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 2

Highlight: We employ X-ray tomography, geometric and topological measurements, and 31 

physical simulations to characterize 3D inflorescences architectures, using wild grapevine as 32 

example. We interpret the variation for breeding objectives for Vitis. 33 

 34 

Abstract  35 

 36 

Inflorescence architecture provides the scaffold on which flowers and fruits develop, and 37 

consequently is a primary trait under investigation in many crop systems. Yet the challenge 38 

remains to analyze these complex 3D branching structures with appropriate tools. High 39 

information content data sets are required to represent the actual structure and facilitate full 40 

analysis of both the geometric and topological features relevant to phenotypic variation in order 41 

to clarify evolutionary and developmental inflorescence patterns. We combined advanced 42 

imaging (X-ray tomography) and computational approaches (topological and geometric data 43 

analysis and structural simulations) to comprehensively characterize grapevine inflorescence 44 

architecture (the rachis and all branches without berries) among 10 wild Vitis species. Clustering 45 

and correlation analyses revealed unexpected relationships, for example pedicel branch angles 46 

were largely independent of other traits. We identified multivariate traits that typified species, 47 

which allowed us to classify species with 78.3% accuracy, versus 10% by chance. Twelve traits 48 

had strong signals across phylogenetic clades, providing insight into the evolution of 49 

inflorescence architecture. We provide an advanced framework to quantify 3D inflorescence and 50 

other branched plant structures that can be used to tease apart subtle, heritable features for a 51 

better understanding of genetic and environmental effects on plant phenotypes. 52 

 53 

Key words: 3D architecture; inflorescence; morphology; persistent homology; phylogenetic 54 

analysis; topological data analysis; Vitis spp.; X-ray tomography  55 
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Introduction 56 

 57 

Inflorescences are major adaptations of the angiosperm lineage whose architectural variation 58 

affects fertilization, fruit development, dispersal, and crop yield (Wyatt, 1982; Hake, 2008; de 59 

Ribou et al., 2013; Kirchoff & Claßen-Bockhoff, 2013; Périlleux et al., 2014; Chanderbali et al., 60 

2016). These branched reproductive structures with multiple flowers reflect the extraordinary 61 

diversity across angiosperm species, from an ear of corn to palms with inflorescences measuring 62 

five meters long (Hodel et al., 2015). Yet seemingly simple processes give rise to these vastly 63 

different shapes - during development reproductive meristems may either switch to floral identity 64 

or proliferate additional inflorescence meristems and branches (Prusinkiewicz et al., 2007). 65 

Complex topologies reflect the evolution of this functional diversity, but have proven difficult to 66 

quantify with conventional tools.  67 

 68 

Detailed descriptions of inflorescences by trained experts are often unique to specific research 69 

communities or groups of taxa, and are not always readily transferable, hindering meaningful 70 

comparative analysis (Endress, 2010). Inflorescences are sometimes described typologically: 71 

indeterminate or determinate, simple or compound, as a raceme, cyme, panicle or spike, etc. 72 

(Wyatt, 1982; Weberling, 1992). Other approaches describe qualitative attributes of 73 

inflorescences such as the presence or absence of certain structures (Weberling, 1992; Doebley et 74 

al., 1997; Feng et al., 2011; Hertweck & Pires, 2014). A third method for characterizing 75 

inflorescences is through quantification of component structures (e.g., branch length, 76 

inflorescence length and width, angular traits; Kuijt, 1981; Marguerit et al., 2009; Landrein et 77 

al., 2012; Le et al., 2018). Although these classical quantitative approaches facilitate 78 

comparative statistical analyses, the three-dimensional (3D) complexity of inflorescences is 79 

largely undescribed. Furthermore, descriptions may be confounded by developmental stage at the 80 

time of measurement, and distinguishing between vegetative and reproductive branching 81 

structures can be difficult (Wyatt, 1982; Weberling, 1992; Guédon et al., 2001). Thus, new 82 

technological and analytical approaches that can represent comprehensive, multi-dimensional 83 

information about inflorescence diversity are needed to normalize and enrich analysis of these 84 

structures.  85 

 86 
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One promising approach for capturing 3D shapes of inflorescences and other plant structures is 87 

X-ray tomography (XRT). XRT generates high quality reconstructions of the internal and 88 

external shapes of plants, preserving nearly complete geometric and topological information in 89 

3D. These 3D digital models then can be used to extract quantitative data (features) from plant 90 

structures. X-rays have been used to quantify wheat and rice seed and inflorescence traits from 91 

intact samples for non-destructive yield calculations (Hughes et al., 2017; Jhala & Thaker, 92 

2015), internal anatomy of willow trees (Brereton et al., 2015), stem morphology and anatomy in 93 

sorghum (Gomez et al., 2018), root structure of barley seedlings (Pfeifer et al., 2015), leaf 94 

anatomy in monocots and dicots (Mathers et al., 2018) and dynamic starch accumulation in 95 

living grapevine stems (Earles et al., 2018), among others. Most critically, whereas manual 96 

measurements can be laborious and destructive, non-destructive sampling for XRT analysis 97 

facilitates comprehensive quantification of complex morphological traits.  98 

 99 

Quantifying complex shapes with XRT requires appropriate analytical approaches. Topological 100 

modeling, a mathematical field concerned with the connectedness of branching structures, can 101 

quantify inflorescence architecture by parsing geometric 3D structures into distinct, yet 102 

connected, components (Godin & Caraglio, 1998). Topological modeling has yielded important 103 

insights into inflorescence development, functional analysis, and crop improvement in a variety 104 

of plant species (e.g., Arabidopsis thaliana, Capsicum annuum, Malus pumila, and Triticum; 105 

Godin et al., 1999; Letort et al., 2006; Kang et al., 2009). While powerful, these reductionist 106 

approaches rely on an a priori understanding of the mechanisms that contribute to complexity 107 

(e.g., branching patterns), and lose power when shapes vary drastically from one another (e.g., 108 

comparing a corn tassel to a grape cluster). Approaches that capture emergent properties of 109 

complex structures without presupposing the importance of individual structural components are 110 

complementary to traditional topological models (Bucksch et al., 2017). 111 

 112 

An emerging mathematical approach to interpret topological models is persistent homology 113 

(PH). PH extracts morphological features from two- or three-dimensional representations and 114 

can be used to compare very different shapes. PH has been applied to explain a wide range of 115 

features including atomic structures, urban and forested areas, cancers, cell shapes, and jaw 116 

shape, among others (Edelsbrunner & Morozov, 2013). In plants, PH has been used to estimate 117 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/557819doi: bioRxiv preprint 

https://doi.org/10.1101/557819
http://creativecommons.org/licenses/by-nc/4.0/


 5

shapes that are otherwise difficult to measure including leaves, leaflet serration, spikelet shape, 118 

stomatal patterning, and root architecture (Li et al., 2018a,b; Haus et al., 2018; McAllister et al., 119 

