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Precision-weighting of cortical unsigned prediction error signals benefits learning, is
mediated by dopamine, and is impaired in psychosis.
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Abstract

Recent theories of cortical function construe the brain as performing hierarchical Bayesian
inference. According to these theories, the precision of cortical unsigned prediction error
(i.e., surprise) signals plays a key role in learning and decision-making, to be controlled by
dopamine, and to contribute to the pathogenesis of psychosis. To test these hypotheses, we
studied learning with variable outcome-precision in healthy individuals after dopaminergic
modulation with placebo, a dopamine receptor agonist bromocriptine or a dopamine
receptor antagonist sulpiride (dopamine study n=59), and in patients with early psychosis
(psychosis study n=74: 20 participants with First Episode Psychosis, 30 healthy controls and
24 participants with At Risk Mental State attenuated psychotic symptoms). Behavioural
computational modelling indicated that precision-weighting of unsigned prediction errors
benefits learning in health, and is impaired in psychosis. FMRI revealed coding of unsigned
prediction errors relative to their precision in superior frontal cortex (replicated across
studies, combined n=133), which was perturbed by dopaminergic modulation, impaired in
psychosis, and associated with task performance and schizotypy (schizotypy correlation in 86
healthy volunteers). We conclude that healthy people, but not patients with first episode
psychosis, take into account the precision of the environment when updating beliefs.
Precision-weighting of cortical prediction error signals is a key mechanism through which

dopamine modulates inference and contributes to the pathogenesis of psychosis.
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Introduction

A common theme in contemporary theories of brain function, ranging from perception (Rao
& Ballard, 1999) to reinforcement learning (Mathys et al.,, 2011), is an emphasis on the
critical role in inference played by predictions based on prior knowledge (Rao & Ballard,
1999; Friston, 2009; Bastos et al., 2012; Adams et al., 2013; Mathys et al., 2011; Clark, 2013
& 2015; Hohwy, 2013). According to these theories, predictions and incoming sensory input
each have an associated precision (inverse variance), reflecting their confidence or reliability.
Predictions and sensory input are thought to be compared against one other, generating a
discrepancy signal termed the prediction error which indicates the difference between the
expectation and sensory input. Such prediction error signals update prior beliefs in a manner
that is weighted by their associated precision, such that more is learned from precise and
reliable prediction errors compared to noisy and unreliable prediction errors (Friston, 2009;
Bastos et al.,, 2012; Mathys et al.,, 2011). Several theorists have suggested that
neuromodulator systems, including dopamine, play an important role in mediating the
precision of these prediction errors, and that impaired precision-weighting of prediction
errors (through dopaminergic or other neuromodulator dysfunction) may be part of the
cascade that result in psychotic symptoms (Bastos et al., 2012; Adams et al., 2013; Friston,
2009; Fletcher & Frith 2009). However, to the best of our knowledge no direct evidence for
these hypotheses exists. Specifically, whilst several neuroimaging studies have indicated
abnormal brain prediction error signals in schizophrenia and related psychoses (Corlett et al
2007, Murray et al 2008, Schlagenhauf et al 2014, Ermakova et al 2018), none of these

studies have addressed precision-weighting of prediction errors in patients.

In the context of reinforcement learning models, a distinction can be made between two
types of prediction errors. First, the signed prediction error indicates whether an outcome is
better or worse than expected, and thereby plays a crucial role in changing the value
allocated to cues, thereby guiding future decisions (Schultz et al., 1997; O’Doherty et al.,
2003 & 2004; Pessiglione et al., 2006; D’'Ardenne et al., 2008; Diederen et al., 2016 & 2017,
Tian et al., 2016). A second type of prediction error, the unsigned prediction error, signals
the degree of surprise, without indicating valence (better/ worse than expected). In addition
to signed prediction errors, unsigned prediction error are included in various reinforcement

learning models to control how much should be learned from new information. Large
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unsigned prediction errors signal that the brain’s model of the world is inaccurate, thereby
increasing the amount that is learned from new information. This can be achieved in various
ways, including a non-Bayesian approach by using a dynamic learning rate parameter
(Pearce & Hall, 1982; Sutton & Barto, 1998) or a Bayesian approach by decreasing the
precision of prior beliefs {Courville et al., 2006; Gershman, 2015) across different levels in
the hierarchy so that new sensory information has more of an impact on learning (Mathys et
al., 2011). In these hierarchical models both signed and unsigned prediction errors are
weighted by their precision. Whilst evidence has been provided for a dopamine-mediated
precision-weighted signed prediction error in learning (Diederen et al., 2015, 2016 & 2017),
no such evidence exists for dopaminergic modulation of the precision-weighting of unsigned
prediction errors. This is despite many computational theorists hypothesizing a role for
neuromodulator systems in precision-weighting of unsigned prediction errors (Bastos et al.,
2012; Adams et al.,, 2013), and that the dysfunctional precision-weighting is a key
contributor to the pathogenesis of psychosis (Fletcher & Frith 2009; Adams et al 2013,
Sterzer et al 2018, Heinz et al 2018).

