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Highlight: We employ X-ray tomography, geometric and topological measurements, and
physical simulations to characterize 3D inflorescences architectures, using wild grapevine as

example. We interpret the variation for breeding objectives for Vitis.

Abstract

Inflorescence architecture provides the scaffold on which flowers and fruits devel op, and
consequently is aprimary trait under investigation in many crop systems. Y et the challenge
remains to analyze these complex 3D branching structures with appropriate tools. High
information content data sets are required to represent the actual structure and facilitate full
analysis of both the geometric and topological features relevant to phenotypic variation in order
to clarify evolutionary and developmental inflorescence patterns. We combined advanced
imaging (X-ray tomography) and computational approaches (topological and geometric data
analysis and structural smulations) to comprehensively characterize grapevine inflorescence
architecture (the rachis and all branches without berries) among 10 wild Vitis species. Clustering
and correlation analyses revealed unexpected relationships, for example pedice branch angles
were largely independent of other traits. We identified multivariate traits that typified species,
which allowed us to classify species with 78.3% accuracy, versus 10% by chance. Twelve traits
had strong signals across phylogenetic clades, providing insight into the evolution of
inflorescence architecture. We provide an advanced framework to quantify 3D inflorescence and
other branched plant structures that can be used to tease apart subtle, heritable features for a
better understanding of genetic and environmental effects on plant phenotypes.

Key words: 3D architecture; inflorescence; morphology; persistent homology; phylogenetic

analysis, topological data analysis; Vitis spp.; X-ray tomography
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I ntroduction

Inflorescences are major adaptations of the angiosperm lineage whose architectural variation
affects fertilization, fruit development, dispersal, and crop yield (Wyatt, 1982; Hake, 2008; de
Ribou et al., 2013; Kirchoff & Clal3en-Bockhoff, 2013; Périlleux et al., 2014; Chanderbali et al.,
2016). These branched reproductive structures with multiple flowers reflect the extraordinary
diversity across angiosperm species, from an ear of corn to palms with inflorescences measuring
five meterslong (Hodel et al., 2015). Y et seemingly simple processes give rise to these vastly
different shapes - during devel opment reproductive meristems may either switch to floral identity
or proliferate additional inflorescence meristems and branches (Prusinkiewicz et al., 2007).
Complex topologies reflect the evolution of this functional diversity, but have proven difficult to

quantify with conventional tools.

Detailed descriptions of inflorescences by trained experts are often unique to specific research
communities or groups of taxa, and are not always readily transferable, hindering meaningful
comparative analysis (Endress, 2010). Inflorescences are sometimes described typologically:
indeterminate or determinate, ssimple or compound, as araceme, cyme, panicle or spike, etc.
(Wyatt, 1982; Weberling, 1992). Other approaches describe qualitative attributes of
inflorescences such as the presence or absence of certain structures (Weberling, 1992; Doebley et
al., 1997; Feng et al., 2011; Hertweck & Pires, 2014). A third method for characterizing
inflorescences is through quantification of component structures (e.g., branch length,
inflorescence length and width, angular traits; Kuijt, 1981; Marguerit et al., 2009; Landrein et
al., 2012; Leet al., 2018). Although these classical quantitative approaches facilitate
comparative statistical analyses, the three-dimensional (3D) complexity of inflorescencesis
largely undescribed. Furthermore, descriptions may be confounded by developmental stage at the
time of measurement, and distinguishing between vegetative and reproductive branching
structures can be difficult (Wyatt, 1982; Weberling, 1992; Guédon et al., 2001). Thus, new
technological and analytical approaches that can represent comprehensive, multi-dimensional
information about inflorescence diversity are needed to normalize and enrich analysis of these
structures.
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87  One promising approach for capturing 3D shapes of inflorescences and other plant structuresis

88  X-ray tomography (XRT). XRT generates high quality reconstructions of the internal and

89  external shapes of plants, preserving nearly complete geometric and topological information in

90 3D. These 3D digital models then can be used to extract quantitative data (features) from plant

91  structures. X-rays have been used to quantify wheat and rice seed and inflorescence traits from

92 intact samplesfor non-destructive yield calculations (Hughes et al., 2017; Jhala & Thaker,

93  2015), internal anatomy of willow trees (Brereton et al., 2015), stem morphology and anatomy in

94  sorghum (Gomez et al., 2018), root structure of barley seedlings (Pfeifer et al., 2015), leaf

95 anatomy in monocots and dicots (Mathers et al., 2018) and dynamic starch accumulation in

96 living grapevine stems (Earles et al., 2018), among others. Most critically, whereas manual

97  measurements can be laborious and destructive, non-destructive sampling for XRT analysis

98 facilitates comprehensive quantification of complex morphological traits.

99
100  Quantifying complex shapes with XRT requires appropriate analytical approaches. Topological
101  modeing, amathematical field concerned with the connectedness of branching structures, can
102  quantify inflorescence architecture by parsing geometric 3D structures into distinct, yet
103  connected, components (Godin & Caraglio, 1998). Topological modeling has yielded important
104 indghtsinto inflorescence development, functional analysis, and crop improvement in a variety
105 of plant species (e.g., Arabidopsis thaliana, Capsicum annuum, Malus pumila, and Triticum;
106 Godin et al., 1999; Letort et al., 2006; Kang et al., 2009). While powerful, these reductionist
107  approachesrely on an apriori understanding of the mechanisms that contribute to complexity
108 (e.g., branching patterns), and lose power when shapes vary drastically from one another (e.g.,
109 comparing a corn tassel to a grape cluster). Approaches that capture emergent properties of
110  complex structures without presupposing the importance of individual structural components are
111  complementary to traditional topological models (Bucksch et al., 2017).
112
113  Anemerging mathematical approach to interpret topological models is persistent homology
114  (PH). PH extracts morphological features from two- or three-dimensional representations and
115 can be used to compare very different shapes. PH has been applied to explain awide range of
116  featuresincluding atomic structures, urban and forested areas, cancers, cell shapes, and jaw
117  shape, among others (Edelsbrunner & Morozov, 2013). In plants, PH has been used to estimate
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118  shapesthat are otherwise difficult to measure including leaves, leaflet serration, spikelet shape,
119  stomatal patterning, and root architecture (Li et al., 2018a,b; Haus et al., 2018; McAllister et al.,
120  2019; Migicovsky et al. 2018). Previous work showed that PH could capture more quantitative
121  variation than traditional plant morphological measures (described above) resulting in the

122  identification of otherwise latent quantitative trait loci (Li et al., 2018b). PH is especially well-
123  suited for quantifying branching topology asit can quantitatively summarize complex variation
124  with asingle measure (Li et al., 2017; Delory et al., 2018). Rachis, pedicel, and branches include
125 inherently topological features that can be especially well-analyzed with PH-based methods.

