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Abstract 
Summary: A common analysis of single-cell sequencing data includes dimensionality 

reduction using t-SNE or UMAP, clustering of cells, and identifying differentially 

expressed genes. How cell clusters are defined has important consequences in the 

interpretation of results and downstream analyses, but is often not straightforward. To 

address this difficulty, we present a new approach called singleCellHaystack that 

enables the identification of differentially expressed genes (DEGs) without relying on 

explicit clustering of cells. Our method uses Kullback-Leibler Divergence to find genes 

that are expressed in subsets of cells that are non-randomly positioned in a multi-

dimensional space. We illustrate the usage of singleCellHaystack through applications 

on several single-cell datasets, demonstrate that it enables the identification of markers 

important for cell subset separation in an unbiased way, and compare its results with 

those of a traditional, clustering-based DEG prediction method.  

Availability and implementation: singleCellHaystack is implemented as an R package 

and is available from https://github.com/alexisvdb/singleCellHaystack 

Contact: alexisvdb@infront.kyoto-u.ac.jp  

1 Introduction 
Recent advances in single-cell technologies enable us to assess the state of cells by 

measuring different modalities like RNA and protein expression with single cell 

resolution (1–5). Since the appearance of the first single-cell technologies, hundreds of 

bioinformatics tools have been developed to process, analyze and interpret the results 

from single cell omics data (6), such as Monocle2 and Seurat (7, 8).  

A standard protocol for analyzing single-cell data includes dimensionality reduction 

methods, such as PCA, t-distributed stochastic neighbor embedding (t-SNE) and 

Uniform Manifold Approximation and Projection (UMAP) to represent the data in 

fewer (typically 2) dimensions (9, 10). Finally, cells are clustered, and differentially 

expressed genes between the different clusters are identified. This approach for finding 
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differentially expressed genes by comparing between clusters is widely used in existing 

methods (8, 11, 12), and enables finding cluster-specific marker genes that facilitate 

labeling different cell populations. However, recent comparisons found that DEG 

prediction approaches for bulk RNA-seq do not generally perform worse than methods 

designed specifically for single-cell RNA-seq (scRNA-seq), and that agreement 

between existing methods is low (13, 14). Defining more flexible statistical frameworks 

for predicting complex patterns of differential expression is one of the grand challenges 

in single cell data analysis (15). 

One problem with clustering-based approaches for DEG prediction is that the definition 

of cell clusters is often not straightforward. The number of biologically relevant clusters 

naturally occurring in a dataset is often not obvious. The high-dimensionality of the data 

makes it hard to evaluate if the number of clusters and their borders make sense or if 

they are arbitrary. Furthermore, some cell sub-populations may not be clustered 

independently and their defining signature may end up being obscured within a larger 

cluster. This can be critically important for low abundance populations in experiments 

using unsorted cells from tissue, where only a few representative cells may be present. 

Thus, the clustering of cells has important consequences in the interpretation of results 

and downstream analyses. 

To address this problem we present singleCellHaystack, a methodology that uses 

Kullback-Leibler Divergence (𝐷𝐾𝐿; also called relative entropy) to find genes that are 

expressed in subsets of cells that are non-randomly positioned in a multi-dimensional 

(≥2D) space (16). In our approach, the distribution of cells expressing or not expressing 

each gene is compared to a reference distribution of all cells in the input space. From 

this, the 𝐷𝐾𝐿 of each gene is calculated, and compared with randomized data to evaluate 

its significance. Thus, singleCellHaystack does not rely on clustering of cells, and can 

identify differentially expressed genes in an unbiased way.  

An R package for running singleCellHaystack analysis and additional functions for 

visualization and clustering of genes is available at 

https://github.com/alexisvdb/singleCellHaystack. 

2 Materials and methods 
Our approach contains two main functions: haystack_2D and haystack_highD, 

for 2D and multi-dimensional (≥2D) input spaces, respectively. The concept of both 

functions is the same, and is briefly explained below. More details are given in 

Supplementary Material. We refer to Supplementary Fig. S1 for an overview of the 

workflow. 