Here we therefore studied whether unsigned prediction errors are indeed coded relative to
their associated precision; whether dopamine modulates the precision of these prediction
errors; where precision-weighted prediction errors are represented in the cortex and
whether and how precision weighting of cortical prediction error signals is disrupted in
psychosis. Our methods elicit reliable measures of prediction error, as we use a task where
prediction error is directly observable, rather than inferred as a latent variable as is common
in many paradigms. To probe the role of precision-weighted prediction errors in learning,
and the influence of dopamine, we employed pharmacological modulation in healthy
volunteers, combined with fMRI, associative learning and computational modelling. We next
examined how individual differences in computational learning signals and brain precision
weighting signals relate to clinical psychosis, and psychotic-like thinking in health

(schizotypy).


https://doi.org/10.1101/558478
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/558478; this version posted November 19, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Methods

Table 1: Demographics for dopamine study

Dopamine study

Placebo Sulpiride Bromocriptine p-value
(antagonist) (agonist)
N 20 20 19
Male 9 (11) 12 (8) 10 (9)
Mean SD Mean SD Mean SD
Age 23.9 4.8 24.8 4.5 23.7 4.3
Reverse digit 6.2 1.5 5.7 1.5 6.8 3.8 p=.40
span
Schizotypy 16.6 101 154 115 156 11.2 p=.99

Table 2: Demographics for psychosis study

Group Healthy controls (HCS) At risk mental state FEP (First episode
(ARMS) psychosis)

N 30 24 20

Mean SD Mean SD Mean SD p-value
Age 22.6 35 21.0 3.5 24.9 5.2 p=.009
Male 16 18 17 p=.044
1Q 118.8 10.5 118.7 11.7 106.3 20.2 p=.006
PANSS positive 7.2 0.8 14.0 3.00 20.6 54 p<.001
PANSS negative 7.2 9 13.5 6.2 15.5 8.4 p<.001
Taking antipsychotic  0/30 4/24 12/20 p<.001
medication
Antipsychotic dosage 0 0 55.5 64.3 353.5 184.54 p=.008
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Participants and intervention - dopamine study

59 healthy volunteers completed the pharmacological fMRI study (see Diederen et al., 2017
and Supplement); all provided written informed consent. Prior to scanning, participants
received a single dose of the D2-antagonist sulpiride (600mg), the dopamine agonist
Bromocriptine (2.5 mg), or placebo, in a double-blind fashion. The study received NHS

research ethics approval.

Participants - psychosis study

Healthy volunteers (HCS, n=30, average 22.6 years, 15 female) without a history of
psychiatric iliness or brain injury were recruited as control subjects. Healthy volunteers did
not report any personal or family history of neurological, psychiatric or medical disorders. As
in our previous work (Ermakova et al., 2018), we recruited participants with first episode
psychosis with active delusions or hallucinations (PANSS P1 or P3 >2) (FEP, n=20 average
24.8 years, 6 female) or at-risk of psychosis (At Risk Mental States ARMS, n=24, average 21.5
years, 8 female) were recruited from the Cambridgeshire early intervention in psychosis
service (Table 2). In addition, potential at-risk participants were identified on the basis of
belonging to a help-seeking, low-mood, high schizotypy sub-group from the Neuroscience in
Psychiatry Network (NSPN) cohort (Davis 2017) or through advertisement via posters
displayed at the Cambridge University counselling services. Individuals at-risk for psychosis
met At-Risk-Mental-State (ARMS) criteria on the CAARMS interview in the past six months
(Yung et al. 2003). All participants gave written informed consent. The study received NHS

research ethics approval.

