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Precision-weighting of cortical unsigned prediction error signals benefits learning, is 

mediated by dopamine, and is impaired in psychosis. 
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Abstract 

Recent theories of cortical function construe the brain as performing hierarchical Bayesian 

inference. According to these theories, the precision of cortical unsigned prediction error 

(i.e., surprise) signals plays a key role in learning and decision-making, to be controlled by 

dopamine, and to contribute to the pathogenesis of psychosis. To test these hypotheses, we 

studied learning with variable outcome-precision in healthy individuals after dopaminergic 

modulation with placebo, a dopamine receptor agonist bromocriptine or a dopamine 

receptor antagonist sulpiride (dopamine study n=59), and in patients with early psychosis 

(psychosis study n=74: 20 participants with First Episode Psychosis, 30 healthy controls and 

24 participants with At Risk Mental State attenuated psychotic symptoms). Behavioural 

computational modelling indicated that precision-weighting of unsigned prediction errors 

benefits learning in health, and is impaired in psychosis. FMRI revealed coding of unsigned 

prediction errors relative to their precision in superior frontal cortex (replicated across 

studies, combined n=133), which was perturbed by dopaminergic modulation, impaired in 

psychosis, and associated with task performance and schizotypy (schizotypy correlation in 86 

healthy volunteers). We conclude that healthy people, but not patients with first episode 

psychosis, take into account the precision of the environment when updating beliefs. 

Precision-weighting of cortical prediction error signals is a key mechanism through which 

dopamine modulates inference and contributes to the pathogenesis of psychosis. 

 

 

 

 

  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2019. ; https://doi.org/10.1101/558478doi: bioRxiv preprint 

https://doi.org/10.1101/558478
http://creativecommons.org/licenses/by/4.0/


 3

Introduction 

A common theme in contemporary theories of brain function, ranging from perception (Rao 

& Ballard, 1999) to reinforcement learning (Mathys et al., 2011), is an emphasis on the 

critical role in inference played by predictions based on prior knowledge (Rao & Ballard, 

1999; Friston, 2009; Bastos et al., 2012; Adams et al., 2013; Mathys et al., 2011; Clark, 2013 

& 2015; Hohwy, 2013). According to these theories, predictions and incoming sensory input 

each have an associated precision (inverse variance), reflecting their confidence or reliability. 

Predictions and sensory input are thought to be compared against one other, generating a 

discrepancy signal termed the prediction error which indicates the difference between the 

expectation and sensory input. Such prediction error signals update prior beliefs in a manner 

that is weighted by their associated precision, such that more is learned from precise and 

reliable prediction errors compared to noisy and unreliable prediction errors (Friston, 2009; 

Bastos et al., 2012; Mathys et al., 2011). Several theorists have suggested that 

neuromodulator systems, including dopamine, play an important role in mediating the 

precision of these prediction errors, and that impaired precision-weighting of prediction 

errors (through dopaminergic or other neuromodulator dysfunction) may be part of the 

cascade that result in psychotic symptoms (Bastos et al., 2012; Adams et al., 2013; Friston, 

2009; Fletcher & Frith 2009). However, to the best of our knowledge no direct evidence for 

these hypotheses exists. Specifically, whilst several neuroimaging studies have indicated 

abnormal brain prediction error signals in schizophrenia and related psychoses (Corlett et al 

2007, Murray et al 2008, Schlagenhauf et al 2014, Ermakova et al 2018), none of these 

studies have addressed precision-weighting of prediction errors in patients. 

 

In the context of reinforcement learning models, a distinction can be made between two 

types of prediction errors. First, the signed prediction error indicates whether an outcome is 

better or worse than expected, and thereby plays a crucial role in changing the value 

allocated to cues, thereby guiding future decisions (Schultz et al., 1997; O’Doherty et al., 

2003 & 2004; Pessiglione et al., 2006; D’Ardenne et al., 2008; Diederen et al., 2016 & 2017, 

Tian et al., 2016). A second type of prediction error, the unsigned prediction error, signals 

the degree of surprise, without indicating valence (better/ worse than expected). In addition 

to signed prediction errors, unsigned prediction error are included in various reinforcement 

learning models to control how much should be learned from new information. Large 
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unsigned prediction errors signal that the brain’s model of the world is inaccurate, thereby 

increasing the amount that is learned from new information. This can be achieved in various 

ways, including a non-Bayesian approach by using a dynamic learning rate parameter 