2.1 singleCellHaystack methodology 
singleCellHaystack uses 𝐷𝐾𝐿 to estimate the difference between a reference distribution 

of all cells in a multi-dimensional space (distribution 𝑄) and the distributions of the 

cells in which a gene 𝐺 was detected (distribution 𝑃(𝐺 = 𝑇)) and not detected 

(distribution 𝑃(𝐺 = 𝐹)).  
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For 2D spaces (such as typical t-SNE or UMAP plots), haystack_2D divides the 2D 

space into a grid along both axes. For multi-dimensional spaces (such as the first several 

principal components), haystack_highD defines a set of grid points covering the 

subspace in which the cells are located (see Supplementary Material). 

Next, a Gaussian kernel is used to estimate the density of cells at each grid point. 

Summing the contributions of all cells gives us 𝑄; the subset of cells in which 𝐺 is 

detected gives us 𝑃(𝐺 = 𝑇); and the subset of cells in which 𝐺 was not detected gives 

us 𝑃(𝐺 = 𝐹). Each distribution is normalized to sum to 1. 

The divergence of gene 𝐺,  𝐷𝐾𝐿(𝐺), is calculated as follows: 

𝐷𝐾𝐿(𝐺) = ∑ ∑ 𝑃(𝐺 = 𝑠, 𝑥)log⁡(𝑃(𝐺=𝑠,𝑥)
𝑄(𝑥)

)𝑥∈𝑔𝑟𝑖𝑑⁡𝑝𝑜𝑖𝑛𝑡𝑠𝑠∈{𝑇,𝐹}      Eq. 1 

where 𝑃(𝐺 = 𝑠, 𝑥) and 𝑄(𝑥) are the values of 𝑃(𝐺 = 𝑠) and 𝑄 at grid point 𝑥, 

respectively. 

Finally, the significance of 𝐷𝐾𝐿(𝐺) is evaluated using randomizations, in which the 

expression levels of 𝐺 are randomly shuffled over all cells. The mean and standard 

deviation of 𝐷𝐾𝐿(𝐺) in randomized datasets follow a clear pattern in function of the 

number of cells in which a gene was detected (see Supplementary Fig. S2 for 

examples), which is modeled using B-splines (17). P-values are calculated by 

comparing the observed 𝐷𝐾𝐿(𝐺) to the predicted mean and standard deviation (log 

values). 

2.2 singleCellHaystack advanced options 
The distribution 𝑄 and the randomizations described above ignore the fact that some 

cells have more detected genes than others. singleCellHaystack can be run in an 

advanced mode, in which both the calculation of 𝑄 and the randomizations are done by 

weighting cells by their number of detected genes (see Supplementary Material for more 

details). 

In addition, singleCellHaystack includes functions for visualization and clustering gene 

expression patterns in the multi-dimensional space. 

2.3 scRNA-seq datasets and processing 
We downloaded processed data (read counts or unique molecular identifiers) of the 

Tabula Muris project (FACS-sorted cells: 20 sets; Microfluidic droplets: 28 sets), the 

Mouse Cell Atlas (Microwell-seq: 87 sets) and a dataset of several hematopoietic 

progenitor cell types (5, 18, 19). For each dataset, cells and genes were filtered, the 

1,000 most variable genes were selected, and dimensionality reduced using PCA. 

Subsequently, the first 50 Principal Components (PCs) were used as input for t-SNE 

and UMAP analysis, following the recommendations by Kobak and Berens (20). 

Finally, singleCellHaystack was run on both 2D (2D t-SNE and UMAP coordinates) 

and multi-dimensional (5, 10, 15, 25, or 50 PCs) representations of each dataset to find 

genes with biased expression patterns. 
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2.4 Known cell type marker genes 
We downloaded marker gene data from the CellMarker database (21). A total of 7,852 

unique mouse gene symbols are included as marker genes, which we split into 630 

“high-confidence” markers (reported in ≥5 publications), and 7,222 “low-confidence” 

markers (reported in 1 to 4 publications). Other genes we regarded as “non-marker” 

genes. 

2.5 Generating a simulated dataset 
We generated an artificial single-cell dataset using Splatter (22). This artificial data 

contained 10,000 genes in 2,000 cells divided into 5 “cell types” (using the 

method=“groups” setting in Splatter). Otherwise default parameters were used. After 

filtering out genes detected in less than 50, or more than 1,950 cells, 7,585 genes 

remained. Read counts were processed to counts per million in each cell, and the PCA 

was performed on the log-transformed data. The first 5 PCs were used as input for 

haystack_highD.  