2019; Migicovsky et al. 2018). Previous work showed that PH could capture more quantitative 120 

variation than traditional plant morphological measures (described above) resulting in the 121 

identification of otherwise latent quantitative trait loci (Li et al., 2018b). PH is especially well-122 

suited for quantifying branching topology as it can quantitatively summarize complex variation 123 

with a single measure (Li et al., 2017; Delory et al., 2018). Rachis, pedicel, and branches include 124 

inherently topological features that can be especially well-analyzed with PH-based methods. 125 

 126 

Grape clusters (or bunches) are branched structures supporting berries produced by grapevines 127 

(Vitis spp.) and are an ideal system in which to apply XRT and PH. Grape infructescences are 128 

historically, culturally, and economically important and vary extensively in nature and in 129 

cultivation (Iland et al., 2011). Cluster architecture determines bunch density, and is defined as 130 

“arrangement of berries in a cluster and the distribution of free space” (Richter et al., 2018). The 131 

density of berries in a cluster is an important breeding feature because it determines yield, wine 132 

character, and disease resistance (amount of air flow between berries is a primary determinant of 133 

pests and pathogens on the fruit). Cluster density is a characteristic identified by the 134 

Organization Internationale de la Vigne et du Vin, and varies from “berries clearly separated” 135 

(loose clusters) to “berries deformed by compression” (very dense clusters; OIV, 2001). As one 136 

of the primary determinants of yield, end-product characteristics, and disease resistance cluster 137 

architecture has been studied extensively in grapevine (reviewed in Tello & Ibáñez, 2018). These 138 

studies have shown that wine grape cultivars (Vitis vinifera) display distinct bunch densities 139 

(Shavrukov et al., 2004). However, less is known about cluster architecture in wild Vitis species, 140 

an important source of natural variation used by breeders in the development of hybrid grapevine 141 

varieties.  142 

 143 

Historically, researchers have focused on a suite of cluster traits such as cluster size, shape, 144 

weight, and density/compactness to characterize bunch density quantified in grapevines 145 

(Rovasenda, 1881; Pulliat, 1888; Bioletti, 1938; Galet, 1979; Bettiga, 2003). Measurements are 146 

made primarily using traditional tools including rulers, digital calipers, volume displacement, 147 

and/or through human judging panels. More recently, automated image-based approaches have 148 
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been implemented to capture aspects of cluster architecture in the lab and field (Ivorra et al., 149 

2015; Aquino et al., 2017, 2018; Rist et al., 2018). However, these image-based methods cannot 150 

penetrate the internal inflorescence structure. Therefore resulting models are based only the 151 

visible surface and the underlying topology cannot be fully captured, limiting an understanding 152 

of how inflorescence architecture and berry features co-vary. XRT and PH applications offer an 153 

important opportunity to understand grapevine bunch density through detailed analyses of 154 

inflorescence architecture. This work will deepen our understanding of natural variation of 155 

inflorescence structure, identify priority targets for breeding, and permit connecting 3D structure 156 

to underlying processes and genetics of inflorescence development. 157 

 158 

We use X-ray tomography, geometric measurements, persistent homology, and structural 159 

simulation to characterize wild grapevine inflorescence architecture. We target the branching 160 

architecture of the mature inflorescence: the rachis and all branches that remain following the 161 

removal of ripe berries (Fig. 1). Specifically, we aim to: 1) characterize variation in component 162 

traits of inflorescence architecture within and among Vitis species; 2) assess phylogenetic signals 163 

underlying inflorescence architecture traits; and 3) interpret inflorescence trait variation in the 164 

context of breeding objectives. This work represents an important advance for the 165 

characterization of 3D plant architecture using a powerful combined imaging and computational 166 

approach.  167 

 168 

Materials and methods 169 

 170 

Plant Material 171 

 172 

In this study, we sampled grapevine bunches from 136 unique genotypes representing 10 wild 173 

Vitis species living in the USDA germplasm repository system (Geneva, NY; Table 1, 174 

Supplementary Fig. S1). Grapevines have a paniculate inflorescence that consists of a rachis with 175 

several primary and secondary branches, tapering towards the terminus of the organ (Iland et al., 176 

2011). Wild grapevines are dioecious; consequently, unbalanced sample sizes for different 177 

species reflect numbers of female genotypes available in the germplasm collection. Each unique 178 

genotype is represented in the germplasm collection by two clonally replicated vines. For most 179 
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of the 136 genotypes, we collected a total of three clusters from the two clonal replicates 180 

combined, representing average cluster morphology. We avoided clusters that were visibly 181 

damaged or indirectly altered (e.g., tendril or trellis interference). For each vine, clusters were 182 

removed from separate canes at the point of peduncle attachment (Fig. 1A). In total, 392 clusters 183 

were collected in September 2016 when berries were soft, equivalent to EL38 developmental 184 

stage (Coombe, 1995; Fig. 1B). Berries were manually removed from clusters in the field, and 185 

the remaining inflorescence stalks (including rachis, branches, and pedicels; hereafter referred to 186 

as inflorescence or inflorescence architecture) were used to assess inflorescence architecture.  187 

 188 

X-ray tomography and data preprocessing 189 

 190 

Grapevine inflorescences were scanned at the Donald Danforth Plant Science Center (St. Louis, 191 

MO) using a North Star Imaging X5000 X-ray tomography instrument (NSI; Rogers, MN) 192 

equipped with a 16-bit Varian flat panel detector (1536 x 1920 pixels with 127um pixel pitch) 193 

and 225kV microfocus reflection target X-ray source. Each inflorescence was held between two 194 

pieces of construction-grade expanded polystyrene, clamped in a panavise, and positioned on the 195 

X-ray turntable in one of two configurations (Fig. 1C): 725mm from the source, generating 1.26x 196 

magnification and 101um voxel resolution, or 766mm from the source, generating 1.19x 197 

magnification and 107um voxel resolution. Each scan used X-ray wattage set to 60kV and 198 

1200uA at 10 frames per second, collecting 1200 16-bit TIFF projections over 360 degrees of 199 

rotation during a 2min continuous standard scan. Projections for each scan (Fig. 1D) were 200 

combined into a single 3D volume using NSI efX-CT software, converted to a density-based 201 

surface rendering Polygon file (PLY), and exported for analysis (Fig. 1E). The full PLY data set 202 

for this work is 7.85GB, and can be downloaded from: https://www.danforthcenter.org/scientists-203 

research/principal-investigators/chris-topp/resources. 204 

 205 

We exported the surface mesh data (.ply files) into Meshlab (v1.3.3, (Cignoni et al., 2008) and 206 

performed the following processing steps to remove topological noise: 1) deleted the vertices 207 

where branches touch using “Select Vertexes” and “Delete Selected vertices” filters; 2) removed 208 

duplicates and isolated vertices and faces using the filters “Remove Duplicated Vertex,” 209 
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“Remove Duplicate Faces,” “Remove Isolated pieces (wrt Diameter),” and “Remove 210 

