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Abstract

Summary: A common analysis of single-cell sequencing data includes dimensionality
reduction using t-SNE or UMAP, clustering of cells, and identifying differentially
expressed genes. How cell clusters are defined has important consequences in the
interpretation of results and downstream analyses, but is often not straightforward. To
address this difficulty, we present a new approach called singleCellHaystack that
enables the identification of differentially expressed genes (DEGs) without relying on
explicit clustering of cells. Our method uses Kullback-Leibler Divergence to find genes
that are expressed in subsets of cells that are non-randomly positioned in a multi-
dimensional space. We illustrate the usage of singleCellHaystack through applications
on several single-cell datasets, demonstrate that it enables the identification of markers
important for cell subset separation in an unbiased way, and compare its results with
those of a traditional, clustering-based DEG prediction method.

Availability and implementation: singleCellHaystack is implemented as an R package
and is available from https://github.com/alexisvdb/singleCellHaystack

Contact: alexisvdb@infront.kyoto-u.ac.jp

1 Introduction

Recent advances in single-cell technologies enable us to assess the state of cells by
measuring different modalities like RNA and protein expression with single cell
resolution (1-5). Since the appearance of the first single-cell technologies, hundreds of
bioinformatics tools have been developed to process, analyze and interpret the results
from single cell omics data (6), such as Monocle2 and Seurat (7, 8).

A standard protocol for analyzing single-cell data includes dimensionality reduction
methods, such as PCA, t-distributed stochastic neighbor embedding (t-SNE) and
Uniform Manifold Approximation and Projection (UMAP) to represent the data in
fewer (typically 2) dimensions (9, 10). Finally, cells are clustered, and differentially
expressed genes between the different clusters are identified. This approach for finding
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differentially expressed genes by comparing between clusters is widely used in existing
methods (8, 11, 12), and enables finding cluster-specific marker genes that facilitate
labeling different cell populations. However, recent comparisons found that DEG
prediction approaches for bulk RNA-seq do not generally perform worse than methods
designed specifically for single-cell RNA-seq (SCRNA-seq), and that agreement
between existing methods is low (13, 14). Defining more flexible statistical frameworks
for predicting complex patterns of differential expression is one of the grand challenges
in single cell data analysis (15).

One problem with clustering-based approaches for DEG prediction is that the definition
of cell clusters is often not straightforward. The number of biologically relevant clusters
naturally occurring in a dataset is often not obvious. The high-dimensionality of the data
makes it hard to evaluate if the number of clusters and their borders make sense or if
they are arbitrary. Furthermore, some cell sub-populations may not be clustered
independently and their defining signature may end up being obscured within a larger
cluster. This can be critically important for low abundance populations in experiments
using unsorted cells from tissue, where only a few representative cells may be present.
Thus, the clustering of cells has important consequences in the interpretation of results
and downstream analyses.

To address this problem we present singleCellHaystack, a methodology that uses
Kullback-Leibler Divergence (D, ; also called relative entropy) to find genes that are
expressed in subsets of cells that are non-randomly positioned in a multi-dimensional
(>2D) space (16). In our approach, the distribution of cells expressing or not expressing
each gene is compared to a reference distribution of all cells in the input space. From
this, the Dy, of each gene is calculated, and compared with randomized data to evaluate
its significance. Thus, singleCellHaystack does not rely on clustering of cells, and can
identify differentially expressed genes in an unbiased way.

An R package for running singleCellHaystack analysis and additional functions for
visualization and clustering of genes is available at
https://github.com/alexisvdb/singleCellHaystack.

2 Materials and methods

Our approach contains two main functions: haystack_2D and haystack_highD,
for 2D and multi-dimensional (>2D) input spaces, respectively. The concept of both
functions is the same, and is briefly explained below. More details are given in
Supplementary Material. We refer to Supplementary Fig. S1 for an overview of the
workflow.

2.1 singleCellHaystack methodology

singleCellHaystack uses Dg;, to estimate the difference between a reference distribution
of all cells in a multi-dimensional space (distribution Q) and the distributions of the
cells in which a gene G was detected (distribution P(G = T)) and not detected
(distribution P(G = F)).
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For 2D spaces (such as typical t-SNE or UMAP plots), haystack_2D divides the 2D
space into a grid along both axes. For multi-dimensional spaces (such as the first several
principal components), haystack_highD defines a set of grid points covering the
subspace in which the cells are located (see Supplementary Material).