The output of Splatter contains differential expression factors (“DEFac[Group]”), 

showing whether a gene has differential expression (factor different from 1) or not 

(factor = 1) in each group. We defined a “differential expression score” for each gene as 

the sum of the log2-transformed factors (Supplementary Fig. S3). We regarded the 1,857 

genes with scores > 0.3 as DEGs. A precision-recall curve was made using the ROCR 

package (version 1.0-7) in R (23). 

To the Splatter dataset we manually added a gene with a biased expression pattern that 

is independent of the 5 cell types. This gene had no expression in any cells, except in 

the 200 cells that are closest to cell No. 300 in the space defined by the 1st and 2nd PC 

(Supplementary Fig. S4). 

2.6 Predicting DEGs using Seurat’s FindAllMarkers function 
To compare runtimes and results of singleCellHaystack with those of Seurat (version 

3.1.0), we used the same 50 PCs of each dataset to define clusters of cells in the data 

using default options of the functions FindNeighbors and FindClusters (using the 

default Louvain algorithm). Next, DEGs were predicted between the resulting clusters 

of cells using the FindAllMarkers function. We used default options, except for options 

“only.pos = FALSE” and “return.thresh = 1” in order to obtain results that were 

comparable to those of singleCellHaystack. The default test used in FindAllMarkers is 

the Wilcoxon Rank Sum test. Runtimes of the FinallMarkers function were compared 

to those of our method. 

The above workflow results in a several p-values for every gene (1 p-value for the 

comparison of every cluster with all other clusters). For every gene, we retained the 

minimum p-value, and compared those to the p-values returned by singleCellHaystack. 
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3 Results and Discussion 

3.1 Application on simulated data 
To illustrate the validity of our approach, we applied singleCellHaystack on a simulated 

dataset containing 2,000 cells in 5 “groups” (i.e. simulated cell types; Fig. 1A). The 

inputs to our method were the coordinates of the 2,000 cells in the first five PCs, and the 

detection levels of 7,585 genes in these cells. singleCellHaystack successfully predicted 

DEGs (Fig. 1B-E), even though it works independently of cell clustering, and we did 

not provide it with the cell group data. The five top biased genes predicted by our 

method had clear non-random expression patterns (Fig. 1B). To get a more global view 

on the performance of singleCellHaystack we calculated a “differential expression 

score” for every gene based on the Splatter simulation data (see Materials and methods), 

reflecting the gene’s strength of differential expression. We confirmed that 

singleCellHaystack gave high scores to genes with strong biases in expression between 

the five cell groups (Fig. 1C), and that it could predict DEGs with high precision (Fig. 

1D). 

It should be noted that differential expression in the Splatter simulation data is 

completely group-based (i.e. there are no DE patterns that go beyond the cell grouping). 

To further illustrate that singleCellHaystack does not rely on grouping or clustering of 

cells, we manually added a gene with highly biased expression in the plane defined by 

the first and second PC, independent of the cell clusters (see Materials and methods, 

Fig. 1E and Supplementary Fig. S4). This highly biased DEG was correctly detected by 

singleCellHaystack, with a p-value of 8.7e-48 (red dotted line in Fig. 1C). This gene is 

not detected by methods relying on comparison between clusters of cells. 

These results show that singleCellHaystack can be used to detect DEGs in real single-

cell datasets, where cell groupings are often not obvious, without the need to group cells 

into arbitrary clusters. 

3.2 Application on real single-cell datasets 
We applied singleCellHaystack on 136 real scRNA-seq datasets of varying sizes (149 to 

19,693 cells). Median runtimes of haystack_highD with 50 PC inputs were and 102 

and 115 seconds using the simple and advanced mode, respectively. Runtimes followed 

an approximately linear function of the number of cells in each dataset (Supplementary 

Fig. S5A-B). Runtimes for 5, 10, 15, or 25 PC input were similar (not shown). Median 

runtimes for haystack_2D on 2D t-SNE coordinates were 75 and 84 seconds using 

the simple and advanced mode, respectively (Supplementary Fig. S5C-D). 

In all datasets, large numbers of genes were found to have significantly biased 

distributions in the input spaces. This observation in itself is not surprising, since 

samples typically include a variety of different cell types, often forming loose clusters 

in the PC space. Rather than interpreting singleCellHaystack p-values in the 

conventional definition, the ranking of genes is more relevant. 
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As an illustration of the usage of singleCellHaystack, we here present 3 example results 

of datasets based on different sequencing technologies. In all three cases, the 

coordinates of cells in the first 50 PCs was used as input, along with the detection levels 

of all genes in all cells. 