Unreferenced Vertex.”  211 

 212 

Geometric inflorescence architecture traits 213 

 214 

We extracted 15 geometric traits from scanned inflorescences (Fig. 2, Supplementary Fig. S2). 215 

Detailed trait descriptions and calculations are explained in Supplementary Table S1. Trait 216 

illustrations, including examples of low and high values for each trait, are available in Fig. 2 and 217 

Supplementary Fig. S2. Traits were organized in one of three trait groups: global-size features, 218 

local-branching features, and size-invariant features (Table 2). PedicelDiameter and 219 

PedicelBranchAngle were measured using the software DynamicRoots (Symonova et al. 2015) 220 

on a subset of detected pedicels from the raw 3D volume data. All other traits were derived from 221 

Matlab algorithms. Branch length traits (i.e., TotalBranchLength, RachisLength, PedicelLength, 222 

and AvgBranchLength) were derived from the persistence barcode (see next subsection).  223 

 224 

Quantifying branching topology using persistent homology, a topological data analysis 225 

method 226 

 227 

Persistent homology measures shapes based on a tailored mathematical function, such as 228 

geodesic distance, which we used here to capture both curved length and topology of the 229 

branches (Fig. 3, Supplementary Video S1). The geodesic distance of a point is the length of the 230 

shortest curve connecting the point and the base (e.g. purple curves, Fig. 3A), where the tailored 231 

base can be set as the first node or ground level (the brown line in Fig. 3A). For each branch, the 232 

tip always has the largest geodesic distance from the base (Fig. 3B). A level represents the 233 

collection of points whose geodesic distances are the same (e.g. geodesic distance=90, pink 234 

curve in Fig. 3A). A superlevel set, for example, at 90, is all the points whose geodesic distances 235 

are greater than 90 (black branch tips, Fig. 3A). Changing the level value from largest to smallest 236 

(x axis, Fig. 3C), the sequence of nesting superlevel sets can be formed, which is named 237 

superlevel set filtration (top panel, Fig. 3C). During the change of the level value, bars record the 238 

connected components for each of the superlevel sets. When a new component arises, a new bar 239 

starts (e.g. at level 112, purple branch, Fig. 3C). When two components merge (e.g. at level 65, 240 
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orange branch merges into purple branch, Fig. 3C), the shorter bar stops (e.g. the orange bar 241 

stops at level 65, Fig. 3C). This bar graph, called the persistence barcode, summarizes 242 

topological information such as branching hierarchy, branch arrangement, and branch lengths. In 243 

our study, we set the base as the junction between peduncle and rachis (the lowermost node, 244 

indicated by a brown line in Fig. 1E, Fig. 3D, F) and use this base to compute the persistence 245 

barcode for the inflorescence architecture (Fig. 3E, G).  246 

 247 

The persistence barcode can be used to compare topological similarity between any two 248 

inflorescences. To compute pairwise distance among persistence barcodes for the entire 249 

inflorescence population, we used the bottleneck distance (Cohen-Steiner et al., 2007). 250 

Bottleneck distance is a robust metric that calculates the minimal cost to move bars from one 251 

persistence barcode to resemble another (Li et al., 2017). We performed multidimensional 252 

scaling (MDS) on the pairwise bottleneck distance matrix and projected the data into lower 253 

dimensional Euclidean space by preserving the pairwise distance as well as possible. The Matlab 254 

(R2017a) MDS function cmdscale() projects the data so that MD1 acts as PC1 representing the 255 

most variation. The first three PCs (MDs) explained about 80% of the total variation and were 256 

included as traits: PersistentHomology_PC1 (PH_PC1, explained about 54% variation), 257 

PersistentHomology_PC2 (PH_PC2, explained about 20% variation), and 258 

PersistentHomology_PC3 (PH_PC3, explained about 6% variation). Those traits not only 259 

measure the topological structure, but also relate to geometric variation (e.g. global size) as the 260 

data were not normalized (Fig. 2, Supplementary Table S1).  261 

 262 

Next, we normalized the persistence barcode by the TotalBranchLength (summation of the bar 263 

lengths) so that the TotalBranchLength was 1. By a similar procedure, we derived the first three 264 

PCs named PersistentHomologyNormalizedByTotalBranchLength_PC1 (PHn_PC1, explained 265 

about 45% variation), PersistentHomologyNormalizedByTotalBranchLength_PC2, (PHn_PC2, 266 

explained about 21% variation), and PersistentHomologyNormalizedByTotalBranchLength_PC3 267 

(PHn_PC3, explained about 7% variation) for the normalized inflorescence topological structure 268 

(Fig. 2, Supplementary Table S1).  269 

 270 
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Berry potential, an approach to indirectly explore the space limited by inflorescence 271 

architecture  272 

 273 

An ongoing question in grapevine cluster architecture is the relationship between inflorescence 274 

architecture and berry number and size. Inflorescence architecture is one of several factors 275 

determining the number of berries that can form, due to the number of pedicels and the available 276 

space for berry development. In this study, berries were removed because of concerns about 277 

berry integrity during transport from New York to Missouri, and the time between harvest and 278 

scanning. Instead of looking directly at berries on the cluster, we used inflorescence architecture 279 

as a starting point to simulate potential space available for berry growth by evaluating expanding 280 

spheres attached to pedicels. The extent of sphere expansion allowed by each pedicel is referred 281 

to as “berry potential” (Fig. 4, Supplementary Video S2).  282 

 283 

We first determined the growth direction for each berry potential based on the pedicel 284 

orientation. When spheres expand, the center moves along the pedicel direction (Fig. 4A). This 285 

step can be achieved by performing principal component analysis (PCA) on the near-berry 286 

segment of the pedicel. The first principal axis is the pedicel direction. We adjusted the arrow of 287 

the direction to make sure berry potential increases outward along the pedicel orientation. Then 288 

the berry potential increases until one of three situations is encountered (Fig. 4B): 1) if two berry 289 

potentials touch to each other, both berry potentials will stop increasing; 2) if a berry potential 290 

touches any part of the inflorescence, it will stop increasing; 3) if the diameter of the berry 291 

potential reaches the maximum size known for that species (Table 1), it will stop increasing. For 292 

each species, the maximum size is defined as the maximum berry diameter, a number estimated 293 

from known ranges of berry sizes for each species, based on values obtained from (Galet, 1988; 294 

