

1 **Characterizing grapevine 3D inflorescence architecture using X-ray imaging and advanced
2 morphometrics: implications for understanding cluster density**

3

4 **Running Title:** Characterizing grapevine 3D inflorescence architecture

5

6 Mao Li¹, Laura L. Klein^{1,2}, Keith E. Duncan¹, Ni Jiang¹, Daniel H. Chitwood^{3,4}, Jason Londo⁵,
7 Allison J. Miller^{1,2}, Christopher N. Topp^{1,*}

8

9 ¹Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132-2918,
10 USA

11 ²Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103-
12 2010, USA

13 ³Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA

14 ⁴Department of Computational Mathematics, Science and Engineering, Michigan State
15 University, East Lansing, MI, 48824, USA

16 ⁵United States Department of Agriculture, Agricultural Research Service: Grape Genetics
17 Research Unit, 630 West North Street, Geneva, NY 14456-1371, USA

18

19 *Corresponding author:

20 Christopher N. Topp

21 Tel: (314) 587-1609

22 Email: ctopp@danforthcenter.org

23

24 Mao Li, mli@danforthcenter.org

25 Laura L. Klein, laura.klein@slu.edu

26 Keith E. Duncan, kduncan@danforthcenter.org

27 Ni Jiang, njiang@danforthcenter.org

28 Daniel H. Chitwood, chitwoo9@msu.edu

29 Jason Londo, jason.londo@ars.usda.gov

30 Allison J. Miller, allison.j.miller@slu.edu

Date of submission	February 28, 2019
Number of tables	2
Number of figures	7 (all in colour in both print and online)
word count (excluding references, legends, supplementary data and author contributions)	6441
Number of supplementary data	13 (6 figures; 5 tables; 2 videos)

31 **Highlight:** We employ X-ray tomography, geometric and topological measurements, and
32 physical simulations to characterize 3D inflorescences architectures, using wild grapevine as
33 example. We interpret the variation for breeding objectives for *Vitis*.

34

35 **Abstract**

36

37 Inflorescence architecture provides the scaffold on which flowers and fruits develop, and
38 consequently is a primary trait under investigation in many crop systems. Yet the challenge
39 remains to analyze these complex 3D branching structures with appropriate tools. High
40 information content data sets are required to represent the actual structure and facilitate full
41 analysis of both the geometric and topological features relevant to phenotypic variation in order
42 to clarify evolutionary and developmental inflorescence patterns. We combined advanced
43 imaging (X-ray tomography) and computational approaches (topological and geometric data
44 analysis and structural simulations) to comprehensively characterize grapevine inflorescence
45 architecture (the rachis and all branches without berries) among 10 wild *Vitis* species. Clustering
46 and correlation analyses revealed unexpected relationships, for example pedicel branch angles
47 were largely independent of other traits. We identified multivariate traits that typified species,
48 which allowed us to classify species with 78.3% accuracy, versus 10% by chance. Twelve traits
49 had strong signals across phylogenetic clades, providing insight into the evolution of
50 inflorescence architecture. We provide an advanced framework to quantify 3D inflorescence and
51 other branched plant structures that can be used to tease apart subtle, heritable features for a
52 better understanding of genetic and environmental effects on plant phenotypes.

53

54 Key words: 3D architecture; inflorescence; morphology; persistent homology; phylogenetic
55 analysis; topological data analysis; *Vitis* spp.; X-ray tomography

56 **Introduction**

57

58 Inflorescences are major adaptations of the angiosperm lineage whose architectural variation
59 affects fertilization, fruit development, dispersal, and crop yield (Wyatt, 1982; Hake, 2008; de
60 Ribou *et al.*, 2013; Kirchoff & Claßen-Bockhoff, 2013; Périlleux *et al.*, 2014; Chanderbali *et al.*,
61 2016). These branched reproductive structures with multiple flowers reflect the extraordinary
62 diversity across angiosperm species, from an ear of corn to palms with inflorescences measuring
63 five meters long (Hodel *et al.*, 2015). Yet seemingly simple processes give rise to these vastly
64 different shapes - during development reproductive meristems may either switch to floral identity
65 or proliferate additional inflorescence meristems and branches (Prusinkiewicz *et al.*, 2007).
66 Complex topologies reflect the evolution of this functional diversity, but have proven difficult to
67 quantify with conventional tools.

68

69 Detailed descriptions of inflorescences by trained experts are often unique to specific research
70 communities or groups of taxa, and are not always readily transferable, hindering meaningful
71 comparative analysis (Endress, 2010). Inflorescences are sometimes described typologically:
72 indeterminate or determinate, simple or compound, as a raceme, cyme, panicle or spike, etc.
73 (Wyatt, 1982; Weberling, 1992). Other approaches describe qualitative attributes of
74 inflorescences such as the presence or absence of certain structures (Weberling, 1992; Doebley *et*
75 *al.*, 1997; Feng *et al.*, 2011; Hertweck & Pires, 2014). A third method for characterizing
76 inflorescences is through quantification of component structures (e.g., branch length,
77 inflorescence length and width, angular traits; Kuijt, 1981; Marguerit *et al.*, 2009; Landrein *et*
78 *al.*, 2012; Le *et al.*, 2018). Although these classical quantitative approaches facilitate
79 comparative statistical analyses, the three-dimensional (3D) complexity of inflorescences is
80 largely undescribed. Furthermore, descriptions may be confounded by developmental stage at the
81 time of measurement, and distinguishing between vegetative and reproductive branching
82 structures can be difficult (Wyatt, 1982; Weberling, 1992; Guédon *et al.*, 2001). Thus, new
83 technological and analytical approaches that can represent comprehensive, multi-dimensional
84 information about inflorescence diversity are needed to normalize and enrich analysis of these
85 structures.

86

87 One promising approach for capturing 3D shapes of inflorescences and other plant structures is
88 X-ray tomography (XRT). XRT generates high quality reconstructions of the internal and
89 external shapes of plants, preserving nearly complete geometric and topological information in
90 3D. These 3D digital models then can be used to extract quantitative data (features) from plant
91 structures. X-rays have been used to quantify wheat and rice seed and inflorescence traits from
92 intact samples for non-destructive yield calculations (Hughes *et al.*, 2017; Jhala & Thaker,
93 2015), internal anatomy of willow trees (Brereton *et al.*, 2015), stem morphology and anatomy in
94 sorghum (Gomez *et al.*, 2018), root structure of barley seedlings (Pfeifer *et al.*, 2015), leaf
95 anatomy in monocots and dicots (Mathers *et al.*, 2018) and dynamic starch accumulation in
96 living grapevine stems (Earles *et al.*, 2018), among others. Most critically, whereas manual
97 measurements can be laborious and destructive, non-destructive sampling for XRT analysis
98 facilitates comprehensive quantification of complex morphological traits.

99

100 Quantifying complex shapes with XRT requires appropriate analytical approaches. Topological
101 modeling, a mathematical field concerned with the connectedness of branching structures, can
102 quantify inflorescence architecture by parsing geometric 3D structures into distinct, yet
103 connected, components (Godin & Caraglio, 1998). Topological modeling has yielded important
104 insights into inflorescence development, functional analysis, and crop improvement in a variety
105 of plant species (e.g., *Arabidopsis thaliana*, *Capsicum annuum*, *Malus pumila*, and *Triticum*;
106 Godin *et al.*, 1999; Letort *et al.*, 2006; Kang *et al.*, 2009). While powerful, these reductionist
107 approaches rely on an a priori understanding of the mechanisms that contribute to complexity
108 (e.g., branching patterns), and lose power when shapes vary drastically from one another (e.g.,
109 comparing a corn tassel to a grape cluster). Approaches that capture emergent properties of
110 complex structures without presupposing the importance of individual structural components are
111 complementary to traditional topological models (Bucksch *et al.*, 2017).

112

113 An emerging mathematical approach to interpret topological models is persistent homology
114 (PH). PH extracts morphological features from two- or three-dimensional representations and
115 can be used to compare very different shapes. PH has been applied to explain a wide range of
116 features including atomic structures, urban and forested areas, cancers, cell shapes, and jaw
117 shape, among others (Edelsbrunner & Morozov, 2013). In plants, PH has been used to estimate

118 shapes that are otherwise difficult to measure including leaves, leaflet serration, spikelet shape,
119 stomatal patterning, and root architecture (Li *et al.*, 2018a,b; Haus *et al.*, 2018; McAllister *et al.*,
120 2019; Migicovsky *et al.* 2018). Previous work showed that PH could capture more quantitative
121 variation than traditional plant morphological measures (described above) resulting in the
122 identification of otherwise latent quantitative trait loci (Li *et al.*, 2018b). PH is especially well-
123 suited for quantifying branching topology as it can quantitatively summarize complex variation
124 with a single measure (Li *et al.*, 2017; Delory *et al.*, 2018). Rachis, pedicel, and branches include
125 inherently topological features that can be especially well-analyzed with PH-based methods.

126

127 Grape clusters (or bunches) are branched structures supporting berries produced by grapevines
128 (*Vitis* spp.) and are an ideal system in which to apply XRT and PH. Grape infructescences are
129 historically, culturally, and economically important and vary extensively in nature and in
130 cultivation (Iland *et al.*, 2011). Cluster architecture determines bunch density, and is defined as
131 “arrangement of berries in a cluster and the distribution of free space” (Richter *et al.*, 2018). The
132 density of berries in a cluster is an important breeding feature because it determines yield, wine
133 character, and disease resistance (amount of air flow between berries is a primary determinant of
134 pests and pathogens on the fruit). Cluster density is a characteristic identified by the
135 Organization Internationale de la Vigne et du Vin, and varies from “berries clearly separated”
136 (loose clusters) to “berries deformed by compression” (very dense clusters; OIV, 2001). As one
137 of the primary determinants of yield, end-product characteristics, and disease resistance cluster
138 architecture has been studied extensively in grapevine (reviewed in Tello & Ibáñez, 2018). These
139 studies have shown that wine grape cultivars (*Vitis vinifera*) display distinct bunch densities
140 (Shavrukov *et al.*, 2004). However, less is known about cluster architecture in wild *Vitis* species,
141 an important source of natural variation used by breeders in the development of hybrid grapevine
142 varieties.

143

144 Historically, researchers have focused on a suite of cluster traits such as cluster size, shape,
145 weight, and density/compactness to characterize bunch density quantified in grapevines
146 (Rovasenda, 1881; Pulliat, 1888; Bioletti, 1938; Galet, 1979; Bettiga, 2003). Measurements are
147 made primarily using traditional tools including rulers, digital calipers, volume displacement,
148 and/or through human judging panels. More recently, automated image-based approaches have

149 been implemented to capture aspects of cluster architecture in the lab and field (Ivorra *et al.*,
150 2015; Aquino *et al.*, 2017, 2018; Rist *et al.*, 2018). However, these image-based methods cannot
151 penetrate the internal inflorescence structure. Therefore resulting models are based only the
152 visible surface and the underlying topology cannot be fully captured, limiting an understanding
153 of how inflorescence architecture and berry features co-vary. XRT and PH applications offer an
154 important opportunity to understand grapevine bunch density through detailed analyses of
155 inflorescence architecture. This work will deepen our understanding of natural variation of
156 inflorescence structure, identify priority targets for breeding, and permit connecting 3D structure
157 to underlying processes and genetics of inflorescence development.

158

159 We use X-ray tomography, geometric measurements, persistent homology, and structural
160 simulation to characterize wild grapevine inflorescence architecture. We target the branching
161 architecture of the mature inflorescence: the rachis and all branches that remain following the
162 removal of ripe berries (Fig. 1). Specifically, we aim to: 1) characterize variation in component
163 traits of inflorescence architecture within and among *Vitis* species; 2) assess phylogenetic signals
164 underlying inflorescence architecture traits; and 3) interpret inflorescence trait variation in the
165 context of breeding objectives. This work represents an important advance for the
166 characterization of 3D plant architecture using a powerful combined imaging and computational
167 approach.

168

169 **Materials and methods**

170

171 **Plant Material**

172

173 In this study, we sampled grapevine bunches from 136 unique genotypes representing 10 wild
174 *Vitis* species living in the USDA germplasm repository system (Geneva, NY; Table 1,
175 Supplementary Fig. S1). Grapevines have a paniculate inflorescence that consists of a rachis with
176 several primary and secondary branches, tapering towards the terminus of the organ (Illand *et al.*,
177 2011). Wild grapevines are dioecious; consequently, unbalanced sample sizes for different
178 species reflect numbers of female genotypes available in the germplasm collection. Each unique
179 genotype is represented in the germplasm collection by two clonally replicated vines. For most

180 of the 136 genotypes, we collected a total of three clusters from the two clonal replicates
181 combined, representing average cluster morphology. We avoided clusters that were visibly
182 damaged or indirectly altered (e.g., tendril or trellis interference). For each vine, clusters were
183 removed from separate canes at the point of peduncle attachment (Fig. 1A). In total, 392 clusters
184 were collected in September 2016 when berries were soft, equivalent to EL38 developmental
185 stage (Coombe, 1995; Fig. 1B). Berries were manually removed from clusters in the field, and
186 the remaining inflorescence stalks (including rachis, branches, and pedicels; hereafter referred to
187 as inflorescence or inflorescence architecture) were used to assess inflorescence architecture.