fMRI task design

The task (see Figure 1 and Supplement) consisted of three sessions of 10 minutes each.
Rewards were drawn from six different pseudo-Gaussian distributions that differed with
respect to their precision (i.e. inverse variance) and expected value (i.e. mean of the
distribution; EV). For the dopamine study, the standard deviations from the distributions
were 5, 10 & 15, corresponding to precision of .04, .01 and .004. For the psychosis study, the
standard deviation of the distributions were either 5 or 15, corresponding to precision of .04
and .004. Distributions were counterbalanced to ensure that the two conditions within each

session differed with respect to the mean of the distribution and precision. Conditions were
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presented in short blocks, each including 4-6 trials. Each distribution consisted of 31 trials,
resulting in 62 trials per session. Participants were informed beforehand that each
distribution, of which two per session (run), had a different level of precision, which could be
one of three levels: low, medium or high precision, corresponding to precisions of 0.004,
0.01 and 0.04 although the exact precisions were not revealed to the participants.
Furthermore, participants were instructed that the two means within a session would be
different from each other. In the psychosis study there was no medium condition. A cue
informed the participants from which of the distributions (high, medium or low) in that block
the upcoming reward was being drawn; then participants were required to predict the
magnitude of the upcoming reward and received feedback after a delay. Optimal
performance on this task thus required the participant to estimate the mean of the
distribution from which the rewards were drawn. For MRI acquisition details see

Supplementary methods.

(Cue; Precision = medium)

High Low
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RT max 3500 ms
2100 - 5250 ms

1000 ms

Figure 1: Example of a trial. The participants were instructed to learn the mean of a reward distribution. First a fixation
cross was presented after which the participants were informed about the standard deviation (which indicated the
precision) of the reward distribution. Subsequently the participants were asked to make a prediction regarding the
upcoming reward, which was presented to the participant in combination with the prediction error (in yellow) after an
anticipation period.

Behavioural analysis and computational modelling
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The mean performance error — the absolute value of (actual mean — predicted mean) — was
our index of performance, which we compared across groups. We also fitted several
reinforcement learning models to participants’ prediction sequences (see Supplementary
methods). In brief, each model used a common updating rule in which predictions on a given
trial depended on the prediction error and the learning rate on the previous trial. We
implemented a Rescorla-Wagner (RW) reinforcement learning model with a fixed learning
rate (Rescorla & Wagner 1972) and a Pearce-Hall (PH) model with a trial-wise, dynamic,
learning rate, which prescribes higher weighting of prediction errors (i.e., more learning) at
the start of a task session compared to later trials (Pearce & Hall 1982). In uncertain
environments, it is more optimal to decrease the weighting of prediction errors as learning
progresses (once participants become more certain of their predictions) as prediction errors
will continue to occur as a result of the imposed uncertainty. We additionally explored
whether scaling prediction error to the reliability of the environment (i.e., precision—
weighting) benefitted learning by comparing models that scaled the prediction error term
and models that did not. This results in 6 models: (1) simple RW, (2) RW with a scaled
prediction error term, (3) Pearce-Hall model (decaying learning rate), (4) Pearce-Hall model
with scaled prediction error term, (5) Pearce-Hall model with individual estimates of scaling
term, (6) Pearce-Hall model with individual estimates of separate signed and unsigned

prediction error scaling.

Brain imaging analysis

We modelled the onsets of the cue and the outcome as events (i.e. delta functions of zero
duration) and the onset of the prediction event (i.e., when participant could start making
their prediction) as a single epoch lasting until they indicated their prediction. Each predictor
was convolved by the standard canonical haemodynamic response function in SPM8. We
used parametric modulation to identify neural correlates of unsigned prediction error
responses by specifying for all outcome events the unsigned prediction errors. It is important
to note that the prediction errors used in these analyses are simply the absolute difference
between predicted reward and received reward. As such, the prediction errors did not
dependent on the behavioural modelling, and could therefore not be influenced by any
differences in the best-fitting model between groups. In a separate analysis, we also

explored the coding of signed prediction errors in the psychosis study. The effect of
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dopaminergic drugs on the precision-weighting of signed prediction errors has been
published before (Diederen et al., 2017). Reward events were separately modelled for the
different precision conditions to test for differences in precision-weighting of prediction
errors as evidences by different sizes of slopes for the coding of unsigned prediction errors
under different levels of certainty. Contrasts were created on the 1°-level. As we were
interested in the effect of precision but not mean reward, we collapsed all the different
means for each precision condition, so there were two or three precision conditions in the
psychosis study and dopamine study respectively, to be taken to the 2"-Jevel (i.e., group-

level): see Supplement for details of group-level analysis.