Moore & Wen, 2016). 295 

 296 

Berry potential does not reflect true berry growth; rather, berry potential is a derived attribute of 297 

inflorescence architecture, an indirect estimate of the space potentially available for berry 298 

growth. It also does not account for the possibility of branches bending or otherwise becoming 299 

re-oriented due to pressure from growing berries. Berry potential is based on the number of 300 

neighbor pedicels, neighbor pedicel lengths, and neighbor pedicel mutual angles. Larger values 301 
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for berry potential are associated with fewer neighbor pedicels, and/or longer pedicel lengths, 302 

and/or larger mutual angles. From the berry potential simulation, we calculated three features, 303 

TotalBerryPotentialVolume, AvgBerryPotentialDiameter, and BerryPotentialTouchingDensity, 304 

which is the berry potential touching number (i.e., touching either another berry potential or any 305 

part of the inflorescence) divided by the number of berry potential (Fig. 2, Supplementary Table 306 

S1).  307 

 308 

Phylogenetic analysis 309 

 310 

Phylogenetic analyses were conducted to understand evolutionary trends in inflorescence 311 

architecture in Vitis. Single nucleotide polymorphism (SNP) markers were generated as part of a 312 

separate study of the USDA Grapevine Germplasm Reserve in Geneva, NY (Klein et al., 2018). 313 

The original dataset consisted of 304 individuals representing 19 species that were sequenced 314 

using genotyping-by-sequencing (GBS; Elshire et al., 2011). Briefly, Klein et al. (2018) filtered 315 

data to retain biallelic sites with a minimum allele frequency of 0.01, a minimum mean depth of 316 

coverage of 10x, and only sites with <20% missing data and individuals with <20% missing data. 317 

SNP data for 99 individuals from this study that were also genotyped in (Klein et al., 2018); 318 

Table 1) were extracted using custom scripts. We performed phylogenetic analysis on the 319 

sequence data extracted for 99 individuals using SVDquartets (Chifman & Kubatko, 2014), a 320 

maximum likelihood approach designed to address ascertainment bias associated with reduced 321 

representation sequencing techniques like GBS. We analyzed all possible quartets and carried 322 

out 100 bootstrap support runs (Supplementary Fig. S1) using PAUP* version 4.0a (Swofford, 323 

2003). The three main clades recovered in the tree were consistent with previous phylogenetic 324 

work in Vitis: 1) an Asian Clade (V. amurensis and V. coignetiae), 2) North American Clade I 325 

(V. riparia, V. acerifolia, and V. rupestris), and 3) North American Clade II (V. vulpina, V. 326 

cinerea, V. aestivalis, V. labrusca, and V. palmata) (Tröndle et al., 2010; Zecca et al., 2012; 327 

Miller et al., 2013; Zhang et al., 2015; Klein et al., 2018).  328 

 329 

To visualize trait distributions on a phylogenetic tree using branch lengths, we used Mega X 330 

(Kumar et al., 2018) to generate a neighbor joining tree with 2000 bootstrap replicates. All 331 

measurements were averaged across the three replicates per genotype to produce an average 332 
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value for each trait for each genotype. We computed Pagel’s lambda to estimate phylogenetic 333 

signal for each morphological trait and mapped each trait onto the phylogeny (Supplementary 334 

Fig. S3A-X) using the R package phytools (v. 0.6-44; Revell, 2012). We calculated variation of 335 

each morphological trait for each clade based on the mean value for each species (Supplementary 336 

Fig. S4).  337 

 338 

Statistical analysis 339 

 340 

PCA, MDS, and hierarchical cluster analysis generating a hierarchical tree were performed in 341 

Matlab using functions pca(), cmdscale(), and clustergram(). The R function cor.mtest() and 342 

package corrplot (Wei & Simko, 2017) were used for significance tests and correlation matrix 343 

visualization. The function lda() in R package MASS (Venables & Ripley, 2002) was used for 344 

the linear discriminant analysis (LDA) with a jackknifed ‘leave one out’ cross validation method.  345 

 346 

Code availability  347 

 348 

All Matlab functions used to calculate persistence barcodes, bottleneck distances, simulation for 349 

berry potential, other geometric features used in this study, and the script for extracting 350 

phylogenetic information can be found at the following GitHub repository: 351 

https://github.com/Topp-Roots-Lab/Grapevine-inflorescence-architecture.  352 

 353 

Results 354 

 355 

Inflorescence morphological variation and trait correlation within Vitis species 356 

 357 

We investigated 24 morphological traits (15 geometric traits, six PH traits, and three berry 358 

potential traits) of inflorescence architecture in 10 wild Vitis species (136 genotypes, 392 359 

samples) and detected wide variation in morphological features within and between species (Fig. 360 

2, Supplementary Fig. S2 and Table S2). In particular, of all the species examined, V. aestivalis 361 

has the largest variance for TotalBerryPotentialVolume. V. labrusca has the largest variance for 362 

ten traits (i.e., pedicel features, Sphericity, AvgBranchDiameter, AvgBerryPotentialDiameter, 363 
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and normalized topological traits). V. cinerea has the largest variance for six traits (i.e., most 364 

global-size features, PH_PC2, and PH_PC3). In comparison, V. palmata has smallest variance 365 

for eight traits (i.e. pedicel features, Sphericity, AvgBranchDiameter, 366 

TotalBerryPotentialVolume, PH_PC3, and PHn_PC3), as does V. amurensis (global-size 367 

features, RachisLength, PH_PC1, and PH_PC2). 368 

 369 

All traits were hierarchically clustered based on the mean trait values for each species, 370 

classifying traits into two main categories: mostly size-invariant + local-branching features 371 

(PHn_PC3 to PedicelLength), versus global-size features (AvgBranchLength to 372 

BerryPotentialTouchingDensity) (Fig. 5A). Hierarchical clustering (Fig. 5A) and pairwise 373 

correlation for morphological traits (Fig. 5B) show that global-size features 374 

(ConvexHullVolume, SurfaceArea, Volume, NumberOfPedicel, and TotalBranchLength), 375 

PH_PC1, and RachisLength are all highly positively correlated. We refer to these seven traits as 376 

size-associated features. Size-associated features are negatively correlated with 377 

PedicelLength/RachisLength, Solidity, Sphericity, and PHn_PC1. Some traits are relatively 378 

independent such as 2nd/LongestBranchLength, PedicelLength, PedicelBranchAngle, PH_PC2, 379 

PHn_PC2, and PHn_PC3 (Fig. 5B). PH_PC3 has some negative relation with size-invariant 380 

features. PHn_PC1 positively correlates with Sphericity, Solidity, and 381 

AvgeBerryPotentialDiameter (Fig. 5B). Pairwise correlations of morphological features 382 