188

189 **X-ray tomography and data preprocessing**

190

191 Grapevine inflorescences were scanned at the Donald Danforth Plant Science Center (St. Louis,
192 MO) using a North Star Imaging X5000 X-ray tomography instrument (NSI; Rogers, MN)
193 equipped with a 16-bit Varian flat panel detector (1536 x 1920 pixels with 127um pixel pitch)
194 and 225kV microfocus reflection target X-ray source. Each inflorescence was held between two
195 pieces of construction-grade expanded polystyrene, clamped in a panavise, and positioned on the
196 X-ray turntable in one of two configurations (Fig. 1C): 725mm from the source, generating 1.26x
197 magnification and 101um voxel resolution, or 766mm from the source, generating 1.19x
198 magnification and 107um voxel resolution. Each scan used X-ray wattage set to 60kV and
199 1200uA at 10 frames per second, collecting 1200 16-bit TIFF projections over 360 degrees of
200 rotation during a 2min continuous standard scan. Projections for each scan (Fig. 1D) were
201 combined into a single 3D volume using NSI efX-CT software, converted to a density-based
202 surface rendering Polygon file (PLY), and exported for analysis (Fig. 1E). The full PLY data set
203 for this work is 7.85GB, and can be downloaded from: <https://www.danforthcenter.org/scientists-research/principal-investigators/chris-topp/resources>.

205

206 We exported the surface mesh data (.ply files) into Meshlab (v1.3.3, (Cignoni *et al.*, 2008) and
207 performed the following processing steps to remove topological noise: 1) deleted the vertices
208 where branches touch using “Select Vertices” and “Delete Selected vertices” filters; 2) removed
209 duplicates and isolated vertices and faces using the filters “Remove Duplicated Vertex,”

210 “Remove Duplicate Faces,” “Remove Isolated pieces (wrt Diameter),” and “Remove
211 Unreferenced Vertex.”

212

213 **Geometric inflorescence architecture traits**

214

215 We extracted 15 geometric traits from scanned inflorescences (Fig. 2, Supplementary Fig. S2).
216 Detailed trait descriptions and calculations are explained in Supplementary Table S1. Trait
217 illustrations, including examples of low and high values for each trait, are available in Fig. 2 and
218 Supplementary Fig. S2. Traits were organized in one of three trait groups: global-size features,
219 local-branching features, and size-invariant features (Table 2). PedicelDiameter and
220 PedicelBranchAngle were measured using the software DynamicRoots (Symonova et al. 2015)
221 on a subset of detected pedicels from the raw 3D volume data. All other traits were derived from
222 Matlab algorithms. Branch length traits (i.e., TotalBranchLength, RachisLength, PedicelLength,
223 and AvgBranchLength) were derived from the persistence barcode (see next subsection).

224

225 **Quantifying branching topology using persistent homology, a topological data analysis 226 method**

227

228 Persistent homology measures shapes based on a tailored mathematical function, such as
229 geodesic distance, which we used here to capture both curved length and topology of the
230 branches (Fig. 3, Supplementary Video S1). The geodesic distance of a point is the length of the
231 shortest curve connecting the point and the base (e.g. purple curves, Fig. 3A), where the tailored
232 base can be set as the first node or ground level (the brown line in Fig. 3A). For each branch, the
233 tip always has the largest geodesic distance from the base (Fig. 3B). A level represents the
234 collection of points whose geodesic distances are the same (e.g. geodesic distance=90, pink
235 curve in Fig. 3A). A superlevel set, for example, at 90, is all the points whose geodesic distances
236 are greater than 90 (black branch tips, Fig. 3A). Changing the level value from largest to smallest
237 (x axis, Fig. 3C), the sequence of nesting superlevel sets can be formed, which is named
238 superlevel set filtration (top panel, Fig. 3C). During the change of the level value, bars record the
239 connected components for each of the superlevel sets. When a new component arises, a new bar
240 starts (e.g. at level 112, purple branch, Fig. 3C). When two components merge (e.g. at level 65,

241 orange branch merges into purple branch, Fig. 3C), the shorter bar stops (e.g. the orange bar
242 stops at level 65, Fig. 3C). This bar graph, called the persistence barcode, summarizes
243 topological information such as branching hierarchy, branch arrangement, and branch lengths. In
244 our study, we set the base as the junction between peduncle and rachis (the lowermost node,
245 indicated by a brown line in Fig. 1E, Fig. 3D, F) and use this base to compute the persistence
246 barcode for the inflorescence architecture (Fig. 3E, G).

247

248 The persistence barcode can be used to compare topological similarity between any two
249 inflorescences. To compute pairwise distance among persistence barcodes for the entire
250 inflorescence population, we used the bottleneck distance (Cohen-Steiner *et al.*, 2007).
251 Bottleneck distance is a robust metric that calculates the minimal cost to move bars from one
252 persistence barcode to resemble another (Li *et al.*, 2017). We performed multidimensional
253 scaling (MDS) on the pairwise bottleneck distance matrix and projected the data into lower
254 dimensional Euclidean space by preserving the pairwise distance as well as possible. The Matlab
255 (R2017a) MDS function cmdscale() projects the data so that MD1 acts as PC1 representing the
256 most variation. The first three PCs (MDs) explained about 80% of the total variation and were
257 included as traits: PersistentHomology_PC1 (PH_PC1, explained about 54% variation),
258 PersistentHomology_PC2 (PH_PC2, explained about 20% variation), and
259 PersistentHomology_PC3 (PH_PC3, explained about 6% variation). Those traits not only
260 measure the topological structure, but also relate to geometric variation (e.g. global size) as the
261 data were not normalized (Fig. 2, Supplementary Table S1).

262

263 Next, we normalized the persistence barcode by the TotalBranchLength (summation of the bar
264 lengths) so that the TotalBranchLength was 1. By a similar procedure, we derived the first three
265 PCs named PersistentHomologyNormalizedByTotalBranchLength_PC1 (PHn_PC1, explained
266 about 45% variation), PersistentHomologyNormalizedByTotalBranchLength_PC2, (PHn_PC2,
267 explained about 21% variation), and PersistentHomologyNormalizedByTotalBranchLength_PC3
268 (PHn_PC3, explained about 7% variation) for the normalized inflorescence topological structure
269 (Fig. 2, Supplementary Table S1).

270

271 **Berry potential, an approach to indirectly explore the space limited by inflorescence**
272 **architecture**

273

274 An ongoing question in grapevine cluster architecture is the relationship between inflorescence
275 architecture and berry number and size. Inflorescence architecture is one of several factors
276 determining the number of berries that can form, due to the number of pedicels and the available
277 space for berry development. In this study, berries were removed because of concerns about
278 berry integrity during transport from New York to Missouri, and the time between harvest and
279 scanning. Instead of looking directly at berries on the cluster, we used inflorescence architecture
280 as a starting point to simulate potential space available for berry growth by evaluating expanding
281 spheres attached to pedicels. The extent of sphere expansion allowed by each pedicel is referred
282 to as “berry potential” (Fig. 4, Supplementary Video S2).

283

284 We first determined the growth direction for each berry potential based on the pedicel
285 orientation. When spheres expand, the center moves along the pedicel direction (Fig. 4A). This
286 step can be achieved by performing principal component analysis (PCA) on the near-berry
287 segment of the pedicel. The first principal axis is the pedicel direction. We adjusted the arrow of
288 the direction to make sure berry potential increases outward along the pedicel orientation. Then
289 the berry potential increases until one of three situations is encountered (Fig. 4B): 1) if two berry
290 potentials touch to each other, both berry potentials will stop increasing; 2) if a berry potential
291 touches any part of the inflorescence, it will stop increasing; 3) if the diameter of the berry
292 potential reaches the maximum size known for that species (Table 1), it will stop increasing. For
293 each species, the maximum size is defined as the maximum berry diameter, a number estimated
294 from known ranges of berry sizes for each species, based on values obtained from (Galet, 1988;
295 Moore & Wen, 2016).

296

297 Berry potential does not reflect true berry growth; rather, berry potential is a derived attribute of
298 inflorescence architecture, an indirect estimate of the space potentially available for berry
299 growth. It also does not account for the possibility of branches bending or otherwise becoming
300 re-oriented due to pressure from growing berries. Berry potential is based on the number of
301 neighbor pedicels, neighbor pedicel lengths, and neighbor pedicel mutual angles. Larger values

302 for berry potential are associated with fewer neighbor pedicels, and/or longer pedicel lengths,
303 and/or larger mutual angles. From the berry potential simulation, we calculated three features,
304 TotalBerryPotentialVolume, AvgBerryPotentialDiameter, and BerryPotentialTouchingDensity,
305 which is the berry potential touching number (i.e., touching either another berry potential or any
306 part of the inflorescence) divided by the number of berry potential (Fig. 2, Supplementary Table
307 S1).

308

309 **Phylogenetic analysis**

310

311 Phylogenetic analyses were conducted to understand evolutionary trends in inflorescence
312 architecture in *Vitis*. Single nucleotide polymorphism (SNP) markers were generated as part of a
313 separate study of the USDA Grapevine Germplasm Reserve in Geneva, NY (Klein *et al.*, 2018).
314 The original dataset consisted of 304 individuals representing 19 species that were sequenced
315 using genotyping-by-sequencing (GBS; Elshire *et al.*, 2011). Briefly, Klein *et al.* (2018) filtered
316 data to retain biallelic sites with a minimum allele frequency of 0.01, a minimum mean depth of
317 coverage of 10x, and only sites with <20% missing data and individuals with <20% missing data.
318 SNP data for 99 individuals from this study that were also genotyped in (Klein *et al.*, 2018);
319 Table 1) were extracted using custom scripts. We performed phylogenetic analysis on the
320 sequence data extracted for 99 individuals using SVDquartets (Chifman & Kubatko, 2014), a
321 maximum likelihood approach designed to address ascertainment bias associated with reduced
322 representation sequencing techniques like GBS. We analyzed all possible quartets and carried
323 out 100 bootstrap support runs (Supplementary Fig. S1) using PAUP* version 4.0a (Swofford,
324 2003). The three main clades recovered in the tree were consistent with previous phylogenetic
325 work in *Vitis*: 1) an Asian Clade (*V. amurensis* and *V. coignetiae*), 2) North American Clade I
326 (*V. riparia*, *V. acerifolia*, and *V. rupestris*), and 3) North American Clade II (*V. vulpina*, *V.*
327 *cinerea*, *V. aestivalis*, *V. labrusca*, and *V. palmata*) (Tröndle *et al.*, 2010; Zecca *et al.*, 2012;
328 Miller *et al.*, 2013; Zhang *et al.*, 2015; Klein *et al.*, 2018).

329

330 To visualize trait distributions on a phylogenetic tree using branch lengths, we used Mega X
331 (Kumar *et al.*, 2018) to generate a neighbor joining tree with 2000 bootstrap replicates. All
332 measurements were averaged across the three replicates per genotype to produce an average

333 value for each trait for each genotype. We computed Pagel's lambda to estimate phylogenetic
334 signal for each morphological trait and mapped each trait onto the phylogeny (Supplementary
335 Fig. S3A-X) using the R package phytools (v. 0.6-44; Revell, 2012). We calculated variation of
336 each morphological trait for each clade based on the mean value for each species (Supplementary
337 Fig. S4).

338

339 **Statistical analysis**

340

341 PCA, MDS, and hierarchical cluster analysis generating a hierarchical tree were performed in
342 Matlab using functions pca(), cmdscale(), and clustergram(). The R function cor.mtest() and
343 package corrplot (Wei & Simko, 2017) were used for significance tests and correlation matrix
344 visualization. The function lda() in R package MASS (Venables & Ripley, 2002) was used for
345 the linear discriminant analysis (LDA) with a jackknifed 'leave one out' cross validation method.

346

347 **Code availability**

348

349 All Matlab functions used to calculate persistence barcodes, bottleneck distances, simulation for
350 berry potential, other geometric features used in this study, and the script for extracting
351 phylogenetic information can be found at the following GitHub repository:

352 <https://github.com/Topp-Roots-Lab/Grapevine-inflorescence-architecture>.

353

354 **Results**

355

356 **Inflorescence morphological variation and trait correlation within *Vitis* species**

357

358 We investigated 24 morphological traits (15 geometric traits, six PH traits, and three berry
359 potential traits) of inflorescence architecture in 10 wild *Vitis* species (136 genotypes, 392
360 samples) and detected wide variation in morphological features within and between species (Fig.
361 2, Supplementary Fig. S2 and Table S2). In particular, of all the species examined, *V. aestivalis*
362 has the largest variance for TotalBerryPotentialVolume. *V. labrusca* has the largest variance for
363 ten traits (i.e., pedicel features, Sphericity, AvgBranchDiameter, AvgBerryPotentialDiameter,

364 and normalized topological traits). *V. cinerea* has the largest variance for six traits (i.e., most
365 global-size features, PH_PC2, and PH_PC3). In comparison, *V. palmata* has smallest variance
366 for eight traits (i.e. pedicel features, Sphericity, AvgBranchDiameter,
367 TotalBerryPotentialVolume, PH_PC3, and PHn_PC3), as does *V. amurensis* (global-size
368 features, RachisLength, PH_PC1, and PH_PC2).

