

LUXendins reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics

Julia Ast^{1,2}, Anastasia Arvaniti^{1,2}, Nicholas H.F. Fine^{1,2}, Daniela Nasteska^{1,2}, Fiona B. Ashford^{1,2}, Zania Stamatakis³, Zsombor Koszegi^{1,2}, Andrea Bacon⁴, Stefan Trapp⁵, Ben J. Jones⁶, Benoit Hastoy⁷, Alejandra Tomas⁸, Christopher A. Reissaus⁹, Amelia K. Linnemann⁹, Elisa D'Este¹⁰, Davide Calebio^{1,2}, Kai Johnsson¹¹, Tom Podewin^{11*}, Johannes Broichhagen^{11*} and David J. Hodson^{1,2*}

¹ Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.

² Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.

³ Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.

⁴Genome Editing Facility, Technology Hub, University of Birmingham, Birmingham, UK

⁵ Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK

⁶ Physiology & Pharmacology, University College London, London, UK
Imperial College London, Section of Investigative Medicine, Division of Diabetes

⁷ Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK

⁸ Imperial College London, Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, London, UK

⁹ Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA

¹⁰Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany

11 Department of Chemical Biology, Max-Planck-Institute for Medical Research, Heidelberg, Germany.

¹¹ Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany.

*Correspondence should be addressed to: d.hodson@bham.ac.uk, johannes.broichhagen@mpimf-heidelberg.mpg.de or tom.podewin@mpimf-heidelberg.mpg.de

Keywords: incretin, diabetes, beta cell, alpha cell, fluorescent probes, CRISPR, nanoscopy.

Word count: 3534 (excluding Abstract, Methods, References and Legends).

42

43 **ABSTRACT** (150 words)

44 The glucagon-like peptide-1 receptor (GLP1R) is a class B G protein-coupled receptor
45 (GPCR) involved in metabolism. Presently, its visualization is limited to genetic manipulation,
46 antibody detection or the use of probes that stimulate receptor activation. Herein, we present
47 **LUXendin645**, a far-red fluorescent GLP1R antagonistic peptide label. **LUXendin645**
48 produces intense and specific membrane labeling throughout live and fixed tissue. GLP1R
49 signaling can additionally be evoked when the receptor is allosterically modulated in the
50 presence of **LUXendin645**. Using **LUXendin645** and STED-compatible **LUXendin651**, we
51 describe islet GLP1R expression patterns, reveal higher-order GLP1R organization including
52 the existence of membrane nanodomains, and track single receptor subpopulations. We
53 furthermore show that different fluorophores can confer agonistic behavior on the **LUXendin**
54 backbone, with implications for the design of stabilized incretin-mimetics. Thus, our labeling
55 probes possess divergent activation modes, allow visualization of endogenous GLP1R, and
56 provide new insight into class B GPCR distribution and dynamics.

57

58 INTRODUCTION

59 The glucagon-like peptide-1 receptor (GLP1R) is a secretin family class B G protein-coupled
60 receptor (GPCR) characterized by hormone regulation.¹ Due to its involvement in glucose
61 homeostasis, the GLP1R has become a blockbuster target for the treatment of type 2
62 diabetes mellitus.² The endogenous ligand, glucagon-like peptide-1 (GLP-1) is released from
63 enteroendocrine L-cells in the gut in response to food intake,³ from where it travels to the
64 pancreas before binding to its cognate receptor expressed in β -cells. Following activation,
65 the GLP1R engages a cascade of signaling pathways including Ca^{2+} , cAMP, ERK and β -
66 arrestin, which ultimately converge on β -cell survival and the glucose-dependent
67 amplification of insulin release.^{4,5} GLP1R is also expressed in the brain⁶ and muscle⁷ where
68 it further contributes to metabolism *via* effects on food intake, energy expenditure,
69 locomotion and insulin sensitivity. Despite this, GLP1R localization remains a challenge and
70 is impeding functional characterization of GLP-1 and drug action.

71 Chemical biology and recombinant genetics have made available a diverse range of
72 methods for the visualization of biological entities. Thus, classical fluorescent protein-
73 fusions,⁸ self-labeling suicide enzymes (SNAP-, CLIP-, and Halo-tag),⁹⁻¹¹ "click
74 chemistry"^{12,13} and fluorogenic probes¹⁴⁻¹⁶ have provided unprecedented insight into the
75 localization and distribution of their respective targets in living cells. In particular, current
76 approaches for visualizing the GLP1R have so far relied on monoclonal antibodies (mAbs)
77 directed against GLP1R epitopes,^{17,18} or fluorescent analogues of Exendin4(1-39),¹⁹⁻²¹ a
78 stabilized form of GLP-1 and the basis for the incretin-mimetic class of drugs. Moreover,
79 floxed mouse models exist in which Cre recombinase is driven by the *Glp1r* promoter,
80 allowing labeling of GLP1R-expressing cells when crossed with reporter mice.^{6,7}

81 Such methods have a number of shortcomings. Antibodies possess variable specificity¹⁸ and
82 tissue penetration, and GLP1R epitopes might be hidden or preferentially affected by fixation
83 in different cell types. Even more, fluorescent analogues of Exendin4(1-39) activate and
84 internalize the receptor, which could confound results in live cells, particularly when used as
85 a tool to sort purified populations (*i.e.* β -cells) for transcriptomic analysis.^{22,23} On the other
86 hand, reporter mouse strategies possess high fidelity, but cannot account for post-
87 translational processing, protein stability and trafficking of native receptor.²⁴ Lastly, none of
88 the aforementioned approaches are amenable to super-resolution imaging of GLP1R.

89 Given the wider reported roles of GLP-1 signaling in the heart,²⁵ liver,²⁶ immune system² and
90 brain,²⁷ it is clear that new tools are urgently required to help identify GLP-1 target sites, with
91 repercussions for drug treatment and its side effects. In the present study, we therefore set
92 out to generate a specific probe for endogenous GLP1R detection in its native, surface-
93 exposed state in live and fixed tissue, without receptor activation. Herein, we report
94 **LUXendin645** and **LUXendin651**, Cy5- and SiR- conjugated far-red fluorescent antagonists
95 with unprecedented specificity, live tissue penetration and super-resolution capability. Using
96 our tools, we provide an updated view of GLP1R expression patterns in the islet of
97 Langerhans, show that endogenous GLP1Rs form nanodomains at the membrane and
98 reveal receptor subpopulations with distinct diffusion modes. Lastly, we find that installation
99 of a TMR fluorophore unexpectedly confers potent agonist properties. As such, the
100 **LUXendins** provide the first nanoscopic characterization of a class B GPCR, with wider
101 flexibility for detection and interrogation of GLP1R in the tissue setting.

102 **RESULTS**

103 **Design and synthesis of LUXendin555, LUXendin651 and LUXendin645**

104 Ideally, a fluorescent probe to specifically visualize a biomolecule should have the following
105 characteristics: straightforward synthesis and easy accessibility, high solubility, relative small
106 size, high specificity and affinity, and a fluorescent moiety that exhibits photostability,
107 brightness, (far-)red fluorescence with an additional two-photon cross-section. Moreover, the
108 probe should be devoid of biological effects when applied to live cells and show good or no
109 cell permeability, depending on its target localization. While some of these points were
110 addressed in the past (*vide infra*), we set out to achieve this high bar by designing a highly
111 specific fluorescent GLP1R antagonist using TMR, Cy5 and SiR fluorophores. As no small
112 molecule antagonists for the GLP1R are known, we turned to Exendin4(9-39), a potent
113 antagonistic scaffold amenable to modification (Fig. 1).²⁸ We used solid-phase peptide
114 synthesis (SPPS) to generate an S39C mutant,²⁹ which provides a C-terminal thiol handle
115 for late-stage installation of different fluorophores. As such, TMR-, Cy5- and SiR-conjugated
116 versions were obtained by means of cysteine-maleimide chemistry, termed **LUXendin555**,
117 **LUXendin645**, and **LUXendin651**, respectively (spectral properties are shown in Table 1,
118 HPLC traces and HRMS characterization can be found in the SI) (Fig. 1).

119 **Table 1: Spectral properties of GLP1R labeling probes.** Maximal excitation and emission
120 wavelengths, and quantum yields were acquired using probes dissolved at 10 μ M in PBS, pH
121 7.4 at 21 °C.

	dye	$\lambda_{\text{Ex}} / \text{nm}$	$\lambda_{\text{Em}} / \text{nm}$	$\epsilon^{[a]} / \text{M}^{-1} \text{cm}^{-1}$	Φ
LUXendin555	TMR	555	579	84,000	0.31
LUXendin645	Cy5	645	664	250,000	0.22
LUXendin651	SiR	651	669	100,000	0.43

122 ^[a] For maleimide-conjugated fluorophores

123

124 **LUXendin645 intensely labels GLP1R in cells and tissue**

125 GLP-1-induced cAMP production ($EC_{50}(\text{cAMP}) = 2.8 \text{ nM}$, 95% CI [1.5-5.2]) was similarly
126 blocked by Exendin4(9-39) ($EC_{50}(\text{cAMP}) = 38.4 \text{ nM}$, 95% CI [19.0-77.8]) and its S39C
127 mutant ($EC_{50}(\text{cAMP}) = 34.8 \text{ nM}$, 95% CI [18.8-64.4]) (Fig. 2a). Installation of Cy5 to produce
128 **LUXendin645** did not affect these antagonist properties ($EC_{50}(\text{cAMP}) = 73.1 \text{ nM}$, 95% CI
129 [54.9-97.5]) (Fig. 2a). As expected, addition of the GLP1R positive allosteric modulator
130 (PAM) BETP³⁰ conferred agonist activity on **LUXendin645** ($EC_{50}(\text{cAMP}) = 9.3 \text{ nM}$, 95% CI
131 [2.2-40.0]), with a potency similar to Exendin4(1-39) ($EC_{50}(\text{cAMP}) = 18.3 \text{ nM}$, 95% CI [8.0-
132 42.1]) (Fig. 2b).