(Pearce & Hall, 1982; Sutton & Barto, 1998) or a Bayesian approach by decreasing the 

precision of prior beliefs (Courville et al., 2006; Gershman, 2015) across different levels in 

the hierarchy so that new sensory information has more of an impact on learning (Mathys et 

al., 2011). In these hierarchical models both signed and unsigned prediction errors are 

weighted by their precision. Whilst evidence has been provided for a dopamine-mediated 

precision-weighted signed prediction error in learning (Diederen et al., 2015, 2016 & 2017), 

no such evidence exists for dopaminergic modulation of the precision-weighting of unsigned 

prediction errors. This is despite many computational theorists hypothesizing a role for 

neuromodulator systems in precision-weighting of unsigned prediction errors (Bastos et al., 

2012; Adams et al., 2013), and that the dysfunctional precision-weighting is a key 

contributor to the pathogenesis of psychosis (Fletcher & Frith 2009; Adams et al 2013, 

Sterzer et al 2018, Heinz et al 2018). 

 

Here we therefore studied whether unsigned prediction errors are indeed coded relative to 

their associated precision; whether dopamine modulates the precision of these prediction 

errors; where precision-weighted prediction errors are represented in the cortex and 

whether and how precision weighting of cortical prediction error signals is disrupted in 

psychosis. Our methods elicit reliable measures of prediction error, as we use a task where 

prediction error is directly observable, rather than inferred as a latent variable as is common 

in many paradigms. To probe the role of precision-weighted prediction errors in learning, 

and the influence of dopamine, we employed pharmacological modulation in healthy 

volunteers, combined with fMRI, associative learning and computational modelling. We next 

examined how individual differences in computational learning signals and brain precision 

weighting signals relate to clinical psychosis, and psychotic-like thinking in health 

(schizotypy).  
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Methods 
 

Table 1: Demographics for dopamine study  

 

 Dopamine study  

 Placebo Sulpiride 

(antagonist) 

Bromocriptine 

(agonist) 

p-value 

N 20 20 19  

Male 9 (11) 12 (8) 10 (9)  

 Mean SD Mean SD Mean SD  

Age 23.9 4.8 24.8 4.5 23.7 4.3  

Reverse digit 

span 

6.2 1.5 5.7 1.5 6.8 3.8 p=.40 

Schizotypy 16.6 10.1 15.4 11.5 15.6 11.2 p=.99 

 

Table 2: Demographics for psychosis study 

Group Healthy controls (HCS) At risk mental state 

(ARMS) 

FEP (First episode 

psychosis) 

 

N 30 24 20  

 Mean SD Mean SD Mean SD p-value 

Age 22.6 3.5 21.0 3.5 24.9 5.2 p=.009 

Male 16  18  17  p=.044 

IQ 118.8 10.5 118.7 11.7 106.3 20.2 p=.006 

PANSS positive 7.2 0.8 14.0 3.00 20.6 5.4 p<.001 

PANSS negative 7.2 .9 13.5 6.2 15.5 8.4 p<.001 

Taking antipsychotic 

medication 

0/30  4/24  12/20  p<.001 

Antipsychotic dosage 0 0 55.5 64.3 353.5 184.54 p=.008 
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Participants and intervention - dopamine study 

59 healthy volunteers completed the pharmacological fMRI study (see Diederen et al., 2017 

and Supplement); all provided written informed consent. Prior to scanning, participants 

received a single dose of the D2-antagonist sulpiride (600mg), the dopamine agonist 

Bromocriptine (2.5 mg), or placebo, in a double-blind fashion. The study received NHS 

research ethics approval. 

 

Participants - psychosis study 

Healthy volunteers (HCS, n=30, average 22.6 years, 15 female) without a history of 

psychiatric illness or brain injury were recruited as control subjects. Healthy volunteers did 

not report any personal or family history of neurological, psychiatric or medical disorders. As 

in our previous work (Ermakova et al., 2018), we recruited participants with first episode 

psychosis with active delusions or hallucinations (PANSS P1 or P3 >2) (FEP, n=20 average 

24.8 years, 6 female) or at-risk of psychosis (At Risk Mental States ARMS, n=24, average 21.5 

years, 8 female) were recruited from the Cambridgeshire early intervention in psychosis 

service (Table 2). In addition, potential at-risk participants were identified on the basis of 

belonging to a help-seeking, low-mood, high schizotypy sub-group from the Neuroscience in 

Psychiatry Network (NSPN) cohort (Davis 2017) or through advertisement via posters 

displayed at the Cambridge University counselling services. Individuals at-risk for psychosis 

met At-Risk-Mental-State (ARMS) criteria on the CAARMS interview in the past six months 

(Yung et al. 2003). All participants gave written informed consent. The study received NHS 

research ethics approval. 