369

370 All traits were hierarchically clustered based on the mean trait values for each species,
371 classifying traits into two main categories: mostly size-invariant + local-branching features
372 (PHn_PC3 to PedicelLength), versus global-size features (AvgBranchLength to
373 BerryPotentialTouchingDensity) (Fig. 5A). Hierarchical clustering (Fig. 5A) and pairwise
374 correlation for morphological traits (Fig. 5B) show that global-size features
375 (ConvexHullVolume, SurfaceArea, Volume, NumberOfPedicel, and TotalBranchLength),
376 PH_PC1, and RachisLength are all highly positively correlated. We refer to these seven traits as
377 size-associated features. Size-associated features are negatively correlated with
378 PedicelLength/RachisLength, Solidity, Sphericity, and PHn_PC1. Some traits are relatively
379 independent such as 2nd/LongestBranchLength, PedicelLength, PedicelBranchAngle, PH_PC2,
380 PHn_PC2, and PHn_PC3 (Fig. 5B). PH_PC3 has some negative relation with size-invariant
381 features. PHn_PC1 positively correlates with Sphericity, Solidity, and
382 AvgeBerryPotentialDiameter (Fig. 5B). Pairwise correlations of morphological features
383 (allometric relationships) for each of the species vary widely (Fig. 5C; for all traits see
384 Supplementary Fig. S5A-X). For example, more pedicels typically result in smaller berry
385 potential diameters, except for *V. aestivalis*. Longer branches tend to be thinner, except for *V.*
386 *coignetiae*, and correlate with larger inflorescences, except in *V. acerifolia*.

387

388 Hierarchical clustering of 10 *Vitis* species based on the 24 morphological traits resolved four
389 groups: 1) *V. cinerea*, 2) *V. aestivalis*, 3) *V. coignetiae/ V. vulpina/ V. palmata/ V. acerifolia/ V.*
390 *riparia/ V. rupestris*, and 4) *V. amurensis/ V. labrusca* (Fig. 5A). Among the 10 *Vitis* species
391 examined in this study, the largest variance in mean trait values are seen in *V. cinerea* (Fig. 5A).
392 *V. cinerea* samples are generally larger than those from the other species, as reflected in size-
393 associated traits. Topology traits such as PHn_PC3 and size-invariant traits like Sphericity and
394 Solidity are lower in the mean trait value for *V. cinerea* than for other species. Similarly, mean

395 trait values are larger for size-associated traits in *V. aestivalis* (Fig. 5A). Compared to other
396 species, topology and berry potential traits are larger in *V. aestivalis*. Mean trait values of the
397 third group (*V. coignetiae*/ *V. vulpina*/ *V. palmata*/ *V. acerifolia*/ *V. riparia*/ *V. rupestris*, Fig. 5A)
398 tend to be nearer to middle values compared to the other species. Within this group, *V.*
399 *acerifolia*/ *V. riparia*/ *V. rupestris* typically are larger in the mean trait value for berry potential
400 touching (i.e., denser berry potentials). These three species and *V. palmata* tend to have large,
401 first primary branches (i.e., wings; Fig. 1E). *V. coignetiae* has thicker branches and *V. vulpina*
402 has longer pedicels compared to other species in this group. The final group, *V. amurensis* and *V.*
403 *labrusca*, have relatively smaller inflorescences with thicker branches compared to the other
404 species sampled here. These general features are reflected in larger mean values for several size-
405 invariant and local-branching features and smaller mean values for many branch length
406 dependent and size-associated features, respectively (Fig. 5A).

407

408 **Multivariate, discriminant analysis of *Vitis* species based on inflorescence architecture**

409

410 In order to understand how overall inflorescence architecture varies among *Vitis* species, we
411 performed PCA using all 24 morphological features and all samples. PC1 explained 37.12% of
412 the total variation in the measured architecture (Fig. 6A). The traits with the largest values for
413 PC1 loadings, indicating that they contributed most to variation, are size-associated features,
414 Solidity and Sphericity. PC2 explained 15.4% of the total variation in the measured inflorescence
415 architecture, with variation primarily explained by local-branching features such as
416 PedicalDiameter, PedicelLength, PedicelLength/RachisLength, AvgBranchLength,
417 BranchDiameter, three berry potential traits, and PHn_PC1 (Fig. 6A). Although inflorescences
418 from each species occupy different regions of morphospace, these regions overlap considerably.

419

420 LDA performed on the first 18 PCs, explaining 99.5% of the variation, distinguished between
421 species with a classification accuracy rate of 78.32%. A confusion matrix (Fig. 6B) shows the
422 proportion of samples correctly predicted for each species. LD1 primarily separates *V. cinerea*,
423 *V. labrusca*, and *V. amurensis* from the other species while LD2 primarily separates *V. vulpina*
424 and *V. coignetiae*. The traits that are most important for distinguishing these species, as indicated
425 by LD loadings, are TotalBerryPotentialVolume and PHn_PC1 for LD1, and AvgBranchLength

426 and AvgBerryPotentialDiameter for LD2 (Fig. 6B). The most important predictors for correctly
427 separating any two species are shown as the grey scaled boxes in Supplementary Fig. S6 and
428 Table S3. For example, BranchDiameter and PedicelDiameter are key when contrasting *V.*
429 *coignetiae* and *V. vulpina*, suggesting that different branch thickness easily distinguishes these
430 two species. This method correctly determined species classifications with 100% accuracy when
431 contrasting *V. aestivalis* and *V. cinerea*, *V. aestivalis* and *V. palmata*, *V. aestivalis* and *V. vulpina*,
432 *V. amurensis* and *V. cinerea*, *V. amurensis* and *V. palmata*, *V. cinerea* and *V. coignetiae*. Other
433 combinations of species are harder to distinguish on the basis of inflorescence characters. For
434 example, the classification accuracy rate was only 80% when distinguishing between *V.*
435 *amurensis* and *V. labrusca* and 82% for *V. aestivalis* and *V. coignetiae*.

436

437 **Phylogenetic signal of inflorescence architecture within clades**

438

439 The phylogeny dataset (N=99) is generally well-supported at the species level and correlates well
440 with current taxonomy. Using average trait values per individual, Pagel's lambda shows 12
441 morphological traits (seven size-associated features along with PedicelDiameter,
442 TotalBerryPotentialVolume, Sphericity, PH_PC2, PHn_PC1) have strong phylogenetic signal
443 (lambda>0.8, Fig. 7, Supplementary Table S4). While most species sampled tend to have small
444 values for the seven size-associated features, *V. aestivalis*, *V. cinerea*, and *V. vulpina* tend to
445 have values that are either close to median, or larger. On average, *V. labrusca* has larger values
446 for Sphericity and PHn_PC1 compared to other species sampled, while *V. cinerea* generally has
447 some of the smallest values for these traits. Only two morphological traits
448 (2nd/LongBranchLength, lambda=0.06 and BerryPotentialTouchingDensity, lambda=0.25) lack
449 phylogenetic signal (Fig.7, Supplementary Table S4).

450

451 We observe differences in *Vitis* inflorescence architecture among clades and between species.
452 For North American (NA) clade I (*V. acerifolia*, *V. riparia*, *V. rupestris*), variation in the 24
453 morphological traits measured have similarly small values among species, particularly for
454 several size-associated traits, although there is relatively large variation for PH_PC3 and
455 BerryPotentialTouchingDensity (Fig. 7). Within NA Clade I, we observe differences among
456 clade members for traits such as Sphericity and PHn_PC1 (larger in *V. rupestris* compared to

457 other clade members) and PedicelDiameter and BranchDiameter (slightly larger in *V. acerifolia*
458 compared to other clade members; Fig. 7). NA Clade II appears to be more variable among clade
459 members. *V. cinerea* has larger values for size-associated traits compared to clade members *V.*
460 *labrusca*, *V. palmata*, and *V. vulpina*. Meanwhile, *V. labrusca* typically has larger values for
461 local features (e.g., Sphericity, PedicelDiameter, AvgBerryPotentialDiameter,
462 PedicelBranchAngle) compared to the other clade members (Fig. 7).

463

464 We calculated the mean value for each species of each morphological trait to study variation
465 within the three clades and detect subtle signatures (Fig. 7). We computed the variance for the
466 multivariate trait (combining all the 24 traits), and each of these 24 traits for each clade
467 (Supplementary Fig. S4, Supplementary Table S5). Overall, based on the samples used in this
468 analysis, variance of the multivariate trait for the NA Clade I (variation=0.14) is much smaller
469 than the NA Clade II (variation=0.64), while the variation for Asian Clade is 0.39. Some traits
470 have almost no variance in Asian Clade such as PedicelDiameter, PHn_PC2, PH_PC3, and
471 2nd/LongestBranchLength. However, North American species (8/~19 taxa) in this study are
472 better represented than Asian species (2/~37 taxa), so we are cautious not to overinterpret this
473 finding. Traits with the greatest variance in the Asian Clade included
474 PedicelLength/RachisLength, RachisLength, and PH_PC1, while NA Clade I has greatest
475 variance in PHn_PC2. All the other traits have greatest variance in the NA Clade II
476 (Supplementary Fig. S4, Supplementary Table S5). Traits with the smallest variance in the Asian
477 Clade included PHn_PC3, PHn_PC1, PedicelDiameter, BranchDiameter, NumberOfPedicel,
478 2nd/LongestBranchLength, PH_PC3, and BerryPotentialTouchingDensity. The other traits had
479 small variance in NA Clades I (Supplementary Fig. S4, Supplementary Table S5). Our results
480 highlight clade-specific variation in inflorescence architecture for previously undescribed traits.

481

482 Discussion

483

484 Inflorescence architecture provides the scaffold on which flowers and fruits develop, and
485 consequently is a primary trait under investigation in many crop systems. Studies extend into
486 interspecific variation, pollen dispersal, genetic architecture, evolution, regulation, and
487 development of inflorescence structures (e.g., Bradley *et al.*, 1996; Friedman & Harder, 2004;

488 Kellogg, 2007; Morris *et al.*, 2013; Han *et al.*, 2014; Hodge & Kellogg, 2015; Whipple, 2017;
489 Stitzer & Ross-Ibarra, 2018; Ta *et al.*, 2018; Richter *et al.*, 2018). Yet the challenge remains to
490 analyze these complex 3D branching structures with appropriate tools. High resolution data sets
491 are required to represent the actual structure and comprehensive analysis of both the geometric
492 and topological features relevant to phenotypic variation and to clarify evolutionary and
493 developmental inflorescence patterns.

494

495 Our results demonstrate the power and potential of X-ray imaging and advanced morphometric
496 analysis for investigating complex 3D phenotypic features. We analyzed the phenotypic variation
497 in inflorescence architecture of 10 wild *Vitis* species using computer vision and an emerging
498 biological shape analysis method, persistent homology, which allowed comprehensive
499 comparisons of shape. Although samples analyzed here represent only a subset of the known
500 variation in *Vitis*, which includes an estimated 60 species, our analyses demonstrate significant
501 variation within and among *Vitis* species and among clades. Correlation analysis (Fig. 5B)
502 revealed some unexpected relationships, for example pedicel branch angles were largely
503 independent of other traits. It also shows that PH is a complementary feature, as it is relatively
504 independent from most geometric features. We were able to assign widely differing architectures
505 to biological species with high accuracy (Fig. 6) from the 24 different morphometric traits
506 surveyed in this study. PH provides an important contribution to this discriminatory power, as
507 does berry potential (Fig. 6B). We observed that traits such as the rachis length, the sum of all
508 branches, the space encompassing the inflorescence architecture (ConvexHullVolume), and PH
509 can be indicative of species and clade (Fig. 7). Our results suggest meaningful, comprehensive
510 information about the inflorescence structure was captured with a single measure (i.e., the
511 persistence barcode) and that PH is a valuable method for quantifying and summarizing
512 topological information.