133 As a first assessment of GLP1R labeling efficiency, we probed YFP-AD293-SNAP_GLP1R
134 cells with increasing concentrations of **LUXendin645**. Maximum labeling occurred at 100 nM
135 (Fig. 2c), in good agreement with the previously published $K_d = 15.8 \text{ nM}$ of native
136 Exendin4(9-39)³¹. **LUXendin645** was unable to label YFP-AD293 cells in which the GLP1R
137 was absent (Fig. 2d).

138 We next examined whether **LUXendin645** would allow labeling of endogenous GLP1R.
139 Following 60 min application of 50 nM **LUXendin645**, isolated islets demonstrated intense
140 and clean labeling, which was restricted to the membrane (Fig. 2e). Using conventional

141 confocal microscopy, we were able to detect bright staining even 60 μ m into the islet (Fig.
142 2e). Given these results, we next attempted to penetrate deeper into the islet by taking
143 advantage of the superior axial resolution of two-photon excitation (Fig. 2f). Remarkably, this
144 imaging modality revealed **LUXendin645** labeling at high resolution throughout the entire
145 volume of the islet (170 μ m in this case) (Fig. 2f). Consistent with the cAMP assays,
146 profound GLP1R internalization was detected following co-application of **LUXendin645** and
147 BETP to MIN6 β -cells, which endogenously express the receptor (Fig. 2g, h).

148 **LUXendin645 allows multiplexed GLP1R detection**

149 Demonstrating flexibility, **LUXendin645** labeling was still present following formaldehyde
150 fixation (Fig. 2i, j). Immunostaining using a specific primary monoclonal antibody against the
151 GLP1R revealed strong co-localization with **LUXendin645** in both islets (Fig. 2i) and MIN6
152 cells (Fig. 2j). Notably, **LUXendin645** displayed superior signal-to-noise-ratio and membrane
153 resolution compared to the antibody (Fig. 2k), expected to be even better in live tissue where
154 auto-fluorescence is less. Likewise, **LUXendin645** co-localized with SNAP-Surface 488 in
155 SNAP_GLP1R-INS1 rat β -cells generated on an endogenous null background (Fig. 2l).
156 Suggesting that **LUXendin645** requires the presence of surface GLP1R, labeling was
157 markedly reduced following prior internalization with Exendin4(1-39) (Fig. 2l, m).

158 **LUXendin645 specifically binds the GLP1R**

159 To further validate the specificity of **LUXendin645** labeling in primary tissue, we generated
160 *Glp1r* knock-out mice. This was achieved using CRISPR-Cas9 genome editing to introduce
161 a deletion into exon 1 of the *Glp1r*. The consequent frameshift was associated with absence
162 of translation and therefore a global GLP1R knockout, termed *Glp1r*^(GE)/⁻, in which all intronic
163 regions, and thus regulatory elements, are preserved (Fig. 3a, b). Wild-type (*Glp1r*^{+/+}),
164 heterozygous and homozygous littermates were phenotypically normal and possessed
165 similar body weights (Fig. 3c).

166 Confirming successful GLP1R knock-out, insulin secretion assays in islets isolated from
167 *Glp1r*^(GE)/⁻ mice showed intact responses to glucose, but absence of Exendin4(1-39)-
168 stimulated insulin secretion (Fig. 3d). Reflecting this finding, the incretin-mimetic Liraglutide
169 was only able to stimulate cAMP rises in islets from wild-type (*Glp1r*^{+/+}) littermates,
170 measured using the FRET probe Epac2-camps (Fig. 3e, f). As expected, immunostaining
171 with monoclonal antibody showed complete absence of GLP1R protein (Fig. 3g). Suggesting
172 that **LUXendin645** specifically targets GLP1R, with little to no cross-talk from glucagon-
173 receptors,³² signal could not be detected in *Glp1r*^(GE)/⁻ islets (Fig. 3g).

174 Together, these data provide strong evidence for a specific mode of **LUXendin645** action
175 via the GLP1R.

176 **LUXendin645 highlights weak GLP1R expression**

177 Previous approaches have shown low abundance of *Glp1r* transcripts in the other major islet
178 endocrine cell type, *i.e.* glucagon-secreting α -cells.^{7,33} This is associated with detection of
179 GLP1R protein in ~1-10% of cells,^{7,34} providing an excellent testbed for **LUXendin645**
180 sensitivity. Studies in intact islets showed that **LUXendin645** labeling was widespread in the
181 islet and well co-localized with insulin immunostaining (Fig. 4a). However, **LUXendin645**
182 could also be seen on membranes very closely associated with α -cells and somatostatin-

183 secreting δ -cells (Fig. 4b, c), similarly to results obtained with GLP1R mAb. Due to the close
184 apposition of β -, α - and δ -cell membranes, we were unable to accurately assign cell-type
185 specificity to **LUXendin645**. Instead, using cell clusters plated onto coverslips, we could
186 better discern **LUXendin645** labeling, revealing GLP1R expression in $18 \pm 6\%$ of α -cells
187 (Fig. 4d–f), higher than that shown before using antibodies^{19,34} and reporter genes⁷. Notably,
188 GLP1R-expressing α -cells tended to adjoin, whereas those without the receptor were next to
189 β -cells. Confirming previous findings, a majority ($86 \pm 3\%$) of β -cells were positive for
190 **LUXendin645** (Fig 4d-f).^{7,19}

191 We wondered whether fixation required for immunostaining might increase background
192 fluorescence such that GLP1R detection specificity was reduced. To circumvent this, studies
193 were repeated in live islets where **LUXendin645** signal was found to be much brighter and
194 background almost non-existent. GLP1R was detected in $26.2 \pm 1.1\%$ of non- β -cells (Fig
195 4g, h) using *Ins1Cre^{Thor};R26^{mTmG}* reporter mice in which β -cells are labeled green and all
196 other cell types are labeled red following Cre-mediated recombination. Once adjusted for the
197 previously reported GLP1R expression in δ -cells (assuming 100%), which constitute ~20%
198 of the insulin-negative islet population,³⁵ this leaves ~6% of GLP1R+ α -cells. This was not an
199 artefact of optical section, since two-photon islet reconstructions showed similar absence of
200 **LUXendin645** staining in discrete regions near the surface (where α -cells predominate)
201 (Movie S1).

202 **LUXendin645 and Luxendin651 reveal higher-order GLP1R organization**

203 By combining **LUXendin645** with Super-Resolution Radial Fluctuations (SRRF) analysis,³⁶
204 GLP1R could be imaged at super-resolution using streamed images (~ 1000) from a
205 conventional widefield microscope (Fig. 5a). To image endogenous GLP1R at < 100 nm
206 lateral resolution, we combined STED nanoscopy with **LUXendin651**, which bears silicon
207 rhodamine (SiR) instead of Cy5. **LUXendin651** produced bright labeling of wild-type but not
208 *Glp1r^(GE)-/-* islets, with an identical distribution to **LUXendin645** (Supplementary Fig. S1).
209 Incubation of MIN6 cells with **LUXendin651** and subsequent fixation allowed STED imaging
210 of the endogenous GLP1R with a FWHM = 70 ± 10 nm (Fig. 5b, c). STED snapshots of MIN6
211 β -cells revealed GLP1R distribution with unprecedented detail: receptors were not randomly
212 arranged but rather tended to organize into nanodomains with neighbors (Fig. 5b, c). This
213 was confirmed using the F- and G-functions, which showed a non-random and more
214 clustered GLP1R distribution (Fig. 5d, e). Differences in GLP1R expression level and pattern
215 could clearly be seen between neighboring cells with a subpopulation possessing highly
216 concentrated GLP1R clusters (Fig. 5f).

217 Finally, to test whether **LUXendin645** and **LUXendin651** would be capable of tracking
218 GLP1Rs in live cells, we performed single-molecule microscopy experiments in which
219 individual receptors labeled with either fluorescent probe were imaged by total internal
220 reflection fluorescence (TIRF) microscopy.^{37,38} Both probes allowed GLP1R to be tracked at
221 the single-molecule level in CHO-K1-SNAP_GLP1R cells, but brightness and bleaching
222 precluded longer recordings with **LUXendin645** (Fig. 5g and Supplementary Movies S2,
223 S3). By combining single-particle tracking with **LUXendin651**, we were able to show that
224 most GLP1Rs diffuse rapidly at the membrane (Fig. 5g and Supplementary Movie S4).
225 However, a mean square displacement (MSD) analysis³⁷ revealed a high heterogeneity in
226 the diffusion of GLP1Rs on the plasma membrane, ranging from virtually immobile receptors
227 to some displaying features of directed motion (superdiffusion) (Fig. 5h).

228 **Altering fluorophore to produce LUXendin555 confers different ligand behavior**

229 Lastly, we explored whether swapping the far-red Cy5/SiR for a TMR dye would be tolerated
230 to obtain a spectrally orthogonal probe, termed **LUXendin555**. Labeling was detected in
231 YFP-AD293-SNAP_GLP1R (Fig. 6a) but not YFP-AD293 cells (Fig. 6b). However, we
232 noticed a more punctate **LUXendin555** staining pattern when viewed at high-resolutions
233 (Fig. 6c). Further experiments with MIN6 cells and islets showed similar internalization of the
234 GLP1R (Fig. 6d), suggesting that **LUXendin555** acts as an agonist, presumably via
235 interactions mediated by the ectodomain. This was confirmed using cAMP assays where
236 **LUXendin555** was found to potently activate GLP1R signaling ($EC_{50}(\text{cAMP}) = 129.8 \text{ nM}$;
237 95% CI = 56.9–296.2) (Fig. 6e). Intriguingly, **LUXendin555** potency could be further
238 increased using a PAM ($EC_{50}(\text{cAMP}) = 28.4 \text{ nM}$; 95% CI = 11.3–71.8) (Fig. 6f), suggesting a
239 unique binding conformation at the orthosteric site compared to agonists such as
240 Exendin4(1–39), which cannot be allosterically-modulated.³⁰ As for the other probes,
241 **LUXendin555** was unable to label *Glp1r^{(GE)−/−}* islets (Fig. S2).