 

fMRI task design 

The task (see Figure 1 and Supplement) consisted of three sessions of 10 minutes each. 

Rewards were drawn from six different pseudo-Gaussian distributions that differed with 

respect to their precision (i.e. inverse variance) and expected value (i.e. mean of the 

distribution; EV). For the dopamine study, the standard deviations from the distributions 

were 5, 10 & 15, corresponding to precision of .04, .01 and .004. For the psychosis study, the 

standard deviation of the distributions were either 5 or 15, corresponding to precision of .04 

and .004. Distributions were counterbalanced to ensure that the two conditions within each 

session differed with respect to the mean of the distribution and precision. Conditions were 
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presented in short blocks, each including 4-6 trials. Each distribution consisted of 31 trials, 

resulting in 62 trials per session. Participants were informed beforehand that each 

distribution, of which two per session (run), had a different level of precision, which could be 

one of three levels: low, medium or high precision, corresponding to precisions of 0.004, 

0.01 and 0.04 although the exact precisions were not revealed to the participants. 

Furthermore, participants were instructed that the two means within a session would be 

different from each other. In the psychosis study there was no medium condition. A cue 

informed the participants from which of the distributions (high, medium or low) in that block 

the upcoming reward was being drawn; then participants were required to predict the 

magnitude of the upcoming reward and received feedback after a delay. Optimal 

performance on this task thus required the participant to estimate the mean of the 

distribution from which the rewards were drawn. For MRI acquisition details see 

Supplementary methods. 

 

 

 

Figure 1: Example of a trial. The participants were instructed to learn the mean of a reward distribution. First a fixation 

cross was presented after which the participants were informed about the standard deviation (which indicated the 
precision) of the reward distribution. Subsequently the participants were asked to make a prediction regarding the 

upcoming reward, which was presented to the participant in combination with the prediction error (in yellow) after an 

anticipation period.  

 

 

Behavioural analysis and computational modelling 

High Low

(Cue; Precision = medium)
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The mean performance error – the absolute value of (actual mean – predicted mean) – was 

our index of performance, which we compared across groups. We also fitted several 

reinforcement learning models to participants’ prediction sequences (see Supplementary 

methods). In brief, each model used a common updating rule in which predictions on a given 

trial depended on the prediction error and the learning rate on the previous trial. We 

implemented a Rescorla-Wagner (RW) reinforcement learning model with a fixed learning 

rate (Rescorla & Wagner 1972) and a Pearce-Hall (PH) model with a trial-wise, dynamic, 

learning rate, which prescribes higher weighting of prediction errors (i.e., more learning) at 

the start of a task session compared to later trials (Pearce & Hall 1982). In uncertain 

environments, it is more optimal to decrease the weighting of prediction errors as learning 

progresses (once participants become more certain of their predictions) as prediction errors 

will continue to occur as a result of the imposed uncertainty. We additionally explored 

whether scaling prediction error to the reliability of the environment (i.e., precision–

weighting) benefitted learning by comparing models that scaled the prediction error term 

and models that did not. This results in 6 models: (1) simple RW, (2) RW with a scaled 

prediction error term, (3) Pearce-Hall model (decaying learning rate), (4) Pearce-Hall model 

with scaled prediction error term, (5) Pearce-Hall model with individual estimates of scaling 

term, (6) Pearce-Hall model with individual estimates of separate signed and unsigned 

prediction error scaling.  

 

Brain imaging analysis  

We modelled the onsets of the cue and the outcome as events (i.e. delta functions of zero 

duration) and the onset of the prediction event (i.e., when participant could start making 

their prediction) as a single epoch lasting until they indicated their prediction. Each predictor 

was convolved by the standard canonical haemodynamic response function in SPM8. We 

used parametric modulation to identify neural correlates of unsigned prediction error 

responses by specifying for all outcome events the unsigned prediction errors. It is important 

to note that the prediction errors used in these analyses are simply the absolute difference 

between predicted reward and received reward. As such, the prediction errors did not 

dependent on the behavioural modelling, and could therefore not be influenced by any 

differences in the best-fitting model between groups.  In a separate analysis, we also 

explored the coding of signed prediction errors in the psychosis study. The effect of 
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dopaminergic drugs on the precision-weighting of signed prediction errors has been 

published before (Diederen et al., 2017).  Reward events were separately modelled for the 

different precision conditions to test for differences in precision-weighting of prediction 

errors as evidences by different sizes of slopes for the coding of unsigned prediction errors 

under different levels of certainty. Contrasts were created on the 1
st

-level. As we were 

interested in the effect of precision but not mean reward, we collapsed all the different 

means for each precision condition, so there were two or three precision conditions in the 

psychosis study and dopamine study respectively, to be taken to the 2
nd

-level (i.e., group-

level): see Supplement for details of group-level analysis. 