Results

Study 1: Dopamine modulation study

Environmental precision and dopamine D2 receptor antagonism modulate task performance.
Participants’ performance (the distance between the participants prediction and the mean
of the distribution) improved when the precision of the reward distributions increased, and
reduced average performance under sulpiride (Figure 2); Trial-by-trial analysis revealed
lower performance in low-precision conditions at the start of the experiment, but no

significant group differences (Figure 2).
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Figure 2: A. Behavioural results for the dopamine study. A-E display the average learning curves, reflecting the absolute
distance between the actual mean of the distribution and the participants estimate of the mean distribution over 30 trials
averaged over the 3 sessions for each participant. The distance between the prediction and the actual mean of the
distribution defines performance error. Therefore, lower values of performance error are better. Asterisks indicate
Bonferroni corrected significant differences across conditions. A: Performance was significantly better in the high
precision condition compared to the low precision condition when combing all participants, especially at the beginning of
the experiment. B: There were no clear differences between groups when analysing trial-by-trial performance. C-E: The
placebo (C), Sulpiride (D) and Bromocriptine (E) group showed only a significant difference between the precision
conditions one or two trials in the beginning of the experiment. F: Averaging performance error across all trials, we see
overall better performance in the placebo condition compared to the Sulpiride condition, and higher performance in
more precision conditions. G: Initial learning rates were higher in the Bromocriptine condition compared to the Sulpiride
condition. H: Precision and group did not affect the learning rate decay parameter. I: No differences were found in
number of missed trials, and K: scrolling distance. J: Reaction times were quicker in the Sulpiride group. Error bars
represent standard error of the mean.
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Reinforcement learning modelling of behavioural data indicates precision-weighted unsigned
and signed prediction errors

Since formal learning models like the Pearce-Hall model suggest that unsigned prediction
errors increase learning, we expect an interaction between unsigned and signed prediction
error on participants’ trial to trial updates. The unsigned*signed prediction error interaction
term was highly significant in predicting updates (F{1,10763}=51.7, p<.0001), demonstrating
the importance of unsigned prediction errors in learning (Supplementary information). In all
three medication groups a Pearce-Hall model with separately estimated precision weighted
signed and unsigned prediction errors best predicted behaviour (Supplementary results).
These results indicate that both unsigned and signed prediction errors are precision-

weighted to facilitate efficient learning under uncertainty.

Unsigned prediction errors are coded in the Superior Frontal Cortex (SFC) and pre SMA/dACC
We next explored where unsigned prediction errors are coded in the brain, in order to find
the region of interest for our further analyses focussing on the effect of dopamine on the
precision-weighting of prediction errors. Whilst correcting for whole brain comparisons,
unsigned prediction errors were coded in the frontal, parietal and occipital cortices
(Supplementary Table 2, Figure 3). We used the left and right SFC and dACC clusters as ROls
to take forward our analysis of dopaminergic effects on precision weighting. Secondary

analyses examined these effects in occipital and parietal regions (Supplementary materials).

Precision-weighting of unsigned prediction errors is mediated by dopamine in the SFC/dACC
To test whether precision and dopaminergic perturbations affected the coding of unsigned
prediction errors, we extracted the parameter estimates (betas) of the unsigned prediction
error parametric modulators from the left and right superior frontal cortex (SFC) and dACC
cluster that showed a main effect of unsigned prediction error coding at whole brain
corrected pFWE<.01. We used a two-factor mixed model ANOVA with medication group as
the between-subjects variable and precision condition as the within-subjects variable, using
a linear contrast across precision conditions for the main effect of precision and interaction.

In the left SFC cluster, there was a significant interaction across precision conditions and
medication group, suggesting that medication had a significant effect on precision-weighting

of unsigned prediction errors (F{2,56}=4.025 p=.023; Fig.3B). There was a significant
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interaction between medication group (placebo vs sulpiride) and precision condition (F{2,37}
= 5.44, p=.025), with less precision-weighting in the sulpiride than in the placebo group,
which suggests that sulpiride dampens precision-weighting of unsigned prediction errors.
Comparing the placebo and bromocriptine group, there was a significant effect of precision
(F{1,37} = 14.93, p<.001), but no significant effect of medication group (placebo vs
bromocriptine) (F{1,37} = 2.781, p=.104) or interaction between medication group and
precision (F{2,36} = 0.02, p=.894). This finding suggests that left SFC unsigned prediction
error signals are precision-weighted, but relatively unaffected by bromocriptine.