Next, a Gaussian kernel is used to estimate the density of cells at each grid point.
Summing the contributions of all cells gives us Q; the subset of cells in which G is
detected gives us P(G = T); and the subset of cells in which G was not detected gives
us P(G = F). Each distribution is normalized to sum to 1.

The divergence of gene G, Dy (G), is calculated as follows:

Dk, (G) = ZSE{T,F} ergrid pointsP(G = s,x)log (P(g(z,;x)) Eqg. 1

where P(G = s,x) and Q(x) are the values of P(G = s) and Q at grid point x,
respectively.

Finally, the significance of Dk, (G) is evaluated using randomizations, in which the
expression levels of G are randomly shuffled over all cells. The mean and standard
deviation of Dk, (G) in randomized datasets follow a clear pattern in function of the
number of cells in which a gene was detected (see Supplementary Fig. S2 for
examples), which is modeled using B-splines (17). P-values are calculated by
comparing the observed Dy, (G) to the predicted mean and standard deviation (log
values).

2.2 singleCellHaystack advanced options

The distribution Q and the randomizations described above ignore the fact that some
cells have more detected genes than others. singleCellHaystack can be run in an
advanced mode, in which both the calculation of Q and the randomizations are done by
weighting cells by their number of detected genes (see Supplementary Material for more
details).

In addition, singleCellHaystack includes functions for visualization and clustering gene
expression patterns in the multi-dimensional space.

2.3 scRNA-seq datasets and processing

We downloaded processed data (read counts or unique molecular identifiers) of the
Tabula Muris project (FACS-sorted cells: 20 sets; Microfluidic droplets: 28 sets), the
Mouse Cell Atlas (Microwell-seq: 87 sets) and a dataset of several hematopoietic
progenitor cell types (5, 18, 19). For each dataset, cells and genes were filtered, the
1,000 most variable genes were selected, and dimensionality reduced using PCA.
Subsequently, the first 50 Principal Components (PCs) were used as input for t-SNE
and UMAP analysis, following the recommendations by Kobak and Berens (20).
Finally, singleCellHaystack was run on both 2D (2D t-SNE and UMAP coordinates)
and multi-dimensional (5, 10, 15, 25, or 50 PCs) representations of each dataset to find
genes with biased expression patterns.
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2.4 Known cell type marker genes

We downloaded marker gene data from the CellMarker database (21). A total of 7,852
unique mouse gene symbols are included as marker genes, which we split into 630
“high-confidence” markers (reported in >5 publications), and 7,222 “low-confidence”
markers (reported in 1 to 4 publications). Other genes we regarded as “non-marker”
genes.

2.5 Generating a simulated dataset

We generated an artificial single-cell dataset using Splatter (22). This artificial data
contained 10,000 genes in 2,000 cells divided into 5 “cell types” (using the
method="“groups” setting in Splatter). Otherwise default parameters were used. After
filtering out genes detected in less than 50, or more than 1,950 cells, 7,585 genes
remained. Read counts were processed to counts per million in each cell, and the PCA
was performed on the log-transformed data. The first 5 PCs were used as input for
haystack_highD.

The output of Splatter contains differential expression factors (“DEFac[Group]”),
showing whether a gene has differential expression (factor different from 1) or not
(factor = 1) in each group. We defined a “differential expression score” for each gene as
the sum of the logz-transformed factors (Supplementary Fig. S3). We regarded the 1,857
genes with scores > 0.3 as DEGs. A precision-recall curve was made using the ROCR
package (version 1.0-7) in R (23).

To the Splatter dataset we manually added a gene with a biased expression pattern that
is independent of the 5 cell types. This gene had no expression in any cells, except in
the 200 cells that are closest to cell No. 300 in the space defined by the 1%t and 2" PC
(Supplementary Fig. S4).

2.6 Predicting DEGs using Seurat’s FindAlIMarkers function

To compare runtimes and results of singleCellHaystack with those of Seurat (version
3.1.0), we used the same 50 PCs of each dataset to define clusters of cells in the data
using default options of the functions FindNeighbors and FindClusters (using the
default Louvain algorithm). Next, DEGs were predicted between the resulting clusters
of cells using the FindAllIMarkers function. We used default options, except for options
“only.pos = FALSE” and “return.thresh = 1 in order to obtain results that were
comparable to those of singleCellHaystack. The default test used in FindAlIMarkers is
the Wilcoxon Rank Sum test. Runtimes of the FinallMarkers function were compared
to those of our method.