126

127  Grape clusters (or bunches) are branched structures supporting berries produced by grapevines
128  (Vitisspp.) and are an ideal system in which to apply XRT and PH. Grape infructescences are
129  higorically, culturally, and economically important and vary extensively in nature and in

130 cultivation (lland et al., 2011). Cluster architecture determines bunch density, and is defined as
131  “arrangement of berriesin acluster and the distribution of free space” (Richter et al., 2018). The
132  density of berriesin acluster isan important breeding feature because it determinesyield, wine
133  character, and disease resistance (amount of air flow between berriesis a primary determinant of
134  pests and pathogens on the fruit). Cluster density is a characteristic identified by the

135  Organization Internationale delaVigne et du Vin, and varies from “berries clearly separated”
136  (loose clusters) to “berries deformed by compression” (very dense clusters; OIV, 2001). Asone
137  of the primary determinants of yield, end-product characteristics, and disease resistance cluster
138  architecture has been studied extensively in grapevine (reviewed in Tello & Ibafiez, 2018). These
139  studies have shown that wine grape cultivars (Vitis vinifera) display distinct bunch densities

140  (Shavrukov et al., 2004). However, less is known about cluster architecturein wild Vitis species,
141  animportant source of natural variation used by breeders in the development of hybrid grapevine
142  varieties.

143

144  Historically, researchers have focused on a suite of cluster traits such as cluster size, shape,

145  waeight, and density/compactness to characterize bunch density quantified in grapevines

146  (Rovasenda, 1881; Pulliat, 1888; Bioletti, 1938; Galet, 1979; Bettiga, 2003). Measurements are
147  made primarily using traditional tools including rulers, digital calipers, volume displacement,
148  and/or through human judging panels. More recently, automated image-based approaches have
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149  been implemented to capture aspects of cluster architecturein thelab and field (Ivorraet al.,

150 2015; Aquino et al., 2017, 2018; Rist et al., 2018). However, these image-based methods cannot
151  penetrate the internal inflorescence structure. Therefore resulting models are based only the

152  visible surface and the underlying topology cannot be fully captured, limiting an understanding
153  of how inflorescence architecture and berry features co-vary. XRT and PH applications offer an
154  important opportunity to understand grapevine bunch density through detailed analyses of

155 inflorescence architecture. Thiswork will deepen our understanding of natural variation of

156 inflorescence structure, identify priority targets for breeding, and permit connecting 3D structure
157  to underlying processes and genetics of inflorescence devel opment.

158

159  Weuse X-ray tomography, geometric measurements, persistent homology, and structural

160 simulation to characterize wild grapevine inflorescence architecture. We target the branching
161  architecture of the mature inflorescence: the rachis and all branches that remain following the
162  removal of ripe berries (Fig. 1). Specifically, we aim to: 1) characterize variation in component
163 traits of inflorescence architecture within and among Vitis species; 2) assess phylogenetic signals
164  underlying inflorescence architecture traits; and 3) interpret inflorescence trait variation in the
165  context of breeding objectives. Thiswork represents an important advance for the

166  characterization of 3D plant architecture using a powerful combined imaging and computational
167  approach.

168

169 Materialsand methods

170

171  Plant Material

172

173  Inthisstudy, we sampled grapevine bunches from 136 unique genotypes representing 10 wild
174  Vitis speciesliving in the USDA germplasm repository system (Geneva, NY; Table 1,

175  Supplementary Fig. S1). Grapevines have a paniculate inflorescence that consists of a rachis with
176  several primary and secondary branches, tapering towards the terminus of the organ (lland et al.,
177  2011). Wild grapevines are dioecious; consequently, unbalanced sample sizes for different

178  species reflect numbers of female genotypes available in the germplasm collection. Each unique

179  genotypeis represented in the germplasm collection by two clonally replicated vines. For most
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180  of the 136 genotypes, we collected atotal of three clusters from the two clonal replicates

181  combined, representing average cluster morphology. We avoided clusters that were visibly

182  damaged or indirectly altered (e.g., tendril or trellisinterference). For each vine, clusters were
183  removed from separate canes at the point of peduncle attachment (Fig. 1A). In total, 392 clusters
184  were collected in September 2016 when berries were soft, equivalent to EL 38 devel opmental
185 stage (Coombe, 1995; Fig. 1B). Berries were manually removed from clustersin the field, and
186  theremaining inflorescence stalks (including rachis, branches, and pedicels; hereafter referred to
187  asinflorescence or inflorescence architecture) were used to assess inflorescence architecture.
188

189  X-ray tomography and data preprocessing

190

191  Grapevine inflorescences were scanned at the Donald Danforth Plant Science Center (St. Louis,
192 MO) usng aNorth Star Imaging X5000 X-ray tomography instrument (NSI; Rogers, MN)

193  equipped with a 16-bit Varian flat panel detector (1536 x 1920 pixels with 127um pixel pitch)
194  and 225kV microfocus reflection target X-ray source. Each inflorescence was held between two
195 piecesof congruction-grade expanded polystyrene, clamped in a panavise, and positioned on the
196  X-ray turntable in one of two configurations (Fig. 1C): 725mm from the source, generating 1.26x
197  magnification and 101um voxel resolution, or 766mm from the source, generating 1.19x

198  magnification and 107um voxel resolution. Each scan used X-ray wattage set to 60kV and

199  1200uA at 10 frames per second, collecting 1200 16-bit TIFF projections over 360 degrees of
200 rotation during a 2min continuous standard scan. Projections for each scan (Fig. 1D) were

201  combined into asingle 3D volume using NSI ef X-CT software, converted to a density-based
202  surface rendering Polygon file (PLY), and exported for analysis (Fig. 1E). Thefull PLY data set

203  for thiswork is 7.85GB, and can be downloaded from: https://www.danforthcenter.ora/sci entists-

204  research/principal-investigators/chris-topp/resources.