Figure 2 summarizes the result of the Tabula Muris marrow tissue dataset (FACS-sorted 

data). 5,250 cells and 13,756 genes were used as input, and the singleCellHaystack run 

took 225s in the default mode. The t-SNE plot shows a typical mixture of clearly 

separated as well as loosely connected groups of cells, with considerable variety in the 

number of genes detected (Fig. 2A). The gene with the most significantly biased 

expression was Stmn1, which is detected only in a subsets of cells (Fig. 2B). To 

illustrate the variety in expression patterns, we grouped biased genes into 5 clusters 

based on hierarchical clustering of their expression in the 50 PC input space 

(Supplementary Fig. S6). Fig. 2C-F show the most significantly biased genes of the 

other 4 groups. 

Results for two other example datasets are shown in Supplementary Fig. S7 and S8.  

3.3 Known cell type marker genes often have biased expression patterns 

Focusing on results of haystack_highD applied on the first 50 PCs of each dataset, 

we investigated whether genes with strongly biased expression are often known marker 

genes. For each dataset, we ranked genes by their p-value, and counted how often the 

genes at each rank were high-confidence markers, low-confidence markers, or non-

marker genes (see Materials and methods). High-confidence marker genes (such as 

Cd45 and Kit) were strongly enriched among top biased genes: although they comprise 

only 2.2% of all genes, on average 32.4% of the top 50 ranked genes were high-

confidence cell type markers (Fig. 3). 

3.4 The advanced mode takes into account general gene detection levels 
In scRNA-seq data, there can be considerable variation in the number of detected genes 

in each cell. In some datasets this results in clusters of cells with higher or lower general 

detection levels. The “advanced” mode of singleCellHaystack can be used to find genes 

that have biased expression patterns that are contrary to the general pattern of detected 

genes. Figure 4 shows three example results, comparing the “advanced” mode to the 

“default” mode. The top biased gene in the “advanced” mode is often expressed in cells 

that have in general fewer detected genes. 

3.5 Consistency of results 

The definition of the grid points in haystack_highD is not deterministic (see 

Supplementary Material). As a result, grid points differ between each run. To evaluate 

how much this impacts results, we ran haystack_highD ten times on each dataset 

using the first 5 PCs as input. For each dataset, we calculated the mean rank of each 

gene in the results and compared the ranking in individual runs to the mean ranking. In 

general, there was a high consistency in the ranking of genes, suggesting that the 
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differences in grid points have only a limited impact on results (Supplementary Fig. 

S9A).  

In addition, we observed that the results of applications on 5 PCs were in general 

consistent with applications of haystack_2D on t-SNE and UMAP coordinates (both 

based on 50 PCs, Supplementary Fig. S9B-C), confirming that part of the information 

contained in the first 50 PCs is indeed captured in the t-SNE and UMAP coordinates. In 

contrast, there was somewhat larger discrepancy with results using only the 2 first PC 

coordinates as input (Supplementary Fig. S9D). Discrepancies increased as the 

difference in input dimensionality increases (10 PCs < 15 PCs < 25 PCs < 50 PCs; 

Supplementary Fig. S9E-H).  

3.6 Comparison with other methods 
Several computational methods for predicting DEGs exist (for example: 8, 11, 12), all 

relying on a comparison between predefined groups of cells. When researchers have a 

good prior knowledge of the cell types that are present in their sample, they can use the 

expression of marker genes (RNA or protein level) to define groups of cells, and predict 

DEGs by comparing between groups.  

More typically, the subpopulations of cells in the data are not well known, 

and exploratory analysis is needed. In this case, a typical workflow starts with the 

definition of groups of cells, using for example clustering by the Louvain or Leiden 

algorithms (24, 25). In a typical dataset of thousands or ten thousands of cells, this 

results in between 5 to >20 clusters of cells. Subsequently, DEGs are usually predicted 

by comparing each individual cluster to all other clusters together, thus biasing DEGs 

towards genes that are expression exclusively in one or a few clusters. Naturally, a 

comprehensive prediction of DEGs between combinations of clusters is not practical or 

even feasible (ex: there are 190 pairs and 1,140 triplets of clusters in 20 clusters). On 

top of that, there is an inherent difficulty in deciding a suitable number of clusters in 

data that is high-dimensional and therefore hard to visualize. Finally, consistency 

between DEG prediction methods has been reported to be low (14). In contrast, 

singleCellHaystack works independently of any grouping or clustering of cells. 