In the right SFC we did not find a significant interaction between medication and precision
condition (F{2,56}=1.70, p=.193; Fig. 3C). However, signal changes in the right SFC are largely
the same as in the left SFC (see Fig. 3B). We did find a significant main effect of medication
(F{2,56}=3.65, p=.032). This effect was driven by a stronger main effect of unsigned
prediction error in the bromocriptine group compared to the placebo group (F{1,37}=6.740,
p=.013), whereas the difference was only trend-level significant between the sulpiride and
placebo group (F{1,38}=3.55, p=.067).

In the dACC we found a trend-level significant interaction between precision and medication
(F{2,56}=2.81, p=.069; Fig. 3D). Post-hoc tests between the placebo and sulpiride group
revealed a trend-level interaction between precision and medication (F{1,38}=3.043,
p=.089). Testing the placebo and bromocriptine group revealed a significant effect of
precision (F{1,37}=9.32, p=.004), but no effect of group (F{1,37}=1.17, p=.29) or interaction
(F{1,37}=.172, p=.68). A similar pattern was thus found in the dACC as in the left SFC {(see Fig.
3B+D). The degree of cortical precision-weighting correlated with task performance
(controlling for group), such that higher precision-weighting relates to better performance
(Figure 4. Left Rho=-.45, p<.001; Right: Rho=-.40, p=.002; dACC: Rho=-.25, p=.055). There

were no whole brain effects of group on precision-weighting.
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Figure 3: A. Unsigned prediction errors were coded in bilateral superior frontal cortex and dorsal anterior cingulate
cortex. The left side of the brain is the left side of the image. B-D. When exploring these regions further, we find that
unsigned prediction errors are coded in a precision-weighted fashion as indicated by the strong unsigned prediction error
signal in the high precision condition which declines over the medium and low precision condition in the placebo and
bromocriptine group. Importantly, sulpiride perturbed precision-weighting significantly in the left SFC. Error bars
represent standard error of the mean.
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Precision-weighting of unsigned prediction error predicts performance
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Figure 4: Precision-weighting of unsigned prediction errors in the left SFC (A) and right SFC (B) correlates with
performance (i.e. difference between mean of the reward distribution and predicted mean) on the task.

Study 2: Psychosis study

First Episode Psychosis (FEP) is associated with decreased overall performance and less
benefit from more precise information

We explored the difference between participants’ estimates of the mean and the actual
mean across trials, and tested for significant differences across groups and precision
conditions while correction for multiple comparisons using a Bonferonni correction. We
found better performance when precision was high in healthy control participants and ARMS
individuals but not in people with FEP. We also found decreased performance in the FEP
group compared to controls. There was a trend-level difference in number of missed trials,
suggesting that on average the healthy controls missed one trial less then the other groups.
There were no other significant differences in RT and scrolling distance (see Fig. 5 and

Supplementary results).
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Figure 5: Behavioural results for the patient study; green bars are healthy controls, blue ARMS, and orange first episode
psychosis. A-E display the average learning curves, reflecting the absolute distance between the actual mean of the
distribution and the participants estimate of the mean distribution over 30 trials averaged over the 3 sessions for each
participant. The distance between the prediction and the actual mean of the distribution defines performance error.
Therefore, lower values of performance are better. Asterisks indicate Bonferroni corrected significant differences across
conditions. A: Performance was significantly better in the high precision condition compared to the low precision
condition when combing all participants, especially at the beginning of the experiment. B: HC performed better than
FEPs, but not compared to ARMS. The colour of the asterisk indicates a significant difference of the patient group with
HC. C-E: Healthy controls (C) showed a significant difference between the precision conditions, whereas the patient
groups did not (D= ARMS, E= FEP). F: Averaging performance error across all trials, HC and ARMS perform better than
FEP, and benefitted from more precise information, whereas FEP did not. G: Learning rates were higher in the high
precision condition compared to the low precision condition in HC and ARMS, but not for FEPS, although an interaction
was not significant. H: Precision did not affect the learning rate decay parameter. I: HC had slightly fewer missed trials
than FEP. |: Reaction times were equal across groups. K: Scrolling distance was equal across groups. Error bars represent
standard error of the mean.
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FEP is associated with a lack of precision-weighting as revealed by computational modelling

We found that for the HCS and ARMS participants the best model of behaviour was the
Pearce-Hall model with a precision-weighting parameter for both the signed and unsigned
prediction error term. However, the FEP group followed a simple RW-learning rule without
precision-weighting of prediction error, suggesting that the FEP group specifically is not
precision-weighting prediction errors (Supplementary Table 3). This is further supported by
the observation that HCS and ARMS participants show higher learning rates in the high
precision condition, whereas the FEP group does not (Figure 5G and Supplementary results).
When we correlated participants’ behavioural response data with data simulated using the
individual parameters of the winning model for each group, we found that there was no
difference in the amount of variance explained between groups (ANOVA: F{2,79}=.72, p=.48,
r-values: HC = .40, ARMS = .34, FEP = .37), suggesting that the modelling procedure was

equally successful across groups (see Supplementary Figures 1-3).