205

206  We exported the surface mesh data (.ply files) into Meshlab (v1.3.3, (Cignoni et al., 2008) and
207  performed the following processing steps to remove topological noise: 1) deleted the vertices
208  where branches touch using “ Select Vertexes’ and “Delete Selected vertices” filters; 2) removed

209  duplicates and isolated vertices and faces using the filters “Remove Duplicated Vertex,”
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210 “Remove Duplicate Faces,” “Remove Isolated pieces (wrt Diameter),” and “Remove

211  Unreferenced Vertex.”

212

213  Geometric inflorescence ar chitecture traits

214

215 Weextracted 15 geometric traits from scanned inflorescences (Fig. 2, Supplementary Fig. S2).
216  Detailed trait descriptions and calculations are explained in Supplementary Table S1. Trait

217  illustrations, including examples of low and high values for each trait, are available in Fig. 2 and
218  Supplementary Fig. S2. Traits were organized in one of three trait groups: global-size features,
219 local-branching features, and size-invariant features (Table 2). Pedicel Diameter and

220  PedicelBranchAngle were measured using the software DynamicRoots (Symonova et al. 2015)
221  on asubset of detected pedicels from the raw 3D volume data. All other traits were derived from
222  Matlab algorithms. Branch length traits (i.e., TotalBranchLength, RachisLength, PedicelLength,
223  and AvgBranchLength) were derived from the persistence barcode (see next subsection).

224

225  Quantifying branching topology using per sistent homology, a topological data analysis

226  method

227

228  Persistent homology measures shapes based on atailored mathematical function, such as

229  geodesic distance, which we used here to capture both curved length and topology of the

230  branches (Fig. 3, Supplementary Video S1). The geodesic distance of a point isthe length of the
231  shortest curve connecting the point and the base (e.g. purple curves, Fig. 3A), where the tailored
232  base can be set asthe first node or ground level (the brown linein Fig. 3A). For each branch, the
233  tip always hasthe largest geodesic distance from the base (Fig. 3B). A level represents the

234 collection of points whose geodesi ¢ distances are the same (e.g. geodesi ¢ distance=90, pink

235 curvein Fig. 3A). A superleve set, for example, at 90, isall the points whose geodesic distances
236  aregreater than 90 (black branch tips, Fig. 3A). Changing the level value from largest to smallest
237 (x axis, Fig. 3C), the sequence of nesting superlevel sets can be formed, which is named

238  superlevel set filtration (top panel, Fig. 3C). During the change of the level value, bars record the
239  connected components for each of the superlevel sets. When anew component arises, anew bar
240 starts(eg. at level 112, purple branch, Fig. 3C). When two components merge (e.g. at level 65,


https://doi.org/10.1101/557819
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/557819; this version posted May 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

241  orange branch mergesinto purple branch, Fig. 3C), the shorter bar stops (e.g. the orange bar

242  stopsat level 65, Fig. 3C). Thisbar graph, called the persistence barcode, summarizes

243  topological information such as branching hierarchy, branch arrangement, and branch lengths. In
244  our study, we set the base as the junction between peduncle and rachis (the lowermost node,

245 indicated by abrown linein Fig. 1E, Fig. 3D, F) and use this base to compute the persistence
246  barcode for the inflorescence architecture (Fig. 3E, G).

247

248  The persistence barcode can be used to compare topological similarity between any two

249 inflorescences. To compute pairwise distance among persistence barcodes for the entire

250 inflorescence population, we used the bottleneck distance (Cohen-Steiner et al., 2007).

251  Bottleneck distance is arobust metric that calculates the minimal cost to move bars from one
252  persistence barcode to resemble another (Li et al., 2017). We performed multidimensional

253 scaling (MDS) on the pairwise bottleneck distance matrix and projected the datainto lower

254  dimensional Euclidean space by preserving the pairwise distance aswell as possible. The Matlab
255 (R2017a) MDS function cmdscalg() projects the data so that MD1 acts as PC1 representing the
256  most variation. The first three PCs (MDs) explained about 80% of the total variation and were
257 included astraits. PersistentHomology PC1 (PH_PC1, explained about 54% variation),

258 PersistentHomology PC2 (PH_PC2, explained about 20% variation), and

259  PersistentHomology PC3 (PH_PC3, explained about 6% variation). Those traits not only

260 measure thetopological structure, but also relate to geometric variation (e.g. global size) asthe
261  datawere not normalized (Fig. 2, Supplementary Table S1).

262

263  Next, we normalized the persistence barcode by the Total BranchLength (summation of the bar
264  lengths) so that the TotalBranchLength was 1. By a similar procedure, we derived the first three
265 PCsnamed PersistentHomologyNormalizedByTotal BranchLength PC1 (PHn_PC1, explained
266  about 45% variation), PersistentHomologyNormalizedByTotalBranchLength PC2, (PHn_PC2,
267  explained about 21% variation), and PersistentHomologyNormalizedByTotal BranchLength PC3
268 (PHn_PC3, explained about 7% variation) for the normalized inflorescence topological structure
269  (Fig. 2, Supplementary Table S1).

270


https://doi.org/10.1101/557819
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/557819; this version posted May 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

271 Berry potential, an approach to indirectly explore the space limited by inflorescence

272  architecture

273

274  Anongoing question in grapevine cluster architecture is the relationship between inflorescence
275  architecture and berry number and size. Inflorescence architecture is one of several factors

276  determining the number of berries that can form, due to the number of pedicels and the available
277  spacefor berry development. In this study, berries were removed because of concerns about

278  berry integrity during transport from New Y ork to Missouri, and the time between harvest and
279  scanning. Instead of looking directly at berries on the cluster, we used inflorescence architecture
280 asastarting point to simulate potential space available for berry growth by evaluating expanding
281  spheres attached to pedicels. The extent of sphere expansion allowed by each pedicd isreferred
282 toas“berry potential” (Fig. 4, Supplementary Video S2).

283

284  Wefirst determined the growth direction for each berry potential based on the pedicel

285  orientation. When spheres expand, the center moves along the pedicel direction (Fig. 4A). This
286  step can be achieved by performing principal component analysis (PCA) on the near-berry

287  segment of the pedicel. Thefirst principal axisisthe pedicel direction. We adjusted the arrow of
288  thedirection to make sure berry potential increases outward along the pedicel orientation. Then
289 theberry potential increases until one of three situationsis encountered (Fig. 4B): 1) if two berry
290 potentialstouch to each other, both berry potentials will stop increasing; 2) if aberry potential
291 touches any part of theinflorescence, it will stop increasing; 3) if the diameter of the berry

292  potentia reaches the maximum size known for that species (Table 1), it will stop increasing. For
293  each species, the maximum size is defined as the maximum berry diameter, a number estimated
294  from known ranges of berry sizes for each species, based on values obtained from (Galet, 1988;
295 Moore & Wen, 2016).