513

514 Persistent homology analysis has led to a deeper understanding of trait genetic variation and
515 architecture in plants. Li *et al.* (2018a) used PH to analyze two-dimensional (2D) leaf shape and
516 predicted family identity with accuracy greater than expected by chance in over 140 plant
517 families, outperforming other widely-used methods of digital shape analysis. Li *et al.* (2018b)
518 showed that PH-based, topological data analysis distinguished between genotypes and identified

519 many new quantitative trait loci (QTL) with 2D tomato leaf shape and root architecture data.
520 This work sets a precedent for measuring observable, yet previously undescribed, phenotypes. In
521 grapevine, QTL analysis indicates a genetic basis to inflorescence architecture and berry
522 compactness (Correa *et al.*, 2014; Richter *et al.*, 2018). Deploying PH-based, topological
523 modeling to grapevine mapping populations could lead to the rapid identification of additional
524 inflorescence trait QTL for breeding. For example, we observed total branch length (a proxy for
525 bigger or smaller clusters) correlates with number of pedicels (a proxy for berry number; Fig. 5),
526 an informative relationship to assess potential yield. However, selecting for total branch length
527 might lead to a negative correlation with the average berry potential diameter (i.e., smaller
528 berries). Although this correlation may be desirable for wine grapes, it is not for table grapes.
529

530 Grapevine cluster architecture is a composite feature that reflects multiple subtraits including
531 stalk traits (inflorescence architecture) and berry features (Richter *et al.*, 2018). OIV 204 uses
532 “bunch: density” to describe variation in clusters, ranging from (1) berries clearly separated with
533 many visible pedicels to (9) berries deformed by compression (OIV, 2001; Rombough, 2002).
534 Other authors have deconstructed traits contributing to cluster architecture primarily through
535 individual measurements taken by hand (e.g., Shavrukov *et al.*, 2004; Tello *et al.*, 2015; Zdunić
536 *et al.*, 2015; Tello & Ibáñez, 2018) and more recently, with image-based technologies (Cubero *et*
537 *al.*, 2014; Roscher *et al.*, 2014; Ivorra *et al.*, 2015; Aquino *et al.*, 2017, 2018; Rist *et al.*, 2018).
538 Here, we are able to describe traits of interest that contribute greatly to the morphological
539 features captured by the OIV scale (e.g., NumberOfPedicel, PedicelLength, PedicelBranchAngle,
540 RachisLength, overall shape using PH; Fig. 2, Supplementary Fig. S2). This method could
541 facilitate precision breeding for both whole inflorescence structure topology and specific
542 desirable geometric traits.
543

544 While several studies have quantified cluster structure in cultivated grapevines, similar studies of
545 wild *Vitis* inflorescence architecture are lacking. Munson (1909) and Galet (1979) describe North
546 American *Vitis* cluster structure qualitatively, commenting on compactness, size, shape, and the
547 presence of large first primary branches (wings/shoulders). Taxonomic descriptions typically do
548 not examine inflorescence architecture beyond categorical type, position on the vine, and the
549 average number of berries per cluster (Comeaux *et al.*, 1987; Moore, 1991; Moore & Wen,

550 2016). Descriptions of the position of the inflorescence are useful for identification and are
551 included in dichotomous keys; however, to our knowledge, other inflorescence architecture traits
552 have not been rigorously quantified among wild *Vitis* species. Although qualitative descriptions
553 are valuable and accessible, powerful phenotyping tools are required to associate complex
554 phenotypes with evolutionary and developmental patterns.

555

556 Using 3D imaging and PH with a topological modeling approach, we identified attributes of
557 inflorescence architecture that vary within and among *Vitis* species that, to our knowledge, have
558 not been previously described. Differences in inflorescence architecture among clades mirror
559 other phenotypic differences among members of North American *Vitis*. For example, members
560 of NA Clade I (*V. acerifolia*, *V. riparia*, and *V. rupestris*) have small values for size-associated
561 features (e.g., RachisLength, ConvexHullVolume, NumberOfPedicel, TotalBranchLength,
562 SurfaceArea, Volume) and relatively large values for PH_PC3 and
563 BerryPotentialTouchingDensity (Fig. 7). These species share suites of other morphological
564 characters (nodal diaphragm, branch, and leaf surface traits, and large stipules; Moore 1991,
565 Moore and Wen 2016, Klein *et al.*, 2018). It is possible that among closely related species
566 conserved pathways generate vegetative and reproductive similarities.

567

568 Sample size is low for the Asian Clade and most of NA Clade II, limiting our ability to assess
569 variation in these species; however, members of NA Clade II do not have suites of shared
570 inflorescence traits (*V. aestivalis*, *V. cinerea*, *V. labrusca*, *V. vulpina*; Klein *et al.*, 2018). Rather,
571 *V. labrusca* has very small values for size-associated traits and larger values for local features
572 compared to the other clade members, whereas *V. cinerea* has larger values for size-associated
573 features and smaller values for local features (Fig. 7). This is consistent with the observation that
574 aside from core phenotypic synapomorphies in the genus (tendril, bark, lenticel, and nodal
575 diaphragm characters), members of NA Clade IIb (*V. aestivalis*, *V. cinerea*, *V. labrusca*, and *V.*
576 *vulpina*) do not share morphological traits unique to the clade (Klein *et al.*, 2018). These species
577 mostly co-occur across their distributions (Callen *et al.*, 2016) and additional sampling of *Vitis*
578 taxa is necessary to further explore these complex evolutionary patterns. We observe *V.*
579 *amurensis* grouping with *V. labrusca* and *V. coignetiae* grouping with North American species in
580 hierarchical cluster analysis (Fig. 5A). The former two species have relatively smaller

581 inflorescence architectures with thicker branches compared to the other species sampled here.
582 Taxonomic relationships among North American and Asian *Vitis* species have been historically
583 challenging, with clades comprised of species with disjunct distributions (Mullins *et al.*, 1992).
584 Since current taxonomy resolves separate Asian and North American clades (Klein *et al.*, 2018),
585 morphological similarity between these species likely reflects convergent evolution.

586

587 Future Directions

588

589 Three-dimensional imaging through XRT and advanced mathematical approaches like persistent
590 homology provide new ways to visualize and interpret complex biological structures including
591 inflorescences, and to understand the genetic and environmental factors underlying variation in
592 their architecture. In grapevines, cluster density is an important trait that is used to assess
593 grapevine crop quality and to forecast yield, in part because of the association between bunch
594 density and fungal infestations such as *Botrytis* (Hed *et al.*, 2009; Iland *et al.*, 2011; Molitor &
595 Beyer, 2014; Molitor *et al.*, 2018). This study expands on previous work identifying variation in
596 inflorescence architecture among cultivars (Shavrukov *et al.*, 2004), finding notable differences
597 in cluster architecture among species. A logical next step may be to use 3D images and PH with
598 topological modeling to trace the development of inflorescences across multiple growing seasons
599 in a mapping population. Methods presented here are also amenable to scanning with berries,
600 provided some noteworthy technical challenges are first addressed (e.g. minimizing berry
601 damage and rotting during transportation, cluster stabilization during scanning, and segmentation
602 of 3D volumes with features that vary widely in their X-ray absorbance). This work would
603 provide a more complete representation of cluster structure, as well as inform our berry potential
604 simulation with genotype-specific empirical data. We plan to develop predictive structural
605 models of grapevine cluster development using these techniques.

606

607 Imaging and shape analysis approaches presented here can also be used to tease apart subtle
608 environmental influences on inflorescence architecture, and the major agronomic trait of bunch
609 density. Identifying environmental effects on phenotypic variation has important implications
610 both for vineyard management and the assessment of intra-clone variation across geographic
611 space. Cluster compactness can be manipulated through a variety of agronomic practices

612 [\(Molitor et al. 2012; Gil et al. 2013; Frioni et al. 2017; Gourieroux et al. 2017; Poni et al. 2018;](#)
613 [Reeve et al. 2018\)](#). Techniques described here can be used to quantify influences of specific
614 treatments on cluster architecture. In addition, because grapevines are clonally propagated,
615 clusters from the same widespread clones can be collected from different geographic locations,
616 scanned and analyzed for variation. High resolution assessment of inflorescence architecture
617 offers important insights into natural variation in bunch density and the genetic and
618 environmental factors that influence it. The capacity to capture 3D variation in this complex trait
619 over space and time represents a promising advance for a valuable potential target of selection in
620 one of the most economically important berry crops in the world.

621

622 **Supplementary data**

623

624 **Fig. S1** A maximum likelihood phylogenetic tree for ten *Vitis* species.

625 **Fig. S2** Summary of inflorescence geometric and topological traits and the distribution for ten
626 *Vitis* species.

627 **Fig. S3** Morphological traits mapped on the phylogenetic tree.

628 **Fig. S4.** Variation for each clade.

629 **Fig. S5** Pairwise correlations of morphological traits (allometric relationships) showing linear
630 regression lines for each species.

631 **Fig. S6** Pairwise species classification.

632 **Table S1.** Trait description and calculation.

633 **Table S2.** Trait variance for each species.

634 **Table S3.** Trait loadings for two species classification.

635 **Table S4.** Trait Pagel's lambda for phylogenetic analysis.

636 **Table S5.** Trait variation for each clade.

637 **Video S1** Illustration of quantifying branching topology using persistent homology.

638 **Video S2** Berry potential simulation

639

640 **Acknowledgements**

641

642 The authors would like to acknowledge Elizabeth A. Kellogg (DDPSC) for valuable comments,
643 particularly on phylogenetic analysis and inflorescence anatomy. We thank Noah Fahlgren
644 (DDPSC) for computational assistance and Kari Miller (Washington University) for scanning
645 assistance. We thank Zoë Migicovsky (Dalhousie University) for valuable comments.

646

647 This work was supported by funding from the United States National Science Foundation
648 projects IIA-1355406, IOS-1638507, and DBI-1759796.

649

650 **Author contributions**

651

652 CNT, DHC and JL designed the research; JL collected the samples and consulted on the biology;
653 KD generated the X-ray data; LLK and AJM provided phylogenetic data and consulted for the
654 biology; NJ and ML extracted pedicel diameter and angle; ML developed and extracted all the
655 traits and conducted all the analysis and figures; ML, LLK, KD, JL, AJM, and CNT wrote the
656 manuscript.

References

Aquino A, Diago MP, Millán B, Tardáguila J. 2017. A new methodology for estimating the grapevine-berry number per cluster using image analysis. *Biosystems Engineering* **156**: 80–95.

Aquino A, Barrio I, Diago M-P, Millan B, Tardaguila J. 2018. vitisBerry: An Android-smartphone application to early evaluate the number of grapevine berries by means of image analysis. *Computers and Electronics in Agriculture* **148**: 19–28.

Bettiga LJ. 2003. *Wine grape varieties in California*. UCANR Publications.

Bioletti F. 1938. Outline of ampelography for the vinifera grapes in California. *Hilgardia* **11**: 227–293.

Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E. 1996. Control of inflorescence architecture in *Antirrhinum*. *Nature* **379**: 791–797.

Brereton NJB, Ahmed F, Sykes D, Ray MJ, Shield I, Karp A, Murphy RJ. 2015. X-ray micro-computed tomography in willow reveals tissue patterning of reaction wood and delay in programmed cell death. *BMC plant biology* **15**: 83.

Bucksch A, Atta-Boateng A, Azihou AF, et al. 2017. Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences. *Frontiers in plant science* **8**: 900.

Callen ST, Klein LL, Miller AJ. 2016. Climatic Niche Characterization of 13 North American *Vitis* Species. *American journal of enology and viticulture* **67**: 339-349

Chanderbali AS, Berger BA, Howarth DG, Soltis PS, Soltis DE. 2016. Evolving ideas on the origin and evolution of flowers: new perspectives in the genomic era. *Genetics* **202**: 1255–1265.

Chifman J, Kubatko L. 2014. Quartet inference from SNP data under the coalescent model. *Bioinformatics* **30**: 3317–3324.

Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G. 2008. Meshlab: an open-source mesh processing tool. In: *Eurographics Italian chapter conference*. 129–136.

Cohen-Steiner D, Edelsbrunner H, Harer J. 2007. Stability of Persistence Diagrams. *Discrete & computational geometry* **37**: 103–120.

Comeaux BL, Nesbitt WB, Fantz PR. 1987. Taxonomy of the Native Grapes of North Carolina. *Castanea* **52**: 197–215.

Coombe BG. 1995. Adoption of a system for identifying grapevine growth stages. *Growth stages of the grapevine Australian Journal of Grape and Wine Research* **1**: 100–110.

Correa J, Mamani M, Muñoz-Espinoza C, Laborie D, Muñoz C, Pinto M, Hinrichsen P. 2014. Heritability and identification of QTLs and underlying candidate genes associated with the architecture of the grapevine cluster (*Vitis vinifera* L.). *Theoretical and applied genetics*. **127**: 1143–1162.

Cubero S, Diago MP, Blasco J, Tardáguila J, Millán B, Aleixos N. 2014. A new method for pedicel/peduncle detection and size assessment of grapevine berries and other fruits by image

analysis. *Biosystems Engineering* **117**: 62–72.

Delory BM, Li M, Topp CN, Lobet G. 2018. archiDART v3.0: A new data analysis pipeline allowing the topological analysis of plant root systems. *F1000Research* **7**: 22.

Doebley J, Stec A, Hubbard L. 1997. The evolution of apical dominance in maize. *Nature* **386**: 485–488.

Earles JM, Knipfer T, Tixier A, Orozco J, Reyes C, Zwieniecki MA, Brodersen CR, McElrone AJ. 2018. In vivo quantification of plant starch reserves at micrometer resolution using X-ray microCT imaging and machine learning. *The New phytologist* **218**: 1260-1269.

Edelsbrunner H, Morozov D. 2013. Persistent homology: theory and practice. In: *Proceedings of the European congress of mathematics*, 31-50.

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. *PloS one* **6**: e19379.

Endress PK. 2010. Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms. *Journal of systematics and evolution* **48**: 225–239.

Feng C-M, Xiang Q-YJ, Franks RG. 2011. Phylogeny-based developmental analyses illuminate evolution of inflorescence architectures in dogwoods (*Cornus* s. l., Cornaceae). *The New phytologist* **191**: 850–869.