 

 

Results 

Study 1: Dopamine modulation study 

Environmental precision and dopamine D2 receptor antagonism modulate task performance.  

Participants’ performance (the distance between the participants prediction and the mean 

of the distribution) improved when the precision of the reward distributions increased, and 

reduced average performance under sulpiride (Figure 2); Trial-by-trial analysis revealed 

lower performance in low-precision conditions at the start of the experiment, but no 

significant group differences (Figure 2).  
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Figure 2: A. Behavioural results for the dopamine study. A-E display the average learning curves, reflecting the absolute 

distance between the actual mean of the distribution and the participants estimate of the mean distribution over 30 trials 
averaged over the 3 sessions for each participant. The distance between the prediction and the actual mean of the 

distribution defines performance error. Therefore, lower values of performance error are better. Asterisks indicate 
Bonferroni corrected significant differences across conditions.  A: Performance was significantly better in the high 

precision condition compared to the low precision condition when combing all participants, especially at the beginning of 

the experiment. B: There were no clear differences between groups when analysing trial-by-trial performance. C-E: The 

placebo (C), Sulpiride (D) and Bromocriptine (E) group showed only a significant difference between the precision 

conditions one or two trials in the beginning of the experiment. F: Averaging performance error across all trials, we see 

overall better performance in the placebo condition compared to the Sulpiride condition, and higher performance in 

more precision conditions. G: Initial learning rates were higher in the Bromocriptine condition compared to the Sulpiride 

condition. H: Precision and group did not affect the learning rate decay parameter. I: No differences were found in 
number of missed trials, and K: scrolling distance. J: Reaction times were quicker in the Sulpiride group. Error bars 

represent standard error of the mean. 
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Reinforcement learning modelling of behavioural data indicates precision-weighted unsigned 

and signed prediction errors 
 

Since formal learning models like the Pearce-Hall model suggest that unsigned prediction 

errors increase learning, we expect an interaction between unsigned and signed prediction 

error on participants’ trial to trial updates. The unsigned*signed prediction error interaction 

term was highly significant in predicting updates (F{1,10763}=51.7, p<.0001), demonstrating 

the importance of unsigned prediction errors in learning (Supplementary information). In all 

three medication groups a Pearce-Hall model with separately estimated precision weighted 

signed and unsigned prediction errors best predicted behaviour (Supplementary results). 

These results indicate that both unsigned and signed prediction errors are precision-

weighted to facilitate efficient learning under uncertainty.  

 

Unsigned prediction errors are coded in the Superior Frontal Cortex (SFC) and pre SMA/dACC 

We next explored where unsigned prediction errors are coded in the brain, in order to find 

the region of interest for our further analyses focussing on the effect of dopamine on the 

precision-weighting of prediction errors. Whilst correcting for whole brain comparisons, 

unsigned prediction errors were coded in the frontal, parietal and occipital cortices 

(Supplementary Table 2, Figure 3). We used the left and right SFC and dACC clusters as ROIs 

to take forward our analysis of dopaminergic effects on precision weighting. Secondary 

analyses examined these effects in occipital and parietal regions (Supplementary materials). 

 

Precision-weighting of unsigned prediction errors is mediated by dopamine in the SFC/dACC 

To test whether precision and dopaminergic perturbations affected the coding of unsigned 

prediction errors, we extracted the parameter estimates (betas) of the unsigned prediction 

error parametric modulators from the left and right superior frontal cortex (SFC) and dACC 

cluster that showed a main effect of unsigned prediction error coding at whole brain 

corrected pFWE<.01. We used a two-factor mixed model ANOVA with medication group as 

the between-subjects variable and precision condition as the within-subjects variable, using 

a linear contrast across precision conditions for the main effect of precision and interaction.  

In the left SFC cluster, there was a significant interaction across precision conditions and 

medication group, suggesting that medication had a significant effect on precision-weighting 

of unsigned prediction errors (F{2,56}=4.025 p=.023; Fig.3B). There was a significant 
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interaction between medication group (placebo vs sulpiride) and precision condition (F{2,37} 

= 5.44, p=.025), with less precision-weighting in the sulpiride than in the placebo group,  

which suggests that sulpiride dampens precision-weighting of unsigned prediction errors. 

Comparing the placebo and bromocriptine group, there was a significant effect of precision 

(F{1,37} = 14.93, p<.001), but no significant effect of medication group (placebo vs 

bromocriptine) (F{1,37} = 2.781, p=.104) or interaction between medication group and 

precision (F{2,36} = 0.02, p=.894). This finding suggests that left SFC unsigned prediction 

error signals are precision-weighted, but relatively unaffected by bromocriptine.  

