach by calculating the
13 likelihood of the entire B cell repertoire, which we define as the product of the tree likelihoods
14 for each of n lineages, using each lineage i 's tree topology (T_i), substitution parameters (ω_i, κ_i ,
15 \mathbf{h}_i), sequence data (\mathbf{X}_i) and predicted germline sequence (\mathbf{G}_i) (equation 1). This approach
16 therefore assumes that mutations in each lineage are independent from each other:

17

$$18 \quad L(\mathbf{T}, \boldsymbol{\omega}, \boldsymbol{\kappa}, \mathbf{h} | \mathbf{X}, \mathbf{G}) = \prod_{i=1}^n L(T_i, \omega_i, \kappa_i, \mathbf{h}_i | \mathbf{X}_i, \mathbf{G}_i) \quad (1)$$

19

20 The goal of our phylogenetic repertoire analysis is to find the tree topologies, branch lengths, and
21 substitution parameters that maximize the product on the left-hand side of equation 1, whereas
22 the goal of typical ML phylogenetic analysis is to maximize individually each phylogenetic

1 likelihood on the right-hand side. In hierarchical models, parameters may be constrained to be
2 identical across lineages, allowing them to be estimated at the repertoire level. For instance, we
3 may estimate a repertoire-wide transition/transversion rate ratio by constraining $\kappa_1 = \kappa_2 = \dots = \kappa_n$.
4 Constraining parameters in this way will lower the overall likelihood of the repertoire compared
5 to optimizing parameters for each lineage individually (because there will be fewer degrees of
6 freedom) but will decrease the number of parameters and thereby reduce parameter estimation
7 variance. For the analyses presented here, we constrain all substitution parameters to be identical
8 across lineages within a repertoire.

9

10 *B cell repertoire datasets*

11 We use hierarchical phylogenetic models to characterize B cell repertoires in two previously
12 published data sets obtained from peripheral blood samples. The first dataset (Age) consists of
13 samples taken from 27 healthy individuals in two consecutive years (Wang *et al.* 2013). Subjects
14 varied in age from 20 to 81 years old and both male and female subjects were included. Our
15 second dataset (Vaccine) consists of samples from three male donors at 10 time points: -8 days, -
16 2 days, -1 hour, +1 hour, +1 day, +3 days, +7 days, +14 days, and +28 days relative to seasonal
17 influenza vaccination (Laserson *et al.* 2014). Quality control and data processing for both of
18 these datasets is detailed in **Supplemental File 1**. Samples in the Vaccine dataset had between
19 141 and 15,763 (mean 6,272.7) unique sequences in non-singleton clones (i.e. clones containing
20 >1 unique sequence). Because of this large variation, the repertoires in the Vaccine dataset were
21 subsampled to a depth of 3,000 sequences in non-singleton clones (**Supplemental File 1**).
22 Sequence depth in the Age dataset was more even, with between 370 and 2,065 (mean 1,126)

1 unique sequences in non-singleton clones, so the repertoires in the Age dataset were not
2 subsampled.

3

4 *Phylogenetic model parameter and topology estimation*

5 We used a single-linkage hierarchical clustering approach, detailed in **Supplemental File 1**, to
6 assign sequences into clonal lineages, each of which were assumed to descend from a single
7 naïve B cell ancestor. Because we were not able to reliably predict the junction regions of
8 germline sequences (Gupta *et al.* 2015), we removed the CDR3 from all sequences analyzed. We
9 then used the hierarchical phylogenetic model described above to quantify effects of BCR
10 mutation and selection in the Age and Vaccine datasets.

11

12 Phylogenetic model parameters are an important source of information about evolutionary
13 dynamics. For example, the amino acid replacement vs. silent mutation rate ratio (ω) can be used
14 to distinguish positive and negative selection (Nielsen and Yang 1998), while the relative rate of
15 transitions to transversions (κ) can be informative about mutation biases. We first estimated
16 maximum likelihood tree topologies and branch lengths for each B cell lineage using the GY94
17 (Goldman and Yang 1994; Nielsen and Yang 1998) substitution model, in which single, shared
18 ω and κ parameters were estimated for each repertoire, and codon frequencies were set to their
19 empirical frequencies across all sequences within each repertoire. For computational efficiency,
20 we used these estimated topologies to estimate branch lengths and substitution parameters of the
21 HLP19 model at the repertoire level; namely, we estimated κ , ω_{FWR} , ω_{CDR} (separate ω values for
22 CDR and FWRs), and individual h^a values (altered relative mutation rate) for WRC, GYW, WA,

1 TW, SYC, and GRS hot- and cold-spot motifs (see Hoehn *et al.* (2017) for more details on these
2 parameters).

3
4 Hypotheses concerning substitution model parameter estimates can be tested in a phylogenetic
5 framework using a likelihood ratio test (Huelsenbeck and Rannala 1997). For models that differ
6 only by one free parameter, a *p* value of 0.05 corresponds to a log-likelihood difference of 1.92
7 between the alternative (ML estimated) and null (fixed value) model (Huelsenbeck and Rannala
8 1997). The log-likelihood ratio test allows estimation of 95% confidence intervals for parameter
9 estimates using profile likelihood curves. Each point on a profile likelihood curve is created by
10 calculating the maximum likelihood obtained when the parameter of interest is fixed to a
11 particular value and all other parameters are optimized. We used a straightforward binary search
12 and linear interpolation approach to estimate the 95% confidence interval either side of the ML
13 estimate.

14
15 *Dataset simulation*
16 As a means of validation, simulations (detailed in **Supplemental File 2**) were performed to test
17 (i) the performance of the HLP19 model relative to the previous HLP17 and GY94 models
18 (**Supplemental File 3**) and (ii) the effects of estimating parameters using a hierarchical
19 phylogenetic model compared to inference from individual lineage trees (**Supplemental File 4**).
20 To verify that the trends we observe in the Age and Vaccine datasets are not simply the result of
21 biases in our parameter estimation procedure, we performed simulations using pre-specified
22 substitution parameters ($\kappa = 2$, $\omega_{FWR} = 0.4$, $\omega_{CDR} = 0.7$, $h^{WRC} = 4$, $h^{GYW} = 6$, $h^{WA} = 4$, $h^{TW} = 2$,
23 $h^{SYC} = -0.6$, and $h^{GRS} = -0.6$) and the same tree topologies and branch lengths as the empirical

1 trees from the Age and Vaccine datasets. We then repeated the analyses performed in each
2 section on these simulated datasets (**Supplemental File 6**).
3

1

2 **Results**

3

4 *Repertoire-wide phylogenetic models improve parameter estimation*

5 Phylogenetic substitution model parameters can be an important source of information about the
6 evolutionary dynamics of lineages; for instance, the amino acid replacement vs. silent mutation
7 rate ratio (ω) is used to characterize natural selection operating on genetic sequences (Nielsen
8 and Yang 1998). The HLP19 model parameters are informative about the process of B cell
9 affinity maturation. The model includes separate ω parameters for the framework (FWR) and
10 complementarity determining (CDR) regions (ω_{FWR} and ω_{CDR}), the transition/transversion rate
11 ratio (κ), and a set of altered substitution rates at SHM hot/cold-spot motifs (h^{WRC} , h^{GYW} , h^{WA} ,
12 h^{TW} , h^{SYC} , h^{GRS} ; nucleotides represented using the International Union of Pure and Applied
13 Chemistry (IUPAC) coding scheme, only underlined bases experience altered rates).