(allometric relationships) for each of the species vary widely (Fig. 5C; for all traits see 383 

Supplementary Fig. S5A-X). For example, more pedicels typically result in smaller berry 384 

potential diameters, except for V. aestivalis. Longer branches tend to be thinner, except for V. 385 

coignetiae, and correlate with larger inflorescences, except in V. acerifolia.  386 

 387 

Hierarchical clustering of 10 Vitis species based on the 24 morphological traits resolved four 388 

groups: 1) V. cinerea, 2) V. aestivalis, 3) V. coignetiae/ V. vulpina/ V. palmata/ V. acerifolia/ V. 389 

riparia/ V. rupestris, and 4) V. amurensis/ V. labrusca (Fig. 5A). Among the 10 Vitis species 390 

examined in this study, the largest variance in mean trait values are seen in V. cinerea (Fig. 5A). 391 

V. cinerea samples are generally larger than those from the other species, as reflected in size-392 

associated traits. Topology traits such as PHn_PC3 and size-invariant traits like Sphericity and 393 

Solidity are lower in the mean trait value for V. cinerea than for other species. Similarly, mean 394 
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trait values are larger for size-associated traits in V. aestivalis (Fig. 5A). Compared to other 395 

species, topology and berry potential traits are larger in V. aestivalis. Mean trait values of the 396 

third group (V. coignetiae/ V. vulpina/ V. palmata/ V. acerifolia/ V. riparia/ V. rupestris, Fig. 5A) 397 

tend to be nearer to middle values compared to the other species. Within this group, V. 398 

acerifolia/ V. riparia/ V. rupestris typically are larger in the mean trait value for berry potential 399 

touching (i.e., denser berry potentials). These three species and V. palmata tend to have large, 400 

first primary branches (i.e., wings; Fig. 1E). V. coignetiae has thicker branches and V. vulpina 401 

has longer pedicels compared to other species in this group. The final group, V. amurensis and V. 402 

labrusca, have relatively smaller inflorescences with thicker branches compared to the other 403 

species sampled here. These general features are reflected in larger mean values for several size-404 

invariant and local-branching features and smaller mean values for many branch length 405 

dependent and size-associated features, respectively (Fig. 5A).  406 

 407 

Multivariate, discriminant analysis of Vitis species based on inflorescence architecture 408 

 409 

In order to understand how overall inflorescence architecture varies among Vitis species, we 410 

performed PCA using all 24 morphological features and all samples. PC1 explained 37.12% of 411 

the total variation in the measured architecture (Fig. 6A). The traits with the largest values for 412 

PC1 loadings, indicating that they contributed most to variation, are size-associated features, 413 

Solidity and Sphericity. PC2 explained 15.4% of the total variation in the measured inflorescence 414 

architecture, with variation primarily explained by local-branching features such as 415 

PedicalDiameter, PedicelLength, PedicelLength/RachisLength, AvgBranchLength, 416 

BranchDiameter, three berry potential traits, and PHn_PC1 (Fig. 6A). Although inflorescences 417 

from each species occupy different regions of morphospace, these regions overlap considerably. 418 

 419 

LDA performed on the first 18 PCs, explaining 99.5% of the variation, distinguished between 420 

species with a classification accuracy rate of 78.32%. A confusion matrix (Fig. 6B) shows the 421 

proportion of samples correctly predicted for each species. LD1 primarily separates V. cinerea, 422 

V. labrusca, and V. amurensis from the other species while LD2 primarily separates V. vulpina 423 

and V. coignetiae. The traits that are most important for distinguishing these species, as indicated 424 

by LD loadings, are TotalBerryPotentialVolume and PHn_PC1 for LD1, and AvgBranchLength 425 
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and AvgBerryPotentialDiameter for LD2 (Fig. 6B). The most important predictors for correctly 426 

separating any two species are shown as the grey scaled boxes in Supplementary Fig. S6 and 427 

Table S3. For example, BranchDiameter and PedicelDiameter are key when contrasting V. 428 

coignetiae and V. vulpina, suggesting that different branch thickness easily distinguishes these 429 

two species. This method correctly determined species classifications with 100% accuracy when 430 

contrasting V. aestivalis and V.cinerea, V. aestivalis and V.palmata, V. aestivalis and V. vulpina, 431 

V. amurensis and V. cinerea, V. amurensis and V. palmata, V. cinerea and V. coignetiae. Other 432 

combinations of species are harder to distinguish on the basis of inflorescence characters. For 433 

example, the classification accuracy rate was only 80% when distinguishing between V. 434 

amurensis and V. labrusca and 82% for V. aestivalis and V. coignetiae. 435 

 436 

Phylogenetic signal of inflorescence architecture within clades 437 

 438 

The phylogeny dataset (N=99) is generally well-supported at the species level and correlates well 439 

with current taxonomy. Using average trait values per individual, Pagel’s lambda shows 12 440 

morphological traits (seven size-associated features along with PedicelDiameter, 441 

TotalBerryPotentialVolume, Sphericity, PH_PC2, PHn_PC1) have strong phylogenetic signal 442 

(lambda>0.8, Fig. 7, Supplementary Table S4). While most species sampled tend to have small 443 

values for the seven size-associated features, V. aestivalis, V. cinerea, and V. vulpina tend to 444 

have values that are either close to median, or larger. On average, V. labrusca has larger values 445 

for Sphericity and PHn_PC1 compared to other species sampled, while V. cinerea generally has 446 

some of the smallest values for these traits. Only two morphological traits 447 

(2nd/LongBranchLength, lambda=0.06 and BerryPotentialTouchingDensity, lambda=0.25) lack 448 

phylogenetic signal (Fig.7, Supplementary Table S4).  449 

 450 

We observe differences in Vitis inflorescence architecture among clades and between species. 451 

For North American (NA) clade I (V. acerifolia, V. riparia, V. rupestris), variation in the 24 452 

morphological traits measured have similarly small values among species, particularly for 453 

several size-associated traits, although there is relatively large variation for PH_PC3 and 454 

BerryPotentialTouchingDensity (Fig. 7). Within NA Clade I, we observe differences among 455 

clade members for traits such as Sphericity and PHn_PC1 (larger in V. rupestris compared to 456 
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other clade members) and PedicelDiameter and BranchDiameter (slightly larger in V. acerifolia 457 

compared to other clade members; Fig. 7). NA Clade II appears to be more variable among clade 458 

members. V. cinerea has larger values for size-associated traits compared to clade members V. 459 

labrusca, V. palmata, and V. vulpina. Meanwhile, V. labrusca typically has larger values for 460 

local features (e.g., Sphericity, PedicelDiameter, AvgBerryPotentialDiameter, 461 