In the right SFC we did not find a significant interaction between medication and precision 

condition (F{2,56}=1.70, p=.193; Fig. 3C). However, signal changes in the right SFC are largely 

the same as in the left SFC (see Fig. 3B). We did find a significant main effect of medication 

(F{2,56}=3.65, p=.032). This effect was driven by a stronger main effect of unsigned 

prediction error in the bromocriptine group compared to the placebo group (F{1,37}=6.740, 

p=.013), whereas the difference was only trend-level significant between the sulpiride and 

placebo group (F{1,38}=3.55, p=.067). 

In the dACC we found a trend-level significant interaction between precision and medication 

(F{2,56}=2.81, p=.069; Fig. 3D). Post-hoc tests between the placebo and sulpiride group 

revealed a trend-level interaction between precision and medication (F{1,38}=3.043, 

p=.089). Testing the placebo and bromocriptine group revealed a significant effect of 

precision (F{1,37}=9.32, p=.004), but no effect of group (F{1,37}=1.17, p=.29) or interaction 

(F{1,37}=.172, p=.68). A similar pattern was thus found in the dACC as in the left SFC (see Fig. 

3B+D). The degree of cortical precision-weighting correlated with task performance 

(controlling for group), such that higher precision-weighting relates to better performance 

(Figure 4. Left Rho=-.45, p<.001; Right: Rho=-.40, p=.002; dACC: Rho=-.25, p=.055). There 

were no whole brain effects of group on precision-weighting. 
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Figure 3: A. Unsigned prediction errors were coded in bilateral superior frontal cortex and dorsal anterior cingulate 

cortex. The left side of the brain is the left side of the image. B-D. When exploring these regions further, we find that 

unsigned prediction errors are coded in a precision-weighted fashion as indicated by the strong unsigned prediction error 

signal in the high precision condition which declines over the medium and low precision condition in the placebo and 

bromocriptine group. Importantly, sulpiride perturbed precision-weighting significantly in the left SFC. Error bars 

represent standard error of the mean.  
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Figure 4: Precision-weighting of unsigned prediction errors in the left SFC (A) and right SFC (B) correlates with 

performance (i.e. difference between mean of the reward distribution and predicted mean) on the task.  

 

 

Study 2: Psychosis study 

 

First Episode Psychosis (FEP) is associated with decreased overall performance and less 

benefit from more precise information 

We explored the difference between participants’ estimates of the mean and the actual 

mean across trials, and tested for significant differences across groups and precision 

conditions while correction for multiple comparisons using a Bonferonni correction. We 

found better performance when precision was high in healthy control participants and ARMS 

individuals but not in people with FEP. We also found decreased performance in the FEP 

group compared to controls. There was a trend-level difference in number of missed trials, 

suggesting that on average the healthy controls missed one trial less then the other groups. 

There were no other significant differences in RT and scrolling distance (see Fig. 5 and 

Supplementary results). 
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Figure 5: Behavioural results for the patient study; green bars are healthy controls, blue ARMS, and orange first episode 

psychosis. A-E display the average learning curves , reflecting the absolute distance between the actual mean of the 

distribution and the participants estimate of the mean distribution over 30 trials averaged over the 3 sessions for each 

participant. The distance between the prediction and the actual mean of the distribution defines performance error. 

Therefore, lower values of performance are better. Asterisks indicate Bonferroni corrected significant differences across 
conditions.  A: Performance was significantly better in the high precision condition compared to the low precision 

condition when combing all participants, especially at the beginning of the experiment. B: HC performed better than 
FEPs, but not compared to ARMS. The colour of the asterisk indicates a significant difference of the patient group with 

HC. C-E: Healthy controls (C) showed a significant difference between the precision conditions, whereas the patient 

groups did not (D= ARMS, E= FEP). F: Averaging performance error across all trials, HC and ARMS perform better than 

FEP, and benefitted from more precise information, whereas FEP did not. G: Learning rates were higher in the high 

precision condition compared to the low precision condition in HC and ARMS, but not for FEPS, although an interaction 

was not significant. H: Precision did not affect the learning rate decay parameter. I: HC had slightly fewer missed trials 
than FEP. J: Reaction times were equal across groups. K: Scrolling distance was equal across groups. Error bars represent 

standard error of the mean. 
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FEP is associated with a lack of precision-weighting as revealed by computational modelling 

We found that for the HCS and ARMS participants the best model of behaviour was the 

Pearce-Hall model with a precision-weighting parameter for both the signed and unsigned 

prediction error term. However, the FEP group followed a simple RW-learning rule without 

precision-weighting of prediction error, suggesting that the FEP group specifically is not 

precision-weighting prediction errors (Supplementary Table 3). This is further supported by 

the observation that HCS and ARMS participants show higher learning rates in the high 

precision condition, whereas the FEP group does not (Figure 5G and Supplementary results). 