14

15 The small size of most B cell lineages poses a problem for accurate estimation of phylogenetic
16 model parameters for individual B cell lineages. Namely, the size distributions of clonal lineages
17 within B cell repertoires, particularly those derived from blood samples, typically follow a
18 power-law distribution and are dominated by many lineages that each carry only a few unique
19 sequences (Weinstein *et al.* 2009; Jiang *et al.* 2013). We confirmed this pattern using blood
20 sample-derived BCR repertoires from 27 healthy subjects (Age dataset; Wang *et al.* 2013).
21 Across these subjects 88 to 96% (mean: 92.3%) of lineages comprised a single unique sequence,
22 and between 98 to 99.8% (mean: 99.3%) of lineages contained < 5 unique sequences. To test our
23 ability to estimate phylogenetic substitution model parameters from small lineages such as these,

1 we simulated B cell repertoire datasets using a model of SHM sequence evolution, and re-
2 estimated HLP19 model parameters for each lineage individually (**Supplemental File 4**). These
3 results confirm that model parameter estimation is highly inaccurate for most individual B cell
4 lineages within this dataset, with mean proportional error rates ranging from 3.37 for h^{GYW} to
5 211.35 for ω_{CDR} (**Figure 1; Supplemental File 4**).

6
7 Given the overrepresentation of small lineages in B cell repertoires, we sought to increase the
8 precision of parameter estimation using a hierarchical phylogenetic framework. As outlined in
9 **Methods**, this is done by constraining model parameters to be identical among lineages, and then
10 estimating the set of parameter values that maximizes the likelihood of the entire repertoire.
11 Applying this hierarchical framework to the same simulation data as above (**Supplemental File**
12 **4**), we found that sharing parameters across lineages substantially reduced error in estimates for
13 all substitution model parameters compared to individual estimates, often by multiple orders of
14 magnitude (**Figure 1; Supplemental File 4**). Thus, a repertoire-wide phylogenetic approach
15 leverages the information available across all lineages in the repertoire and more precisely
16 estimates biological parameters relating to affinity maturation.

17
18 To test the strengths and weaknesses of different phylogenetic models in our hierarchical
19 framework, we compared the performance of three codon substitution models: GY94 (Goldman
20 and Yang 1994), which does not include SHM hot- or cold-spot motifs, HLP17 (Hoehn et al
21 2017), which is a modification of the GY94 model that incorporates hot- and cold-spot biases,
22 and HLP19, which is a modification of the HLP17 introduced herein (**Supplemental File 1**) that
23 incorporates codon frequencies in a manner that is more interpretable and formally similar to

1 previous nonreversible models (Kaehler *et al.* 2017). Simulation analyses performed using
2 multiple tree topologies and parameter values (**Supplemental File 3**) revealed that parameter
3 estimates under HLP19 had a lower mean absolute bias across all parameters (0.03) than HLP17
4 (0.08) and GY94 (0.16; **Supplemental File 3**). For parameters relating to mutation (κ , h values),
5 HLP19 showed a slightly lower mean absolute bias (0.04) compared to HLP17 (0.06;
6 **Supplemental File 3**). HLP19 and GY94 models had similar absolute bias in branch lengths (<
7 0.002), which was lower than that of HLP17 (0.11; **Supplemental File 3**). HLP17 performed
8 worse than GY94 in branch length estimation, which is surprising given Hoehn *et al.* (2017)
9 showed that the HLP17 model improved branch length estimates compared to GY94. However,
10 we have since determined that the simulations performed in Hoehn *et al.* (2017) were
11 unintentionally but unfairly biased towards the HLP17 model (see detailed explanation in
12 **Supplemental File 2**). The simulations performed here do not have this issue, and show that
13 HLP19 largely addresses the weaknesses of on HLP17 in branch length estimation
14 (**Supplemental File 3**). Perhaps most importantly, for parameters relating to selection (ω_{FWR} and
15 ω_{CDR}) HLP19 showed significantly lower mean absolute bias (0.02) compared to HLP17 (0.1)
16 and GY94 (0.29; **Supplemental File 3**). Mean bias of ω_{CDR} estimates were especially high under
17 the GY94 model (range: 0.38 to 0.59) and increased in simulations with higher hot-spot mutation
18 rates and longer branch lengths (**Supplemental File 3**). This echoes previous findings; models
19 that fail to account for altered mutation rates of SHM motifs (e.g. GY94) can significantly bias
20 estimates of ω (dN/dS) in BCR lineages towards detecting positive selection in the CDRs (Dunn-
21 Walters and Spencer 1998; Hershberg *et al.* 2008). Overall, we found the HLP19 model
22 improves upon the GY94 and HLP17 models, particularly when estimating ω_{CDR} and branch
23 lengths, respectively.

1 To further compare the appropriateness of the GY94, HLP17, and HLP19 models when applied
2 to BCR repertoire data, we estimated how well each model fit our empirical datasets using the
3 Akaike information criterion (AIC; Akaike 1974). The AIC uses the maximum log-likelihood
4 estimated using a model, penalized by the number of freely estimated parameters. Smaller AIC
5 values are generally interpreted as better model fit. In all 27 subjects AIC was highest under
6 GY94 and lowest under HLP19, indicating that the HLP19 model had a significantly better fit to
7 all subjects compared to the GY94 and HLP17 models (**Supplemental File 5**).

8

9 *Variation of model parameters within and among subjects*

10 We tested whether repertoire-wide parameter estimates can reproduce known features of somatic
11 hypermutation targeting, such as hot/cold-spot targeting (Yaari *et al.* 2013) by estimating HLP19
12 model parameters from BCR repertoire data that was obtained from 27 healthy individuals of
13 varying age and sex (Age dataset; Wang *et al.* 2013). While the values of parameter estimates
14 varied, all subjects exhibited the same overall pattern in model parameters that relate to SHM
15 targeting (**Figure 2**). In all subjects, GYW motifs exhibited the largest substitution rate increases
16 of the all motifs considered (h^{GYW} values were 4 to 6), followed by the WRC ($h^{WRC} \sim 3$), WA
17 ($h^{WA} \sim 3$) and TW ($h^{TW} \sim 1$) motifs. Symmetrical SYC and GRS motifs were estimated to be
18 mutational cold-spots (h^{SYC} and $h^{GRS} \sim -0.6$). We compared these parameter estimates to
19 mutability estimates under the S5F model (Yaari *et al.* 2013), which describes the relative
20 mutation rate of sequence pentamers during SHM in an independent and separate cohort of
21 healthy subjects. When averaging over pentamers within particular SHM motifs under uniform
22 pentamer frequencies, the S5F model predicts the same ranking as we obtained using the HLP19
23 model: GYW (mean mutability= 2.46) > WRC (1.87) \approx WA (1.71) > TW (1.19) > SYC (0.23) \approx

1 GRS (0.22). The transition/transversion rate ratio (κ) estimated by our repertoire-wide model was
2 ~2, which is also consistent with previous findings (Betz *et al.* 1993; Cowell and Kepler 2000).
3 Overall, these results show that repertoire-wide parameter estimates obtained using a hierarchical
4 phylogenetic approach are broadly consistent with previous expectations in healthy individuals.

5
6 *Age is associated with changes in SHM mutation biases*
7 Age and sex are associated with substantial differences in the immune system; for example, older
8 individuals are more vulnerable to infection (Castle 2000; Fink *et al.* 2018), while females are at
9 a higher risk of developing auto-immune diseases (Ansar Ahmed *et al.* 1985). We sought to
10 investigate whether the mutation and selection processes underlying SHM might contribute to
11 these differences.

12
13 To investigate potential age- and sex-related differences in SHM targeting, we analyzed the 27
14 subjects surveyed by Wang *et al* (2013; Age dataset), which included both male and female
15 subjects with an age range of 21 to 88 years at the time of sampling. We used multiple linear
16 regression to investigate the effects of age and sex on estimated model parameters. Age and sex
17 were modeled as interaction variables against the estimated substitution rate biases of SHM
18 motifs (i.e. the HLP19 model h values; **Supplemental File 1**). Because we conducted 18 tests in
19 all (two dependent and nine independent variables), we used Benjamini-Hochberg (Benjamini
20 and Hochberg 1995) multiple hypothesis test correction to adjust p -values. Substitution rates in
21 WA (h^{WA}) were significantly negatively associated with age in both male (coefficient=-0.011;
22 adjusted $p=0.001$), and female subjects (coefficient=-0.006; adjusted $p=0.03$). No other
23 parameter showed a significant interaction with age in either sex after p -value adjustment. These

1 results are consistent with a model in which older individuals have reduced mutation bias
2 towards WA hot-spots, possibly reflecting a difference in SHM mechanism in these individuals.