296

297  Berry potential does not reflect true berry growth; rather, berry potential isa derived attribute of
298 inflorescence architecture, an indirect estimate of the space potentially available for berry

299  growth. It aso does not account for the possibility of branches bending or otherwise becoming
300 re-oriented dueto pressure from growing berries. Berry potential is based on the number of

301 neighbor pedicels, neighbor pedicel lengths, and neighbor pedicel mutual angles. Larger values

10
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302 for berry potential are associated with fewer neighbor pedicels, and/or longer pedicel lengths,
303 and/or larger mutual angles. From the berry potential s mulation, we calculated three features,
304  TotalBerryPotentialVolume, AvgBerryPotential Diameter, and BerryPotential TouchingDensity,
305 whichisthe berry potential touching number (i.e., touching either another berry potential or any
306 part of the inflorescence) divided by the number of berry potential (Fig. 2, Supplementary Table
307 Si).

308

309 Phylogenetic analysis

310

311  Phylogenetic analyses were conducted to understand evolutionary trendsin inflorescence

312  architecturein Vitis. Single nucleotide polymorphism (SNP) markers were generated as part of a
313  separate study of the USDA Grapevine Germplasm Reserve in Geneva, NY (Klein et al., 2018).
314 Theorigina dataset consisted of 304 individuals representing 19 species that were sequenced
315 using genotyping-by-sequencing (GBS; Elshire et al., 2011). Briefly, Klein et al. (2018) filtered
316 datatoretain bialéic sites with aminimum allele frequency of 0.01, a minimum mean depth of
317  coverage of 10x, and only sites with <20% missing data and individuals with <20% missing data.
318 SNPdatafor 99 individuals from this study that were also genotyped in (Klein et al., 2018);

319 Table 1) were extracted using custom scripts. We performed phylogenetic analysis on the

320 sequence data extracted for 99 individuals using SV Dquartets (Chifman & Kubatko, 2014), a
321  maximum likelihood approach designed to address ascertainment bias associated with reduced
322 representation sequencing techniques like GBS. We analyzed all possible quartets and carried
323 out 100 bootstrap support runs (Supplementary Fig. S1) using PAUP* version 4.0a (Swofford,
324  2003). The three main clades recovered in the tree were consistent with previous phylogenetic
325 work in Vitis: 1) an Asian Clade (V. amurensisand V. coignetiae), 2) North American Clade |
326  (V.riparia, V. acerifolia, and V. rupestris), and 3) North American Clade Il (V. vulpina, V.

327 cinerea, V. aestivalis, V. labrusca, and V. palmata) (Trondle et al., 2010; Zecca et al., 2012;
328 Milleretal., 2013; Zhang et al., 2015; Klein et al., 2018).

329

330 Tovisualizetrait distributions on a phylogenetic tree using branch lengths, we used Mega X
331  (Kumar et al., 2018) to generate a neighbor joining tree with 2000 bootstrap replicates. All

332  measurements were averaged across the three replicates per genotype to produce an average

11
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333 valuefor each trait for each genotype. We computed Pagel’ s lambda to estimate phylogenetic
334  signal for each morphological trait and mapped each trait onto the phylogeny (Supplementary
335 Fig. S3A-X) using the R package phytools (v. 0.6-44; Revell, 2012). We caculated variation of
336  each morphological trait for each clade based on the mean value for each species (Supplementary

337  Fig. $4).

338

339 Statistical analysis
340

341 PCA, MDS, and hierarchical cluster analysis generating a hierarchical tree were performed in
342  Matlab using functions pca(), cmdscalg(), and clustergram(). The R function cor.mtest() and
343  package corrplot (Wel & Simko, 2017) were used for significance tests and correlation matrix
344  visualization. The function Ida() in R package MASS (Venables & Ripley, 2002) was used for
345 thelinear discriminant analysis (LDA) with ajackknifed ‘leave one out’ cross validation method.
346

347  Codeavailability

348

349  All Matlab functions used to calculate persistence barcodes, bottleneck distances, smulation for
350 bery potential, other geometric features used in this study, and the script for extracting

351  phylogenetic information can be found at the following GitHub repository:

352  https://github.com/Topp-Roots-L ab/Grapevine-inflorescence-architecture.

353

354 Resaults

355

356 Inflorescence morphological variation and trait correlation within Vitis species

357

358 Weinvestigated 24 morphological traits (15 geometric traits, six PH traits, and three berry

359 potentia traits) of inflorescence architecture in 10 wild Vitis species (136 genotypes, 392

360 samples) and detected wide variation in morphological features within and between species (Fig.
361 2, Supplementary Fig. S2 and Table S2). In particular, of all the species examined, V. aestivalis
362 hasthelargest variance for Total BerryPotentialVolume. V. labrusca has the largest variance for
363 tentraits(i.e, pedice features, Sphericity, AvgBranchDiameter, AvgBerryPotential Diameter,
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364  and normalized topological traits). V. cinerea has the largest variance for six traits (i.e., most
365 global-sizefeatures, PH_PC2, and PH_PC3). In comparison, V. palmata has smallest variance
366 for eight traits (i.e. pedice features, Sphericity, AvgBranchDiameter,

367 TotaBerryPotentialVolume, PH_PC3, and PHn_PC3), asdoes V. amurensis (global-size

368 features, RachisLength, PH_PC1, and PH_PC2).

369

370  All traits were hierarchically clustered based on the mean trait values for each species,

371 classifying traitsinto two main categories. mostly size-invariant + local-branching features

372 (PHn_PC3 to PedicelLength), versus global-size features (AvgBranchLength to

373  BerryPotentia TouchingDensity) (Fig. 5A). Hierarchical clustering (Fig. 5A) and pairwise

374  correlation for morphological traits (Fig. 5B) show that global-size features

375  (ConvexHullVolume, SurfaceArea, Volume, NumberOfPedicel, and TotalBranchLength),

376  PH_PC1, and RachisLength are all highly positively correlated. We refer to these seven traits as
377  size-associated features. Size-associated features are negatively correlated with

378  PediceLength/RachisLength, Solidity, Sphericity, and PHn_PC1. Sometraits are relatively
379 independent such as 2nd/LongestBranchLength, PedicelLength, PedicelBranchAngle, PH_PC2,
380 PHNn_PC2, and PHn_PC3 (Fig. 5B). PH_PC3 has some negative relation with size-invariant
381 features. PHn_PC1 positively correlates with Sphericity, Solidity, and

382  AvgeBerryPotentialDiameter (Fig. 5B). Pairwise correlations of morphological features

383 (allometric relationships) for each of the species vary widely (Fig. 5C; for all traits see

384  Supplementary Fig. S5A-X). For example, more pedicels typically result in smaller berry

385 potential diameters, except for V. aestivalis. Longer branches tend to be thinner, except for V.
386  coignetiae, and correlate with larger inflorescences, except in V. acerifolia.