PedicelBranchAngle) compared to the other clade members (Fig. 7). 462 

 463 

We calculated the mean value for each species of each morphological trait to study variation 464 

within the three clades and detect subtle signatures (Fig. 7). We computed the variance for the 465 

multivariate trait (combining all the 24 traits), and each of these 24 traits for each clade 466 

(Supplementary Fig. S4, Supplementary Table S5). Overall, based on the samples used in this 467 

analysis, variance of the multivariate trait for the NA Clade I (variation=0.14) is much smaller 468 

than the NA Clade II (variation=0.64), while the variation for Asian Clade is 0.39. Some traits 469 

have almost no variance in Asian Clade such as PedicelDiameter, PHn_PC2, PH_PC3, and 470 

2nd/LongestBranchLength. However, North American species (8/~19 taxa) in this study are 471 

better represented than Asian species (2/~37 taxa), so we are cautious not to overinterpret this 472 

finding. Traits with the greatest variance in the Asian Clade included 473 

PedicelLength/RachisLength, RachisLength, and PH_PC1, while NA Clade I has greatest 474 

variance in PHn_PC2. All the other traits have greatest variance in the NA Clade II 475 

(Supplementary Fig. S4, Supplementary Table S5). Traits with the smallest variance in the Asian 476 

Clade included PHn_PC3, PHn_PC1, PedicelDiameter, BranchDiameter, NumberOfPedicel, 477 

2nd/LongestBranchLength, PH_PC3, and BerryPotentialTouchingDensity. The other traits had 478 

small variance in NA Clades I (Supplementary Fig. S4, Supplementary Table S5). Our results 479 

highlight clade-specific variation in inflorescence architecture for previously undescribed traits. 480 

 481 

Discussion  482 

 483 

Inflorescence architecture provides the scaffold on which flowers and fruits develop, and 484 

consequently is a primary trait under investigation in many crop systems. Studies extend into 485 

interspecific variation, pollen dispersal, genetic architecture, evolution, regulation, and 486 

development of inflorescence structures (e.g., Bradley et al., 1996; Friedman & Harder, 2004; 487 
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Kellogg, 2007; Morris et al., 2013; Han et al., 2014; Hodge & Kellogg, 2015; Whipple, 2017; 488 

Stitzer & Ross-Ibarra, 2018; Ta et al., 2018; Richter et al., 2018). Yet the challenge remains to 489 

analyze these complex 3D branching structures with appropriate tools. High resolution data sets 490 

are required to represent the actual structure and comprehensive analysis of both the geometric 491 

and topological features relevant to phenotypic variation and to clarify evolutionary and 492 

developmental inflorescence patterns.  493 

 494 

Our results demonstrate the power and potential of X-ray imaging and advanced morphometric 495 

analysis for investigating complex 3D phenotypic features. We analyzed the phenotypic variation 496 

in inflorescence architecture of 10 wild Vitis species using computer vision and an emerging 497 

biological shape analysis method, persistent homology, which allowed comprehensive 498 

comparisons of shape. Although samples analyzed here represent only a subset of the known 499 

variation in Vitis, which includes an estimated 60 species, our analyses demonstrate significant 500 

variation within and among Vitis species and among clades. Correlation analysis (Fig. 5B) 501 

revealed some unexpected relationships, for example pedicel branch angles were largely 502 

independent of other traits. It also shows that PH is a complementary feature, as it is relatively 503 

independent from most geometric features. We were able to assign widely differing architectures 504 

to biological species with high accuracy (Fig. 6) from the 24 different morphometric traits 505 

surveyed in this study. PH provides an important contribution to this discriminatory power, as 506 

does berry potential (Fig. 6B). We observed that traits such as the rachis length, the sum of all 507 

branches, the space encompassing the inflorescence architecture (ConvexHullVolume), and PH 508 

can be indicative of  species and clade (Fig. 7). Our results suggest meaningful, comprehensive 509 

information about the inflorescence structure was captured with a single measure (i.e., the 510 

persistence barcode) and that PH is a valuable method for quantifying and summarizing 511 

topological information.  512 

 513 

Persistent homology analysis has led to a deeper understanding of trait genetic variation and 514 

architecture in plants. Li et al. (2018a) used PH to analyze two-dimensional (2D) leaf shape and 515 

predicted family identity with accuracy greater than expected by chance in over 140 plant 516 

families, outperforming other widely-used methods of digital shape analysis. Li et al. (2018b) 517 

showed that PH-based, topological data analysis distinguished between genotypes and identified 518 
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many new quantitative trait loci (QTL) with 2D tomato leaf shape and root architecture data. 519 

This work sets a precedent for measuring observable, yet previously undescribed, phenotypes. In 520 

grapevine, QTL analysis indicates a genetic basis to inflorescence architecture and berry 521 

compactness (Correa et al., 2014; Richter et al., 2018). Deploying PH-based, topological 522 

modeling to grapevine mapping populations could lead to the rapid identification of additional 523 

inflorescence trait QTL for breeding. For example, we observed total branch length (a proxy for 524 

bigger or smaller clusters) correlates with number of pedicels (a proxy for berry number; Fig. 5), 525 

an informative relationship to assess potential yield. However, selecting for total branch length 526 

might lead to a negative correlation with the average berry potential diameter (i.e., smaller 527 

berries). Although this correlation may be desirable for wine grapes, it is not for table grapes.  528 

 529 

Grapevine cluster architecture is a composite feature that reflects multiple subtraits including 530 

stalk traits (inflorescence architecture) and berry features (Richter et al., 2018). OIV 204 uses 531 

“bunch: density” to describe variation in clusters, ranging from (1) berries clearly separated with 532 

many visible pedicels to (9) berries deformed by compression (OIV, 2001; Rombough, 2002). 533 

Other authors have deconstructed traits contributing to cluster architecture primarily through 534 

individual measurements taken by hand (e.g., Shavrukov et al., 2004; Tello et al., 2015; Zdunić 535 

et al., 2015; Tello & Ibáñez, 2018) and more recently, with image-based technologies (Cubero et 536 

al., 2014; Roscher et al., 2014; Ivorra et al., 2015; Aquino et al., 2017, 2018; Rist et al., 2018). 537 

Here, we are able to describe traits of interest that contribute greatly to the morphological 538 

features captured by the OIV scale (e.g., NumberOfPedicel, PedicelLength, PedicelBranchAngle, 539 

RachisLength, overall shape using PH; Fig. 2, Supplementary Fig. S2). This method could 540 

facilitate precision breeding for both whole inflorescence structure topology and specific 541 

desirable geometric traits.  542 

 543 

While several studies have quantified cluster structure in cultivated grapevines, similar studies of 544 

wild Vitis inflorescence architecture are lacking. Munson (1909) and Galet (1979) describe North 545 