3
4 We performed simulation analyses to test whether the observed trends between h^{WA} and age
5 could be due to biases in our parameter estimation procedure (*Methods*; **Supplemental File 6**).

6 For all 20 simulated repetitions of the Age dataset, the h^{WA} slope coefficients for males and
7 females were closer to zero than their respective empirical estimates (**Supplemental File 6a**).

8 These results demonstrate that these trends are due to factors other than biases in parameter
9 estimation, given the underlying structure of our datasets and predicted germline sequences.

10
11 *Variation in signatures of selection is uncorrelated with age, sex, EBV, and CMV status*
12 Antigen-driven selection plays a major role in shaping BCR repertoire diversity. In molecular
13 evolutionary biology, selective dynamics are often characterized by estimating the relative rate
14 of substitutions that change amino acids versus those that do not, often called dN/dS or ω
15 (Nielsen and Yang 1998). Low ω values are indicative of fewer amino acid changes than
16 expected, which is generally interpreted as resulting from negative selection. We estimate ω
17 separately for the complementarity determining regions (CDRs) and framework regions (FWR).

18 Estimates of ω_{FWR} are expected to be lower than those of ω_{CDR} because FWRs are more
19 structurally constrained than CDRs (Shlomchik *et al.* 1989), which are primarily used in antigen
20 binding (Murphy *et al.* 2012; Yaari *et al.* 2012). Consistent with this expectation, we found that
21 in the Age dataset, estimated ω_{CDR} values (range: 0.52 – 0.87, mean: 0.68) were higher than
22 estimated ω_{FWR} values (range: 0.44 – 0.56, mean: 0.51) in all 27 subjects ($p < 0.001$; paired
23 Wilcoxon test; **Figure 2**). ω_{CDR} estimates were also more varied among subjects than ω_{FWR}

1 values, perhaps representing different individual histories of antigenic stimulation. However, we
2 were unable to find a clear biological correlate of ω CDR in the Age dataset among the variables
3 provided with the data (Wang *et al.* 2013). Specifically, values of ω CDR did not show a
4 significant relationship with age (slope p -value = 0.66; least squares regression; **Figure 3**), sex (p
5 = 1.0; Wilcoxon rank sum test), Epstein-Barr virus seropositivity (p = 0.19; Wilcoxon rank sum
6 test), or cytomegalovirus seropositivity (p = 0.19; Wilcoxon rank sum test).

7

8 *Post-influenza vaccination repertoires show signs of negative selection and longer tree length*
9 Influenza vaccination substantially perturbs the B cell repertoire. A large, antigen-specific
10 plasmablast response is observed in the blood ~7 days post-vaccination which subsides
11 approximately one week later (Wrammert *et al.* 2008; Jackson *et al.* 2014). To investigate the
12 selective dynamics of this process, we estimated HLP19 substitution model parameters using the
13 repertoires of three otherwise healthy subjects who were sampled 10 times over the course of
14 influenza vaccination, beginning 8 days prior to vaccination and ending 28 days afterwards
15 (Laserson *et al.* 2014). Because we were primarily interested in selection and genetic diversity of
16 these samples, we focused on changes in ω CDR, the relative rate of nonsynonymous/synonymous
17 substitutions, and tree length (the total expected substitutions per site within an individual
18 lineage phylogeny).

19

20 We found a variety of responses among the subjects. PGP1, the oldest subject of the three, did
21 not show any clear patterns of change over time, in either mean tree length or ω CDR. Notably, this
22 subject at day +14 had only 141 sequences and consequently very wide 95% confidence

1 intervals, illustrating the importance of correctly estimating model uncertainty in analysis of
2 BCR sequence data.

3
4 In contrast to PGP1, subjects 420IV and hu420143 both showed increased tree length at day+7
5 compared to one hour prior to vaccination (-1h), consistent with the expected burst of BCR
6 genetic diversity 7 days post-vaccination (Wrammert *et al.* 2008). The estimated mean tree
7 length within a sample was highest at day+7 for subjects 420IV and hu420143, with a fold
8 increase of 2.38 and 1.18 compared to one hour prior to vaccination (-1h) (**Figure 4**). Consistent
9 with this, multiple large clones in subjects 420IV and hu420143 arose at day+7 (**Supplemental**
10 **File 8**). In addition to increased tree length, day+7 was associated with a significant decrease in
11 ω_{CDR} in both these subjects (**Figure 4**). For 420IV at -1h, $\omega_{CDR} = 0.64$ (95% CI: 0.6, 0.66) and at
12 day+7 $\omega_{CDR} = 0.47$ (95% CI: 0.45, 0.50). For hu420143 at -1h, $\omega_{CDR} = 0.57$ (95% CI: 0.54, 0.59)
13 and at day +7 $\omega_{CDR} = 0.49$ (95% CI: 0.46, 0.51). Interestingly, though 420IV and hu420139 had
14 different pre-vaccination estimates of ω_{CDR} (0.64 and 0.57, respectively) their estimates were
15 similar at day+7 (0.47 and 0.49), day+14 (0.62 and 0.61), and day+21 (0.60 and 0.60; **Figure 4**).
16 Overall, this indicates that, at the expected date of peak vaccine response, the repertoires of these
17 two subjects were characterized by an increase in genetically-diverse BCR lineages and
18 signatures of increased negative selection.

19
20 We performed simulation analyses to test whether decreased ω_{CDR} at day+7 in subjects
21 hu420139 and 420IV were due to biases in our parameter estimation procedure (*Methods*,
22 **Supplemental File 6**). None of the 20 simulation repetitions performed using the Vaccine
23 dataset were able to reproduce the observed change in ω_{CDR} at day+7 compared to the pre-

1 vaccination time point (-1h; **Supplemental File 6b** and **6c**), demonstrating that these trends are
2 due to factors besides biases in parameter estimation, given the underlying structure of our
3 datasets and their predicted germline sequences.

4

5 *Increased tree length is associated with signatures of negative selection*

6 Our analysis of the Vaccine dataset indicated that, in two subjects, there was a concurrent
7 increase in mean tree length and decrease in ω_{CDR} , at day +7 following influenza vaccination.
8 We hypothesized that this relationship between ω_{CDR} and tree length might be more general, and
9 tested this hypothesis using log-linear regression across all 27 subjects of the Age dataset and all
10 30 samples (10 time points from three subjects) of the Vaccine dataset. Across both datasets we
11 observed a consistent and significant negative relationship between both ω_{CDR} and ω_{FWR} , and
12 mean repertoire tree length (i.e. the average expected substitutions per codon site across all
13 lineages within the repertoire; **Figure 5**). This trend was surprisingly similar between datasets,
14 with slopes of linear regressions having overlapping 95% confidence intervals, and was
15 particularly strong in the CDRs. For the Age dataset, the slope of a linear regression of ω_{CDR}
16 against the $\ln(\text{mean tree length})$ was -0.24 (95% CI = -0.35, -0.14; $p < 6 \times 10^{-5}$), while for the
17 Vaccine dataset the corresponding slope was -0.26 (95% CI = -0.29, -0.23; $p < 4 \times 10^{-16}$). Overall,
18 these regressions show a 32.1% and 41.4% decrease in ω_{CDR} over the range of mean tree length
19 observed in the Age and Vaccine datasets, respectively. A similar, if weaker, relationship was
20 found between ω_{FWR} and $\ln(\text{mean tree length})$ (**Figure 5**; details in caption). This indicates that
21 repertoires with longer (i.e. more diverged) lineages are associated with signatures of increased
22 negative selection, particularly in the CDRs.