Unsigned prediction-errors are precision-weighted bilaterally in the SFC

In bilateral SFC (see methods for ROI derivation) there were brain signals that encoded
unsigned prediction error (Right: T=7.33, voxels: 150, p<.001, [24 4 52]; Left: T=6.78, voxels:
149, p<.001, [-24 6 52], small volume correction). There was significantly stronger encoding
of unsigned prediction errors in the high precision condition compared to the low precision
condition in both the right and left SFC, demonstrating precision-weighting (Right: T=3.82,
voxels: 66, p=.011, [22 12 52]; Left: T=3.52, voxels: 45, p=.025, [-21 -2 52]; small volume
corrected), which is consistent with the effect observed in the dopaminergic modulation
study.

In a whole brain analysis, additional regions demonstrated precision weighting of prediction
error: bilateral superior frontal cortex, right lateral frontal cortex, and medial parietal lobe
(Supplementary Results).

We also tested for signed prediction errors in the ventral striatum and the midbrain using
ROI's based on Diederen et al., 2017. However, no significant voxels were found that coded a
main effect of signed prediction errors, a precision-weighting effect or a precision by group

interaction (all P >.1).
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FEP is associated with diminished precision-weighting in the right SFC

There was a significant difference in precision-weighting of prediction error between the FEP
group and the control group in the right SFC (T=3.38, voxels: 9, p=.035,[24 9 48]; small
volume corrected) (see Fig. 6A). Importantly, group differences were not driven by
medication as precision-weighting in medicated psychosis patients was not significantly
different from patients who non-medicated (T{18}=.14, p=.89; analysis conducted on voxels
that showed a FEP v control group difference), and there was no correlation between
medication dose and precision-weighting (r=.17, p=.52). No voxels differentiated the groups
on whole-brain analysis, or left SFC ROI analysis, corrected for multiple comparisons. We
tested whether precision-weighting in these 9 voxels (that differentiated the first episode
psychosis and control groups) correlated to positive symptom severity (sum of PANSS items
P1,2&3). To increase the number of participants for this analysis with a wide variety of
symptoms we included both the ARMS group the FEP group (Fig 6B). Reduced precision-
weighting related to greater positive symptoms (r = -.33, p =.032), but not when controlling
for group (p=.3). As group and symptoms are confounded given our FEP inclusion criterion
of having current delusions and/or hallucinations, and as low sample size limits our statistical
power for correlations within group, we also ran an additional analysis including an extra 6
participants with FEP who had currently too low levels of positive psychotic symptoms to be
included in main study (pooled ARMS & FEP, controlling for group r=-0.28, p=0.054; see

Supplementary material for more details).

A Precision-weighting of unsigned prediction error in Right SFC B _. Correlation precision-weighting and positive symptoms

ARMS
“HCS

,‘ : - ARMS w FEPS
[ ‘ FEPS

5

|

High Low High \.__O_W High Low kY 03 a2 wo o . 01 . 02 03 04
Level of precision Precision-weighting

A.U. Beta slope
Positive symptoms

Figure 6: A: Precision-weighting of prediction error in Superior Frontal Cortex region of interest. Precision-
weighting is significantly diminished in first episode psychosis. The y-axis provide beta estimates for the
unsigned prediction error in different precision conditions in arbitrary units (a.u.). B: Diminished precision-
weighting of prediction error is correlated with positive symptoms. Error bars represent standard error of
the mean.
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Higher schizotypy is related to decreased performance and diminished precision-weighting of
cortical prediction errors in a separate healthy sample

We next examined the relationship between schizotypy and precision-weighting of
prediction error in health, free from the possible confounds of medication or illness duration
driving effects (Supplementary methods). We pooled the participants in the dopaminergic
modaulation study (which is the study described in this paper, N=59) and the participants of a
previously collected healthy sample (who are from a previously reported study (Diederen et
al., 2016), N=27) and tested for a relationship between schizotypy and precision-weighting
of prediction error, while controlling for experimental group. There was a significant
correlation between performance and schizotypy (Rho=-.23, p=.034). This was mirrored by a
significant brain signal-schizotypy correlation between schizotypy and the extracted right
SFC precision-weighting parameter estimates (r=-.25, p=.024) (Figure 7). The higher
schizotypal personality, the less the participants exhibited cortical precision-weighting of
prediction errors. No relationship was observed between schizotypy and the main-effect of
prediction error (p>.3), suggesting that the effect is specific to the precision-weighting of

prediction error.