American Vitis cluster structure qualitatively, commenting on compactness, size, shape, and the 546 

presence of large first primary branches (wings/shoulders). Taxonomic descriptions typically do 547 

not examine inflorescence architecture beyond categorical type, position on the vine, and the 548 

average number of berries per cluster (Comeaux et al., 1987; Moore, 1991; Moore & Wen, 549 
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2016). Descriptions of the position of the inflorescence are useful for identification and are 550 

included in dichotomous keys; however, to our knowledge, other inflorescence architecture traits 551 

have not been rigorously quantified among wild Vitis species. Although qualitative descriptions 552 

are valuable and accessible, powerful phenotyping tools are required to associate complex 553 

phenotypes with evolutionary and developmental patterns. 554 

 555 

Using 3D imaging and PH with a topological modeling approach, we identified attributes of 556 

inflorescence architecture that vary within and among Vitis species that, to our knowledge, have 557 

not been previously described. Differences in inflorescence architecture among clades mirror 558 

other phenotypic differences among members of North American Vitis. For example, members 559 

of NA Clade I (V. acerifolia, V. riparia, and V. rupestris) have small values for size-associated 560 

features (e.g., RachisLength, ConvexHullVolume, NumberOfPedicel, TotalBranchLength, 561 

SurfaceArea, Volume) and relatively large values for PH_PC3 and 562 

BerryPotentialTouchingDensity (Fig. 7). These species share suites of other morphological 563 

characters (nodal diaphragm, branch, and leaf surface traits, and large stipules; Moore 1991, 564 

Moore and Wen 2016, Klein et al., 2018). It is possible that among closely related species 565 

conserved pathways generate vegetative and reproductive similarities.  566 

 567 

Sample size is low for the Asian Clade and most of NA Clade II, limiting our ability to assess 568 

variation in these species; however, members of NA Clade II do not have suites of shared 569 

inflorescence traits (V. aestivalis, V. cinerea, V. labrusca, V. vulpina; Klein et al., 2018). Rather, 570 

V. labrusca has very small values for size-associated traits and larger values for local features 571 

compared to the other clade members, whereas V. cinerea has larger values for size-associated 572 

features and smaller values for local features (Fig. 7). This is consistent with the observation that 573 

aside from core phenotypic synapomorphies in the genus (tendril, bark, lenticel, and nodal 574 

diaphragm characters), members of NA Clade IIb (V. aestivalis, V. cinerea, V. labrusca, and V. 575 

vulpina) do not share morphological traits unique to the clade (Klein et al., 2018). These species 576 

mostly co-occur across their distributions (Callen et al., 2016) and additional sampling of Vitis 577 

taxa is necessary to further explore these complex evolutionary patterns. We observe V. 578 

amurensis grouping with V. labrusca and V. coignetiae grouping with North American species in 579 

hierarchical cluster analysis (Fig. 5A). The former two species have relatively smaller 580 
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inflorescence architectures with thicker branches compared to the other species sampled here. 581 

Taxonomic relationships among North American and Asian Vitis species have been historically 582 

challenging, with clades comprised of species with disjunct distributions (Mullins et al., 1992). 583 

Since current taxonomy resolves separate Asian and North American clades (Klein et al., 2018), 584 

morphological similarity between these species likely reflects convergent evolution.  585 

 586 

Future Directions  587 

 588 

Three-dimensional imaging through XRT and advanced mathematical approaches like persistent 589 

homology provide new ways to visualize and interpret complex biological structures including 590 

inflorescences, and to understand the genetic and environmental factors underlying variation in 591 

their architecture. In grapevines, cluster density is an important trait that is used to assess 592 

grapevine crop quality and to forecast yield, in part because of the association between bunch 593 

density and fungal infestations such as Botrytis (Hed et al., 2009; Iland et al., 2011; Molitor & 594 

Beyer, 2014; Molitor et al., 2018). This study expands on previous work identifying variation in 595 

inflorescence architecture among cultivars (Shavrukov et al., 2004), finding notable differences 596 

in cluster architecture among species. A logical next step may be to use 3D images and PH with 597 

topological modeling to trace the development of inflorescences across multiple growing seasons 598 

in a mapping population. Methods presented here are also amenable to scanning with berries, 599 

provided some noteworthy technical challenges are first addressed (e.g. minimizing berry 600 

damage and rotting during transportation, cluster stabilization during scanning, and segmentation 601 

of 3D volumes with features that vary widely in their X-ray absorbance). This work would 602 

provide a more complete representation of cluster structure, as well as inform our berry potential 603 

simulation with genotype-specific empirical data. We plan to develop predictive structural 604 

models of grapevine cluster development using these techniques. 605 

 606 

Imaging and shape analysis approaches presented here can also be used to tease apart subtle 607 

environmental influences on inflorescence architecture, and the major agronomic trait of bunch 608 

density. Identifying environmental effects on phenotypic variation has important implications 609 

both for vineyard management and the assessment of intra-clone variation across geographic 610 

space. Cluster compactness can be manipulated through a variety of agronomic practices 611 
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(Molitor et al. 2012; Gil et al. 2013; Frioni et al. 2017; Gourieroux et al. 2017; Poni et al. 2018; 612 

Reeve et al. 2018). Techniques described here can be used to quantify influences of specific 613 

treatments on cluster architecture. In addition, because grapevines are clonally propagated, 614 

clusters from the same widespread clones can be collected from different geographic locations, 615 

scanned and analyzed for variation. High resolution assessment of inflorescence architecture 616 

offers important insights into natural variation in bunch density and the genetic and 617 

environmental factors that influence it.  The capacity to capture 3D variation in this complex trait 618 

over space and time represents a promising advance for a valuable potential target of selection in 619 

one of the most economically important berry crops in the world.     620 

 621 

Supplementary data 622 

 623 

Fig. S1 A maximum likelihood phylogenetic tree for ten Vitis species. 624 

Fig. S2 Summary of inflorescence geometric and topological traits and the distribution for ten 625 

Vitis species. 626 

Fig. S3 Morphological traits mapped on the phylogenetic tree. 627 

Fig. S4. Variation for each clade.  628 

Fig. S5 Pairwise correlations of morphological traits (allometric relationships) showing linear 629 

regression lines for each species. 630 

Fig. S6 Pairwise species classification. 631 

Table S1. Trait description and calculation. 632 

Table S2. Trait variance for each species. 633 

Table S3. Trait loadings for two species classification. 634 

Table S4. Trait Pagel’s lambda for phylogenetic analysis. 635 

Table S5. Trait variation for each clade. 636 

Video S1 Illustration of quantifying branching topology using persistent homology. 637 

Video S2 Berry potential simulation 638 
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Table 1. Number of samples/individuals each species and berry information used in the study. 