23

1 We performed simulation analyses to test whether the observed trends between ω and mean tree
2 length were due to biases in our parameter estimation procedure (*Methods*, **Supplemental File**
3 **6**). In none of 20 simulations, using both datasets, did we observe a significant relationship
4 between of ω_{CDR} and mean tree length or ω_{FWR} and mean tree length (**Supplemental File 6d-e**).
5 However, the simulations in **Supplemental File 6** were performed under a fully-context
6 dependent version of the HLP19 model, which does not completely represent the biased nature
7 of SHM. To test whether a richer model of SHM could potentially reproduce our results, we
8 performed simulations using the S5F model (Yaari *et al.* 2013), using the tree topologies and
9 branch lengths estimated using maximum parsimony (dnaps v3.679; Felsenstein 2002) and the
10 predicted germline sequences of the Age dataset (detailed in **Supplemental File 7**). None of 50
11 such simulation repetitions showed a negative slope between ω_{CDR} and mean tree length as large
12 as that observed for the empirical data; only one simulation repetition showed a more negative
13 slope than observed between ω_{FWR} and mean tree length (**Supplemental File 7**). We therefore
14 conclude that the negative relationship between mean tree length and ω_{CDR} observed in **Figure 5**
15 is not due simply to inherent biases in our parameter estimation procedure.
16

1 **Discussion**

2

3 Phylogenetic techniques have been used to study B cell lineages for many years (Shlomchik *et*
4 *al.* 1987) and continue to be a powerful tool in understanding affinity maturation (Vieira *et al.*
5 2018). Two fundamental issues that arise from the application of phylogenetic techniques to B
6 cell repertoires are (i) the biology underlying B cell affinity maturation violates key assumptions
7 of most phylogenetic models, and (ii) phylogenetic models are designed typically to work on
8 lineages originating from a common ancestor, but B cell repertoires are composed of multiple
9 lineages with separate ancestries, many of which are composed of only a few unique sequences.
10 If such lineages are each analyzed independently then parameter estimates will be noisy and
11 highly uncertain. Here we introduce a hierarchical approach to B cell phylogenetics that
12 addresses these issues. We extend phylogenetic models of SHM evolution so that they are
13 consistent with the known biology of B cell affinity maturation, and can share parameters of the
14 sequence evolution process across all lineages within a repertoire. This approach outperforms the
15 alternative of estimating parameters for each lineage individually. By applying our new approach
16 to empirical data we find evidence consistent with dysregulation of SHM in older subjects,
17 increased negative selection during influenza vaccine response, and a relationship between mean
18 tree lengths and signatures of negative selection.

19

20 We first used our hierarchical framework to demonstrate a negative association between age and
21 the estimated mutability of WA hot-spot motifs in males and females. Previous studies have
22 shown that aging is associated with a decrease in the affinity, specificity and diversity of
23 antibodies produced (LeMaoult *et al.* 1997; Dunn-Walters *et al.* 2003; Weiskopf *et al.* 2009;

1 Dunn-Walters 2016), as well as with a number of changes at the repertoire level, including
2 longer CDR3s, higher levels of SHM, and persistent clonal lineages in the blood (Wang et al.
3 2013). It is possible that age-related dysregulation of SHM machinery plays a role in phenomena
4 associated with immunosenescence. Our finding that older individuals tend to have altered
5 mutability of WA motifs is consistent with this hypothesis. However, we note that this effect is
6 observed only in a small cohort, and while the linear regression slopes we observed were
7 significant, the overall change in WA mutability was modest. While we were unable to
8 reproduce this relationship in simulations under a null model (**Supplemental File 6**), it is
9 possible this trend is driven by other confounding factors we have not considered. Future
10 analyses with more subjects are needed to validate this trend generally.

11
12 We further used our hierarchical phylogenetic approach to characterize BCR molecular evolution
13 during vaccination. B cell receptors during affinity maturation are subject to multiple selective
14 pressures; positive selection to introduce new affinity-increasing amino acid variants (higher ω)
15 and negative selection to remove affinity-decreasing variants (lower ω). *A priori*, we might
16 expect positive selection to predominate during vaccine response. However, in our analysis we
17 found that lineages present at the time of peak influenza vaccine response show signs of
18 increased negative selection (lower ω) on CDRs. We suggest this is because B-cell lineages with
19 a history of affinity maturation during influenza infection/vaccination will likely have already
20 evolved effective or nearly effective neutralization at the time of vaccination, resulting in a
21 greater proportion of amino acid changes being deleterious (Clarke *et al.* 1985). This would
22 result in lower ω_{CDR} values, which may be particularly marked during influenza vaccine

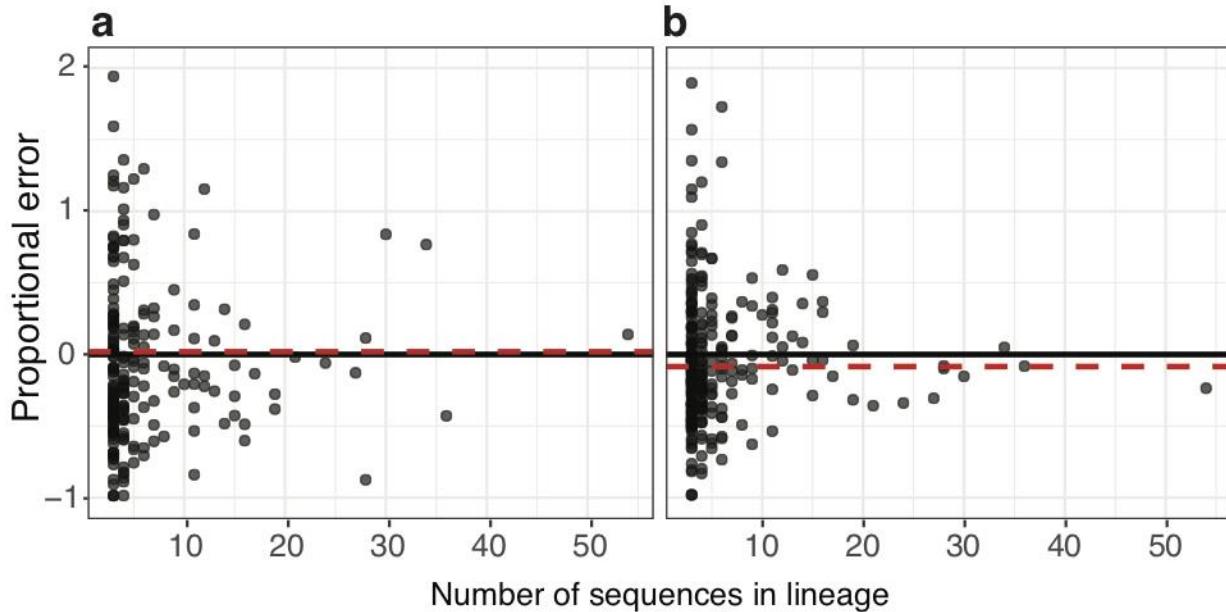
1 response, since B cells activated by influenza vaccination in adults are expected to derive from
2 re-activated memory B cell lineages (Vollmers *et al.* 2013).

3
4 We also observed a negative relationship between tree length and ω_{CDR} across both of our
5 datasets (**Figure 5**). This relationship is remarkably consistent given that our combined datasets
6 contain a total of 30 subjects of different age, sex, and treatment status. None of the simulation
7 analyses performed under a null model were able to reproduce this result (**Supplemental File 6**
8 and **7**), so this relationship is unlikely to be due to a bias or intrinsic correlation between these
9 variables in our estimation procedure. In the absence of other obvious confounding factors, we
10 posit a simple biological explanation: as B cell clones accumulate mutations through repeated
11 rounds of affinity maturation, their binding affinity to target antigen increases and consequently
12 the benefit of random amino acid changes (i.e. new mutations) decreases (Clarke *et al.* 1985).
13 This idea that the rate of fitness-increasing mutations decreases is a straightforward implication
14 of a population nearing a “peak” within a fitness landscape (Wright 1932). Sheng *et al.* (2016)
15 demonstrated evidence of this process (which they termed the “affinity maturation selection”)
16 model) in anti-HIV broadly neutralizing antibody (bnAb) lineages. This explanation is also
17 consistent with the findings of Yaari *et al.* (2015) showing that mutations earlier in B cell lineage
18 trees from healthy subjects show clearer signs of positive selection than more recent mutations.
19 Our results suggest that decreased rates of non-synonymous mutations relative to synonymous
20 mutations, as observed in HIV bnAb lineages (Sheng *et al.* 2016), BCR repertoires during
21 vaccine response (**Figures 4 and 5**), and even in healthy subjects with no obvious signs of
22 infection (**Figure 5**; Yaari et al. 2015), are all special cases of a general feature of affinity
23 maturation.