242 **LUXendins label islets *in vivo***

243 We thought that the high quantum yield of TMR, coupled with good two-photon cross-section
244 and agonistic behaviour might suit **LUXendin555** well to *in vivo* imaging where maintenance
245 of normoglycemia under anaesthesia can be an advantage for some experiments. Two-
246 photon imaging was applied to an anaesthetized mouse to allow visualization of the intact
247 pancreas, exposed through an abdominal incision (Fig. 6g). Vessels and nuclei were first
248 labeled using FITC-dextran and Hoechst before injecting **LUXendin555** intravenously.
249 Labeling occurred rapidly within 5 min post-injection, produced intense membrane staining
250 confined to the islet where GLP1R is expressed (Fig. 6h), and normoglycemia was
251 maintained (250 mg/dl). No obvious internalization could be seen, most likely reflecting the
252 time of exposure to **LUXendin555**, as well as the concentration achieved *in vivo* at the islet.

253 **DISCUSSION**

254 In the present study, we synthesize and validate far-red fluorescent labels, termed
255 **LUXendins** for the real-time detection of GLP1R in live cells. Nanomolar concentrations of
256 **LUXendin645** and **LUXendin651** led to intense membrane-labeling of the GLP1R, with best
257 in class tissue penetration and signal-to-noise ratio, as well as super-resolution capability.
258 Notably, **LUXendin645** and **LUXendin651** did not activate the GLP1R unless agonist
259 activity is conferred with the widely-available PAM BETP. **LUXendin645** and **LUXendin651**
260 are highly specific, as shown using a novel CRISPR-Cas9 mouse line lacking GLP1R
261 expression. Lastly, the analogous compound **LUXendin555** bearing a different fluorophore
262 unusually displays agonistic activity, expanding the color palette and activity profile without
263 changing the peptidic pharmacophore.

264 Compared to present chemical biology approaches, **LUXendins** possess a number of
265 advantages for GLP1R labeling, which generally rely on Exendin4(1-39) labeled with for
266 instance Cy3, Cy5 or FITC.^{19-21,30} Firstly, the use of an antagonist encourages receptor
267 recycling back to the membrane and retains receptor at the cell surface, which likely
268 increases detection capability. Secondly, the GLP1R is not activated, meaning that results
269 can be interpreted in the absence of potentially confounding cell signaling, such as that
270 expected with agonists.¹⁹ Thirdly, Cy5 occupies the far-red range, leading to less
271 background fluorescence, increasing depth penetration due to reduced scatter, and avoiding
272 the use of more phototoxic wavelengths.³⁹ Together, these desirable properties open up the
273 possibility to image expression and trafficking of native GLP1R over extended periods of
274 time, when **LUXendins** are used in conjunction with a PAM.

275 To test the specificity of **LUXendins**, we used CRISPR-Cas9 genome-editing to globally
276 knock out the GLP1R in mice. Protein deletion was confirmed by absence of detectable
277 GLP1R signal following labeling with monoclonal antibody, **LUXendin555**, **LUXendin645**
278 and **LUXendin651**. While *Glp1r*^{-/-} animals already exist and have made important
279 contributions to our understanding of incretin biology, they were produced using a targeted
280 mutation to replace exons encoding transmembrane regions 1 and 3 (encoded by exons 5
281 and 7), presumably leading to deletion of the introns in between (~6.25 kb).⁴⁰ By contrast,
282 *Glp1r*^{(GE)-/-} mice possess intact introns. Since introns contain regulatory elements, such as
283 distant-acting enhancers⁴¹, miRNAs⁴² and lncRNAs,⁴³ their loss in transgenic knockouts
284 could have wider influence on the transcriptome. GLP1R knock-out mice might therefore be
285 useful alongside conventional approaches for validating GLP1R reagents, including
286 antibodies, agonist and antagonist, and derivatives thereof.

287 Demonstrating the excellent sensitivity of the Cy5-linked **LUXendin645** in particular, we
288 were able to detect GLP1R in ~6-18% of α -cells. Understanding α -cell GLP1R expression
289 patterns is important because incretin-mimetics reduce glucagon secretion,⁴⁴ which would
290 otherwise act to aggravate blood glucose levels. However, previous studies using
291 antibodies, reporter animals and agonist-fluorophores have shown ~1-10% GLP1R
292 expression in mouse and rat α -cells, in line with the low transcript abundance^{7,19,33,45}, despite
293 reports that GLP-1 can directly suppress glucagon release.^{34,46} Our data are in general
294 concordance with these findings, but demonstrate an increase in detection capability for
295 native GLP1R. This improvement is likely related to the superior SNR of **LUXendin645**
296 compared to mAb and agonist-fluorophore, increasing the ability to resolve relatively low
297 GLP1R levels. A recent report showed GLP1R expression in ~80% of α -cells using a novel

298 antibody raised against the *N*-terminal region, with both membrane and cytosolic staining
299 evident⁴⁷. While the reasons for this discrepancy are unknown, it should be noted that
300 **LUXendin645** binds the orthosteric site and so reports the proportion of GLP1R that is
301 “signaling competent”.^{7, 19, 32}

302 Since **LUXendin645** showed excellent signal-to-noise ratio using conventional
303 epifluorescence, it was highly amenable to SRRF analysis. As such, **LUXendin645** and its
304 congeners open up the possibility to image the GLP1R at super-resolution using simple
305 widefield microscopy available in most laboratories. For stimulated emission depletion
306 (STED) microscopy experiments, Cy5 was replaced with SiR to give **LUXendin651**. STED
307 imaging showed that endogenous GLP1R possess a higher structural order, namely
308 organization into nanodomains at the cell membrane. The presence of nanodomains under
309 non-stimulated conditions might reflect differences in palmitoylation, which has recently been
310 shown to influence GLP1R membrane distribution in response to agonists.⁴⁸ Notably, a
311 subpopulation of β -cells appeared to possess highly-concentrated GLP1R clusters. It will be
312 important in the future to investigate whether this is a cell autonomous heterogenous trait, or
313 instead reflects biased orientation of membranes toward specific β -cells. Lastly, both
314 **LUXendin645** and **LUXendin651** allowed GLP1Rs to be imaged in live cells by single-
315 molecular microscopy, revealing variability in their diffusion at the plasma membrane.
316 Particle tracking analyses segregated GLP1R into four different populations based upon
317 diffusion mode, in keeping with data from beta adrenergic receptors.³⁷ Together, these
318 experiments provide the first super-resolution characterization of a class B GPCR and
319 suggest a degree of complexity not readily appreciated with previous approaches.

320 Intriguingly, we saw that swapping Cy5 for a TMR moiety to give **LUXendin555** completely
321 changed the pharmacological behavior. The reasons for this are unknown, but we speculate
322 that the rhodamine scaffold engages a secondary binding site in the GLP1R ectodomain,
323 leading to activation. This finding is remarkable because it suggests that the agonist \rightarrow
324 antagonist switch that occurs following removal of eight *N*-terminal amino acids (as
325 physiologically mediated by the protease DPP-4)⁴⁹ can be counteracted simply by installing
326 a C-terminal linked rhodamine fluorophore, with implications for the design of more stable
327 GLP1R activators. More generally, this shift in compound behaviour following a fluorophore
328 modification serves as another instructive example for the thorough validation of all new
329 chemical labels.⁵⁰ Nonetheless, **LUXendin555** possessed advantageous properties for *in*
330 *vivo* imaging including maintenance of relatively stable glycemia, good two-photon cross-
331 section and high quantum yield.

332 In summary, we provide a comprehensively-tested and unique GLP1R detection toolbox
333 consisting of far-red antagonist labels, **LUXendin645** and **LUXendin651**, an agonist
334 **LUXendin555**, and knockout *Gip1r^{(GE)-/-}* animals. Using these freely-available probes, we
335 provide an updated view of GLP1R organization, with relevance for the treatment of complex
336 metabolic diseases such as obesity and diabetes, as well as production of more stable
337 GLP1R activators. Thus, the stage is set for visualizing GLP1R in various tissues using a
338 range of imaging techniques, as well as the production of novel peptidic labels and agonists.

339

340 **METHODS**

341 **Synthesis**

342 Solid-phase peptide synthesis of S39C-Exendin4(9-39) was performed as previously
343 reported.²⁹ Maleimide-conjugated-6-TMR, -6-SiR and -Cy5 were obtained by TSTU
344 activation of the corresponding acids and reaction with 1-(2-amino-ethyl)-pyrrole-2,5-dione
345 (TFA salt, Aldrich). Fluorophore coupling *via* thiol-maleimide chemistry to peptides was
346 performed in PBS. All compounds were characterized by HRMS and purity was assessed to
347 be >95% by HPLC. Extinction coefficients were based upon known manufacturer bulk
348 material measures for TMR-Mal, Cy5-Mal (both Lumiprobe) and SiR-Mal (Spirochrome).
349 Details for synthesis including further characterization of all **LUXendins** are detailed in the
350 Supporting Information. **LUXendin555**, **LUXendin651** and **LUXendin645** are freely
351 available for academic use upon request.