Friedman J, Harder LD. 2004. Inflorescence architecture and wind pollination in six grass species. *Functional ecology* **18**: 851–860.

Frioni T, Zhuang S, Palliotti A, Sivilotti P, Falchi R, Sabbatini P. 2017. Leaf Removal and Cluster Thinning Efficiencies Are Highly Modulated by Environmental Conditions in Cool Climate Viticulture. *American journal of enology and viticulture*: ajev.2017.16098.

Galet P. 1979. *A practical ampelography*. Cornell University Press.

Galet P. 1988. *Cépages et Vignobles de France. Tome I: Les Vignes Américaines*. Imprimérie Déhan, Montpellier.

Gil M, Esteruelas M, González E, Kontoudakis N, Jiménez J, Fort F, Canals JM, Hermosín-Gutiérrez I, Zamora F. 2013. Effect of two different treatments for reducing grape yield in *Vitis vinifera* cv Syrah on wine composition and quality: berry thinning versus cluster thinning. *Journal of agricultural and food chemistry* **61**: 4968–4978.

Godin C, Caraglio Y. 1998. A Multiscale Model of Plant Topological Structures. *Journal of theoretical biology* **191**: 1–46.

Godin C, Costes E, Sinoquet H. 1999. A Method for Describing Plant Architecture which Integrates Topology and Geometry. *Annals of botany* **84**: 343–357.

Gomez FE, Carvalho G Jr, Shi F, Muliana AH, Rooney WL. 2018. High throughput phenotyping of morpho-anatomical stem properties using X-ray computed tomography in sorghum. *Plant methods* **14**: 59.

Gourieroux AM, Holzapfel BP, McCully ME, Scollary GR, Rogiers SY. 2017. Vascular development of the grapevine (*Vitis vinifera* L.) inflorescence rachis in response to flower number, plant growth regulators and defoliation. *Journal of plant research* **130**: 873–883.

Guédon Y, Barthélémy D, Caraglio Y, Costes E. 2001. Pattern Analysis in Branching and Axillary Flowering Sequences. *Journal of theoretical biology* **212**: 481–520.

Hake S. 2008. Inflorescence Architecture: The Transition from Branches to Flowers. *Current biology: CB* **18**: R1106–R1108.

Han Y, Yang H, Jiao Y. 2014. Regulation of inflorescence architecture by cytokinins. *Frontiers in plant science* **5**: 669.

Haus MJ, Li M, Chitwood DH, Jacobs TW. 2018. Long-Distance and Trans-Generational Stomatal Patterning by CO₂ Across *Arabidopsis* Organs. *Frontiers in plant science* **9**: 1714.

Hed B, Ngugi HK, Travis JW. 2009. Relationship Between Cluster Compactness and Bunch Rot in Vignoles Grapes. *Plant disease* **93**: 1195–1201.

Hertweck KL, Pires JC. 2014. Systematics and Evolution of Inflorescence Structure in the *Tradescantia* Alliance (Commelinaceae). *Systematic botany* **39**: 105–116.

Hodel DR Greby K, Ohara LM, Ohara ET. 2015. Infructescence and fruit characteristics of Washingtonia (Arecaceae: Coryphoideae). *Palm Arbor* **2**: 1–7.

Hodge JG, Kellogg EA. 2015. Patterns of Inflorescence Development of Three Prairie Grasses (Andropogoneae, Poaceae). *International journal of plant sciences* **175**(9): 963-974.

Hughes N, Askew K, Scotson CP, Williams K, Sauze C, Corke F, Doonan JH, Nibau C. 2017. Non-destructive, high-content analysis of wheat grain traits using X-ray micro computed tomography. *Plant methods* **13**: 76.

Iland P, Dry P, Proffitt T, Tyerman S. 2011. *The grapevine: from the science to the practice of growing vines for wine*. Patrick Iland Wine Promotions Adelaide.

Ivorra E, Sánchez AJ, Camarasa JG, Diago MP, Tardaguila J. 2015. Assessment of grape cluster yield components based on 3D descriptors using stereo vision. *Food control* **50**: 273–282.

Jhala VM, Thaker VS. 2015. X-ray computed tomography to study rice (*Oryza sativa* L.) panicle development. *Journal of experimental botany* **66**: 6819–6825.

Kang M-Z, Cournède P-H, Mathieu A, Letort V, Qi R, Zhan Z-G. 2009. A Functional-Structural Plant Model—Theories and Its Applications in Agronomy. In: *Crop Modeling and Decision Support*. Springer Berlin Heidelberg, 148–160.

Kellogg EA. 2007. Floral displays: genetic control of grass inflorescences. *Current opinion in plant biology* **10**: 26–31.

Kirchoff BK, Claßen-Bockhoff R. 2013. Inflorescences: concepts, function, development and evolution. *Annals of botany* **112**: 1471–1476.

Klein LL, Miller AJ, Ciotir C, Hyma K, Uribe-Convers S, Londo J. 2018. High-throughput sequencing data clarify evolutionary relationships among North American *Vitis* species and improve identification in USDA *Vitis* germplasm collections. *American journal of botany* **105**: 215–226.

Kuijt J. 1981. Inflorescence morphology of Loranthaceae. *Blumea* **27**: 1-73.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. *Molecular biology and evolution* **35**: 1547–1549.

Landrein S, Prenner G, Chase MW, Clarkson JJ. 2012. Abelia and relatives: phylogenetics of Linnaeae (Dipsacales–Caprifoliaceae s.l.) and a new interpretation of their inflorescence morphology. *Botanical journal of the Linnean Society* **169**: 692–713.

Le C-T, Liu B, Barrett RL, Lu L-M, Wen J, Chen Z-D. 2018. Phylogeny and a new tribal classification of Opiliaceae (Santalales) based on molecular and morphological evidence: Phylogeny and classification of Opiliaceae. *Journal of Systematics and Evolution* **56**: 56–66.

Letort V, Cournede P, Lecoeur J, Hummel I, Reffye PD, Christophe A. 2006. Effect of Topological and Phenological Changes on Biomass Partitioning in *Arabidopsis thaliana* Inflorescence: A Preliminary Model-Based Study. In: *Plant Growth Modeling, Simulation, Visualization and Application*, eds Thierry F and Zhang XP, IEEE Computer Society: 65–69.

Li M, Duncan K, Topp CN, Chitwood DH. 2017. Persistent homology and the branching topologies of plants. *American journal of botany* **104**: 349–353.

Li M, An H, Angelovici R, et al. 2018a. Topological Data Analysis as a Morphometric Method: Using Persistent Homology to Demarcate a Leaf Morphospace. *Frontiers in plant science* **9**: 553.

Li M, Frank MH, Coneva V, Mio W, Chitwood DH, Topp CN. 2018b. The Persistent Homology Mathematical Framework Provides Enhanced Genotype-to-Phenotype Associations for Plant Morphology. *Plant physiology* **177**: 1382–1395.

Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G, Némorin A, Wiedemann-Merdinoglu S, Merdinoglu D, Ollat N, Decroocq S. 2009. Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. *TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik* **118**: 1261–1278.

Mathers AW, Hepworth C, Baillie AL, Sloan J, Jones H, Lundgren M, Fleming AJ,

Mooney SJ, Sturrock CJ. 2018. Investigating the microstructure of plant leaves in 3D with lab-based X-ray computed tomography. *Plant methods* **14**: 99.

McAllister CA, McKain MR, Li M, Bookout B, Kellogg EA 2019. Specimen-based analysis of morphology and the environment in ecologically dominant grasses: the power of the herbarium. *Philosophical transactions of the Royal Society B: Biological sciences* **374**: 20170403.

Migicovsky Z, Li M, Chitwood DH, Myles S. 2018. Morphometrics reveals complex and heritable apple leaf shapes. *Front. Plant Sci.* **8**: 2185.

Miller AJ, Matasci N, Schwaninger H, Aradhya MK, Prins B, Zhong G-Y, Simon C, Buckler ES, Myles S. 2013. *Vitis* phylogenomics: hybridization intensities from a SNP array outperform genotype calls. *PloS one* **8**: e78680.

Molitor D, Behr M, Hoffmann L, Evers D. 2012. Impact of Grape Cluster Division on Cluster Morphology and Bunch Rot Epidemic. *American journal of enology and viticulture* **63**: 508–514.

Molitor D, Beyer M. 2014. Epidemiology, identification and disease management of grape black rot and potentially useful metabolites of black rot pathogens for industrial applications - a review. *The Annals of applied biology* **165**: 305–317.

Molitor D, Biewers B, Junglen M, et al. 2018. Multi-annual comparisons demonstrate differences in the bunch rot susceptibility of nine *Vitis vinifera* L. ‘Riesling’ clones. *Vitis* **57**: 17–25.

Moore MO. 1991. Classification and systematics of eastern North American *Vitis* L. (vitaceae) north of Mexico. *SIDA, contributions to botany* **14**: 339–367.

Moore M, Wen J. 2016. Vitaceae. In: *Flora of North America North of Mexico*, ed. Flora of North America Editorial Committee. 3–23.

Morris GP, Ramu P, Deshpande SP, et al. 2013. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. *Proceedings of the National Academy of Sciences of the United States of America* **110**: 453–458.

Mullins MG, Bouquet A, Williams LE. 1992. *Biology of the grapevine*. Cambridge University Press.

Munson TV. 1909. *Foundations of American Grape Culture*. Orange Judd Company.

OIV. 2001. *2nd Edition of the OIV Descriptor List for Grape Varieties and Vitis species*.

Périlleux C, Lobet G, Tocquin P. 2014. Inflorescence development in tomato: gene functions within a zigzag model. *Frontiers in plant science* **5**: 121.

Pfeifer J, Kirchgessner N, Colombi T, Walter A. 2015. Rapid phenotyping of crop root systems in undisturbed field soils using X-ray computed tomography. *Plant methods* **11**: 41.

Poni S, Gatti M, Palliotti A, et al. 2018. Grapevine quality: A multiple choice issue. *Scientia horticulturae* **234**: 445–462.

Prusinkiewicz P, Erasmus Y, Lane B, Harder LD, Coen E. 2007. Evolution and development of inflorescence architectures. *Science* **316**: 1452–1456.

Pulliat V. 1888. Mille variétés de vignes, description et synonymies, Paris Montpellier.

Reeve AL, Skinkis PA, Vance AJ, McLaughlin KR, Tomasino E, Lee J, Tarara JM. 2018. Vineyard Floor Management and Cluster Thinning Inconsistently Affect ‘Pinot noir’ Crop Load, Berry Composition, and Wine Quality. *HortScience: a publication of the American Society for Horticultural Science* **53**: 318–328.

Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). *Methods in ecology and evolution* **3**: 217–223.

de Ribou S de B, Douam F, Hamant O, Frohlich MW, Negruțiu I. 2013. Plant science and agricultural productivity: Why are we hitting the yield ceiling? *Plant science: an international journal of experimental plant biology* **210**: 159–176.

Richter R, Gabriel D, Rist F, Töpfer R, Zyprian E. 2018. Identification of co-located QTLs and genomic regions affecting grapevine cluster architecture. *Theoretical and applied genetics*. doi.org/10.1007/s00122-018-3269-1

Rist F, Herzog K, Mack J, Richter R, Steinhage V, Töpfer R. 2018. High-Precision Phenotyping of Grape Bunch Architecture Using Fast 3D Sensor and Automation. *Sensors* **18**: 763.

Rombough L. 2002. *The Grape Grower: A Guide to Organic Viticulture*. Chelsea Green Publishing.

Roscher R, Herzog K, Kunkel A, Kicherer A, Töpfer R, Förstner W. 2014. Automated image analysis framework for high-throughput determination of grapevine berry sizes using conditional random fields. *Computers and Electronics in Agriculture* **100**: 148–158.

Rovasenda J. 1881. Essai d'une ampélographie universelle. traduit de l'Italien par F.Cazalis, G. Foëx et al., Paris Montpellier.

Shavrukov YN, Dry IB, Thomas MR. 2004. Inflorescence and bunch architecture development in *Vitis vinifera* L. *Australian journal of grape and wine research* **10**: 116–124.

Stitzer MC, Ross-Ibarra J. 2018. Maize domestication and gene interaction. *New phytologist* **220**: 395–408.

Swofford DL. 2003. PAUP*: phylogenetic analysis using parsimony, version 4.0 b10.

Ta KN, Khong NG, Ha TL, et al. 2018. A genome-wide association study using a Vietnamese landrace panel of rice (*Oryza sativa*) reveals new QTLs controlling panicle morphological traits. *BMC plant biology* **18**: 282.

Tello J, Aguirrezaabal R, Hernáiz S, Larreina B, Montemayor MI, Vaquero E, Ibáñez J. 2015. Multic和平 and multivariate study of the natural variation for grapevine bunch compactness: Multic和平 study of grapevine bunch compactness. *Australian journal of grape and wine research* **21**: 277–289.

Tello J, Ibáñez J. 2018. What do we know about grapevine bunch compactness? A state-of-the-art review: Review on bunch compactness. *Australian journal of grape and wine research* **24**: 6–23.