1
2 There are several limitations to the hierarchical phylogenetic approach introduced here. The most
3 obvious is that by constraining parameter values so that they are identical for all lineages within
4 a repertoire, we mask any potential parameter variation among lineages. Estimating separate
5 parameter values for one or a set of lineages within a repertoire may be easily accommodated
6 within the hierarchical framework (Suchard *et al.* 2003). This may be useful for parameters such
7 as ω_{CDR} , which might reflect lineage-specific histories of antigen-driven selection (Horns *et al.*
8 2019). As an example of this approach, we explore heterogeneity in estimates of ω_{CDR} among
9 lineages of different sizes for one repertoire (**Supplemental File 9**). It is unclear whether
10 estimation of individual κ and h^a values would yield useful insights, since these parameters relate
11 primarily to biases resulting from SHM, and there is little *a priori* reason to believe they might
12 vary among B cell lineages within an individual. However, it is clear that estimating parameters
13 (e.g. ω_{CDR}) for each lineage individually will lead to issues with over-fitting (e.g., when all CDR
14 mutations within a lineage are non-synonymous). Further work will be needed to resolve lineage
15 heterogeneity within individual repertoires.
16
17 A hierarchical phylogenetic approach to BCR phylogenetics is justified theoretically and
18 represents a step forward in the statistical analysis of B cell repertoires. Our new methods are
19 implemented in the program IgPhyML (v1.0.7; <https://bitbucket.org/kbhoehn/igphyml>), which is
20 freely available and integrated into the Immcantation suite (<http://immcantation.org>).
21
22

1 **Figures**

Figure 1: Increased precision of repertoire-wide parameter estimates



2
3

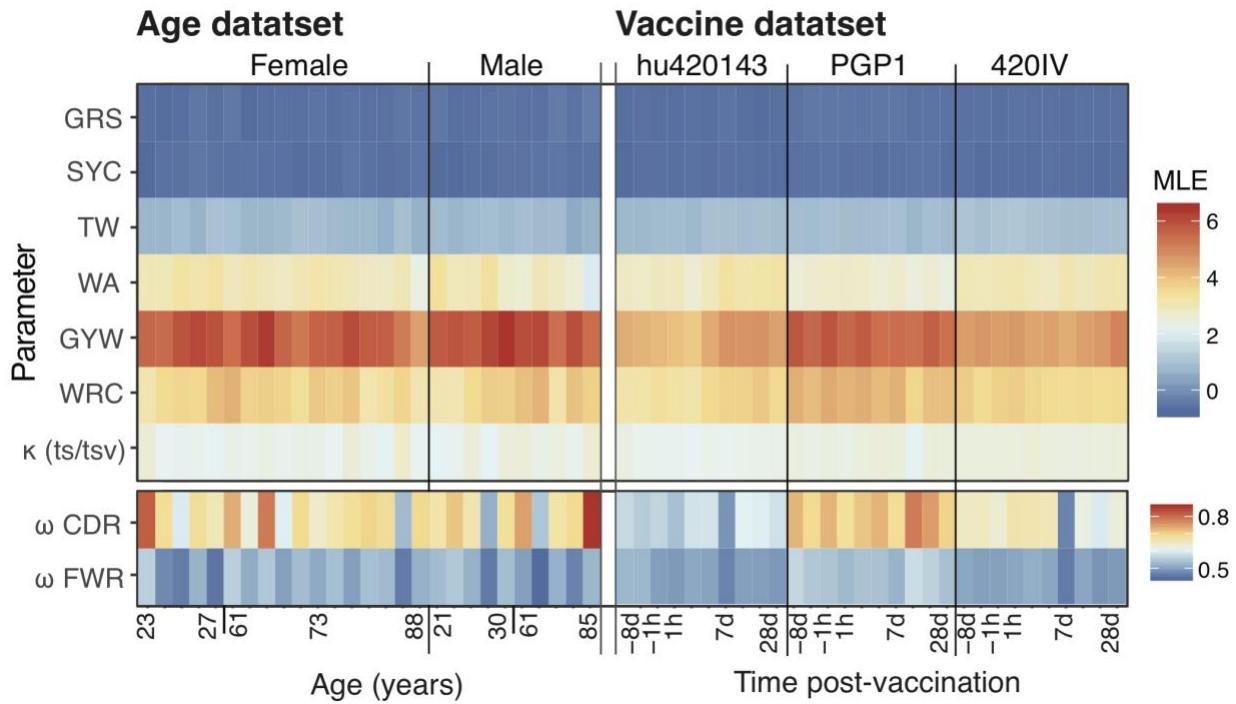
4 **Figure 1:** Increased precision of repertoire-wide parameter estimates (a) Proportional error in
5 estimates of the ω_{CDR} parameter under the HLP19 model. (b) Proportional error in estimates of
6 the ω_{FWR} parameter under the HLP19 model. In both panels, the black dots show the values
7 estimated from each individual lineage B cell lineage and the red lines shows the estimate
8 obtained from all lineages combined using a hierarchical model. Data were generated from a
9 simulated repertoire using tree topologies from subject 97 in the Age dataset (see **Supplemental**
10 **File 4** for full details and results).

11

12

1

Figure 2: Variation of model parameter estimates by subject and time

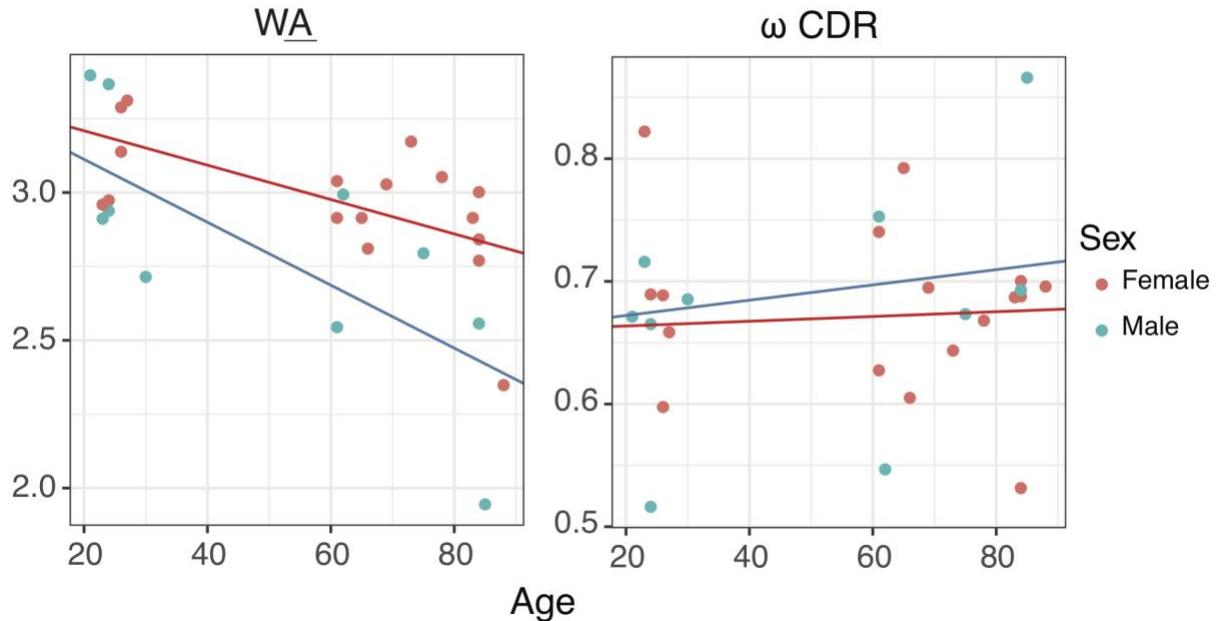


2

3 **Figure 2:** Variation of parameter estimates by subject and time in the Age and Vaccine datasets
4 (a) HLP19 parameter estimates from each subject in the Age dataset, ordered by sex and age. (b)
5 HLP19 parameter estimates for the Vaccine dataset, ordered by subject and sample time relative
6 to influenza vaccination. The upper box in both (a) and (b) shows the model parameters that
7 relate to somatic hypermutation (motif targeting, transition/transversion ratio). The lower box
8 shows estimates of ω_{CDR} and ω_{FWR} , which relate to selection. Note that values in the lower box
9 are scaled differently from those in the upper panel (see legends on right hand side).