Here, we present a comparison between our method and the default test used in Seurat’s 

FindAllMarkers function (Wilcoxon Rank Sum test), one of the most widely used 

approaches. The median runtime of the Wilcoxon Rank Sum test on our 136 datasets 

was 452 seconds, which is about 4 times slower than our method (paired t-test p-value 

8.9e-10). singleCellHaystack runtimes were shorter in 125 out of the 136 datasets. The 

FindAllMarkers runtimes did not depend so much on the number of cells in dataset (Fig. 

S5E), but rather on the number of predicted clusters of cells (Fig. S5F). 

As a representative case, we show the comparison between singleCellHaystack 

and FindAllMarkers on the Tabula Muris marrow dataset (Fig. 5). In general, the 

agreement between both methods was low (Fig. 5 top-left, Fig. S10). The top 100 high-

scoring genes of both approaches have only 3 genes in common (Fig. S10). To gain 

understanding into the difference between a clustering-based approach 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 8, 2019. ; https://doi.org/10.1101/557967doi: bioRxiv preprint 

https://doi.org/10.1101/557967
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

(FindAllMarkers) and the clustering-independent singleCellHaystack, we point out 7 

example genes. For gene Ctla2a (Fig. 5A,H) both methods are in agreement; Ctla2a has 

very high expression in a subset of cells and is not detected in most other subsets.  

Some genes are judged to have significant differential expression by FindAllMarkers 

but less so by singleCellHaystack. Gene Il2rb (Fig. 5B) is amongst the most significant 

genes reported by FindAllMarkers (p-values < 1e-300) but is not among the top ranked 

genes according to singleCellHaystack. The expression of this gene has a strong fit with 

the clusters underlying these results (Fig. S11). This trend continues with Grm8 and 

Tnni1, which have high expression in a handful of cells within a single cluster (Fig. 

5C,D and Fig. S11). 

On the other hand, other genes are picked up by singleCellHaystack, but are not among 

the top-ranking genes according to FindAllMarkers (Fig. 5E,F,G). The most significant 

DEG according to singleCellHaystack is Ramp1 (Fig. 5E, also shown in Fig. 2B). This 

gene is expressed across roughly half of the clusters as decided by FindClusters (Fig. 

S11), lowering its significance: Ramp1 is ranked 570th while Tnni1 is ranked 358th 

according to FindAllMarkers. A similar trend continues with Fbl and Nrgn, which have 

clear differential expression patterns but are not detected by FindAllMarkers. 

These representative examples show that clustering-based approaches are likely to 

overestimate the significance of DEGs whose expression pattern fits very closely with a 

single cluster. These approaches are likely to miss DEGs whose expression is spread out 

over several clusters. On the other hand, singleCellHaystack can detect any pattern of 

differential expression, independently of clustering of cells. However, DEGs that are 

expressed in only low numbers of cells (ex: Grm8) might be missed. 

4 Conclusions 
singleCellHaystack is a generally applicable method for finding genes with biased 

expression patterns in multi-dimensional spaces. Although we have focused here on 

single-cell transcriptome data analysis, it is also applicable on large numbers of bulk 

assay samples, or on spatial transcriptome data. singleCellHaystack does not rely on 

clustering of cells, thus avoiding biases caused by the arbitrary clustering of cells. It can 

detect any non-random pattern of expression, and can be a useful tool for finding new 

marker genes. The singleCellHaystack R package includes additional functions for 

clustering and visualization of genes with interesting expression patterns. 

As noted above, singleCellHaystack returns inflated p-values, because the input 

coordinates (PCs, t-SNE or UMAP coordinates) are dimensions which contain a large 

proportion of the variability in the original data. Clustering-based DEG prediction 

methods appear to suffer from this problem even more, because of their double use of 

gene expression data (for defining clusters and for DEG prediction) (13, 14). In future 

updates we hope to address this issue.  
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singleCellHaystack is implemented as an R package, available from 

https://github.com/alexisvdb/singleCellHaystack. The repository includes additional 

instructions for installation in R and example applications. 