387

388  Hierarchical clustering of 10 Vitis species based on the 24 morphological traits resolved four
389 groups:. 1) V. cinerea, 2) V. aestivalis, 3) V. coignetiae/ V. vulpina/ V. palmata/ V. acerifolia/ V.
390 riparia/ V. rupestris, and 4) V. amurensis/ V. labrusca (Fig. 5A). Among the 10 Vitis species
391 examined in this study, the largest variance in mean trait values are seen in V. cinerea (Fig. 5A).
392 V. cinerea samples are generally larger than those from the other species, asreflected in size-
393  associated traits. Topology traits such as PHn_PC3 and size-invariant traits like Sphericity and

394  Solidity arelower in the mean trait value for V. cinerea than for other species. Similarly, mean
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395 trait values arelarger for size-associated traitsin V. aestivalis (Fig. 5A). Compared to other

396  species, topology and berry potential traits are larger in V. aestivalis. Mean trait values of the
397  third group (V. coignetiae/ V. vulpina/ V. palmata/ V. acerifolia/ V. riparia/ V. rupestris, Fig. 5A)
398 tendto be nearer to middle values compared to the other species. Within this group, V.

399 acerifolia/ V. riparia/ V. rupestristypically are larger in the mean trait value for berry potential
400 touching (i.e., denser berry potentials). These three species and V. palmata tend to have large,
401  first primary branches (i.e., wings; Fig. 1E). V. coignetiae has thicker branches and V. vulpina
402  haslonger pedicels compared to other speciesin this group. Thefinal group, V. amurensisand V.
403 labrusca, have relatively smaller inflorescences with thicker branches compared to the other

404  species sampled here. These general features are reflected in larger mean values for several size-
405 invariant and local-branching features and smaller mean values for many branch length

406  dependent and size-associated features, respectively (Fig. 5A).

407

408 Multivariate, discriminant analysis of Vitis species based on inflorescence ar chitecture

409

410 Inorder to understand how overall inflorescence architecture varies among Vitis species, we

411  performed PCA using al 24 morphological features and all samples. PC1 explained 37.12% of
412  thetotal variation in the measured architecture (Fig. 6A). The traits with the largest values for
413  PCl loadings, indicating that they contributed most to variation, are size-associated features,

414  Solidity and Sphericity. PC2 explained 15.4% of the total variation in the measured inflorescence
415  architecture, with variation primarily explained by local-branching features such as

416  PedicalDiameter, PedicelLength, Pedicel Length/RachisLength, AvgBranchLength,

417  BranchDiameter, three berry potential traits, and PHn_PC1 (Fig. 6A). Although inflorescences
418  from each species occupy different regions of morphospace, these regions overlap considerably.
419

420 LDA performed on thefirst 18 PCs, explaining 99.5% of the variation, distinguished between
421  species with aclassification accuracy rate of 78.32%. A confusion matrix (Fig. 6B) showsthe
422  proportion of samples correctly predicted for each species. LD1 primarily separates V. cinerea,
423 V. labrusca, and V. amurensis from the other species while LD2 primarily separates V. vulpina
424  and V. coignetiae. Thetraits that are most important for distinguishing these species, as indicated
425 by LD loadings, are TotalBerryPotentialVolume and PHn_PC1 for LD1, and AvgBranchLength

14


https://doi.org/10.1101/557819
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/557819; this version posted May 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

426  and AvgBerryPotentialDiameter for LD2 (Fig. 6B). The most important predictors for correctly
427  separating any two species are shown as the grey scaled boxes in Supplementary Fig. S6 and
428  Table S3. For example, BranchDiameter and Pedicel Diameter are key when contrasting V.

429  coignetiae and V. vulpina, suggesting that different branch thickness easily distinguishes these
430  two species. This method correctly determined species classifications with 100% accuracy when
431  contrasting V. aestivalisand V.cinerea, V. aestivalis and V.palmata, V. aestivalis and V. wulpina,
432 V.amurenssand V. cinerea, V. amurensis and V. palmata, V. cinerea and V. coignetiae. Other
433  combinations of species are harder to distinguish on the basis of inflorescence characters. For
434  example, the classification accuracy rate was only 80% when distinguishing between V.

435 amurensisand V. labrusca and 82% for V. aestivalis and V. coignetiae.

436

437  Phylogenetic signal of inflorescence ar chitecture within clades

438

439  The phylogeny dataset (N=99) is generally well-supported at the species level and correlates well
440  with current taxonomy. Using average trait values per individual, Pagel’ s lambda shows 12

441  morphological traits (seven size-associated features along with Pedicel Diameter,

442  TotaBerryPotentialVolume, Sphericity, PH_PC2, PHn_PC1) have strong phylogenetic signal
443  (lambda>0.8, Fig. 7, Supplementary Table $4). While most species sampled tend to have small
444  vauesfor the seven size-associated features, V. aestivalis, V. cinerea, and V. wulpina tend to
445  havevaluesthat are either close to median, or larger. On average, V. labrusca has larger values
446  for Sphericity and PHn_PC1 compared to other species sampled, while V. cinerea generally has
447  some of the smallest values for these traits. Only two morphological traits

448  (2nd/LongBranchLength, lambda=0.06 and BerryPotential TouchingDensity, lambda=0.25) lack
449  phylogenetic signal (Fig.7, Supplementary Table $4).