10

Figure 3: Lower SHM motif mutability in older subjects

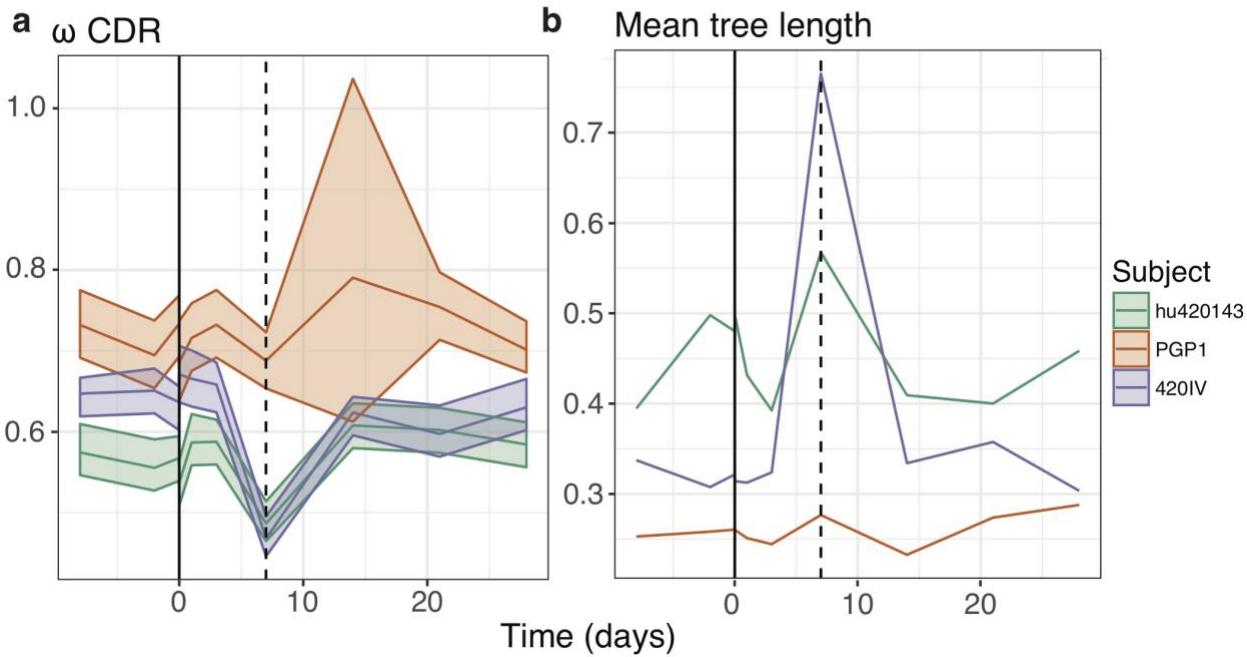


1

2

3 **Figure 3:** Change in SHM motif mutation rates with age. Linear regressions of age against
4 model parameters under the HLP19 model, estimated using maximum likelihood. Separate
5 regressions are shown for male (blue) and female (red) subjects. The h^{WA} parameter shows a
6 significant decrease with age in males and females.

Figure 4: Signatures of selection and diversity following influenza vaccination



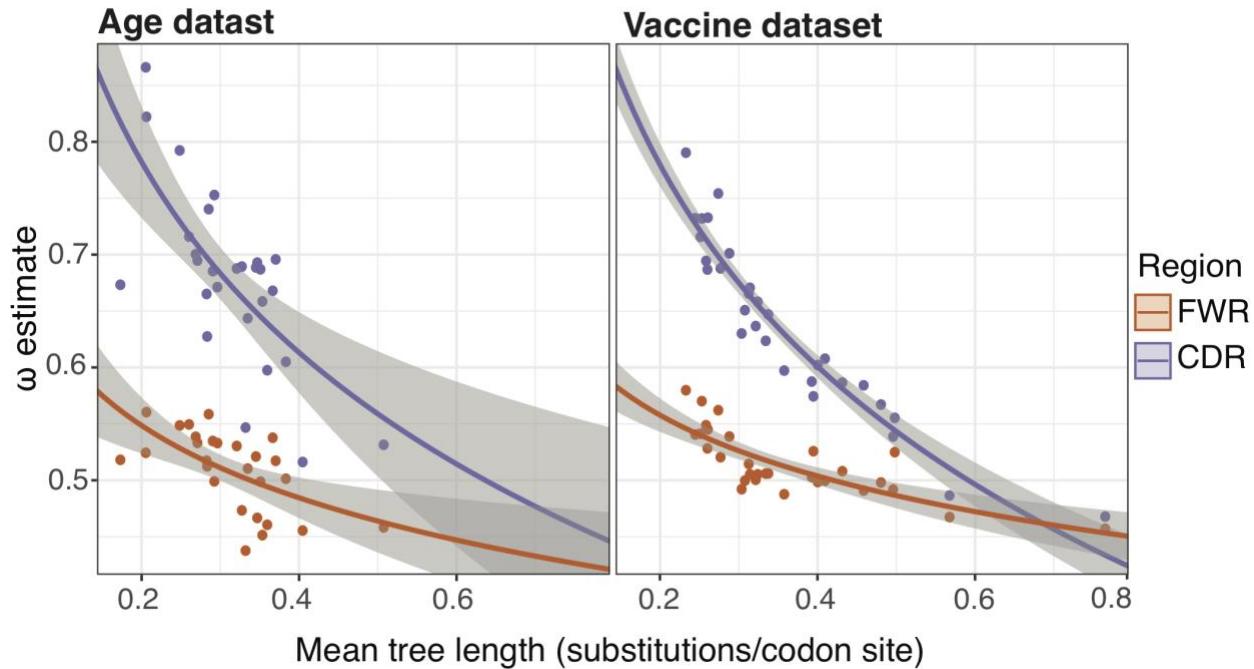
1

2

3 **Figure 4:** Signatures of selection and diversity following influenza vaccination **(a)** Estimates of
4 the ω CDR parameter of the HLP19 model over the course of influenza vaccination. **(b)** Estimates
5 of mean tree length (total substitutions per codon within a lineage, averaged across all lineages
6 within a repertoire) over the course of influenza vaccination. The x-axis shows the number of
7 days since vaccination; the vertical dashed line represents day 7 post-vaccination. The shaded
8 areas in panel (a) represent the 95% confidence intervals for each parameter estimate, calculated
9 using profile likelihood curves.