Author contributions 
A.V. conceived of the project and methodology and ran the analyses. A.V. and D.D. 

implemented the methods and wrote the manuscript. 

Conflict of Interest: The authors declare that they have no competing interests. 

Acknowledgements 
We thank the members of the Lab. of Systems Virology (Kyoto University), the Lab. of 

Functional Analysis in silico (Tokyo University), Dr. Yutaro Kumagai and Prof. Wataru 

Fujibuchi for helpful discussions and advice.  

References 
1. Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., 

Bodeau, J., Tuch, B.B., Siddiqui, A., et al. (2009) mRNA-Seq whole-transcriptome 

analysis of a single cell. Nat. Methods, 6, 377–382. 

2. Hashimshony, T., Wagner, F., Sher, N. and Yanai, I. (2012) CEL-Seq: Single-Cell 

RNA-Seq by Multiplexed Linear Amplification. Cell Rep., 2, 666–673. 

3. Picelli, S., Björklund, Å.K., Faridani, O.R., Sagasser, S., Winberg, G. and Sandberg, 

R. (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single 

cells. Nat. Methods, 10, 1096–1100. 

4. Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, 

I., Bialas, A.R., Kamitaki, N., Martersteck, E.M., et al. (2015) Highly Parallel 

Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. 

Cell, 161, 1202–1214. 

5. Han, X., Wang, R., Zhou, Y., Fei, L., Sun, H., Lai, S., Saadatpour, A., Zhou, Z., 

Chen, H., Ye, F., et al. (2018) Mapping the Mouse Cell Atlas by Microwell-Seq. 

Cell, 172, 1091–1097. 

6. Zappia, L., Phipson, B. and Oshlack, A. (2018) Exploring the single-cell RNA-seq 

analysis landscape with the scRNA-tools database. PLoS Comput. Biol., 14. 

7. Qiu, X., Hill, A., Packer, J., Lin, D., Ma, Y. and Trapnell, C. (2017) Single-cell 

mRNA quantification and differential analysis with Census. Nat. Methods, 14, 

309–315. 

8. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. and Satija, R. (2018) Integrating 

single-cell transcriptomic data across different conditions, technologies, and 

species. Nat. Biotechnol., 36, 411–420. 

9. van der Maaten, L. and Hinton, G. (2008) Visualizing Data using t-SNE. J. Mach. 

Learn. Res., 9, 2579–2605. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 8, 2019. ; https://doi.org/10.1101/557967doi: bioRxiv preprint 

https://github.com/alexisvdb/singleCellHaystack
https://doi.org/10.1101/557967
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

10. McInnes, L., Healy, J. and Melville, J. (2018) UMAP : Uniform Manifold 

Approximation and Projection for Dimension Reduction. arxiv. 

11. Kharchenko, P. V, Silberstein, L. and Scadden, D.T. (2014) Bayesian approach to 

single-cell differential expression analysis. Nat. Methods, 11, 18–22. 

12. Finak, G., Mcdavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A.K., Slichter, 

C.K., Miller, H.W., Mcelrath, M.J., Prlic, M., et al. (2015) MAST: a flexible 

statistical framework for assessing transcriptional changes and characterizing 

heterogeneity in single-cell RNA sequencing data. Genome Biol., 16. 

13. Soneson, C. and Robinson, M.D. (2018) Bias, robustness and scalability in single-

cell differential expression analysis. Nat. Methods, 15, 255–261. 

14. Wang, T., Li, B., Nelson, C.E. and Nabavi, S. (2019) Comparative analysis of 

differential gene expression analysis tools for single-cell RNA sequencing data. 

BMC Bioinformatics, 20. 

15. Lähnemann, D., Köster, J., Szczurek, E., Mccarthy, D.J., Hicks, S.C., Robinson, 

M.D., Vallejos, C.A., Beerenwinkel, N., Campbell, K.R., Mahfouz, A., et al. 

(2019) 12 Grand Challenges in Single-Cell Data Science. PeerJ Prepr., 7, 

e27885v3. 

16. Kullback, S. and Leibler, R.A. (1951) On Information and Sufficiency. Ann. Math. 

Stat., 22, 79–86. 

17. Schoenberg, I.J. (1946) Contributions to the problem of approximation of 

equidistant data by analytic functions. Q. Appl. Math., 4, 45–99. 