Tröndle D, Schroder S, Kassemeyer H-H, Kiefer C, Koch MA, Nick P. 2010. Molecular

phylogeny of the genus *Vitis* (Vitaceae) based on plastid markers. *American journal of botany* **97**: 1168–1178.

Venables WN, Ripley BD. 2002. *Modern Applied Statistics with S. Fourth Edition*. Springer.

Weberling F. 1992. *Morphology of Flowers and Inflorescences*. Cambridge University Press.

Wei T, Simko V. 2017. R package ‘corrplot’: visualization of a correlation matrix (version 0.84). URL <https://github.com/taiyun/corrplot>.

Whipple CJ. 2017. Grass inflorescence architecture and evolution: the origin of novel signaling centers. *New phytologist* **216**: 367–372.

Wyatt R. 1982. Inflorescence architecture: how flower number, arrangement, and phenology affect pollination and fruit-set. *American journal of botany* **69**: 585–594.

Zdunić G, Mucalo A, Budić-Leto I, Humar I, Pejić I, Maletić E. 2015. Cluster architecture of old, neglected Croatian grapevine varieties (*Vitis vinifera* L.). *Vitis* **54**: 177-180.

Zecca G, Abbott JR, Sun W-B, Spada A, Sala F, Grassi F. 2012. The timing and the mode of evolution of wild grapes (*Vitis*). *Molecular phylogenetics and evolution* **62**: 736–747.

Zhang N, Wen J, Zimmer EA. 2015. Expression patterns of *AP1*, *FUL*, *FT* and *LEAFY* orthologs in Vitaceae support the homology of tendrils and inflorescences throughout the grape family: Evolution of tendrils in Vitaceae. *Journal of Systematics and Evolution* **53**: 469–476.

Table 1. Number of samples/individuals each species and berry information used in the study.

	Number (N)			Berry information (Galet (1988); Moore and Wen (2016))		
	Samples	Individuals	Individuals used in phylogenetic analysis	low diameter (mm)	High diameter (mm)	Berries per bunch
<i>V. acerifolia</i>	32	11	9	8	12	>25
<i>V. aestivalis</i>	5	2	1	8	20	>25
<i>V. amurensis</i>	13	5	2	8	15	NA
<i>V. cinerea</i>	45	15	13	4	8	>25
<i>V. coignetiae</i>	6	2	1	NA	8	NA
<i>V. labrusca</i>	62	22	12	12	23	<25
<i>V. palmata</i>	3	1	1	8	10	>25
<i>V. riparia</i>	158	53	48	8	12	>25
<i>V. rupestris</i>	41	16	10	8	12	<25
<i>V. vulpina</i>	27	9	2	8	12	>25
Total	392	136	99			

Table 2. Fifteen geometric traits were organized into three categories based on the type of shape information captured by the trait. See Table S1 for a more detailed description of each trait.

Global-size features	Local-branching features	Size-invariant features
Volume*	RachisLength*	Solidity
ConvexHullVolume*	PedicelLength	Sphericity
SurfaceArea*	AvgBranchLength	2nd/LongestBranchLength
TotalBranchLength*	BranchDiameter	PedicelLength/RachisLength
NumberOfPedicel*	PedicelDiameter	
	PedicelBranchAngle	
<hr/> Size-associated features (traits with * +PH_PC1) <hr/>		

Figure Legends

Fig. 1 Sample preparation and imaging. (A) The ten *Vitis* species sampled for this study display diverse grape bunch morphology. (B) Inflorescence architectures after berry removal. (C) Inside the X-ray tomography instrument; the inflorescence is clamped in a panavise between two pieces of polystyrene on the X-ray turntable. (D) Two dimensional radiogram of grape inflorescence; X-rays, absorbed or passing through the inflorescence, are detected to create a silhouette. (E) Three dimensional reconstruction and the structure of the same inflorescence shown in (D) by taking radiograms at successive different angles and then computationally combining the images.

Fig. 2 Examples of inflorescence geometric and topological traits and their distribution for ten *Vitis* species. Each panel shows one of the three traits categories (geometric traits, topological traits, and berry potential traits). Geometric traits are organized as global size features, local branching features, and size-invariant features. Each trait is listed at the top of the column and two inflorescence examples demonstrating low and high trait values listed to the left. At the bottom of each column is a boxplot indicating the distribution and variance within the ten *Vitis* species, represented in different colors. On each box, each dot indicates an outlier if it is more than 1.5 interquartile ranges; the central vertical line indicates the median; the left and right edges of the box represent the 25th and 75th percentiles; and the whiskers extend to the most extreme nonoutlier data. The label for each species is listed in the boxplot y axis of the leftmost plot, with the number of individuals sampled for each species shown in parentheses. For a more complete example and detailed description of each trait, see Fig. S2 and Table S1.

Fig. 3 Persistent homology with geodesic distance comprehensively quantifies branching structures. (A) A level (pink solid line) defined by the same geodesic distance (length of any of the purple curves, in this case, set to 90) to the base of the inflorescence. The super level set is the pixels (in black) having greater geodesic distance than the pink level. (B) Pixels on a branching structure are colored by their geodesic distance to the base. They are colored with red representing the most distant through to blue for the closest ones. (C) A persistence barcode for each branching structure records the connected components for each level set at each geodesic distance value. The “birth” and “death” values for each bar represent the level where each branch

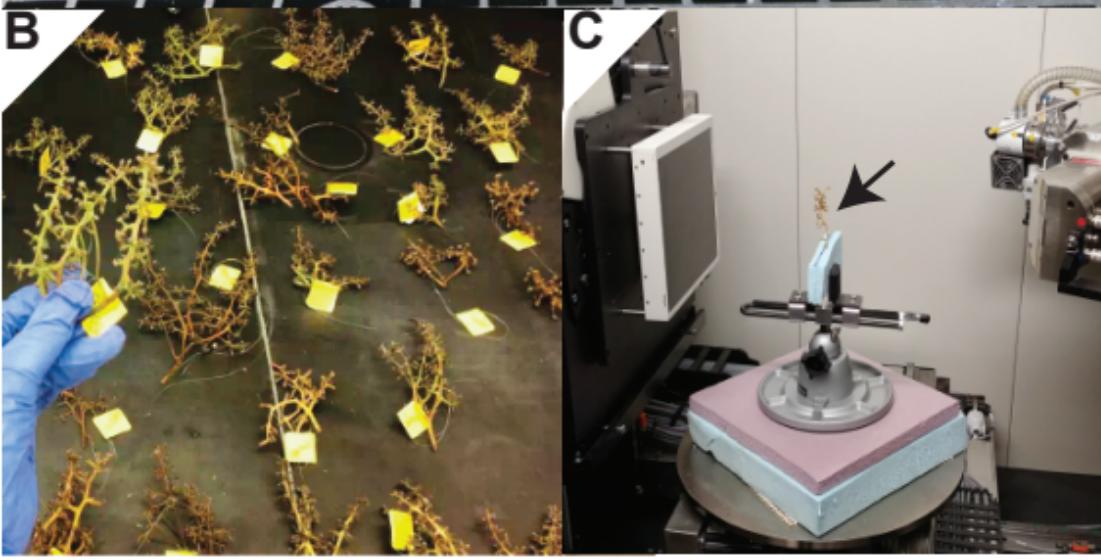
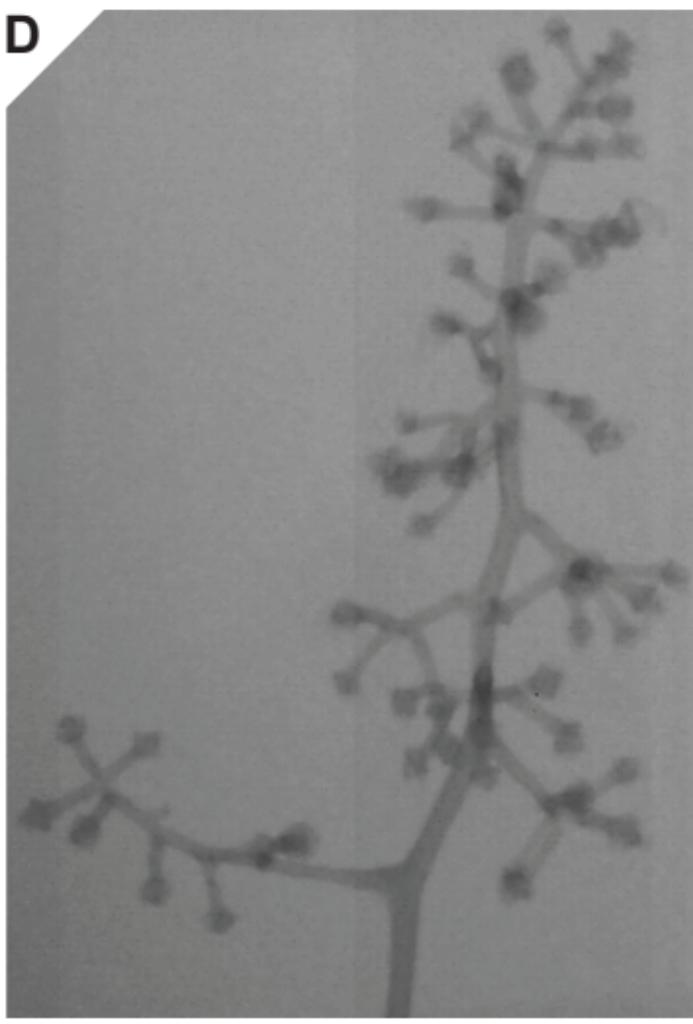
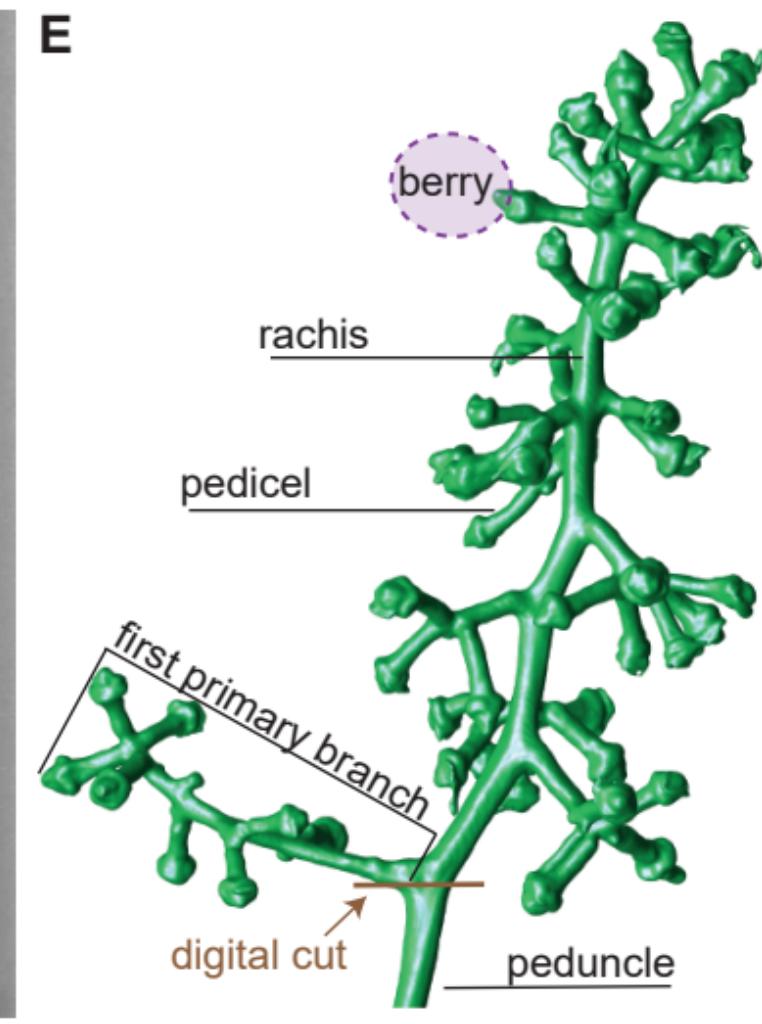
starts and gets merged. Colored bars correspond to colored branches. (D) Above: example inflorescence. The stem is digitally cut at the base (brown line) where it meets the first branch. Below: 3D surface on the example inflorescence as in (B). (E) Persistence barcode for the inflorescence in (D). (F) and (G), similar to (D) and (E), show a different inflorescence architecture.

Fig. 4 Berry potential simulation to explore the space determined by inflorescence architecture. (A) Determine the growth direction for each berry potential. (B) Expand berry potential by increasing the size and moving the center along the growth direction until it meets any of these three cases: 1) two berry potentials touch each other; 2) a berry potential touches any part of the inflorescence; 3) the diameter of the berry potential reaches the maximum for the species..