10

Figure 5: Negative relationship between ω and mean tree length



1
2
3 **Figure 5:** Negative relationship between ω and mean tree length (a) Linear regression between
4 estimates of ω_{CDR} (purple) and ω_{FWR} (orange) and the natural log of mean tree length for each
5 subject in the Age dataset. The slope and intercept of ω_{CDR} against $\ln(\text{mean tree length})$ were -
6 0.24 (95% CI = -0.35, -0.14) and 0.39, respectively ($p < 6 \times 10^{-5}$ for both). The corresponding
7 slope and intercept of ω_{FWR} were -0.09 (95% CI = -0.14, -0.04) and 0.4 ($p < 0.002$ for both). (b)
8 Linear regression between estimates of ω_{CDR} (purple) and ω_{FWR} (orange) and the natural log of
9 mean tree length for each sample in the Vaccine dataset (three subjects, 10 samples each). The
10 slope and intercept of ω_{CDR} against $\ln(\text{mean tree length})$ were -0.26 (95% CI = -0.29, -0.23) and
11 0.36, respectively ($p < 4 \times 10^{-16}$ for both). The corresponding slope and intercept of ω_{FWR} were -
12 0.08 (95% CI = -0.1, -0.05) and 0.43 ($p < 4 \times 10^{-7}$ for both). Grey shaded areas in both panels
13 show standard error estimates of the log-linear regression.

1 **References**
2
3

3 Akaike H., 1974 A new look at the statistical model identification. IEEE Trans. Autom. Control
4 19: 716–723.

5 Ansar Ahmed S., W. J. Penhale, and N. Talal, 1985 Sex hormones, immune responses, and
6 autoimmune diseases. Mechanisms of sex hormone action. Am. J. Pathol. 121: 531–551.

7 Barak M., N. S. Zuckerman, H. Edelman, R. Unger, and R. Mehr, 2008 IgTree©: Creating
8 Immunoglobulin variable region gene lineage trees. J. Immunol. Methods 338: 67–74.
9 <https://doi.org/10.1016/j.jim.2008.06.006>

10 Bashford-Rogers R. J. M., A. L. Palser, B. J. Huntly, R. Rance, G. S. Vassiliou, *et al.*, 2013
11 Network properties derived from deep sequencing of human B-cell receptor repertoires
12 delineate B-cell populations. Genome Res. 23: 1874–1884.
13 <https://doi.org/10.1101/gr.154815.113>

14 Benjamini Y., and Y. Hochberg, 1995 Controlling the False Discovery Rate: A Practical and
15 Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 57: 289–300.

16 Betz A. G., C. Rada, R. Pannell, C. Milstein, and M. S. Neuberger, 1993 Passenger transgenes
17 reveal intrinsic specificity of the antibody hypermutation mechanism: clustering, polarity,
18 and specific hot spots. Proc. Natl. Acad. Sci. 90: 2385–2388.
19 <https://doi.org/10.1073/pnas.90.6.2385>

20 Boyd S. D., E. L. Marshall, J. D. Merker, J. M. Maniar, L. N. Zhang, *et al.*, 2009 Measurement
21 and Clinical Monitoring of Human Lymphocyte Clonality by Massively Parallel V-D-J
22 Pyrosequencing. Sci. Transl. Med. 1: 12ra23-12ra23.
23 <https://doi.org/10.1126/scitranslmed.3000540>

24 Castle S. C., 2000 Clinical Relevance of Age-Related Immune Dysfunction. Clin. Infect. Dis. 31:
25 578–585. <https://doi.org/10.1086/313947>

26 Clarke S. H., K. Huppi, D. Ruezinsky, L. Staudt, W. Gerhard, *et al.*, 1985 Inter- and intraclonal
27 diversity in the antibody response to influenza hemagglutinin. J. Exp. Med. 161: 687–
28 704. <https://doi.org/10.1084/jem.161.4.687>

29 Cowell L. G., and T. B. Kepler, 2000 The Nucleotide-Replacement Spectrum Under Somatic
30 Hypermutation Exhibits Microsequence Dependence That Is Strand-Symmetric and
31 Distinct from That Under Germline Mutation. J. Immunol. 164: 1971–1976.
32 <https://doi.org/10.4049/jimmunol.164.4.1971>

33 DeWitt W. S., L. Mesin, G. D. Victora, V. N. Minin, F. A. Matsen, *et al.*, 2018 Using Genotype
34 Abundance to Improve Phylogenetic Inference. Mol. Biol. Evol. 35: 1253–1265.
35 <https://doi.org/10.1093/molbev/msy020>

1 Dunn-Walters D. K., and J. Spencer, 1998 Strong intrinsic biases towards mutation and
2 conservation of bases in human IgVH genes during somatic hypermutation prevent
3 statistical analysis of antigen selection. *Immunology* 95: 339–345.

4 Dunn-Walters D. K., M. Banerjee, and R. Mehr, 2003 Effects of age on antibody affinity
5 maturation. *Biochem. Soc. Trans.* 31: 447–448. <https://doi.org/10.1042/bst0310447>

6 Dunn-Walters D. K., 2016 The ageing human B cell repertoire: a failure of selection?: Ageing B
7 cell repertoire. *Clin. Exp. Immunol.* 183: 50–56. <https://doi.org/10.1111/cei.12700>

8 Felsenstein J., 1981 Evolutionary trees from DNA sequences: A maximum likelihood approach.
9 *J. Mol. Evol.* 17: 368–376. <https://doi.org/10.1007/BF01734359>

10 Felsenstein J., 2002 *{PHYLIP} (Phylogeny Inference Package) version 3.6a3*.

11 Feng J., D. A. Shaw, V. N. Minin, N. Simon, and F. A. Matsen IV, 2017 Survival analysis of
12 DNA mutation motifs with penalized proportional hazards. *ArXiv171104057 Q-Bio Stat.*

13 Fink A. L., K. Engle, R. L. Ursin, W.-Y. Tang, and S. L. Klein, 2018 Biological sex affects
14 vaccine efficacy and protection against influenza in mice. *Proc. Natl. Acad. Sci.* 115:
15 12477–12482. <https://doi.org/10.1073/pnas.1805268115>

16 Goldman N., and Z. Yang, 1994 A codon-based model of nucleotide substitution for protein-
17 coding DNA sequences. *Mol. Biol. Evol.* 11: 725–736.

18 Greiff V., P. Bhat, S. C. Cook, U. Menzel, W. Kang, *et al.*, 2015a A bioinformatic framework for
19 immune repertoire diversity profiling enables detection of immunological status. *Genome*
20 *Med.* 7: 49. <https://doi.org/10.1186/s13073-015-0169-8>

21 Greiff V., E. Miho, U. Menzel, and S. T. Reddy, 2015b Bioinformatic and Statistical Analysis of
22 Adaptive Immune Repertoires. *Trends Immunol.* 36: 738–749.
23 <https://doi.org/10.1016/j.it.2015.09.006>

24 Gupta N. T., J. A. Vander Heiden, M. Uduman, D. Gadala-Maria, G. Yaari, *et al.*, 2015 Change-
25 O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data:
26 Table 1. Bioinformatics btv359. <https://doi.org/10.1093/bioinformatics/btv359>

27 Hershberg U., M. Uduman, M. J. Shlomchik, and S. H. Kleinstein, 2008 Improved methods for
28 detecting selection by mutation analysis of Ig V region sequences. *Int. Immunol.* 20:
29 683–694. <https://doi.org/10.1093/intimm/dxn026>

30 Hoehn K. B., G. Lunter, and O. G. Pybus, 2017 A Phylogenetic Codon Substitution Model for
31 Antibody Lineages. *Genetics* 206: 417–427. <https://doi.org/10.1534/genetics.116.196303>

32 Horns F., C. Vollmers, C. L. Dekker, and S. R. Quake, 2019 Signatures of selection in the human
33 antibody repertoire: Selective sweeps, competing subclones, and neutral drift. *Proc. Natl.*
34 *Acad. Sci.* 201814213. <https://doi.org/10.1073/pnas.1814213116>

1 Huelsenbeck J. P., and B. Rannala, 1997 Phylogenetic Methods Come of Age: Testing
2 Hypotheses in an Evolutionary Context. *Science* 276: 227–232.
3 <https://doi.org/10.1126/science.276.5310.227>