i Precision-weighting vs SPQ
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Figure 7: Higher SPQ scores (schizotypy) were correlated with less precision-weighting in the right Superior Frontal
Cortex, including when controlling for experimental group; Rho=-.25, p=.024
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Discussion

We show that unsigned prediction errors are coded in superior frontal cortex, where the
unsigned prediction error signal is coded relative to the precision of environmental
outcomes; that the degree of precision-weighting benefits learning, is mediated by

dopamine, is perturbed in first episode psychosis, and relates to schizotypy in a health.

Recent theories (Friston, 2009; Bastos et al., 2012; Adams et al., 2013; Fletcher & Frith,
2009; Sterzer et al., 2018) have hypothesised that precision-weighting of cortical prediction
errors is mediated by neuromodulators (including dopamine), and link a malfunctioning
dopamine system to psychosis through aberrant precision-weighting of these prediction
errors. However, to our knowledge, no direct evidence for any of these claims exists. Here
we showed that separately estimated precision-weighted signed and unsigned prediction
errors provided the best description of the behavioural data, thus suggesting that both
precision-weighted and unsigned prediction errors should be represented in the brain. The
representation of precision weighted signed prediction errors in subcortical areas was
confirmed previously by fMRI in humans (Diederen et al., 2016). In the present study, we
tested the prediction that unsigned prediction errors would be represented in the brain, and
found evidence for a precision weighted cortical representation of unsigned prediction in
the bilateral superior frontal cortex and dorsal anterior cingulate cortex/pre-supplementary
motor area (that we collectively referred to as SFC). Cortical precision weighting was
significantly diminished in the sulpiride (dopamine D2 receptor antagonism) group in
comparison to the other groups in the right SFC; there was marginal evidence of a
medication effect in the dACC. This finding suggests that dopamine plays a key role in the
mechanisms underlying precision-weighting of unsigned prediction errors. We furthermore
found that a greater degree of superior frontal precision-weighting of unsigned prediction
error was significantly correlated to performance on the task, where an increase in
precision-weighting resulted in more accurate predictions of upcoming rewards. These
results confirm the prediction that there exist cortical unsigned prediction error signals,

which influence performance and are precision weighted by dopamine.
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The coding of unsigned prediction errors in the superior and middle frontal gyri and dACC is
in line with earlier findings by Hayden (et al., 2011) who found unsigned prediction errors in
the dACC of monkeys, and with prior fMRI studies in humans (Fletcher et al 2001, Turner et
al 2004, Fouragnan et al., 2017; Fouragnan et al 2018; Metereau & Dreher 2012; Ide et al.,
2013). Our findings are consistent with those of Katthagen et al (2018), who used reaction
time data (rather than choice data) from a human fMRI reversal learning study to derive a
relevance weighted unsigned prediction error signal, which was also represented in the
dACC. Our data in the dopaminergic modulation study, replicated in the psychosis study,
show (for the first time to our knowledge) that cortical prediction error signals based on
choice data are precision-weighted in humans. We note that dopaminergic innervation of
cortex is greatest in superior frontal regions (Lewis et al., 1987; Berger et al., 1991; Paus,
2001), compatible with the hypothesis that precision weighting is influenced here by

dopaminergic input.

If the precision-weighting of prediction errors is important in learning, we can expect
aberrant learning to occur when prediction errors are not scaled optimally to the
environmental statistics determining the precision of available information. We tested
whether this mechanism could be of importance to psychosis, which is characterized by
delusional beliefs and hallucinatory perception (Fletcher & Frith et al., 2009). Previous work
showed aberrant cortical and subcortical prediction error coding in people with psychosis
(Murray et al.,, 2008; Corlett et al., 2007, Ermakova et al., 2018). As psychosis has
consistently been associated with dopamine dysfunction (Howes & Kapur 2009), it is
possible that a dopamine mediated precision-weighting process would be impaired in
psychosis. Indeed, it has been suggested that dopamine dysregulation causes psychosis due
to affecting the brains capacity to precision-weight prediction error (Adams et al., 2013).
That is, if unreliable prediction errors were given excessive weight, they could have an
exaggerated influence on driving changes in the brain’s model of the world, thereby
contributing to the formation of abnormal beliefs. We found several lines of evidence
suggesting that FEP in particular is associated with a failure to precision-weight prediction
errors. First, FEP was associated with decreased performance on the task. Furthermore, the
FEP group did not benefit as much from more precision reward information than the healthy