352

353 **Cell culture**

354 AD293 cells (Agilent) were maintained in Dulbecco's Modified Eagles medium (DMEM)
355 supplemented with 10% fetal calf serum (FCS), 1% *L*-glutamine and 1%
356 penicillin/streptomycin. CHO-K1 cells (a kind gift from Dr Ben Jones, Imperial College
357 London) stably expressing the human SNAP_GLP1R (Cisbio) (CHO-K1-SNAP_GLP1R)
358 were maintained in DMEM supplemented with 10% FCS, 1% penicillin/streptomycin, 500
359 µg/mL G418, 5 mM *D*-glucose, 10 mM HEPES and 1% nonessential amino acids. MIN6 β -
360 cells (a kind gift from Prof. Jun-ichi Miyazaki, Osaka University) were maintained in DMEM
361 supplemented with 15% FCS, 25 mM *D*-glucose, 71 µM BME, 2 mM *L*-glutamine, 100 U/mL
362 penicillin, and 100 µg/mL streptomycin. INS1 832/3 CRISPR-deleted for the endogenous
363 GLP1R locus (a kind gift from Dr. Jacqui Naylor, MedImmune)⁵¹ were transfected with
364 human SNAP_GLP1R, before FACS of the SNAP-Surface488-positive population and
365 selection using G418.⁴⁸ The resulting SNAP_GLP1R_INS1^{GLP1R-/-} cells were maintained in
366 RPMI-1640 supplemented with 10% FBS, 10 mM HEPES, 2 mM *L*-glutamine, 1 mM
367 pyruvate, 72 µM β -mercaptoethanol, 1% penicillin/streptomycin and 500 µg/mL G418.

368 **Animals**

369 *Glp1r*^{(GE)-/-}: CRISPR-Cas9 genome-editing was used to introduce a single base pair deletion
370 into exon 1 of the *Glp1r* locus. Fertilized eggs of female Cas9-overexpressing mice (strain
371 *Gt(ROSA)26Sor*^{tm1.1(CAG-cas9*-EGFP)Fezh}/J) were harvested following super-ovulation. Modified
372 single-guide RNA (Synthego) targeting exon 1 of *Glp1r* and a single-stranded repair-
373 template were injected at 20 ng/µl into the pronucleus of embryos at the 1-cell stage. In
374 culture, 80% of embryos reached the 2-cell stage and were transplanted into surrogate mice.
375 The targeted locus of offspring was analyzed by PCR and sequencing. Besides the insertion
376 of the repair template, deletions of up to 27 nucleotides could be detected in 2 out of 6
377 offspring. Design of the repair template will be described elsewhere. Off-target sites were
378 predicted using the CRISPR Guide Design Tool (crispr.mit.edu). Loci of the top ten off-target
379 hits were amplified by PCR and analyzed *via* Sanger sequencing. Founder animals carrying
380 alleles with small deletions were backcrossed to wild type animals (strain C57BL/6J) for 1–2
381 generations to outbreed affected off-targets and then bred to homozygosity. Animals with the
382 larger deletion of 27 nucleotides were not taken forward, as GLP1R protein was still present.
383 Animals were born in Mendelian ratios and genotyping was performed using Sanger

384 sequencing. Animals were bred as heterozygous pairs to ensure *Glp1r*^{+/+} littermates.
385 *Glp1r*^{(GE)-/-} animals are freely available for academic use, subject to a Material Transfer
386 Agreement.

387 *Ins1Cre*^{Thor};R26^{mT/mG}: To allow identification of β - and non- β -cells, *Ins1Cre*^{Thor} animals with
388 Cre knocked-in at the *Ins1* locus (strain B6(Cg)-*Ins1*^{tm1.1(cre)Thor}/J) were crossed with R26^{mT/mG}
389 reporter mice (strain B6.129(Cg)-Gt(ROSA)26Sor^{tm4(CTB-tdTomato,-EGFP)Luo}/J). Cre-dependent
390 excision of the floxed allele results in deletion of tdTomato, expression of membrane-
391 localized GFP and thus identification of recombined and non-recombined cells.

392 All studies were performed with 6-12 week old male and female animals, and regulated by
393 the Animals (Scientific Procedures) Act 1986 of the U.K. Approval was granted by the
394 University of Birmingham's Animal Welfare and Ethical Review Body.

395 **Islet isolation**

396 Islets were isolated from male and female *Glp1r*^{(GE)-/-} and *Ins1Cre*^{Thor};R26^{mT/mG} mice, as well
397 as CD1 wild-type animals, maintained under specific-pathogen free conditions, with *ad lib*
398 access to food and water. Briefly, animals were humanely euthanized before injection of
399 collagenase 1 mg/mL (Serva NB8) into the bile duct. Following removal of the inflated
400 pancreas and digestion for 12 min at 37 °C, islets were separated using a Histopaque
401 (Sigma-Aldrich) gradient. Islets were cultured in RPMI medium containing 10% FCS, 100
402 units/mL penicillin, and 100 µg/mL streptomycin.

403 **Binding and potency assays**

404 Binding assays were performed in transiently-transfected YFP-AD293-SNAP_GLP1R cells
405 (using PolyJet reagent; SigmaGen). Increasing concentrations of compound were applied for
406 60 min, before imaging using a Zeiss LSM880 meta-confocal microscope configured with
407 GaAsP detectors and 10x/0.45 W, 40x/1.00 W and 63x/1.20 W objectives. YFP, TMR
408 (**LUXendin555**) and Cy5 (**LUXendin645**) were excited using λ = 514 nm, λ = 561 nm and λ
409 = 633 nm lasers, respectively. Emitted signals were captured at λ = 519–574 nm, λ = 570–
410 641 nm and λ = 638–759 nm for YFP, TMR (**LUXendin555**) and Cy5 (**LUXendin645**),
411 respectively. Control experiments were performed in YFP-AD293-SNAP cells, as above.

412 Potency for cAMP generation and inhibition was tested in heterologous expression systems,
413 comprising either stable CHO-K1-SNAP_GLP1R cells or transiently-transfected YFP-
414 AD293-SNAP_GLP1R cells, as previously described.²⁹ Briefly, cells were incubated with
415 increasing concentrations of compound +/- allosteric modulator for 30 min, before
416 harvesting, lysis and measurement of cAMP using cAMP-Glo™ Assay (Promega), according
417 to the manufacturer's instructions. EC₅₀ values were calculated using log concentration-
418 response curves fitted with a three-parameter equation.

419 **Live imaging**

420 Islets were incubated for 1 h at 37 °C in culture medium supplemented with either 100-250
421 nM **LUXendin555**, 50-100 nM **LUXendin645** or 100 nM **LUXendin651**, based upon binding
422 assays. Islets were imaged using either a Zeiss LSM780 or LSM880 microscope, as above
423 (**LUXendin651** was imaged as for **LUXendin645**). *Ins1Cre*^{Thor};R26^{mT/mG} islets were excited
424 at λ = 488 nm (emission, λ = 493–555 nm) and λ = 561 nm (emission, λ = 570–624 nm) for

425 mGFP and tdTomato, respectively. Two-photon imaging of **LUXendin645** was performed
426 using a Zeiss LSM 880 NLO equipped with a Spectra-Physics Insight X3 femtosecond-
427 pulsed laser and 20x/1.00 W objective. Excitation was performed at $\lambda = 800$ nm and emitted
428 signals detected at $\lambda = 638\text{--}759$ nm.

429 **cAMP imaging**

430 Islets were transduced with adenovirus harboring the FRET sensor, Epac2-camps, before
431 imaging using a Crest X-Light spinning disk system coupled to a Nikon Ti-E base and
432 10x/0.4 NA objective. Excitation was delivered at $\lambda = 430\text{--}450$ nm using a Lumencor Spectra
433 X light engine. Emitted signals were detected at $\lambda = 460\text{--}500$ and $\lambda = 520\text{--}550$ nm for
434 Cerulean and Citrine, respectively, using a Photometrics Delta Evolve EM-CCD. Imaging
435 was performed in HEPES-bicarbonate buffer, containing (in mmol/L) 120 NaCl, 4.8 KCl, 24
436 NaHCO₃, 0.5 Na₂HPO₄, 5 HEPES, 2.5 CaCl₂, 1.2 MgCl₂, and 3–17 D-glucose. Vehicle
437 (H₂O), Exendin4(1-39) (10-20 nM) or Liraglutide (10 nM) were applied at the indicated time
438 points, with forskolin (10 μ M) acting as a positive control.

439 **Immunostaining**

440 **LUXendin555**- or **LUXendin645**-treated cells or tissue were fixed for 60 min in 4%
441 paraformaldehyde. Primary antibodies were applied overnight at 4 °C in PBS + 0.1% Triton
442 + 1% BSA. Secondary antibodies were applied in the same buffer for 1 h at room
443 temperature, before mounting on slides using Vectashield Hardset containing DAPI. Primary
444 antibodies were mouse monoclonal anti-GLP1R 1:30 (Iowa DHSB; mAb #7F38), rabbit anti-
445 insulin 1:500 (Cell Signaling Technology, #3014), mouse monoclonal anti-glucagon 1:2000
446 (Sigma-Aldrich, #G2654) and mouse anti-somatostatin 1:5000 (Invitrogen, #14-9751-80).
447 Secondary antibodies were goat anti-mouse Alexa Fluor 568 and donkey anti-rabbit DyLight
448 488 1:1000. Images were captured using an LSM880 meta-confocal microscope. Alexa
449 Fluor 488 and Alexa Fluor 568 were excited at $\lambda = 488$ nm and $\lambda = 568$ nm, respectively.
450 Emitted signals were detected at $\lambda = 500\text{--}550$ nm (Alexa Fluor 488) and $\lambda = 519\text{--}574$ nm
451 (Alexa Fluor 568).