450

451  We observe differences in Vitis inflorescence architecture among clades and between species.
452  For North American (NA) clade | (V. acerifalia, V. riparia, V. rupestris), variation in the 24
453  morphological traits measured have similarly small values among species, particularly for

454  several Size-associated traits, although there is relatively large variation for PH_PC3 and

455  BerryPotential TouchingDensity (Fig. 7). Within NA Clade I, we observe differences among
456  clade membersfor traits such as Sphericity and PHn_PC1 (larger in V. rupestris compared to
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457  other clade members) and Pedicel Diameter and BranchDiameter (slightly larger in V. acerifolia
458  compared to other clade members; Fig. 7). NA Clade |l appears to be more variable among clade
459  members. V. cinerea has larger values for size-associated traits compared to clade members V.
460 labrusca, V. palmata, and V. wulpina. Meanwhile, V. labrusca typically has larger values for
461  local features (e.g., Sphericity, PedicelDiameter, AvgBerryPotential Diameter,

462  PedicelBranchAngle) compared to the other clade members (Fig. 7).

463

464  We calculated the mean value for each species of each morphological trait to study variation
465  within the three clades and detect subtle signatures (Fig. 7). We computed the variance for the
466  multivariate trait (combining all the 24 traits), and each of these 24 traits for each clade

467  (Supplementary Fig. $4, Supplementary Table S5). Overall, based on the samples used in this
468 anaysis, variance of the multivariate trait for the NA Clade | (variation=0.14) is much smaller
469  thanthe NA Clade Il (variation=0.64), while the variation for Asian Clade is 0.39. Some traits
470  have amost no variance in Asian Clade such as PedicelDiameter, PHn_PC2, PH_PC3, and

471  2nd/LongestBranchLength. However, North American species (8/~19 taxa) in this study are
472  better represented than Asian species (2/~37 taxa), so we are cautious not to overinterpret this
473  finding. Traits with the greatest variance in the Asian Clade included

474  PedicelLength/RachisLength, RachisLength, and PH_PC1, while NA Clade | has greatest

475  variancein PHn_PC2. All the other traits have greatest variance in the NA Clade Il

476  (Supplementary Fig. $4, Supplementary Table S5). Traits with the smallest variance in the Asian
477  Cladeincluded PHn_PC3, PHn PC1, PedicelDiameter, BranchDiameter, NumberOf Pedicdl,
478  2nd/LongestBranchLength, PH_PC3, and BerryPotential TouchingDensity. The other traits had
479  small variancein NA Clades | (Supplementary Fig. $4, Supplementary Table S5). Our results
480 highlight clade-specific variation in inflorescence architecture for previously undescribed traits.
481

482 Discussion

483

484  Inflorescence architecture provides the scaffold on which flowers and fruits devel op, and

485  consequently isaprimary trait under investigation in many crop systems. Studies extend into
486  interspecific variation, pollen dispersal, genetic architecture, evolution, regulation, and

487  development of inflorescence structures (e.g., Bradley et al., 1996; Friedman & Harder, 2004;
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Kellogg, 2007; Morriset al., 2013; Han et al., 2014; Hodge & Kellogg, 2015; Whipple, 2017,
Stitzer & Ross-Ibarra, 2018; Ta et al., 2018; Richter et al., 2018). Y et the challenge remains to
analyze these complex 3D branching structures with appropriate tools. High resolution data sets
are required to represent the actual structure and comprehensive analysis of both the geometric
and topological features relevant to phenotypic variation and to clarify evolutionary and
developmental inflorescence patterns.

Our results demonstrate the power and potential of X-ray imaging and advanced morphometric
analysis for investigating complex 3D phenotypic features. We analyzed the phenotypic variation
in inflorescence architecture of 10 wild Vitis species using computer vision and an emerging
biological shape analysis method, persistent homology, which allowed comprehensive
comparisons of shape. Although samples analyzed here represent only a subset of the known
variation in Vitis, which includes an estimated 60 species, our analyses demonstrate significant
variation within and among Vitis species and among clades. Correlation analysis (Fig. 5B)
revealed some unexpected relationships, for example pedicel branch angles were largely
independent of other traits. It also shows that PH is a complementary feature, asit isrelatively
independent from most geometric features. We were able to assign widdy differing architectures
to biological species with high accuracy (Fig. 6) from the 24 different morphometric traits
surveyed in this study. PH provides an important contribution to this discriminatory power, as
does berry potential (Fig. 6B). We observed that traits such as the rachis length, the sum of all
branches, the space encompassing the inflorescence architecture (ConvexHullVolume), and PH
can beindicative of species and clade (Fig. 7). Our results suggest meaningful, comprehensive
information about the inflorescence structure was captured with a single measure (i.e., the
persistence barcode) and that PH is avaluable method for quantifying and summarizing

topological information.

Persistent homology analysis has led to a deegper understanding of trait genetic variation and
architecture in plants. Li et al. (2018a) used PH to analyze two-dimensional (2D) leaf shape and
predicted family identity with accuracy greater than expected by chance in over 140 plant
families, outperforming other widely-used methods of digital shape analysis. Li et al. (2018b)
showed that PH-based, topological data analysis distinguished between genotypes and identified

17


https://doi.org/10.1101/557819
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/557819; this version posted May 24, 2019. The copyright holder for this preprint (which was not

certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

aCC-BY-NC 4.0 International license.

many new quantitativetrait loci (QTL) with 2D tomato leaf shape and root architecture data.
Thiswork sets a precedent for measuring observable, yet previously undescribed, phenotypes. In
grapevine, QTL analysis indicates a genetic basis to inflorescence architecture and berry
compactness (Correa et al., 2014; Richter et al., 2018). Deploying PH-based, topol ogical
modeling to grapevine mapping populations could lead to the rapid identification of additional
inflorescence trait QTL for breeding. For example, we observed total branch length (a proxy for
bigger or smaller clusters) correlates with number of pedicels (aproxy for berry number; Fig. 5),
an informative relationship to assess potential yield. However, selecting for total branch length
might lead to a negative correlation with the average berry potential diameter (i.e., smaller
berries). Although this correlation may be desirable for wine grapes, it isnot for table grapes.

Grapevine cluster architecture is a composite feature that reflects multiple subtraits including
stalk traits (inflorescence architecture) and berry features (Richter et al., 2018). OIV 204 uses
“bunch: density” to describe variation in clusters, ranging from (1) berries clearly separated with
many visible pedicels to (9) berries deformed by compression (OIV, 2001; Rombough, 2002).
Other authors have deconstructed traits contributing to cluster architecture primarily through
individual measurements taken by hand (e.g., Shavrukov et al., 2004; Tello et al., 2015; Zduni¢
et al., 2015; Tello & Ibafiez, 2018) and more recently, with image-based technologies (Cubero et
al., 2014; Roscher et al., 2014, Ivorraet al., 2015; Aquino et al., 2017, 2018; Rist et al., 2018).
Here, we are able to describe traits of interest that contribute greatly to the morphol ogical
features captured by the OIV scale (e.g., NumberOfPedicel, Pedicel Length, PedicelBranchAngle,
RachisLength, overall shape using PH; Fig. 2, Supplementary Fig. S2). This method could
facilitate precision breeding for both whole inflorescence structure topology and specific

desirable geometric traits.