controls and ARMS group did, and computational modelling indicated that the FEP group
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does not precision-weight prediction errors, as they follow a simple RW learning rule
without precision-weighted prediction errors. By contrast, controls and ARMS follow a
Pearce-Hall learning rule with precision-weighted prediction errors. This invites the question
whether the poor performance of the FEP group might have more to do with the failure to
diminish their learning rate appropriately over time (as this is what characterizes a Pearce-
Hall model). However, subsequent analysis revealed that whereas controls and ARMS show
a clear effect of precision on learning rate, the FEP group does not. In contrast, no
differences were found for the decay parameter, suggesting that the differences lie in how
much prediction errors are used in different precision conditions. Thirdly, neural evidence
suggests that the FEP group does not precision-weight cortical prediction errors to the
extent that healthy controls do, and that the degree of neural abnormality may relate to
positive psychotic symptom severity (we acknowledge that the modest patient sample size
and marginal significance of the correlation is not conclusive, though the relation is
supported by the finding that in healthy individuals, the degree of cortical precision

weighting relates to schizotypy, consistent with a continuum model of psychosis).

Several other studies have used this computational framework to study learning in
individuals with psychosis that imply a failure to precision weight prediction errors. Powers
(et al., 2017) used hierarchical Bayesian models to make inferences about the way
individuals with psychosis respectively form beliefs about the environment. Critically in
these models a prediction error is weighted by the precision of beliefs regarding cue-
outcome contingencies, and the volatility of these relationships (Mathys et al., 2011). As
such, these models imply precision-weighting of prediction, however they do not test the
degree to which these prediction errors are precision-weighted explicitly. Our results
complement these studies and provide an additional direct test of the degree of precision

weighting of prediction errors in psychosis.

A previous study has reported differences between healthy controls and individuals with
schizophrenia in the degree to which they adapt the coding of value to the variability in the
environment (Kirschner et al., 2016). This process of adaptive coding is similar to precision
weighting of unsigned prediction errors, as it reflects the brains capacity to scale neural

signals to what is referred to as economic ‘risk’, in other words the spread of possible
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reward outcomes. In combination with the present findings, psychotic disorder might be
associated with a broader failure to adapt neural signals to the statistics of the environment.
We thus conclude that there is evidence for a diminishment in precision-weighting of
unsigned prediction errors in individuals with first episode psychosis. This was most strongly
related to the intensity of the positive symptoms experienced by the patients in this study.
Our current study provides evidence for a key hypothesis in the field of predictive coding
theories of psychosis, which is that psychosis is associated with a failure to accurately take
into account the reliability of new information, leading to the formation of aberrant
inferences about the world, predisposing to delusional beliefs. The finding that the degree of
precision weighting of cortical prediction errors is modulated by dopamine, combined with
the finding of abnormal precision-weighting in psychosis, is consistent with the posit that the
origins of the precision-weighting deficit in psychosis are dopaminergic. However, we note
that although we demonstrate dopaminergic modulation of the degree of precision
weighting, there may be other neurotransmitters that also contribute to this process. As we
did not measure dopamine function in the clinical studies, it remains possible that the
patient deficits are secondary to non-dopaminergic mechanisms. Pharmacological fMRI in
patients, or combined fMRI and PET studies (including dopaminergic ligands) in patients,

would be required to test this.

In conclusion, we found evidence of precision-weighted unsigned prediction errors in the
superior frontal and dorsal anterior cingulate cortices. Furthermore, we found that the
precision-weighting of prediction errors was modulated by the dopaminergic antagonist
sulpiride, and we found that the degree of precision-weighting in this area was correlated to
performance on the task, providing evidence for the first time that dopamine plays a role in
precision-weighting of unsigned prediction error brain signals during learning. Healthy
people, but not patients with first episode psychosis, take into account the precision of the
environment and unsigned prediction errors when updating beliefs; accordingly, the cortical
unsigned prediction error signal is abnormal in psychotic iliness, and relates to trait levels of
schizotypy in the healthy population, implicating it as a key mechanism underlying the

pathogenesis of psychotic symptoms.
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