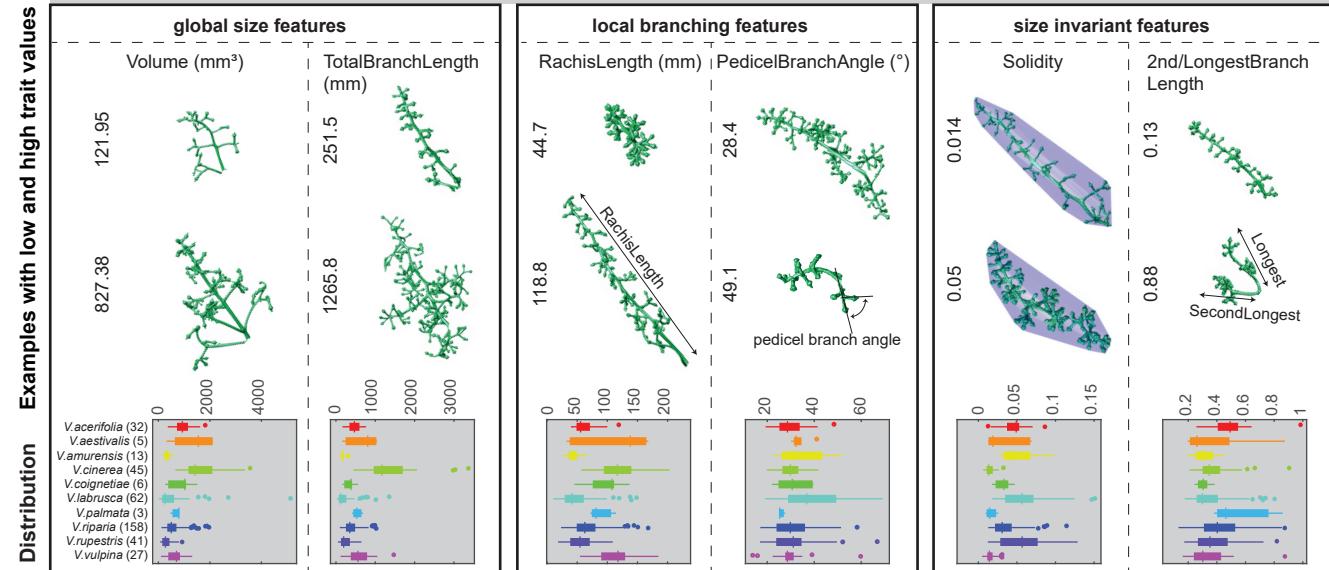
Fig. 5 Hierarchical cluster analysis and correlation analysis. (A) Cluster analysis based the mean value for each trait of 10 *Vitis* species. The heatmap shows values above (red) or below (blue) the mean for each trait. The morphological traits (rows) are clustered hierarchically with the name shown on the right and hierarchical tree listed on the left. The species (columns) are also clustered hierarchically with the name and hierarchical tree shown at the top. (B) Correlation matrix plot shows pairwise positively stronger correlation (green and larger circle) or negatively stronger correlation (purple and larger circle). Non-significant correlations ($p>0.05$) are crossed out. The traits are ordered in the same way as (A). (C) Selected pairs of traits showing linear regression lines for each species.

Fig. 6 Classification for ten *Vitis* species based on inflorescence architecture. (A) Left: Principal component analysis (PCA) plot on 24 morphological traits. The percent variance for each PC explained is shown in parentheses. Species are shown in different colors. Right: The loadings for the traits that contribute to the variance are shown. (B) Left: Linear discriminant analysis (LDA) plot on the first 18 PCs (99.5% variance). Species are shown in different colors. The confusion matrix for predicted species is shown in the upper right corner. Right: The loadings for the traits that best distinguish species from each other are shown. Using a jackknifed ‘leave one out’ cross validation, we obtain a 78.32% classification accuracy rate.

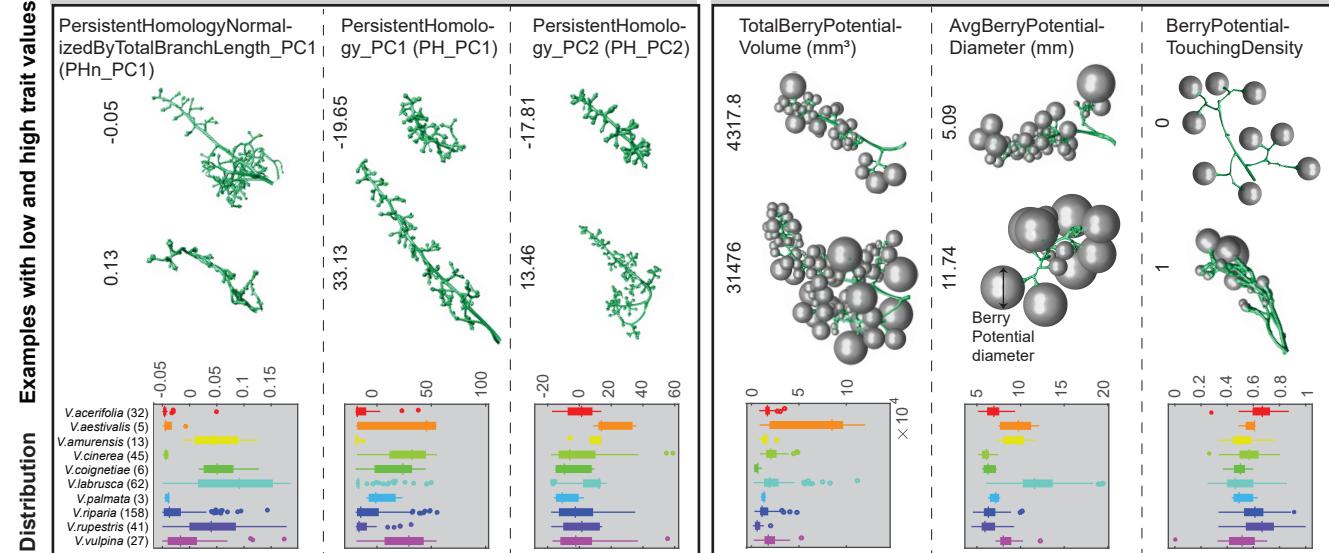
Fig. 7 Phylogenetic analysis. A Neighbor Joining phylogenetic tree for a subset of the *Vitis* data set (n=99). Node values denote bootstrap support for values greater than or equal to 50. Ten *Vitis* species are highlighted in different colored backgrounds. Three clades (Asian Clade, NA Clade I, and NA Clade II) are labeled and marked by vertical bars. The barplot showing values of Pagel's lambda, an estimate of phylogenetic signal, overlaps with the trait name on the right top panel. Below each trait, a rainbow colormap shows the values for individuals (small values in red to large values in blue). Rectangles surround the trait value map for species with more than five individuals. One trait (PHn_PC1) was randomly selected to be projected onto the phylogenetic tree branches, and indicates trait variation (red, lower values; blue, higher values) within individuals and among clades.