While severa studies have quantified cluster structure in cultivated grapevines, similar studies of
wild Vitis inflorescence architecture are lacking. Munson (1909) and Galet (1979) describe North
American Vitis cluster structure qualitatively, commenting on compactness, size, shape, and the
presence of large first primary branches (wings/shoulders). Taxonomic descriptions typically do
not examine inflorescence architecture beyond categorical type, position on the vine, and the
average number of berries per cluster (Comeaux et al., 1987; Moore, 1991; Moore & Wen,
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550 2016). Descriptions of the position of the inflorescence are useful for identification and are

551 included in dichotomous keys; however, to our knowledge, other inflorescence architecture traits
552  have not been rigorously quantified among wild Vitis species. Although qualitative descriptions
553 arevaluable and accessible, powerful phenotyping tools are required to associate complex

554  phenotypes with evolutionary and developmental patterns.

555

556  Using 3D imaging and PH with atopological modeling approach, we identified attributes of

557 inflorescence architecture that vary within and among Vitis species that, to our knowledge, have
558  not been previously described. Differences in inflorescence architecture among clades mirror
559  other phenotypic differences among members of North American Vitis. For example, members
560 of NA Cladel (V. acerifolia, V. riparia, and V. rupestris) have small values for size-associated
561 features (e.g., RachisLength, ConvexHullVolume, NumberOfPedicel, TotalBranchLength,

562  SurfaceArea, Volume) and relatively large values for PH_PC3 and

563  BerryPotential TouchingDensity (Fig. 7). These species share suites of other morphological

564  characters (nodal diaphragm, branch, and leaf surfacetraits, and large stipules; Moore 1991,

565 Moore and Wen 2016, Klein et al., 2018). It is possible that among closely related species

566  conserved pathways generate vegetative and reproductive similarities.

567

568 Samplesizeislow for the Asian Clade and most of NA Clade Il, limiting our ability to assess
569 variation in these species; however, members of NA Clade Il do not have suites of shared

570 inflorescencetraits (V. aestivalis, V. cinerea, V. labrusca, V. vulpina; Klein et al., 2018). Rather,
571 V. labrusca has very small values for size-associated traits and larger values for local features
572  compared to the other clade members, whereas V. cinerea has larger values for size-associated
573 features and smaller values for local features (Fig. 7). Thisis consistent with the observation that
574  aside from core phenotypic synapomorphies in the genus (tendril, bark, lenticel, and nodal

575  diaphragm characters), members of NA Clade lIb (V. aestivalis, V. cinerea, V. labrusca, and V.
576  vulpina) do not share morphological traits unique to the clade (Klein et al., 2018). These species
577  mostly co-occur across their distributions (Callen et al., 2016) and additional sampling of Vitis
578 taxaisnecessary to further explore these complex evolutionary patterns. We observe V.

579  amurensis grouping with V. labrusca and V. coignetiae grouping with North American speciesin
580 hierarchical cluster analysis (Fig. 5A). The former two species have relatively smaller
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581 inflorescence architectures with thicker branches compared to the other species sampled here.
582  Taxonomic relationships among North American and Asian Vitis species have been historically
583 challenging, with clades comprised of specieswith digunct distributions (Mullins et al., 1992).
584  Since current taxonomy resolves separate Asian and North American clades (Klein et al., 2018),
585  morphological similarity between these species likely reflects convergent evolution.

586

587  Future Directions

588

589  Three-dimensional imaging through XRT and advanced mathematical approaches like persistent
590 homology provide new ways to visualize and interpret complex biological structuresincluding
591 inflorescences, and to understand the genetic and environmental factors underlying variation in
592 ther architecture. In grapevines, cluster density isan important trait that is used to assess

593  grapevine crop quality and to forecast yield, in part because of the association between bunch
594  density and fungal infestations such as Botrytis (Hed et al., 2009; Iland et al., 2011; Molitor &
595 Beyer, 2014; Moalitor et al., 2018). This study expands on previous work identifying variation in
596 inflorescence architecture among cultivars (Shavrukov et al., 2004), finding notable differences
597 incluster architecture among species. A logical next step may be to use 3D images and PH with
598  topological modeling to trace the development of inflorescences across multiple growing seasons
599 inamapping population. Methods presented here are also amenable to scanning with berries,
600 provided some noteworthy technical challenges arefirst addressed (e.g. minimizing berry

601 damage and rotting during transportation, cluster stabilization during scanning, and segmentation
602  of 3D volumes with features that vary widely in their X-ray absorbance). This work would

603  provide a more complete representation of cluster structure, as well as inform our berry potential
604  simulation with genotype-specific empirical data. We plan to develop predictive structural

605 models of grapevine cluster development using these techniques.

606

607  Imaging and shape analysis approaches presented here can also be used to tease apart subtle

608  environmental influences on inflorescence architecture, and the major agronomic trait of bunch
609 density. Identifying environmental effects on phenotypic variation has important implications
610  both for vineyard management and the assessment of intra-clone variation across geographic

611 space. Cluster compactness can be manipulated through a variety of agronomic practices
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(Molitor et al. 2012; Gil et a. 2013; Frioni et al. 2017; Gourieroux et al. 2017; Poni et al. 2018;
Reeve et al. 2018). Techniques described here can be used to quantify influences of specific

treatments on cluster architecture. In addition, because grapevines are clonally propagated,
clusters from the same widespread clones can be collected from different geographic locations,
scanned and analyzed for variation. High resolution assessment of inflorescence architecture
offersimportant insights into natural variation in bunch density and the genetic and
environmental factors that influenceit. The capacity to capture 3D variation in this complex trait
over space and time represents a promising advance for a valuable potential target of selection in

one of the most economically important berry crops in the world.

Supplementary data

Fig. S1 A maximum likelihood phylogenetic tree for ten Vitis species.

Fig. S2 Summary of inflorescence geometric and topological traits and the distribution for ten
Vitis species.

Fig. S3 Morphological traits mapped on the phylogenetic tree.

Fig. $4. Variation for each clade.

Fig. S5 Pairwise correlations of morphological traits (allometric relationships) showing linear
regression lines for each species.

Fig. S6 Pairwise species classification.

Table S1. Trait description and calculation.

Table S2. Trait variance for each species.

Table S3. Trait loadings for two species classification.

Table $4. Trait Pagel’s lambda for phylogenetic analysis.

Table S5. Trait variation for each clade.