452 **Super-resolution microscopy**

453 **SRRF**: MIN6 were treated with **LUXendin645** before fixation and mounting on slides using
454 Vectashield Hardset containing DAPI. Imaging was performed using a Crest X-Light
455 spinning disk system in bypass (widefield) mode. Excitation was delivered at $\lambda = 640/30$ nm
456 through a 63x/1.4 NA objective using a Lumencor Spectra X light engine. Emission was
457 collected at $\lambda = 700/75$ nm using a Photometrics Delta Evolve EM-CDD. A 1000 image
458 sequence was captured (~ 2 min) before offline super resolution radial fluctuation (SRRF)
459 analysis to generate a single super-resolution snapshot using the NanoJ plugin for ImageJ
460 (NIH).³⁶

461 *Stimulated emission depletion (STED) microscopy*: MIN6 cells were treated with 100, 200
462 and 400 nM **LUXendin651** before fixation (4% paraformaldehyde, 20 min). Cells were
463 mounted in Mowiol supplemented with DABCO and imaged on an Abberior STED
464 775/595/RESOLFT QUAD scanning microscope (Abberior Instruments GmbH, Germany)
465 equipped with STED lines at $\lambda = 595$ and $\lambda = 775$ nm, excitation lines at $\lambda = 355$ nm, 405 nm,
466 485 nm, 561 nm, and 640 nm, spectral detection, and a UPlanSApo 100x/1.4 oil immersion
467 objective lens. Following excitation at $\lambda = 640$ nm, fluorescence was acquired in the spectral

468 window λ = 650-800 nm. Deconvolution was performed with Richardson-Lucy algorithm on
469 Imspector software. FWHM was measured on raw data and calculated using OriginPro 2017
470 software with Gaussian fitting (n=15 profiles). Spatial GLP1R expression patterns were
471 analyzed using the F- and G-functions, where F = distance between an object of interest and
472 its nearest neighbor, and G = distance from a given position to the nearest object of interest
473 (FIJI Spatial Statistic 2D/3D plugin).⁵² Both measures were compared to a random
474 distribution of the same measured objects, with a shift away from the mean +/- 95%
475 confidence intervals indicating a non-random or clustered organization (i.e. more space or
476 smaller distance between objects).

477 *Single-molecule microscopy:* For single-molecule experiments, CHO-K1-SNAP_GLP1R cells
478 were seeded onto 25 mm clean glass coverslips at a density of 3x 10⁵ per well. On the
479 following day, cells were labeled in culture medium with 100 pM **LUXendin645** or
480 **LUXendin651** for 20 min. At the end of the incubation, cells were washed 3x 5 min in culture
481 medium. Cells were then imaged at 37 °C in phenol-red free Hank's balanced salt solution,
482 using a custom built total internal reflection fluorescence microscope (Cairn Research)
483 based on an Eclipse Ti2 (Nikon, Japan) equipped with an EMCCD camera (iXon Ultra,
484 Andor), 637 nm diode laser, and a 100x oil-immersion objective (NA 1.49, Nikon). Image
485 sequences were acquired with an exposure time of 60 ms. Single-molecule image
486 sequences were analyzed with an automated particle detection software (utrack) in the
487 MATLAB environment, as previously described.^{53,54} Data were further analyzed using
488 custom MATLAB algorithms, as previously described.^{37,55}

489 **Two-photon *in vivo* imaging**

490 A 7 week old female C57BL/6J mouse was anesthetized with isoflurane and a small, 1 cm
491 vertical incision was made at the level of the pancreas. The exposed organ was orientated
492 underneath the animal and pressed against a 50 mm glass-bottom dish for imaging on an
493 inverted microscope. Body temperature was maintained using heat pads and heating
494 elements on the objective. The mouse received Hoechst 33342 (1 mg/kg in PBS) to label
495 nuclei, a 150 kDalton fluorescein-conjugated dextran (1 mg/kg in PBS) to label vasculature,
496 and 75 uL of 30 μ M **LUXendin555** via retro-orbital IV injection. Images were collected using
497 a Leica SP8 microscope, equipped with a 25x/0.95 NA objective and Spectra Physics
498 MaiTai DeepSee mulitphoton laser. Excitation was delivered at λ = 850 nm, with signals
499 collected with a HyD detector at λ = 460/50, λ = 525/50, λ = 624/40 nm for Hoechst, FITC
500 and **LUXendin555**, respectively. All *in vivo* imaging experiments were performed with
501 approval and oversight from the Indiana University Institutional Animal Care and Use
502 Committee (IACUC).

503 **Statistical analyses**

504 Measurements were performed on discrete samples unless otherwise stated. All analyses
505 were conducted using GraphPad Prism software. Unpaired or paired Students t-test was
506 used for pairwise comparisons. Multiple interactions were determined using one-way
507 ANOVA followed by Dunn's or Sidak's posthoc tests (accounting for degrees of freedom).

508 **Data availability**

509 The datasets generated during and/or analysed during the current study are available from
510 the corresponding author on reasonable request.

511

512 **REFERENCES**

- 513 1. Baggio, L.L. & Drucker, D.J. Biology of incretins: GLP-1 and GIP. *Gastroenterology*
514 **132**, 2131-57 (2007).
- 515 2. Campbell, J.E. & Drucker, D.J. Pharmacology, physiology, and mechanisms of
516 incretin hormone action. *Cell Metab* **17**, 819-837 (2013).
- 517 3. Parker, H.E. et al. Molecular mechanisms underlying bile acid-stimulated glucagon-
518 like peptide-1 secretion. *British Journal of Pharmacology* **165**, 414-23 (2012).
- 519 4. Leech, C.A. et al. Molecular physiology of glucagon-like peptide-1 insulin
520 secretagogue action in pancreatic beta cells. *Progress in Biophysics and Molecular
521 Biology* **107**, 236-47 (2011).
- 522 5. MacDonald, P.E. et al. The multiple actions of GLP-1 on the process of glucose-
523 stimulated insulin secretion. *Diabetes* **51 Suppl 3**, S434-42 (2002).
- 524 6. Cork, S.C. et al. Distribution and characterisation of Glucagon-like peptide-1 receptor
525 expressing cells in the mouse brain. *Mol Metab* **4**, 718-31 (2015).
- 526 7. Richards, P. et al. Identification and Characterization of GLP-1 Receptor-Expressing
527 Cells Using a New Transgenic Mouse Model. *Diabetes* **63**, 1224-1233 (2013).
- 528 8. Giepmans, B.N., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. The fluorescent toolbox
529 for assessing protein location and function. *Science* **312**, 217-24 (2006).
- 530 9. Yang, G. et al. Genetic targeting of chemical indicators in vivo. *Nat Methods* **12**, 137-
531 139 (2015).
- 532 10. Lukinavičius, G. et al. A near-infrared fluorophore for live-cell super-resolution
533 microscopy of cellular proteins. *Nature Chemistry* **5**, 132-139 (2013).
- 534 11. Los, G.V. et al. HaloTag: A Novel Protein Labeling Technology for Cell Imaging and
535 Protein Analysis. *ACS Chemical Biology* **3**, 373-382 (2008).
- 536 12. Lang, K. et al. Genetic Encoding of Bicyclononynes and trans-Cyclooctenes for Site-
537 Specific Protein Labeling in Vitro and in Live Mammalian Cells via Rapid Fluorogenic
538 Diels–Alder Reactions. *Journal of the American Chemical Society* **134**, 10317-10320
539 (2012).
- 540 13. Jewett, J.C. & Bertozzi, C.R. Cu-free click cycloaddition reactions in chemical
541 biology. *Chem Soc Rev* **39**, 1272-9 (2010).
- 542 14. Lukinavicius, G. et al. Fluorogenic Probes for Multicolor Imaging in Living Cells. *J Am
543 Chem Soc* **138**, 9365-8 (2016).
- 544 15. Lukinavicius, G. et al. Fluorogenic probes for live-cell imaging of the cytoskeleton.
545 *Nat Methods* **11**, 731-3 (2014).
- 546 16. Karch, S. et al. A New Fluorogenic Small-Molecule Labeling Tool for Surface
547 Diffusion Analysis and Advanced Fluorescence Imaging of β -Site Amyloid Precursor
548 Protein-Cleaving Enzyme 1 Based on Silicone Rhodamine: SiR-BACE1. *Journal of
549 Medicinal Chemistry* **61**, 6121-6139 (2018).
- 550 17. Pyke, C. et al. GLP-1 receptor localization in monkey and human tissue: novel
551 distribution revealed with extensively validated monoclonal antibody. *Endocrinology*
552 **155**, 1280-90 (2014).
- 553 18. Pyke, C. & Knudsen, L.B. The glucagon-like peptide-1 receptor--or not?
554 *Endocrinology* **154**, 4-8 (2013).
- 555 19. Lehtonen, J., Schäffer, L., Rasch, M.G., Hecksher-Sørensen, J. & Ahnfelt-Rønne, J.
556 Beta cell specific probing with fluorescent exendin-4 is progressively reduced in type
557 2 diabetic mouse models. *Islets* **7**, e1137415 (2016).
- 558 20. Clardy, S.M. et al. Fluorescent Exendin-4 Derivatives for Pancreatic β -Cell Analysis.
559 *Bioconjugate Chemistry* **25**, 171-177 (2013).
- 560 21. Clardy, S.M. et al. Rapid, high efficiency isolation of pancreatic ss-cells. *Sci Rep* **5**,
561 13681 (2015).
- 562 22. Kleiner, S. et al. Mice harboring the human SLC30A8 R138X loss-of-function mutation
563 have increased insulin secretory capacity. *Proceedings of the National Academy of
564 Sciences* **115**, E7642-E7649 (2018).

565 23. Kim, J. et al. Amino Acid Transporter Slc38a5 Controls Glucagon Receptor Inhibition-
566 Induced Pancreatic α Cell Hyperplasia in Mice. *Cell Metabolism* **25**, 1348-1361.e8
567 (2017).

568 24. Aroor, A. & Nistala, R. Tissue-Specific Expression of GLP1R in Mice: Is the Problem
569 of Antibody Nonspecificity Solved? *Diabetes* **63**, 1182-1184 (2014).

570 25. Drucker, Daniel J. The Cardiovascular Biology of Glucagon-like Peptide-1. *Cell
571 Metabolism* **24**, 15-30 (2016).

572 26. Armstrong, M.J. et al. Liraglutide safety and efficacy in patients with non-alcoholic
573 steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled
574 phase 2 study. *The Lancet* **387**, 679-690 (2016).