 

  Number (N) Berry information (Galet (1988); Moore 
and Wen (2016)) 

  Samples Individuals Individuals used 
in phylogenetic 

analysis 

low diameter 
(mm) 

High diameter 
(mm) 

Berries 
per bunch 

V. acerifolia 32 11 9 8 12 >25 

V. aestivalis 5 2 1 8 20 >25 

V. amurensis 13 5 2 8 15 NA 

V. cinerea 45 15 13 4 8 >25 

V. coignetiae 6 2 1 NA 8 NA 

V. labrusca 62 22 12 12 23 <25 

V. palmata 3 1 1 8 10 >25 

V. riparia 158 53 48 8 12 >25 

V. rupestris 41 16 10 8 12 <25 

V. vulpina 27 9 2 8 12 >25 

Total 392 136 99       
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Table 2. Fifteen geometric traits were organized into three categories based on the type of shape 

information captured by the trait. See Table S1 for a more detailed description of each trait. 

 

Global-size features Local-branching features Size-invariant features 
Volume* RachisLength* Solidity 

ConvexHullVolume* PedicelLength Sphericity 
SurfaceArea* AvgBranchLength 2nd/LongestBranchLength 

TotalBranchLength* BranchDiameter PedicelLength/RachisLength 
NumberOfPedicel* PedicelDiameter 

PedicelBranchAngle 

 Size-associated features (traits with * +PH_PC1) 
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Figure Legends 

 

Fig. 1 Sample preparation and imaging. (A) The ten Vitis species sampled for this study display 

diverse grape bunch morphology. (B) Inflorescence architectures after berry removal. (C) Inside 

the X-ray tomography instrument; the inflorescence is clamped in a panavise between two pieces 

of polystyrene on the X-ray turntable. (D) Two dimensional radiogram of grape inflorescence; 

X-rays, absorbed or passing through the inflorescence, are detected to create a silhouette. (E) 

Three dimensional reconstruction and the structure of the same inflorescence shown in (D) by 

taking radiograms at successive different angles and then computationally combining the images. 

 

Fig. 2 Examples of inflorescence geometric and topological traits and their distribution for ten 

Vitis species. Each panel shows one of the three traits categories (geometric traits, topological 

traits, and berry potential traits). Geometric traits are organized as global size features, local 

branching features, and size-invariant features. Each trait is listed at the top of the column and 

two inflorescence examples demonstrating low and high trait values listed to the left. At the 

bottom of each column is a boxplot indicating the distribution and variance within the ten Vitis 

species, represented in different colors. On each box, each dot indicates an outlier if it is more 

than 1.5 interquartile ranges; the central vertical line indicates the median; the left and right 

edges of the box represent the 25th and 75th percentiles; and the whiskers extend to the most 

extreme nonoutlier data. The label for each species is listed in the boxplot y axis of the leftmost 

plot, with the number of individuals sampled for each species shown in parentheses. For a more 

complete example and detailed description of each trait, see Fig. S2 and Table S1. 

 

Fig. 3 Persistent homology with geodesic distance comprehensively quantifies branching 

structures. (A) A level (pink solid line) defined by the same geodesic distance (length of any of 

the purple curves, in this case, set to 90) to the base of the inflorescence. The super level set is 

the pixels (in black) having greater geodesic distance than the pink level. (B) Pixels on a 

branching structure are colored by their geodesic distance to the base. They are colored with red 

representing the most distant through to blue for the closest ones. (C) A persistence barcode for 

each branching structure records the connected components for each level set at each geodesic 

distance value. The “birth” and “death” values for each bar represent the level where each branch 
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starts and gets merged. Colored bars correspond to colored branches. (D) Above: example 

inflorescence. The stem is digitally cut at the base (brown line) where it meets the first branch. 

Below: 3D surface on the example inflorescence as in (B). (E) Persistence barcode for the 

inflorescence in (D). (F) and (G), similar to (D) and (E), show a different inflorescence 

architecture. 

 

Fig. 4 Berry potential simulation to explore the space determined by inflorescence architecture. 

(A) Determine the growth direction for each berry potential. (B) Expand berry potential by 

increasing the size and moving the center along the growth direction until it meets any of these 

three cases: 1) two berry potentials touch each other; 2) a berry potential touches any part of the 

inflorescence; 3) the diameter of the berry potential reaches the maximum for the species..  

 

 

Fig. 5 Hierarchical cluster analysis and correlation analysis. (A) Cluster analysis based the mean 

value for each trait of 10 Vitis species. The heatmap shows values above (red) or below (blue) 

the mean for each trait. The morphological traits (rows) are clustered hierarchically with the 

name shown on the right and hierarchical tree listed on the left. The species (columns) are also 

clustered hierarchically with the name and hierarchical tree shown at the top. (B) Correlation 

matrix plot shows pairwise positively stronger correlation (green and larger circle) or negatively 

stronger correlation (purple and larger circle). Non-significant correlations (p>0.05) are crossed 

out. The traits are ordered in the same way as (A). (C) Selected pairs of traits showing linear 

regression lines for each species.  

 

Fig. 6 Classification for ten Vitis species based on inflorescence architecture. (A) Left: Principal 

component analysis (PCA) plot on 24 morphological traits. The percent variance for each PC 

explained is shown in parentheses. Species are shown in different colors. Right: The loadings for 

the traits that contribute to the variance are shown. (B) Left: Linear discriminant analysis (LDA) 

plot on the first 18 PCs (99.5% variance). Species are shown in different colors. The confusion 

matrix for predicted species is shown in the upper right corner. Right: The loadings for the traits 

that best distinguish species from each other are shown. Using a jacknifed ‘leave one out’ cross 

validation, we obtain a 78.32% classification accuracy rate.  
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Fig. 7 Phylogenetic analysis. A Neighbor Joining phylogenetic tree for a subset of the Vitis data 

set (n=99). Node values denote bootstrap support for values greater than or equal to 50. Ten Vitis 

species are highlighted in different colored backgrounds. Three clades (Asian Clade, NA Clade I, 

and NA Clade II) are labeled and marked by vertical bars. The barplot showing values of Pagel’s 

lambda, an estimate of phylogenetic signal, overlaps with the trait name on the right top panel. 

Below each trait, a rainbow colormap shows the values for individuals (small values in red to 

large values in blue). Rectangles surround the trait value map for species with more than five 

individuals. One trait (PHn_PC1) was randomly selected to be projected onto the phylogenetic 

tree branches, and indicates trait variation (red, lower values; blue, higher values) within 

individuals and among clades.  
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