The above workflow results in a several p-values for every gene (1 p-value for the
comparison of every cluster with all other clusters). For every gene, we retained the
minimum p-value, and compared those to the p-values returned by singleCellHaystack.
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3 Results and Discussion

3.1 Application on simulated data

To illustrate the validity of our approach, we applied singleCellHaystack on a simulated
dataset containing 2,000 cells in 5 “groups” (i.e. simulated cell types; Fig. 1A). The
inputs to our method were the coordinates of the 2,000 cells in the first five PCs, and the
detection levels of 7,585 genes in these cells. singleCellHaystack successfully predicted
DEGs (Fig. 1B-E), even though it works independently of cell clustering, and we did
not provide it with the cell group data. The five top biased genes predicted by our
method had clear non-random expression patterns (Fig. 1B). To get a more global view
on the performance of singleCellHaystack we calculated a “differential expression
score” for every gene based on the Splatter simulation data (see Materials and methods),
reflecting the gene’s strength of differential expression. We confirmed that
singleCellHaystack gave high scores to genes with strong biases in expression between
the five cell groups (Fig. 1C), and that it could predict DEGs with high precision (Fig.
1D).

It should be noted that differential expression in the Splatter simulation data is
completely group-based (i.e. there are no DE patterns that go beyond the cell grouping).
To further illustrate that singleCellHaystack does not rely on grouping or clustering of
cells, we manually added a gene with highly biased expression in the plane defined by
the first and second PC, independent of the cell clusters (see Materials and methods,
Fig. 1E and Supplementary Fig. S4). This highly biased DEG was correctly detected by
singleCellHaystack, with a p-value of 8.7e-48 (red dotted line in Fig. 1C). This gene is
not detected by methods relying on comparison between clusters of cells.

These results show that singleCellHaystack can be used to detect DEGs in real single-
cell datasets, where cell groupings are often not obvious, without the need to group cells
into arbitrary clusters.

3.2 Application on real single-cell datasets

We applied singleCellHaystack on 136 real SCRNA-seq datasets of varying sizes (149 to
19,693 cells). Median runtimes of haystack_highD with 50 PC inputs were and 102
and 115 seconds using the simple and advanced mode, respectively. Runtimes followed
an approximately linear function of the number of cells in each dataset (Supplementary
Fig. SSA-B). Runtimes for 5, 10, 15, or 25 PC input were similar (not shown). Median
runtimes for haystack 2D on 2D t-SNE coordinates were 75 and 84 seconds using
the simple and advanced mode, respectively (Supplementary Fig. S5C-D).

In all datasets, large numbers of genes were found to have significantly biased
distributions in the input spaces. This observation in itself is not surprising, since
samples typically include a variety of different cell types, often forming loose clusters
in the PC space. Rather than interpreting singleCellHaystack p-values in the
conventional definition, the ranking of genes is more relevant.
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As an illustration of the usage of singleCellHaystack, we here present 3 example results
of datasets based on different sequencing technologies. In all three cases, the
coordinates of cells in the first 50 PCs was used as input, along with the detection levels
of all genes in all cells.

Figure 2 summarizes the result of the Tabula Muris marrow tissue dataset (FACS-sorted
data). 5,250 cells and 13,756 genes were used as input, and the singleCellHaystack run
took 225s in the default mode. The t-SNE plot shows a typical mixture of clearly
separated as well as loosely connected groups of cells, with considerable variety in the
number of genes detected (Fig. 2A). The gene with the most significantly biased
expression was Stmnl, which is detected only in a subsets of cells (Fig. 2B). To
illustrate the variety in expression patterns, we grouped biased genes into 5 clusters
based on hierarchical clustering of their expression in the 50 PC input space
(Supplementary Fig. S6). Fig. 2C-F show the most significantly biased genes of the
other 4 groups.

Results for two other example datasets are shown in Supplementary Fig. S7 and S8.

3.3 Known cell type marker genes often have biased expression patterns
Focusing on results of haystack highD applied on the first 50 PCs of each dataset,
we investigated whether genes with strongly biased expression are often known marker
genes. For each dataset, we ranked genes by their p-value, and counted how often the
genes at each rank were high-confidence markers, low-confidence markers, or non-
marker genes (see Materials and methods). High-confidence marker genes (such as
Cd45 and Kit) were strongly enriched among top biased genes: although they comprise
only 2.2% of all genes, on average 32.4% of the top 50 ranked genes were high-
confidence cell type markers (Fig. 3).