Video S1 lllustration of quantifying branching topology using persistent homology.

Video S2 Berry potential smulation
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Table 1. Number of samples/individuals each species and berry information used in the study.

Number (N) Berry information (Galet (1988); M oore
and Wen (2016))
Samples Individuals Individualsused low diameter Highdiameter  Berries

in phylogenetic (mm) (mm) per bunch
analysis

V. acerifolia 32 11 9 8 12 >25
V. aestivalis 5 2 1 8 20 >25
V.amurensis 13 5 2 8 15 NA
V. cinerea 45 15 13 4 8 >25
V. coignetiae 6 2 1 NA 8 NA
V. labrusca 62 22 12 12 23 <25
V. palmata 3 1 1 8 10 >25
V.riparia 158 53 48 8 12 >25
V. rupestris 41 16 10 8 12 <25
V. wlpina 27 9 2 8 12 >25
Total 392 136 99
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Table 2. Fifteen geometric traits were organized into three categories based on the type of shape
information captured by thetrait. See Table S1 for a more detailed description of each trait.

Global-sizefeatures L ocal-branching features Size-invariant features
Volume* RachisLength* Solidity
ConvexHullVolume* PedicelLength Sphericity
SurfaceArea* AvgBranchLength 2nd/LongestBranchLength
TotalBranchLength* BranchDiameter Pedi cel Length/RachisLength
NumberOf Pedicel* Pedicel Diameter

PedicelBranchAngle

Size-associated features (traitswith * +PH_PC1)
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Figure Legends

Fig. 1 Sample preparation and imaging. (A) The ten Vitis species sampled for this study display
diverse grape bunch morphology. (B) Inflorescence architectures after berry removal. (C) Inside
the X-ray tomography instrument; the inflorescence is clamped in a panavise between two pieces
of polystyrene on the X-ray turntable. (D) Two dimensional radiogram of grape inflorescence;
X-rays, absorbed or passing through the inflorescence, are detected to create a silhouette. (E)
Three dimensional reconstruction and the structure of the same inflorescence shown in (D) by

taking radiograms at successive different angles and then computationally combining the images.

Fig. 2 Examples of inflorescence geometric and topological traits and their distribution for ten
Vitis species. Each panel shows one of the three traits categories (geometric traits, topological
traits, and berry potential traits). Geometric traits are organized as global size features, local
branching features, and size-invariant features. Each trait islisted at the top of the column and
two inflorescence examples demonstrating low and high trait values listed to the left. At the
bottom of each column is aboxplot indicating the distribution and variance within the ten Vitis
species, represented in different colors. On each box, each dot indicates an outlier if it is more
than 1.5 interquartile ranges; the central vertical line indicates the median; the |eft and right
edges of the box represent the 25th and 75th percentiles; and the whiskers extend to the most
extreme nonoutlier data. The label for each speciesislisted in the boxplot y axis of the leftmost
plot, with the number of individuals sasmpled for each species shown in parentheses. For a more
complete example and detailed description of each trait, see Fig. S2 and Table S1.

Fig. 3 Persistent homology with geodesic distance comprehensively quantifies branching
structures. (A) A level (pink solid line) defined by the same geodesic distance (length of any of
the purple curves, in this case, set to 90) to the base of the inflorescence. The super level setis
the pixels (in black) having greater geodesic distance than the pink level. (B) Pixelson a
branching structure are colored by their geodesi ¢ distance to the base. They are colored with red
representing the most distant through to blue for the closest ones. (C) A persistence barcode for
each branching structure records the connected components for each level set at each geodesic
distance value. The “birth” and “death” values for each bar represent the level where each branch
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starts and gets merged. Colored bars correspond to colored branches. (D) Above: example
inflorescence. The stemisdigitally cut at the base (brown line) where it meets the first branch.
Below: 3D surface on the exampleinflorescence asin (B). (E) Persistence barcode for the
inflorescencein (D). (F) and (G), similar to (D) and (E), show a different inflorescence

architecture.

Fig. 4 Berry potential simulation to explore the space determined by inflorescence architecture.
(A) Determine the growth direction for each berry potential. (B) Expand berry potential by
increasing the size and moving the center along the growth direction until it meets any of these
three cases. 1) two berry potentials touch each other; 2) aberry potential touches any part of the
inflorescence; 3) the diameter of the berry potential reaches the maximum for the species..

Fig. 5 Hierarchical cluster analysis and correlation analysis. (A) Cluster analysis based the mean
value for each trait of 10 Vitis species. The heatmap shows values above (red) or below (blue)
the mean for each trait. The morphological traits (rows) are clustered hierarchically with the
name shown on the right and hierarchical tree listed on the left. The species (columns) are also
clustered hierarchically with the name and hierarchical tree shown at the top. (B) Correlation
matrix plot shows pairwise positively stronger correlation (green and larger circle) or negatively
stronger correlation (purple and larger circle). Non-significant correlations (p>0.05) are crossed
out. Thetraits are ordered in the same way as (A). (C) Selected pairs of traits showing linear

regression lines for each species.

Fig. 6 Classification for ten Vitis species based on inflorescence architecture. (A) Left: Principal
component analysis (PCA) plot on 24 morphological traits. The percent variance for each PC
explained is shown in parentheses. Species are shown in different colors. Right: The loadings for
the traits that contribute to the variance are shown. (B) Left: Linear discriminant analysis (LDA)
plot on thefirst 18 PCs (99.5% variance). Species are shown in different colors. The confusion
matrix for predicted speciesis shown in the upper right corner. Right: The loadings for the traits
that best distinguish species from each other are shown. Using ajacknifed ‘leave one out’ cross
validation, we obtain a 78.32% classification accuracy rate.
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Fig. 7 Phylogenetic analysis. A Neighbor Joining phylogenetic tree for a subset of the Vitis data
set (n=99). Node values denote bootstrap support for values greater than or equal to 50. Ten Vitis
species are highlighted in different colored backgrounds. Three clades (Asian Clade, NA Cladel,
and NA Clade Il) are labeled and marked by vertical bars. The barplot showing values of Pagel’s
lambda, an estimate of phylogenetic signal, overlaps with the trait name on the right top panel.
Below each trait, arainbow colormap shows the values for individuals (small valuesin red to
large values in blue). Rectangles surround the trait value map for species with more than five
individuals. One trait (PHn_PC1) was randomly selected to be projected onto the phylogenetic
tree branches, and indicates trait variation (red, lower values; blue, higher values) within

individuals and among clades.
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