When we correlated participants’ behavioural response data with data simulated using the 

individual parameters of the winning model for each group, we found that there was no 

difference in the amount of variance explained between groups (ANOVA: F{2,79}=.72, p=.48, 

r-values: HC = .40, ARMS = .34, FEP = .37), suggesting that the modelling procedure was 

equally successful across groups (see Supplementary Figures 1-3). 

 

Unsigned prediction-errors are precision-weighted bilaterally in the SFC  

In bilateral SFC (see methods for ROI derivation) there were brain signals that encoded 

unsigned prediction error (Right: T=7.33, voxels: 150, p<.001, [24 4 52]; Left: T=6.78, voxels: 

149, p<.001, [-24 6 52], small volume correction). There was significantly stronger encoding 

of unsigned prediction errors in the high precision condition compared to the low precision 

condition in both the right and left SFC, demonstrating precision-weighting (Right: T=3.82, 

voxels: 66, p=.011, [22 12 52]; Left: T=3.52, voxels: 45, p=.025, [-21 -2 52]; small volume 

corrected), which is consistent with the effect observed in the dopaminergic modulation 

study. 

In a whole brain analysis, additional regions demonstrated precision weighting of prediction 

error: bilateral superior frontal cortex, right lateral frontal cortex, and medial parietal lobe 

(Supplementary Results). 

We also tested for signed prediction errors in the ventral striatum and the midbrain using 

ROI’s based on Diederen et al., 2017. However, no significant voxels were found that coded a 

main effect of signed prediction errors, a precision-weighting effect or a precision by group 

interaction (all P >.1). 
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FEP is associated with diminished precision-weighting in the right SFC 

There was a significant difference in precision-weighting of prediction error between the FEP 

group and the control group in the right SFC (T=3.38, voxels: 9, p=.035,[24 9 48]; small 

volume corrected) (see Fig. 6A). Importantly, group differences were not driven by 

medication as precision-weighting in medicated psychosis patients was not significantly 

different from patients who non-medicated (T{18}=.14, p=.89; analysis conducted on voxels 

that showed a FEP v control group difference), and there was no correlation between 

medication dose and precision-weighting (r=.17, p=.52). No voxels differentiated the groups 

on whole-brain analysis, or left SFC ROI analysis, corrected for multiple comparisons. We 

tested whether precision-weighting in these 9 voxels (that differentiated the first episode 

psychosis and control groups) correlated to positive symptom severity (sum of PANSS items 

P1,2&3). To increase the number of participants for this analysis with a wide variety of 

symptoms we included both the ARMS group the FEP group (Fig 6B). Reduced precision-

weighting related to greater positive symptoms (r = -.33, p = .032), but not when controlling 

for group (p=.3).  As group and symptoms are confounded given our FEP inclusion criterion 

of having current delusions and/or hallucinations, and as low sample size limits our statistical 

power for correlations within group, we also ran an additional analysis including an extra 6 

participants with FEP who had currently too low levels of positive psychotic symptoms to be 

included in main study (pooled ARMS & FEP, controlling for group r=-0.28, p=0.054; see 

Supplementary material for more details).  

 

Figure 6: A: Precision-weighting of prediction error in Superior Frontal Cortex region of interest. Precision-

weighting is significantly diminished in first episode psychosis. The y-axis provide beta estimates for the 

unsigned prediction error in different precision conditions in arbitrary units (a.u.). B: Diminished precision-

weighting of prediction error is correlated with positive symptoms. Error bars represent standard error of 

the mean. 
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Higher schizotypy is related to decreased performance and diminished precision-weighting of 

cortical prediction errors in a separate healthy sample 

 

We next examined the relationship between schizotypy and precision-weighting of 

prediction error in health, free from the possible confounds of medication or illness duration 

driving effects (Supplementary methods). We pooled the participants in the dopaminergic 

modulation study (which is the study described in this paper, N=59) and the participants of a 

previously collected healthy sample (who are from a previously reported study (Diederen et 

al., 2016), N=27) and tested for a relationship between schizotypy and precision-weighting 

of prediction error, while controlling for experimental group. There was a significant 

correlation between performance and schizotypy (Rho=-.23, p=.034). This was mirrored by a 

significant brain signal-schizotypy correlation between schizotypy and the extracted right 

SFC precision-weighting parameter estimates (r=-.25, p=.024) (Figure 7). The higher 

schizotypal personality, the less the participants exhibited cortical precision-weighting of 

prediction errors. No relationship was observed between schizotypy and the main-effect of 

prediction error (p>.3), suggesting that the effect is specific to the precision-weighting of 

prediction error.  