3.4 The advanced mode takes into account general gene detection levels

In scRNA-seq data, there can be considerable variation in the number of detected genes
in each cell. In some datasets this results in clusters of cells with higher or lower general
detection levels. The “advanced” mode of singleCellHaystack can be used to find genes
that have biased expression patterns that are contrary to the general pattern of detected
genes. Figure 4 shows three example results, comparing the “advanced” mode to the
“default” mode. The top biased gene in the “advanced” mode is often expressed in cells
that have in general fewer detected genes.

3.5 Consistency of results

The definition of the grid points in haystack highD is not deterministic (see
Supplementary Material). As a result, grid points differ between each run. To evaluate
how much this impacts results, we ran haystack highD ten times on each dataset
using the first 5 PCs as input. For each dataset, we calculated the mean rank of each
gene in the results and compared the ranking in individual runs to the mean ranking. In
general, there was a high consistency in the ranking of genes, suggesting that the
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differences in grid points have only a limited impact on results (Supplementary Fig.
S9A).

In addition, we observed that the results of applications on 5 PCs were in general
consistent with applications of haystack 2D on t-SNE and UMAP coordinates (both
based on 50 PCs, Supplementary Fig. S9B-C), confirming that part of the information
contained in the first 50 PCs is indeed captured in the t-SNE and UMAP coordinates. In
contrast, there was Somewhat larger discrepancy with results using only the 2 first PC
coordinates as input (Supplementary Fig. S9D). Discrepancies increased as the
difference in input dimensionality increases (10 PCs < 15 PCs < 25 PCs < 50 PCs;
Supplementary Fig. SOE-H).

3.6 Comparison with other methods

Several computational methods for predicting DEGs exist (for example: 8, 11, 12), all
relying on a comparison between predefined groups of cells. When researchers have a
good prior knowledge of the cell types that are present in their sample, they can use the
expression of marker genes (RNA or protein level) to define groups of cells, and predict
DEGs by comparing between groups.

More typically, the subpopulations of cells in the data are not well known,

and exploratory analysis is needed. In this case, a typical workflow starts with the
definition of groups of cells, using for example clustering by the Louvain or Leiden
algorithms (24, 25). In a typical dataset of thousands or ten thousands of cells, this
results in between 5 to >20 clusters of cells. Subsequently, DEGs are usually predicted
by comparing each individual cluster to all other clusters together, thus biasing DEGs
towards genes that are expression exclusively in one or a few clusters. Naturally, a
comprehensive prediction of DEGs between combinations of clusters is not practical or
even feasible (ex: there are 190 pairs and 1,140 triplets of clusters in 20 clusters). On
top of that, there is an inherent difficulty in deciding a suitable number of clusters in
data that is high-dimensional and therefore hard to visualize. Finally, consistency
between DEG prediction methods has been reported to be low (14). In contrast,
singleCellHaystack works independently of any grouping or clustering of cells.

Here, we present a comparison between our method and the default test used in Seurat’s
FindAllMarkers function (Wilcoxon Rank Sum test), one of the most widely used
approaches. The median runtime of the Wilcoxon Rank Sum test on our 136 datasets
was 452 seconds, which is about 4 times slower than our method (paired t-test p-value
8.9e-10). singleCellHaystack runtimes were shorter in 125 out of the 136 datasets. The
FindAllMarkers runtimes did not depend so much on the number of cells in dataset (Fig.
S5E), but rather on the number of predicted clusters of cells (Fig. S5F).

As a representative case, we show the comparison between singleCellHaystack

and FindAllMarkers on the Tabula Muris marrow dataset (Fig. 5). In general, the
agreement between both methods was low (Fig. 5 top-left, Fig. S10). The top 100 high-
scoring genes of both approaches have only 3 genes in common (Fig. S10). To gain
understanding into the difference between a clustering-based approach
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(FindAlIMarkers) and the clustering-independent singleCellHaystack, we point out 7
example genes. For gene Ctla2a (Fig. 5A,H) both methods are in agreement; Ctla2a has
very high expression in a subset of cells and is not detected in most other subsets.

Some genes are judged to have significant differential expression by FindAlIMarkers
but less so by singleCellHaystack. Gene 12rb (Fig. 5B) is amongst the most significant
genes reported by FindAlIMarkers (p-values < 1e-300) but is not among the top ranked
genes according to singleCellHaystack. The expression of this gene has a strong fit with
the clusters underlying these results (Fig. S11). This trend continues with Grm8 and
Tnnil, which have high expression in a handful of cells within a single cluster (Fig.
5C,D and Fig. S11).