18. Schaum, N., Karkanias, J., Neff, N.F., May, A.P., Quake, S.R., Wyss-Coray, T., 

Darmanis, S., Batson, J., Botvinnik, O., Chen, M.B., et al. (2018) Single-cell 

transcriptomics of 20 mouse organs creates a Tabula Muris. Nature, 562, 367–372. 

19. Nestorowa, S., Hamey, F.K., Pijuan Sala, B., Diamanti, E., Shepherd, M., Laurenti, 

E., Wilson, N.K., Kent, D.G. and Göttgens, B. (2016) A single-cell resolution map 

of mouse hematopoietic stem and progenitor cell differentiation. Blood, 128, e20–

e31. 

20. Kobak, D. and Berens, P. (2018) The art of using t-SNE for single-cell 

transcriptomics. bioRxiv, 10.1101/453449. 

21. Zhang, X., Lan, Y., Xu, J., Quan, F., Zhao, E., Deng, C., Luo, T., Xu, L., Liao, G., 

Yan, M., et al. (2019) CellMarker: a manually curated resource of cell markers in 

human and mouse. Nucleic Acids Res., 47, D721–D728. 

22. Zappia, L., Phipson, B. and Oshlack, A. (2017) Splatter: Simulation of single-cell 

RNA sequencing data. Genome Biol., 18, 1–15. 

23. Sing, T., Sander, O., Beerenwinkel, N. and Lengauer, T. (2005) ROCR: Visualizing 

classifier performance in R. Bioinformatics, 21, 3940–3941. 

24. Blondel, V.D., Guillaume, J.L., Lambiotte, R. and Lefebvre, E. (2008) Fast 

unfolding of communities in large networks. J. Stat. Mech. Theory Exp., 10008, 1–

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 8, 2019. ; https://doi.org/10.1101/557967doi: bioRxiv preprint 

https://doi.org/10.1101/557967
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

12. 

25. Traag, V.A., Waltman, L. and van Eck, N.J. (2019) From Louvain to Leiden: 

guaranteeing well-connected communities. Sci. Rep., 9, 5233. 

 

Figure Legends 

Figure 1: Application of singleCellHaystack on an artificial dataset. (A) t-SNE plot 

of the artificial dataset. Colors indicate cell groups (B) t-SNE plots for the five top-

scoring genes predicted by singleCellHaystack. (C) Scatterplot of p-values of our 

approach (X-axis) and differential expression scores (Y-axis) of all genes. The five top-

scoring genes of (B) are indicated by arrows. The dotted line represents the p-value of 

the manually added gene shown in (E). (D) Precision-recall curve of our method on this 

artificial dataset. Positives were defined as genes with differential expression score > 

0.3. (E) t-SNE plot of a manually constructed gene with no differential expression 

between cell groups, but with a strongly biased expression pattern in the first and 

second PC.  
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Figure 2: Application of singleCellHaystack on marrow tissue dataset. (A) t-SNE 

plot of the 5,250 cells. The color scale shows the number of genes detected in each cell. 

(B-F) Expression patterns of five highly biased genes, representative of the five groups 

in which the genes were clustered. 
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Figure 3: Frequencies of markers genes among genes with biased expression 

patterns. The frequencies of high-confidence (blue), low-confidence (orange), and non-

marker genes (grey) among genes with biased expression in all datasets. The X-axis 

shows ranks in bins of 50 (ranks 1 to 50, ranks 51 to 100, etc). 
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Figure 4: Example results of “default” versus “advanced” mode of 

singleCellHaystack. A t-SNE plot (left), the most strongly biased gene in the default 

mode (center) and advanced mode (right) are shown for (A) the Tabula Muris pancreas 

(FACS-sorted data) (B) the Tabula Muris lung (P8 12; Microfluidic droplet) and (C) the 

Mouse Cell Atlas small intestine 2 dataset.  
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Figure 5: Comparison between singleCellHaystack and Seurat’s FindAllMarkers 

function on the Tabula Muris marrow tissue dataset. (top-left) Scatterplot of the p-

values estimated by FindAllMarkers (X-axis) and singleCellHaystack (Y-axis) for all 

13,756 genes in the dataset. 176 genes were given a p-value of 0 by FindAllMarkers, 

and are shown as p-value 1e-320. Expression patterns of indicated genes are shown in 

(A-G) and summarized in (H). 
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