4 Jackson K. J. L., Y. Liu, K. M. Roskin, J. Glanville, R. A. Hoh, *et al.*, 2014 Human Responses to
5 Influenza Vaccination Show Seroconversion Signatures and Convergent Antibody
6 Rearrangements. *Cell Host Microbe* 16: 105–114.
7 <https://doi.org/10.1016/j.chom.2014.05.013>

8 Jiang N., J. He, J. A. Weinstein, L. Penland, S. Sasaki, *et al.*, 2013 Lineage Structure of the
9 Human Antibody Repertoire in Response to Influenza Vaccination. *Sci. Transl. Med.* 5:
10 171ra19–171ra19. <https://doi.org/10.1126/scitranslmed.3004794>

11 Kaehler B. D., V. B. Yap, and G. A. Huttley, 2017 Standard Codon Substitution Models
12 Overestimate Purifying Selection for Nonstationary Data. *Genome Biol. Evol.* 9: 134–
13 149. <https://doi.org/10.1093/gbe/evw308>

14 Kepler T. B., 2013 Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved
15 ancestors. *F1000Research* 2. <https://doi.org/10.12688/f1000research.2-103.v1>

16 Laserson U., F. Vigneault, D. Gadala-Maria, G. Yaari, M. Uduman, *et al.*, 2014 High-resolution
17 antibody dynamics of vaccine-induced immune responses. *Proc. Natl. Acad. Sci.* 111:
18 4928–4933. <https://doi.org/10.1073/pnas.1323862111>

19 LeMaoult J., P. Szabo, and M. E. Weksler, 1997 Effect of age on humoral immunity, selection of
20 the B-cell repertoire and B-cell development. *Immunol. Rev.* 160: 115–126.
21 <https://doi.org/10.1111/j.1600-065X.1997.tb01032.x>

22 Liao H.-X., R. Lynch, T. Zhou, F. Gao, S. M. Alam, *et al.*, 2013 Co-evolution of a broadly
23 neutralizing HIV-1 antibody and founder virus. *Nature* 496: 469–476.
24 <https://doi.org/10.1038/nature12053>

25 Murphy K., P. Travers, M. Walport, and C. Janeway, 2012 *Janeway's immunobiology*. Garland
26 Science, New York.

27 Nielsen R., and Z. Yang, 1998 Likelihood Models for Detecting Positively Selected Amino Acid
28 Sites and Applications to the HIV-1 Envelope Gene. *Genetics* 148: 929–936.

29 Peled J. U., F. L. Kuang, M. D. Iglesias-Ussel, S. Roa, S. L. Kalis, *et al.*, 2008 The Biochemistry
30 of Somatic Hypermutation. *Annu. Rev. Immunol.* 26: 481–511.
31 <https://doi.org/10.1146/annurev.immunol.26.021607.090236>

32 Rodrigo A. G., M. Goode, R. Forsberg, H. A. Ross, and A. Drummond, 2003 Inferring
33 Evolutionary Rates Using Serially Sampled Sequences from Several Populations. *Mol.*
34 *Biol. Evol.* 20: 2010–2018. <https://doi.org/10.1093/molbev/msg215>

35 Sheng Z., C. A. Schramm, M. Connors, L. Morris, J. R. Mascola, *et al.*, 2016 Effects of
36 Darwinian Selection and Mutability on Rate of Broadly Neutralizing Antibody Evolution

1 during HIV-1 Infection. PLOS Comput Biol 12: e1004940.
2 <https://doi.org/10.1371/journal.pcbi.1004940>

3 Shlomchik M. J., A. Marshak-Rothstein, C. B. Wolfowicz, T. L. Rothstein, and M. G. Weigert,
4 1987 The role of clonal selection and somatic mutation in autoimmunity. Nature 328:
5 805–811. <https://doi.org/10.1038/328805a0>

6 Shlomchik M. J., S. Litwin, and M. Weigert, 1989 The Influence of Somatic Mutation on Clonal
7 Expansion, pp. 415–423 in *Progress in Immunology*, edited by Melchers F., Albert E. D.,
8 Boehmer H. von, Dierich M. P., Du Pasquier L., *et al.* Springer Berlin Heidelberg.

9 Stern J. N. H., G. Yaari, J. A. V. Heiden, G. Church, W. F. Donahue, *et al.*, 2014 B cells
10 populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci.
11 Transl. Med. 6: 248ra107-248ra107. <https://doi.org/10.1126/scitranslmed.3008879>

12 Suchard M. A., C. M. R. Kitchen, J. S. Sinsheimer, R. E. Weiss, and Z. Yang, 2003 Hierarchical
13 Phylogenetic Models for Analyzing Multipartite Sequence Data. Syst. Biol. 52: 649–664.
14 <https://doi.org/10.1080/10635150390238879>

15 Vieira M. C., D. Zinder, and S. Cobey, 2018 Selection and Neutral Mutations Drive Pervasive
16 Mutability Losses in Long-Lived Anti-HIV B-Cell Lineages. Mol. Biol. Evol. 35: 1135–
17 1146. <https://doi.org/10.1093/molbev/msy024>

18 Vollmers C., R. V. Sit, J. A. Weinstein, C. L. Dekker, and S. R. Quake, 2013 Genetic
19 measurement of memory B-cell recall using antibody repertoire sequencing. Proc. Natl.
20 Acad. Sci. 110: 13463–13468.

21 Wang C., Y. Liu, L. T. Xu, K. J. L. Jackson, K. M. Roskin, *et al.*, 2013 Effects of Aging,
22 Cytomegalovirus Infection, and EBV Infection on Human B Cell Repertoires. J.
23 Immunol. 1301384. <https://doi.org/10.4049/jimmunol.1301384>

24 Weinstein J. A., N. Jiang, R. A. White, D. S. Fisher, and S. R. Quake, 2009 High-Throughput
25 Sequencing of the Zebrafish Antibody Repertoire. Science 324: 807–810.
26 <https://doi.org/10.1126/science.1170020>

27 Weiskopf D., B. Weinberger, and B. Grubeck-Loebenstein, 2009 The aging of the immune
28 system. Transpl. Int. 22: 1041–1050. <https://doi.org/10.1111/j.1432-2277.2009.00927.x>

29 Wrammert J., K. Smith, J. Miller, W. A. Langley, K. Kokko, *et al.*, 2008 Rapid cloning of high-
30 affinity human monoclonal antibodies against influenza virus. Nature 453: 667–671.
31 <https://doi.org/10.1038/nature06890>

32 Wright S., 1932 The Roles of Mutation, Inbreeding, Crossbreeding and Selection in Evolution.
33 Proc. Sixth Int. Congr. Genet. 1: 356–366.

34 Yaari G., M. Uduman, and S. H. Kleinsteiner, 2012 Quantifying selection in high-throughput
35 Immunoglobulin sequencing data sets. Nucleic Acids Res. gks457.
36 <https://doi.org/10.1093/nar/gks457>

1 Yaari G., J. A. Vander Heiden, M. Uduman, D. Gadala-Maria, N. Gupta, *et al.*, 2013 Models of
2 Somatic Hypermutation Targeting and Substitution Based on Synonymous Mutations
3 from High-Throughput Immunoglobulin Sequencing Data. *Front. Immunol.* 4.
4 <https://doi.org/10.3389/fimmu.2013.00358>

5 Yaari G., J. I. C. Benichou, J. A. Vander Heiden, S. H. Kleinstein, and Y. Louzoun, 2015 The
6 mutation patterns in B-cell immunoglobulin receptors reflect the influence of selection
7 acting at multiple time-scales. *Philos. Trans. R. Soc. B Biol. Sci.* 370: 20140242.
8 <https://doi.org/10.1098/rstb.2014.0242>

9 Yaari G., and S. H. Kleinstein, 2015 Practical guidelines for B-cell receptor repertoire
10 sequencing analysis. *Genome Med.* 7. <https://doi.org/10.1186/s13073-015-0243-2>

11 Yang Z., 1994 Estimating the pattern of nucleotide substitution. *J. Mol. Evol.* 39: 105–111.

12