On the other hand, other genes are picked up by singleCellHaystack, but are not among
the top-ranking genes according to FindAllIMarkers (Fig. 5E,F,G). The most significant
DEG according to singleCellHaystack is Ramp1 (Fig. 5E, also shown in Fig. 2B). This
gene is expressed across roughly half of the clusters as decided by FindClusters (Fig.
S11), lowering its significance: Ramp1 is ranked 570" while Tnni1l is ranked 358"
according to FindAlIMarkers. A similar trend continues with Fbl and Nrgn, which have
clear differential expression patterns but are not detected by FindAllIMarkers.

These representative examples show that clustering-based approaches are likely to
overestimate the significance of DEGs whose expression pattern fits very closely with a
single cluster. These approaches are likely to miss DEGs whose expression is spread out
over several clusters. On the other hand, singleCellHaystack can detect any pattern of
differential expression, independently of clustering of cells. However, DEGs that are
expressed in only low numbers of cells (ex: Grm8) might be missed.

4 Conclusions

singleCellHaystack is a generally applicable method for finding genes with biased
expression patterns in multi-dimensional spaces. Although we have focused here on
single-cell transcriptome data analysis, it is also applicable on large numbers of bulk
assay samples, or on spatial transcriptome data. singleCellHaystack does not rely on
clustering of cells, thus avoiding biases caused by the arbitrary clustering of cells. It can
detect any non-random pattern of expression, and can be a useful tool for finding new
marker genes. The singleCellHaystack R package includes additional functions for
clustering and visualization of genes with interesting expression patterns.

As noted above, singleCellHaystack returns inflated p-values, because the input
coordinates (PCs, t-SNE or UMAP coordinates) are dimensions which contain a large
proportion of the variability in the original data. Clustering-based DEG prediction
methods appear to suffer from this problem even more, because of their double use of
gene expression data (for defining clusters and for DEG prediction) (13, 14). In future
updates we hope to address this issue.
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singleCellHaystack is implemented as an R package, available from
https://github.com/alexisvdb/singleCellHaystack. The repository includes additional
instructions for installation in R and example applications.
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Figure Legends
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Figure 1: Application of singleCellHaystack on an artificial dataset. (A) t-SNE plot
of the artificial dataset. Colors indicate cell groups (B) t-SNE plots for the five top-
scoring genes predicted by singleCellHaystack. (C) Scatterplot of p-values of our
approach (X-axis) and differential expression scores (Y-axis) of all genes. The five top-
scoring genes of (B) are indicated by arrows. The dotted line represents the p-value of
the manually added gene shown in (E). (D) Precision-recall curve of our method on this
artificial dataset. Positives were defined as genes with differential expression score >
0.3. (E) t-SNE plot of a manually constructed gene with no differential expression
between cell groups, but with a strongly biased expression pattern in the first and
second PC.
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Figure 2: Application of singleCellHaystack on marrow tissue dataset. (A) t-SNE
plot of the 5,250 cells. The color scale shows the number of genes detected in each cell.
(B-F) Expression patterns of five highly biased genes, representative of the five groups
in which the genes were clustered.
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Figure 3: Frequencies of markers genes among genes with biased expression
patterns. The frequencies of high-confidence (blue), low-confidence (orange), and non-
marker genes (grey) among genes with biased expression in all datasets. The X-axis
shows ranks in bins of 50 (ranks 1 to 50, ranks 51 to 100, etc).
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Figure 4: Example results of “default” versus “advanced” mode of
singleCellHaystack. A t-SNE plot (left), the most strongly biased gene in the default
mode (center) and advanced mode (right) are shown for (A) the Tabula Muris pancreas

(FACS-sorted data) (B) the Tabula Muris lung (P8 12; Microfluidic droplet) and (C) the
Mouse Cell Atlas small intestine 2 dataset.
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Figure 5: Comparison between singleCellHaystack and Seurat’s FindAlIMarkers
function on the Tabula Muris marrow tissue dataset. (top-left) Scatterplot of the p-
values estimated by FindAllIMarkers (X-axis) and singleCellHaystack (Y-axis) for all
13,756 genes in the dataset. 176 genes were given a p-value of 0 by FindAlIMarkers,
and are shown as p-value 1e-320. Expression patterns of indicated genes are shown in
(A-G) and summarized in (H).
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