575 27. Baggio, L.L. & Drucker, D.J. Glucagon-like peptide-1 receptors in the brain:
576 controlling food intake and body weight. *Journal of Clinical Investigation* **124**, 4223-
577 4226 (2014).

578 28. Mukai, E. et al. GLP-1 receptor antagonist as a potential probe for pancreatic beta-
579 cell imaging. *Biochem Biophys Res Commun* **389**, 523-6 (2009).

580 29. Podewin, T. et al. Conditional and Reversible Activation of Class A and B G Protein-
581 Coupled Receptors Using Tethered Pharmacology. *ACS Central Science* **4**, 166-179
582 (2018).

583 30. Jones, B.J. et al. Potent Prearranged Positive Allosteric Modulators of the Glucagon-
584 like Peptide-1 Receptor. *ChemistryOpen*, 501-505 (2017).

585 31. López de Maturana, R., Willshaw, A., Kuntzsch, A., Rudolph, R. & Donnelly, D. The
586 Isolated N-terminal Domain of the Glucagon-like Peptide-1 (GLP-1) Receptor Binds
587 Exendin Peptides with Much Higher Affinity than GLP-1. *Journal of Biological
588 Chemistry* **278**, 10195-10200 (2003).

589 32. Ban, K. et al. Glucagon-Like Peptide (GLP)-1(9-36)Amide-Mediated Cytoprotection Is
590 Blocked by Exendin(9-39) Yet Does Not Require the Known GLP-1 Receptor.
591 *Endocrinology* **151**, 1520-1531 (2010).

592 33. DiGruccio, M.R. et al. Comprehensive alpha, beta and delta cell transcriptomes
593 reveal that ghrelin selectively activates delta cells and promotes somatostatin release
594 from pancreatic islets. *Molecular Metabolism* **5**, 449-458 (2016).

595 34. De Marinis, Y.Z. et al. GLP-1 Inhibits and Adrenaline Stimulates Glucagon Release
596 by Differential Modulation of N- and L-Type Ca²⁺ Channel-Dependent Exocytosis.
597 *Cell Metabolism* **11**, 543-553 (2010).

598 35. Cabrera, O. et al. The unique cytoarchitecture of human pancreatic islets has
599 implications for islet cell function. *Proceedings of the National Academy of Sciences
600 of the United States of America* **103**, 2334-9 (2006).

601 36. Gustafsson, N. et al. Fast live-cell conventional fluorophore nanoscopy with ImageJ
602 through super-resolution radial fluctuations. *Nat Commun* **7**, 12471 (2016).

603 37. Sungkaworn, T. et al. Single-molecule imaging reveals receptor-G protein
604 interactions at cell surface hot spots. *Nature* **550**, 543-547 (2017).

605 38. Calebiro, D. et al. Single-molecule analysis of fluorescently labeled G-protein-
606 coupled receptors reveals complexes with distinct dynamics and organization. *Proc
607 Natl Acad Sci U S A* **110**, 743-8 (2013).

608 39. Pansare, V., Hejazi, S., Faenza, W. & Prud'homme, R.K. Review of Long-
609 Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and
610 Multifunctional Nano Carriers. *Chem Mater* **24**, 812-827 (2012).

611 40. Scrocchi, L.A. et al. Glucose intolerance but normal satiety in mice with a null
612 mutation in the glucagon-like peptide 1 receptor gene. *Nat Med* **2**, 1254-8 (1996).

613 41. Visel, A., Rubin, E.M. & Pennacchio, L.A. Genomic views of distant-acting
614 enhancers. *Nature* **461**, 199-205 (2009).

615 42. Filios, S.R. & Shalev, A. β -Cell MicroRNAs: Small but Powerful. *Diabetes* **64**, 3631-
616 3644 (2015).

617 43. Akerman, I. et al. Human Pancreatic beta Cell lncRNAs Control Cell-Specific
618 Regulatory Networks. *Cell Metab* **25**, 400-411 (2017).

619 44. Nauck, M.A. et al. Normalization of fasting hyperglycaemia by exogenous glucagon-
620 like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients.
621 *Diabetologia* **36**, 741-4 (1993).

622 45. Tornehave, D., Kristensen, P., Romer, J., Knudsen, L.B. & Heller, R.S. Expression of
623 the GLP-1 receptor in mouse, rat, and human pancreas. *J Histochem Cytochem* **56**,
624 841-51 (2008).

625 46. Ramracheya, R. et al. GLP-1 suppresses glucagon secretion in human pancreatic
626 alpha-cells by inhibition of P/Q-type Ca²⁺ channels. *Physiological Reports* **6**, e13852
627 (2018).

628 47. Zhang, Y. et al. GLP-1 Receptor in Pancreatic alpha Cells Regulates Glucagon
629 Secretion in a Glucose-Dependent Bidirectional Manner. *Diabetes* (2018).

630 48. Buenaventura, T. et al. Agonist binding affinity determines palmitoylation of the
631 glucagon-like peptide 1 receptor and its functional interaction with plasma membrane
632 nanodomains in pancreatic beta cells. (2018).

633 49. Omar, B. & Ahren, B. Pleiotropic Mechanisms for the Glucose-Lowering Action of
634 DPP-4 Inhibitors. *Diabetes* **63**, 2196-2202 (2014).

635 50. Smith, N.A. et al. Fluorescent Ca²⁺indicators directly inhibit the Na,K-ATPase and
636 disrupt cellular functions. *Science Signaling* **11**, eaal2039 (2018).

637 51. Naylor, J. et al. Use of CRISPR/Cas9-engineered INS-1 pancreatic beta cells to
638 define the pharmacology of dual GIPR/GLP-1R agonists. *Biochem J* **473**, 2881-91
639 (2016).

640 52. Zimmer, C. et al. Statistical Analysis of 3D Images Detects Regular Spatial
641 Distributions of Centromeres and Chromocenters in Animal and Plant Nuclei. *PLoS*
642 *Computational Biology* **6**, e1000853 (2010).

643 53. Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences.
644 *Nature Methods* **5**, 695-702 (2008).

645 54. Sungkaworn, T., Rieken, F., Lohse, M.J. & Calebiro, D. High-resolution
646 Spatiotemporal Analysis of Receptor Dynamics by Single-molecule Fluorescence
647 Microscopy. *Journal of Visualized Experiments* (2014).

648 55. Treppiedi, D. et al. Single-Molecule Microscopy Reveals Dynamic FLNA Interactions
649 Governing SSTR2 Clustering and Internalization. *Endocrinology* **159**, 2953-2965
650 (2018).

651 56. Zhang, Y. et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a
652 G protein. *Nature* **546**, 248-253 (2017).

653

654 **ACKNOWLEDGMENTS**

655 We thank Bettina Mathes and Alexandra Teslenko for excellent synthetic support. D.J.H.
656 was supported by a Diabetes UK R.D. Lawrence (12/0004431) Fellowship, a Wellcome
657 Trust Institutional Support Award, MRC Confidence in Concept, MRC (MR/N00275X/1)
658 Project and Diabetes UK (17/0005681) Project Grants. ST was supported by an MRC
659 Project Grant (MR/N02589X/1). B.H. was supported by the Wellcome Trust (095101,
660 200837 and 106130). A.K.L. was supported by R03 DK115990 (to A.K.L.) and Human Islet
661 Research Network UC4 DK104162 (to A.K.L.; RRID:SCR_014393). Intravital microscopy
662 core services were supported by NIH NIDDK Grant P30 DK097512 to the Indiana University
663 School of Medicine. A.T. and B.J. were funded by an MRC Project Grant (MR/R010676/1).
664 D.C. was funded by the Deutsche Forschungsgemeinschaft (SFB/Transregio 166–Project
665 C1) and a Wellcome Trust Senior Research Fellowship. This project has received funding
666 from the European Research Council (ERC) under the European Union’s Horizon 2020
667 research and innovation programme (Starting Grant 715884 to D.J.H.). We thank Prof Anna
668 Gloyn (University of Oxford) for provision of reagents, Dr Birgit Koch (MPI, Heidelberg) for
669 helpful discussions on *Glp1r*^{(GE)-/-} mice and Dr Jacqueline Naylor (MedImmune) for
670 generation of parental SNAP_GLP1R-INS1^{GLP1R-/-} cells.

671 **CONTRIBUTIONS**

672 J.A., K.J., T.P., J.B. and D.J.H. devised the studies. J.A., A.A., D.N., N.H.F.F., F.B.A., S.T.,
673 Z.S., B.H., A.T., T.P., J.B. and D.J.H. performed experiments and analyzed data. J.A. and
674 A.B. generated novel mice. B.J.J. provided reagents. Z.K. and E.D'E. performed super-
675 resolution imaging. C.A.R. and A.K.L. performed *in vivo* imaging experiments. D.C.
676 supervised and analyzed single-molecule microscopy experiments. J.A., K.J., T.P., J.B. and
677 D.J.H. supervised the work. J.A., T.P., J.B. and D.J.H. wrote the manuscript with input from
678 all the authors.

679 **COMPETING INTERESTS**

680 The authors declare no conflict of interest.

681

682 **FIGURE LEGENDS**

683 **Figure 1: Sequence and structure of LUXendin555, LUXendin651 and LUXendin645**
684 **bound to GLP1R.** LUXendins are based on the antagonist Exendin4(9-39), shown in
685 complex with GLP1R. The label can be any dye, such as TMR (top), SiR (middle) or Cy5
686 (bottom) to give **LUXendin555, LUXendin651 and LUXendin645**, respectively. The model
687 was obtained by using the cryo-EM structure of the activated form of GLP1R in complex with
688 a G protein (pdb: 5VAl)⁵⁶, with the G protein and the 8 N-terminal amino acids of the ligand
689 removed from the structure while mutating S39C and adding the respective linker. Models
690 were obtained as representative cartoons by the in-built building capability of PyMOL (Palo
691 Alto, CA, USA) without energy optimization. Succinimide stereochemistry is unknown and
692 neglected for clarity.