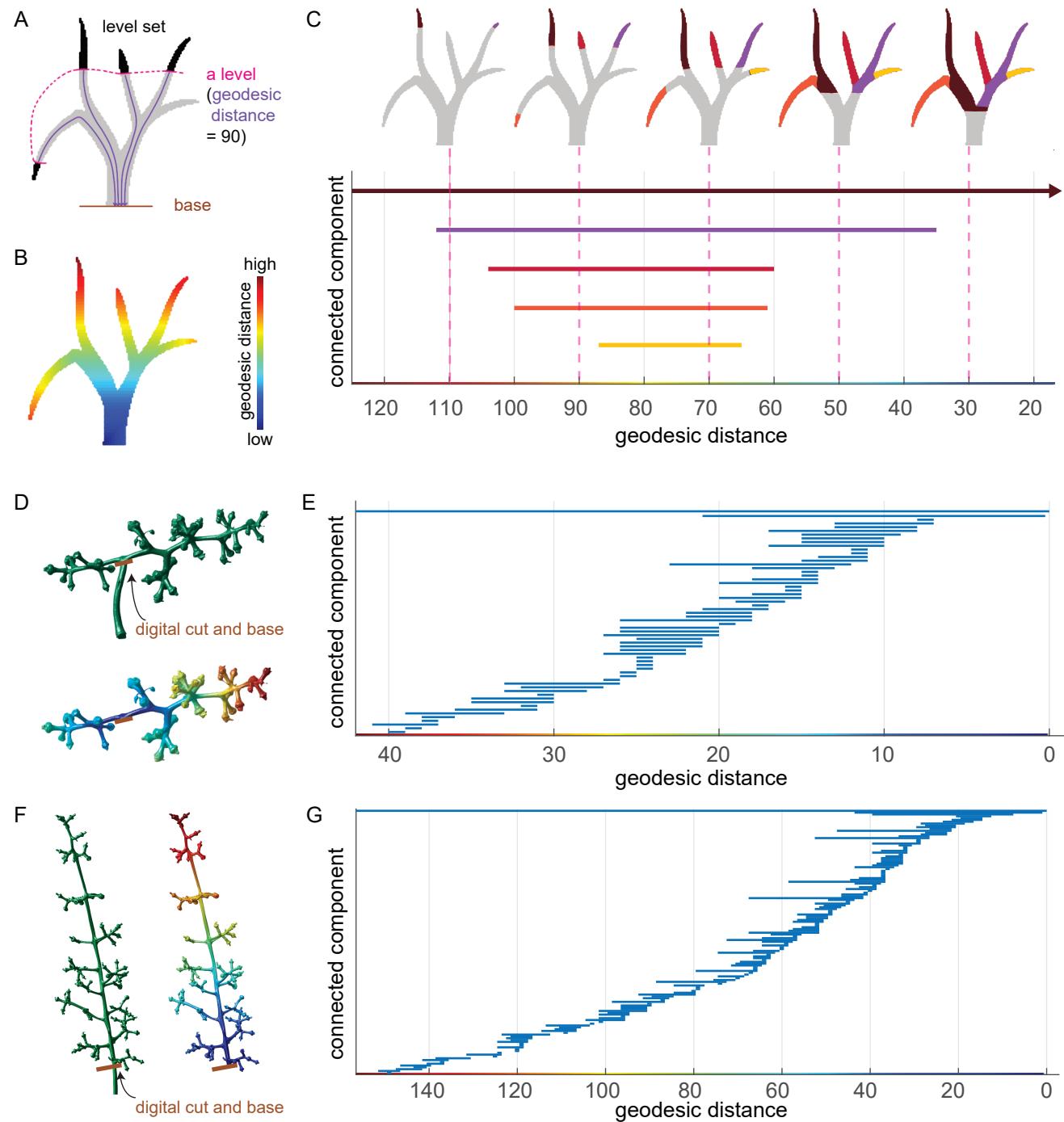


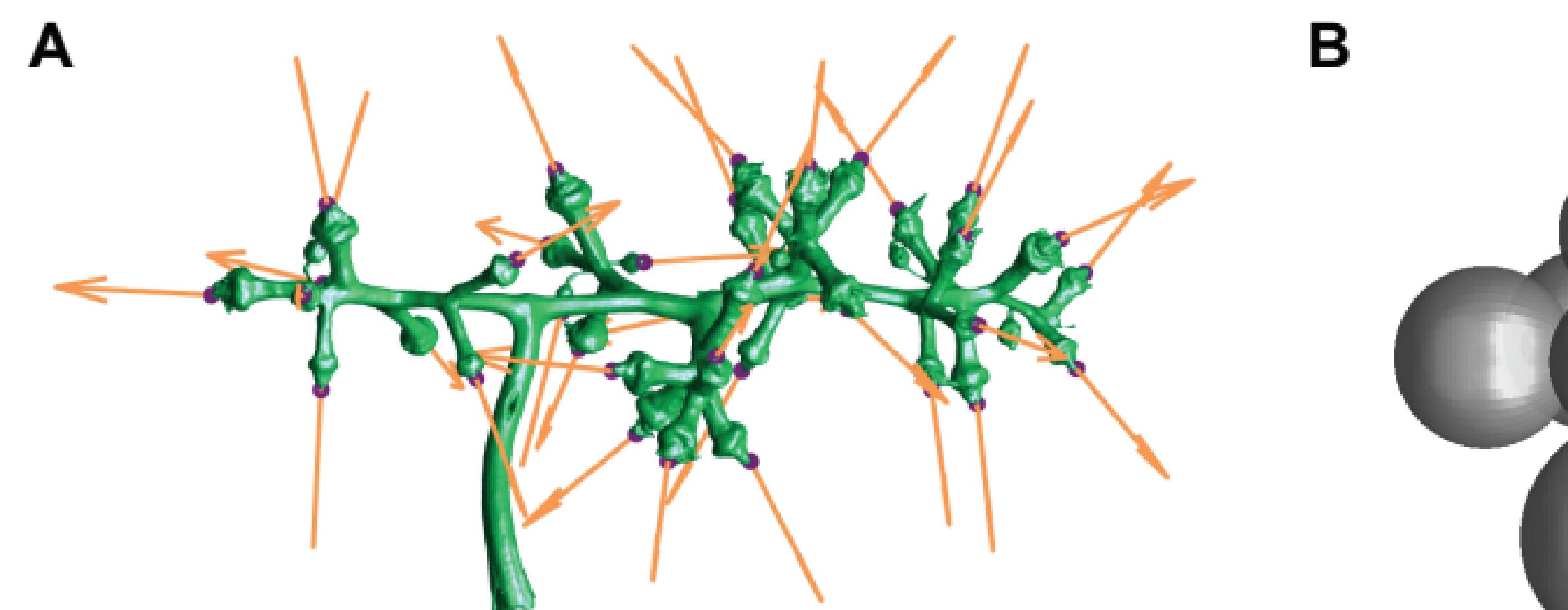
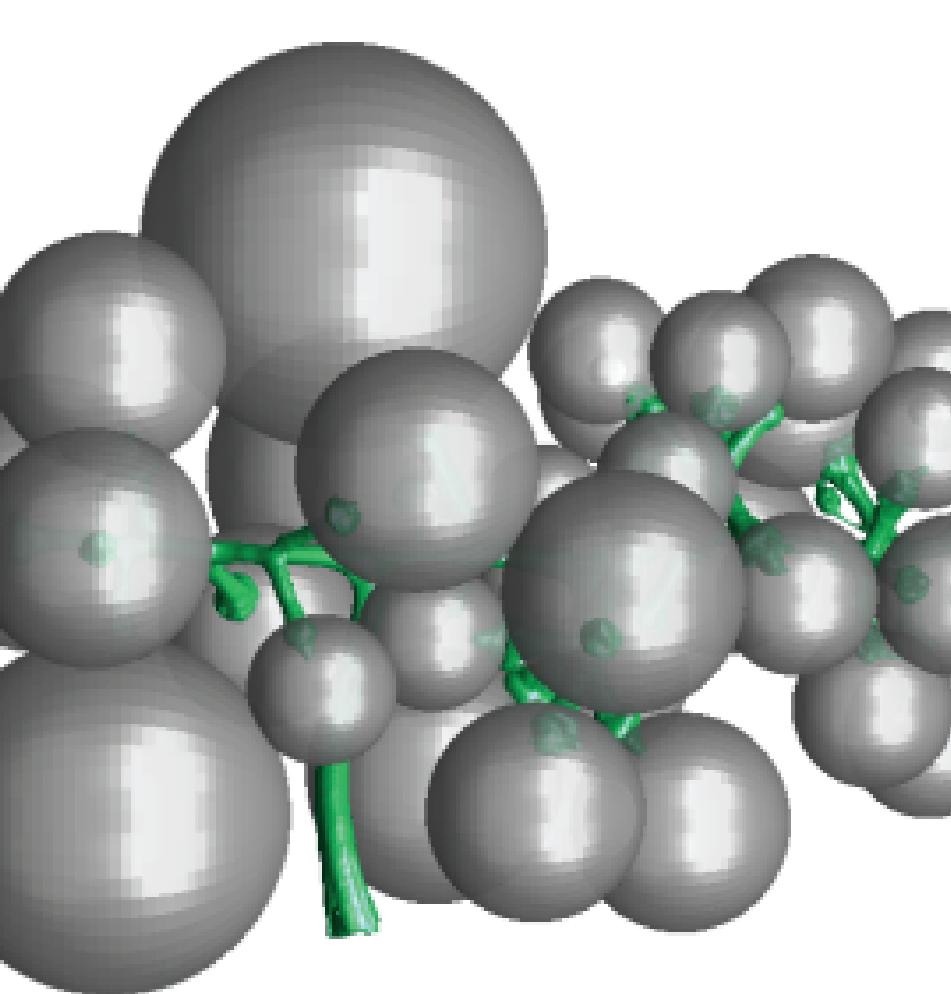
Geometric traits



Topological (persistent homology) traits

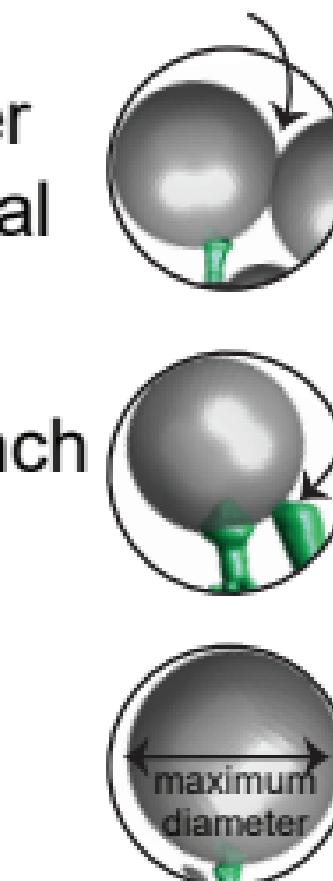


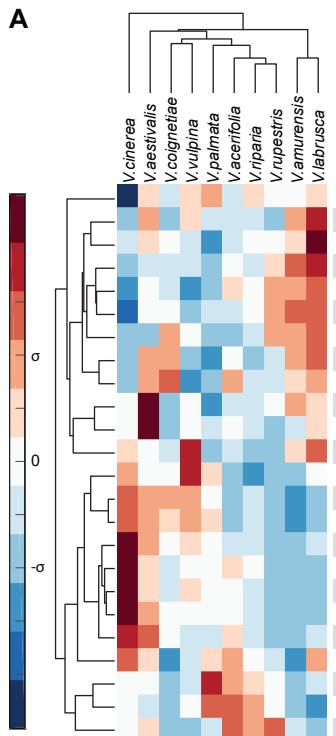
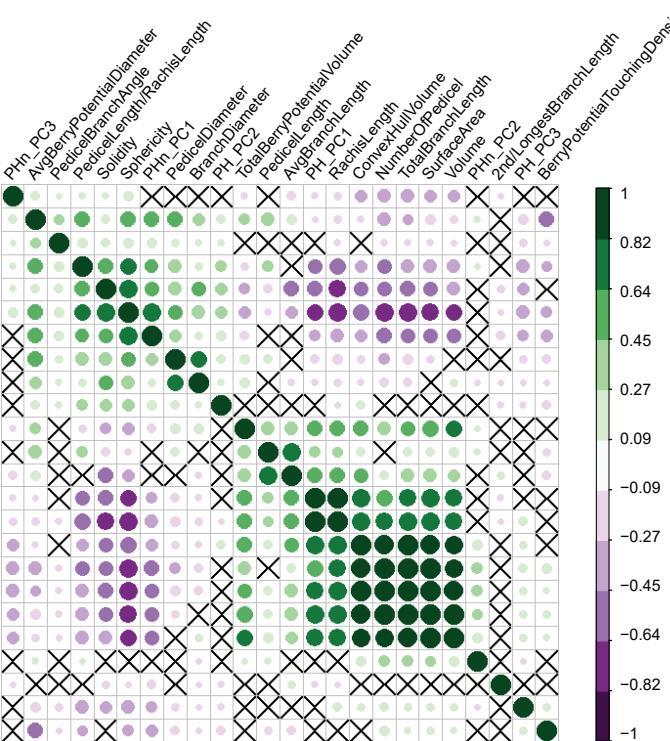
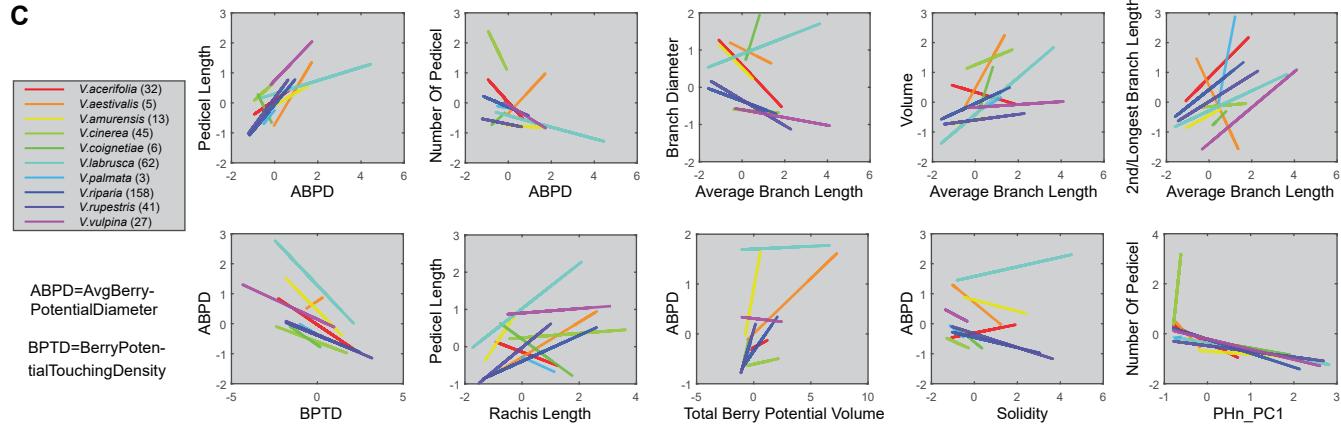


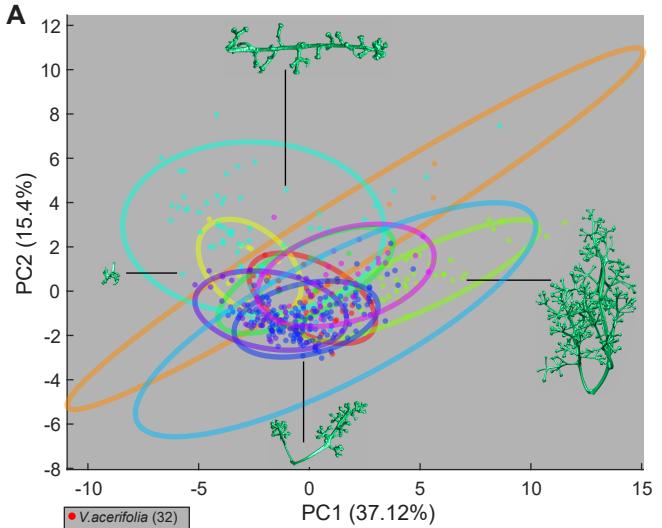
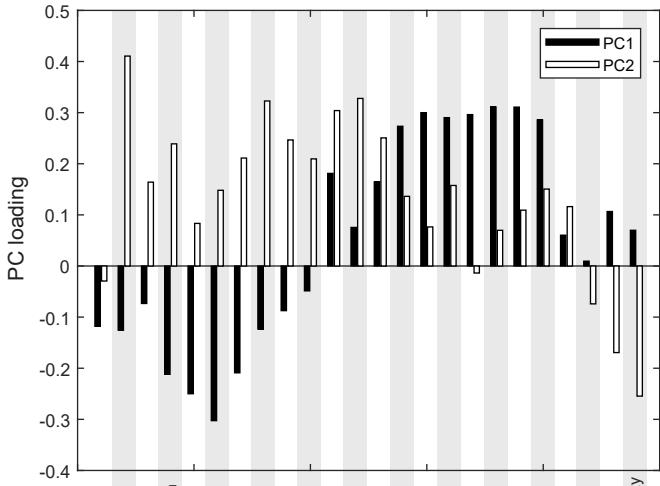
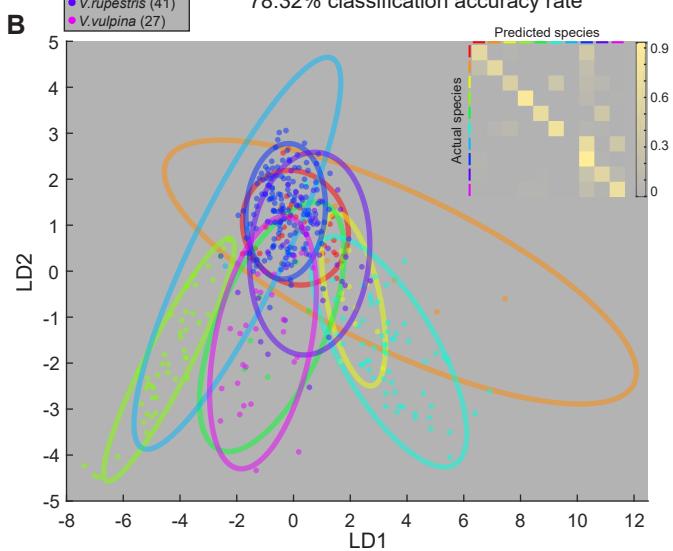
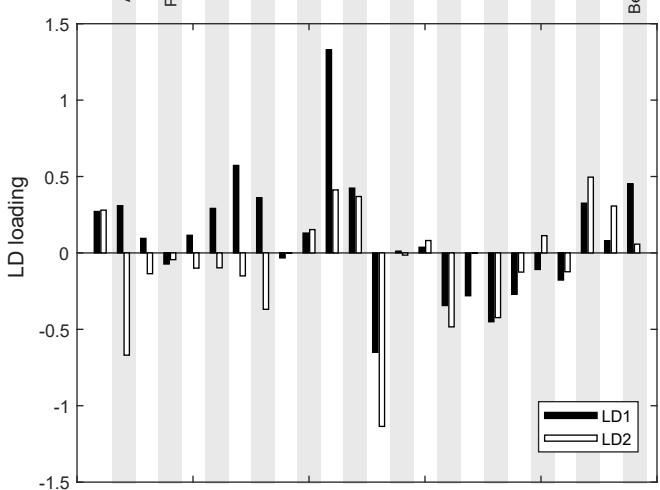


STOP

- touches other berry potential
- touches branch
- reaches the size



A**B****C**



map each trait (e.g. PHn_PC1) onto the phylogeny