 

Figure 7: Higher SPQ scores (schizotypy) were correlated with less precision-weighting in the right Superior Frontal 

Cortex, including when controlling for experimental group; Rho=-.25, p=.024 
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Discussion
 

 

We show that unsigned prediction errors are coded in superior frontal cortex, where the 

unsigned prediction error signal is coded relative to the precision of environmental 

outcomes; that the degree of precision-weighting benefits learning, is mediated by 

dopamine, is perturbed in first episode psychosis, and relates to schizotypy in a health. 

 

Recent theories (Friston, 2009; Bastos et al., 2012; Adams et al., 2013; Fletcher & Frith, 

2009; Sterzer et al., 2018) have hypothesised that precision-weighting of cortical prediction 

errors is mediated by neuromodulators (including dopamine), and link a malfunctioning 

dopamine system to psychosis through aberrant precision-weighting of these prediction 

errors. However, to our knowledge, no direct evidence for any of these claims exists. Here 

we showed that separately estimated precision-weighted signed and unsigned prediction 

errors provided the best description of the behavioural data, thus suggesting that both 

precision-weighted and unsigned prediction errors should be represented in the brain. The 

representation of precision weighted signed prediction errors in subcortical areas was 

confirmed previously by fMRI in humans (Diederen et al., 2016). In the present study, we 

tested the prediction that unsigned prediction errors would be represented in the brain, and 

found evidence for a precision weighted cortical representation of unsigned prediction in 

the bilateral superior frontal cortex and dorsal anterior cingulate cortex/pre-supplementary 

motor area (that we collectively referred to as SFC).  Cortical precision weighting was 

significantly diminished in the sulpiride (dopamine D2 receptor antagonism) group in 

comparison to the other groups in the right SFC; there was marginal evidence of a 

medication effect in the dACC. This finding suggests that dopamine plays a key role in the 

mechanisms underlying precision-weighting of unsigned prediction errors. We furthermore 

found that a greater degree of superior frontal precision-weighting of unsigned prediction 

error was significantly correlated to performance on the task, where an increase in 

precision-weighting resulted in more accurate predictions of upcoming rewards. These 

results confirm the prediction that there exist cortical unsigned prediction error signals, 

which influence performance and are precision weighted by dopamine. 
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The coding of unsigned prediction errors in the superior and middle frontal gyri and dACC is 

in line with earlier findings by Hayden (et al., 2011) who found unsigned prediction errors in 

the dACC of monkeys, and with prior fMRI studies in humans (Fletcher et al 2001, Turner et 

al 2004, Fouragnan et al., 2017; Fouragnan et al 2018; Metereau & Dreher 2012; Ide et al., 

2013). Our findings are consistent with those of Katthagen et al (2018), who used reaction 

time data (rather than choice data) from a human fMRI reversal learning study to derive a 

relevance weighted unsigned prediction error signal, which was also represented in the 

dACC. Our data in the dopaminergic modulation study, replicated in the psychosis study, 

show (for the first time to our knowledge) that cortical prediction error signals based on 

choice data are precision-weighted in humans. We note that dopaminergic innervation of 

cortex is greatest in superior frontal regions (Lewis et al., 1987; Berger et al., 1991; Paus, 

2001), compatible with the hypothesis that precision weighting is influenced here by 

dopaminergic input.  

 

If the precision-weighting of prediction errors is important in learning, we can expect 

aberrant learning to occur when prediction errors are not scaled optimally to the 

environmental statistics determining the precision of available information. We tested 

whether this mechanism could be of importance to psychosis, which is characterized by 

delusional beliefs and hallucinatory perception (Fletcher & Frith et al., 2009). Previous work 

showed aberrant cortical and subcortical prediction error coding in people with psychosis 

(Murray et al., 2008; Corlett et al., 2007, Ermakova et al., 2018). As psychosis has 

consistently been associated with dopamine dysfunction (Howes & Kapur 2009), it is 

possible that a dopamine mediated precision-weighting process would be impaired in 

psychosis. Indeed, it has been suggested that dopamine dysregulation causes psychosis due 

to affecting the brains capacity to precision-weight prediction error (Adams et al., 2013). 