693

694 **Figure 2: LUXendin645 binding, signaling and labeling.** **a**, Exendin4(9-39), its S39C
695 mutant and **LUXendin645** display similar antagonistic properties (n = 3 replicates). **b**,
696 **LUXendin645** does not activate the GLP1R in CHO-K1-SNAP_GLP1R cells unless the
697 positive allosteric modulator (PAM) BETP is present (Exendin4; +ve control) (n = 3 assays).
698 **c**, **LUXendin645** labels CHO-K1-SNAP_GLP1R cells with a maximal labeling achieved at
699 100 nM. **d**, **LUXendin645** signal can be detected in YFP-AD293-SNAP_GLP1R but not
700 YFP-AD293 cells (scale bar = 212.5 μ m) (n = 3 assays). **e**, Representative confocal z-stack
701 (1 μ m steps) showing penetration of **LUXendin645** deep into a live pancreatic islet (x-y, x-z
702 and y-z projections are shown) (n = 4 islets) (scale bar = 37.5 μ m). **f**, As for (e), but two-
703 photon z-stack (1 μ m steps) showing the entire volume of an islet labeled with **LUXendin645**
704 (scale bar = 37.5 μ m) (n = 9 islets). **g** and **h**, GLP1R is internalized in MIN6 cells when
705 agonist activity is conferred on **LUXendin645** using the positive allosteric modulator BETP
706 (scale bar = 21 μ m) (n = 5 images, 693-722 cells; Student's unpaired t-test) (Bar graph
707 shows mean \pm SEM). **i** and **j**, **LUXendin645** signal can be detected even following fixation
708 and co-localizes with a specific monoclonal antibody against the GLP1R in both islets (n =
709 13 islets) and MIN6 β -cells (n = 6 images, 543 cells) (scale bar = 26 μ m). **k**, The superior
710 signal-to-noise-ratio of **LUXendin645** allows more membrane detail to be visualized
711 compared to antibody (scale bar = 12.5 μ m). Representative images are shown, with a blue
712 bar indicating the location of intensity-over-distance measures (the islet was co-stained with
713 **LUXendin645** + antibody to allow direct comparison) (n = 13 islets). **l** and **m**, **LUXendin645**
714 co-localizes with the SNAP label, Surface 488, in SNAP_hGLP1R-INS1^{GLP1 $^{+/-}$} , which are
715 deleted for the endogenous *Glp1r* (**l**). Pre-treatment with Exendin4(9-39) to internalize the
716 GLP1R reduces **LUXendin645**-labeling (**m**) (a wash-step was used prior to application of
717 the label) (scale bar = 10 μ m) (n = 4-5 images; 57-64 cells). Mean \pm SE are shown.
718 **P<0.01.

719

720 **Figure 3: LUXendin645 is highly specific for the GLP1R.** **a**, Schematic showing sgRNA
721 targeting strategy for the production of *Glp1r*^{(GE) $^{+/-}$} mice. The sgRNA used targeted *Glp1r* and
722 the double-strand break mediated by Cas9 lies within exon1 (capital letters); intron shown in
723 gray. **b**, *Glp1r*^{(GE) $^{+/-}$} animals harbor a single-nucleotide deletion, as shown by sequencing
724 traces. **c**, Body weights were similar in male 8 weeks old *Glp1r*^{+/+}, *Glp1r*^{(GE) $^{+/-}$} and *Glp1r*^{(GE) $^{+/-}$}
725 littermates (n = 4-8 animals; one-way ANOVA with Bonferroni's post hoc test; F = 0.7982,
726 DF = 2) (Bar graph shows mean \pm SEM) **d**, The incretin-mimetic Exendin4(1-39) (10 nM) is

727 unable to significantly potentiate glucose-stimulated insulin secretion in *Glp1r^{(GE)-/-}* islets (n =
728 6 replicates; two-way ANOVA with Sidak's post hoc test; F = 14.96, DF = 2 for *Glp1r^{+/+}*, F =
729 2.968, DF = 2 for *Glp1r^{(GE)-/-}*) (Bar graph shows mean ± SEM) **e**, Liraglutide (Lira) does not
730 stimulate cAMP beyond vehicle (Veh) control in *Glp1r^{(GE)-/-}* islets, measured using the FRET
731 probe Epac2-camps (traces represent mean ± SEM) (n = 14–17 islets). **f**, cAMP area-under-
732 the-curve (AUC) quantification showing absence of significant Liraglutide-stimulation in
733 *Glp1r^{(GE)-/-}* islets (n = 14–17 islets; Kruskal-Wallis test with Dunn's post hoc test; Kruskal-
734 Wallis statistic = 7.6, DF = 2) (Box and Whiskers plot shows min-max and median)
735 (representative images displayed above each bar). **g**, **LUXendin645** and GLP1R antibody
736 labeling is not detectable in *Glp1r^{(GE)-/-}* islets (scale bar = 40 µm) (n = 12–14 islets for each
737 genotype). *P<0.05, **P<0.01 and NS, non-significant.

738

739 **Figure 4: LUXendin645 reveals GLP1R expression in a subpopulation of α-cells. a-c**,
740 **LUXendin645** labeling is widespread throughout the intact islet, co-localizing predominantly
741 with β-cells (**a**) and δ-cells (**b**), but less so with α-cells (**c**) stained for insulin, somatostatin
742 and glucagon, respectively (n = 7–9 islets) (scale bar = 26 µm). **d**, Following dissociation of
743 islets into cell clusters, **LUXendin645** labeling can be more accurately quantified (arrows
744 highlight cells selected for zoom-in) (scale bar = 26 µm). **e**, Zoom-in of (**d**) showing a
745 **LUXendin645-** (left) and **LUXendin645+** (right) α-cell (arrows highlight non-labeled cell
746 membrane, which is not bounded by a β-cell) (scale bar = 26 µm). **f**, Box-and-whiskers plot
747 showing proportion of β-cells (INS) and α-cells (GLU) co-localized with **LUXendin645** (n =
748 5–6 images, 12 cell clusters) (Max-min shown together with the median). **g**,
749 *Ins1Cre^{Thor};R26^{mT/mG}* dual fluorophore reporter islets express tdTomato until Cre-mediated
750 replacement with mGFP, allowing identification of β-cells (~80% of the islet population) and
751 non-β-cells for live imaging (scale bar = 26 µm). **LUXendin645** highlights GLP1R expression
752 in nearly all β-cells but relatively few non-β-cells (n = 24 islets, 809 cells). **h**, As for (**g**), but a
753 zoom-in showing GLP1R expression in some non-β-cells (left) together with quantification
754 (right) (arrows show **LUXendin645**-labeled non-β cells) (scale bar = 5 µm) (Box and
755 Whiskers plot shows min-max and median).

756

757 **Figure 5: LUXendin651 and LUXendin645 allow nanoscopic detection of GLP1R**
758 **distribution and dynamics. a**, **LUXendin645** allows super-resolution snapshots of MIN6 β-
759 cells using widefield microscopy combined with Super-Resolution Radial Fluctuations
760 (SRRF) (n = 3 images) (scale bar = 10 µm). **b** and **c**, Confocal and STED snapshots of
761 endogenous GLP1R in **LUXendin651**-treated MIN6 cells at ~ 50 nm axial resolution. Note
762 the presence of punctate GLP1R expression as well as aggregation/clustering in images
763 captured above (**b**) and close to the coverslip (**c**) using STED microscopy (n = 3 images, 15
764 cells) (scale bar = 2 µm). **d** and **e**, Spatial analysis of GLP1R expression patterns using the
765 F-function (**d**) and G-function (**e**) show a non-random distribution (red line) versus a random
766 model (black line; 95% confidence interval shown). **f**, Approximately 1 in 4 MIN6 β-cells
767 possess highly concentrated GLP1R clusters (Bar graph shows mean ± SEM) (n = 3 images,
768 15 cells). **g**, Single molecule microscopy and tracking of **LUXendin645-** and **LUXendin651-**
769 labeled GLP1R (n = 2 movies) (scale bar = 3 µm). **h**, Mean square displacement (MSD)
770 analysis showing different GLP1R diffusion modes (representative trajectories are displayed)
771 (scale bar = 1 µm).

772

773 **Figure 6: LUXendin555 displays agonist properties and allows *in vivo* labeling of**
774 **islets. a and b, LUXendin555 labels YFP-AD293_SNAP-GLP1R (a) but not YFP-AD293 (b)**
775 **controls (n = 3–4 assays) (10x scale bar = 213 μ m; 100x scale bar = 21 μ m). c, High**
776 **resolution snapshot of LUXendin555-labeling in MIN6 β -cells showing a punctate staining**
777 **pattern in the cytosol (n = 8 images, 142 cells) (scale bar = 9 μ m). d, Surface GLP1R**
778 **expression is reduced in LUXendin555- compared to LUXendin645-treated islets**
779 **(representative images shown above each bar) (n = 5 islets; Student's unpaired t-test) (Bar**
780 **graph shows mean \pm SEM) (scale bar = 17 μ m). e, LUXendin555 potently increases cAMP**
781 **levels in YFP-AD293_SNAP-GLP1R but not YFP-AD293 cells (n = 3 assays). f, Allosteric**
782 **modulation with BETP increases agonist activity of LUXendin555 (n = 3 assays). g,**
783 **Schematic depicting the two-photon imaging set up for visualization of the intact pancreas in**
784 **mice. h, Representative image showing that LUXendin555 labels cell membranes in an**
785 **islet surrounded by the vasculature *in vivo* (n = 2 islets from 1 mouse) (scale bar = 50 μ m).**
786 **Mean \pm SE are shown. **P<0.01.**

787

10 15 20 25 30 35

Figure 1

Exendin4(9-39) H₂N- D LSKQM EEEAV RLFIE WLKNG GPSSG APPPS -NH₂
S39C-Ex4(9-39) H₂N- D LSKQM EEEAV RLFIE WLKNG GPSSG APPPC -NH₂