That is, if unreliable prediction errors were given excessive weight, they could have an 

exaggerated influence on driving changes in the brain’s model of the world, thereby 

contributing to the formation of abnormal beliefs. We found several lines of evidence 

suggesting that FEP in particular is associated with a failure to precision-weight prediction 

errors. First, FEP was associated with decreased performance on the task. Furthermore, the 

FEP group did not benefit as much from more precision reward information than the healthy 

controls and ARMS group did, and computational modelling indicated that the FEP group 
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does not precision-weight prediction errors, as they follow a simple RW learning rule 

without precision-weighted prediction errors. By contrast, controls and ARMS follow a 

Pearce-Hall learning rule with precision-weighted prediction errors. This invites the question 

whether the poor performance of the FEP group might have more to do with the failure to 

diminish their learning rate appropriately over time (as this is what characterizes a Pearce-

Hall model). However, subsequent analysis revealed that whereas controls and ARMS show 

a clear effect of precision on learning rate, the FEP group does not. In contrast, no 

differences were found for the decay parameter, suggesting that the differences lie in how 

much prediction errors are used in different precision conditions. Thirdly, neural evidence 

suggests that the FEP group does not precision-weight cortical prediction errors to the 

extent that healthy controls do, and that the degree of neural abnormality may relate to 

positive psychotic symptom severity (we acknowledge that the modest patient sample size 

and marginal significance of the correlation is not conclusive, though the relation is 

supported by the finding that in healthy individuals, the degree of cortical precision 

weighting relates to schizotypy, consistent with a continuum model of psychosis). 

 

Several other studies have used this computational framework to study learning in 

individuals with psychosis that imply a failure to precision weight prediction errors. Powers 

(et al., 2017) used hierarchical Bayesian models to make inferences about the way 

individuals with psychosis respectively form beliefs about the environment. Critically in 

these models a prediction error is weighted by the precision of beliefs regarding cue-

outcome contingencies, and the volatility of these relationships (Mathys et al., 2011). As 

such, these models imply precision-weighting of prediction, however they do not test the 

degree to which these prediction errors are precision-weighted explicitly. Our results 

complement these studies and provide an additional direct test of the degree of precision 

weighting of prediction errors in psychosis. 

 

A previous study has reported differences between healthy controls and individuals with 

schizophrenia in the degree to which they adapt the coding of value to the variability in the 

environment (Kirschner et al., 2016). This process of adaptive coding is similar to precision 

weighting of unsigned prediction errors, as it reflects the brains capacity to scale neural 

signals to what is referred to as economic ‘risk’, in other words the spread of possible 
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reward outcomes. In combination with the present findings, psychotic disorder might be 

associated with a broader failure to adapt neural signals to the statistics of the environment. 

We thus conclude that there is evidence for a diminishment in precision-weighting of 

unsigned prediction errors in individuals with first episode psychosis. This was most strongly 

related to the intensity of the positive symptoms experienced by the patients in this study. 

Our current study provides evidence for a key hypothesis in the field of predictive coding 

theories of psychosis, which is that psychosis is associated with a failure to accurately take 

into account the reliability of new information, leading to the formation of aberrant 

inferences about the world, predisposing to delusional beliefs. The finding that the degree of 

precision weighting of cortical prediction errors is modulated by dopamine, combined with 

the finding of abnormal precision-weighting in psychosis, is consistent with the posit that the 

origins of the precision-weighting deficit in psychosis are dopaminergic. However, we note 

that although we demonstrate dopaminergic modulation of the degree of precision 

weighting, there may be other neurotransmitters that also contribute to this process. As we 

did not measure dopamine function in the clinical studies, it remains possible that the 

patient deficits are secondary to non-dopaminergic mechanisms. Pharmacological fMRI in 

patients, or combined fMRI and PET studies (including dopaminergic ligands) in patients, 

would be required to test this. 

 

In conclusion, we found evidence of precision-weighted unsigned prediction errors in the 

superior frontal and dorsal anterior cingulate cortices. Furthermore, we found that the 

precision-weighting of prediction errors was modulated by the dopaminergic antagonist 

sulpiride, and we found that the degree of precision-weighting in this area was correlated to 

performance on the task, providing evidence for the first time that dopamine plays a role in 

precision-weighting of unsigned prediction error brain signals during learning. Healthy 

people, but not patients with first episode psychosis, take into account the precision of the 

environment and unsigned prediction errors when updating beliefs; accordingly, the cortical 

unsigned prediction error signal is abnormal in psychotic illness, and relates to trait levels of 

schizotypy in the healthy population, implicating it as a key mechanism underlying the 

pathogenesis of psychotic symptoms. 
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