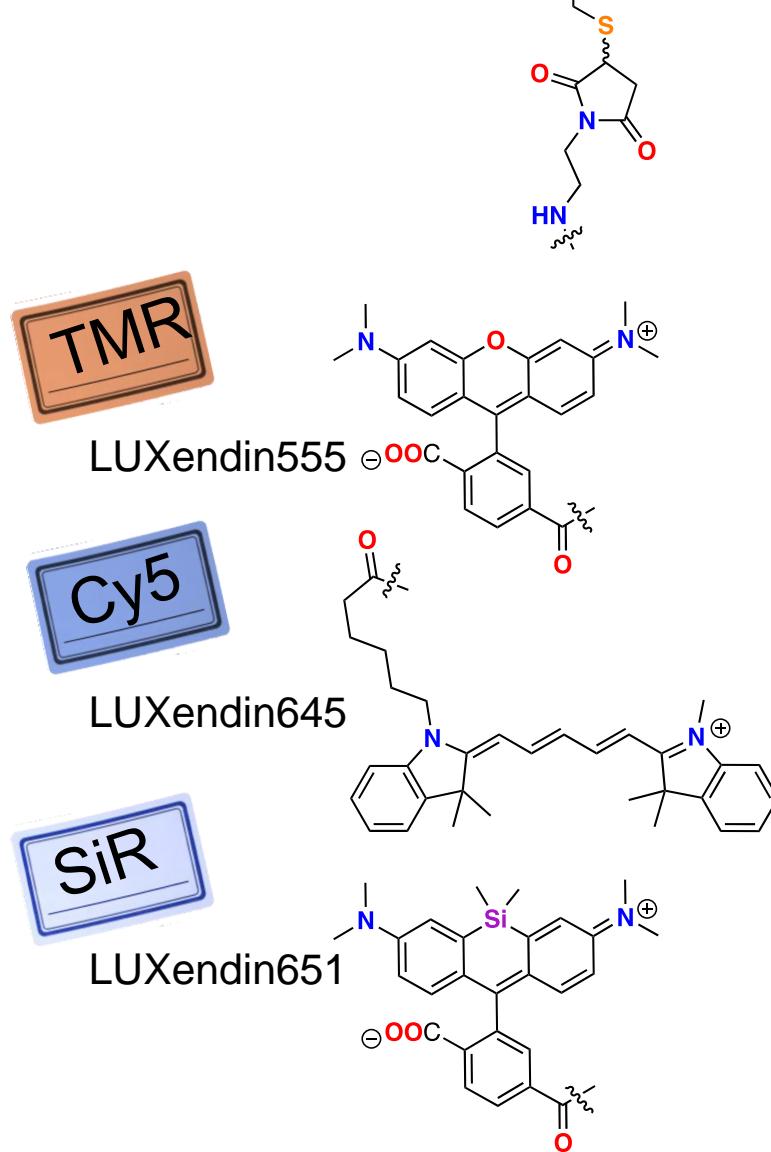
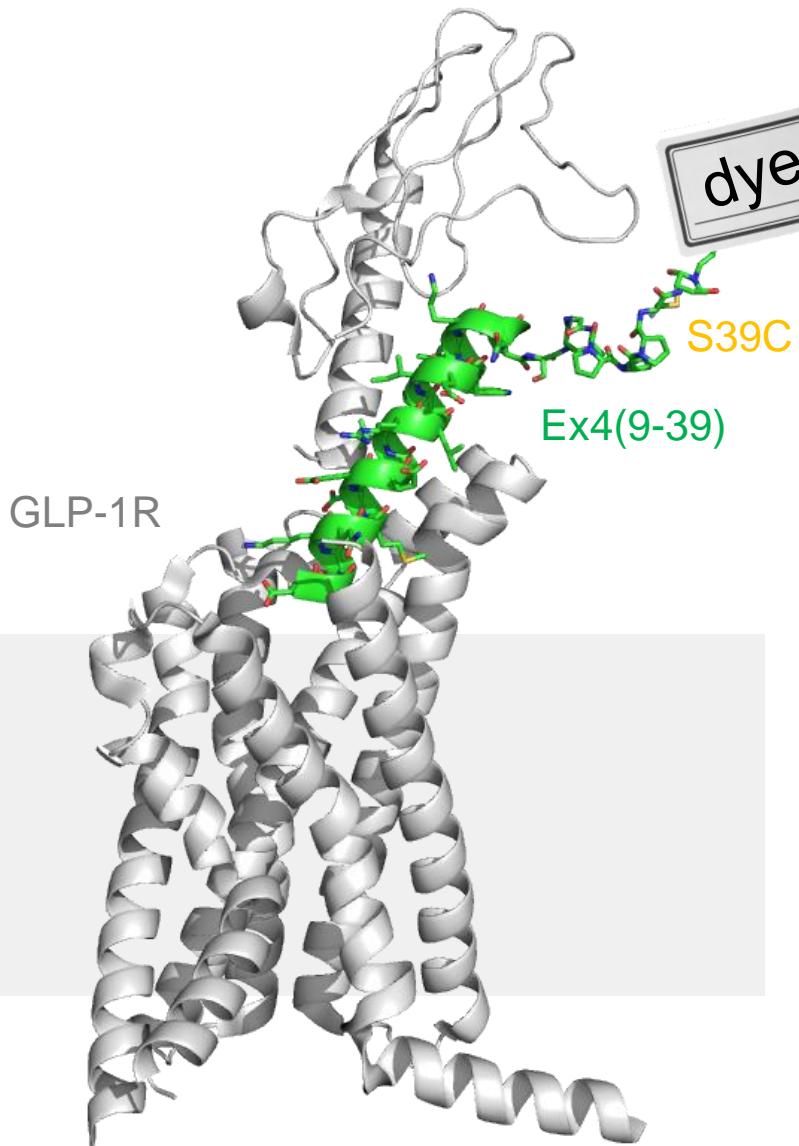



Figure 2

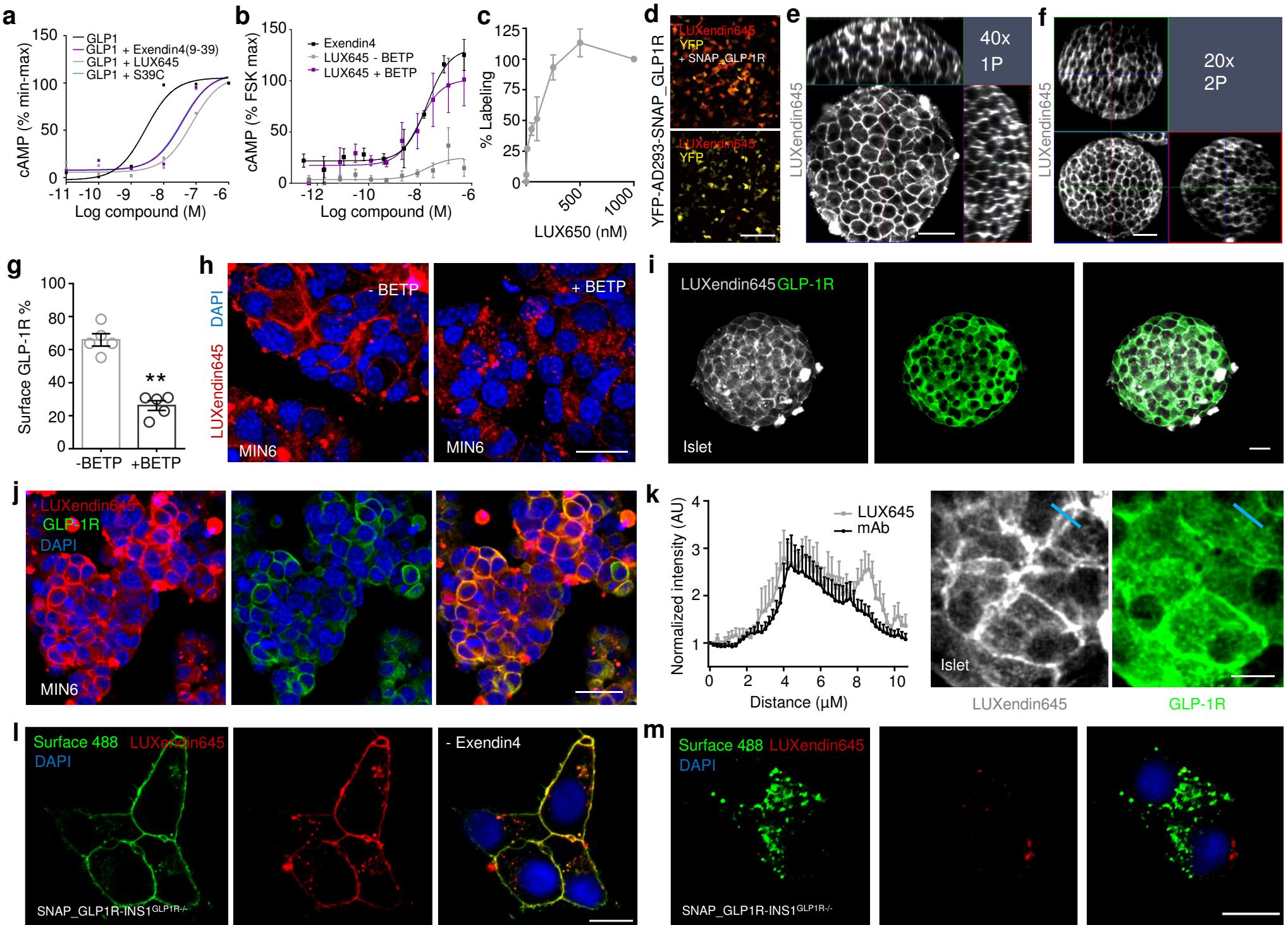


Figure 3

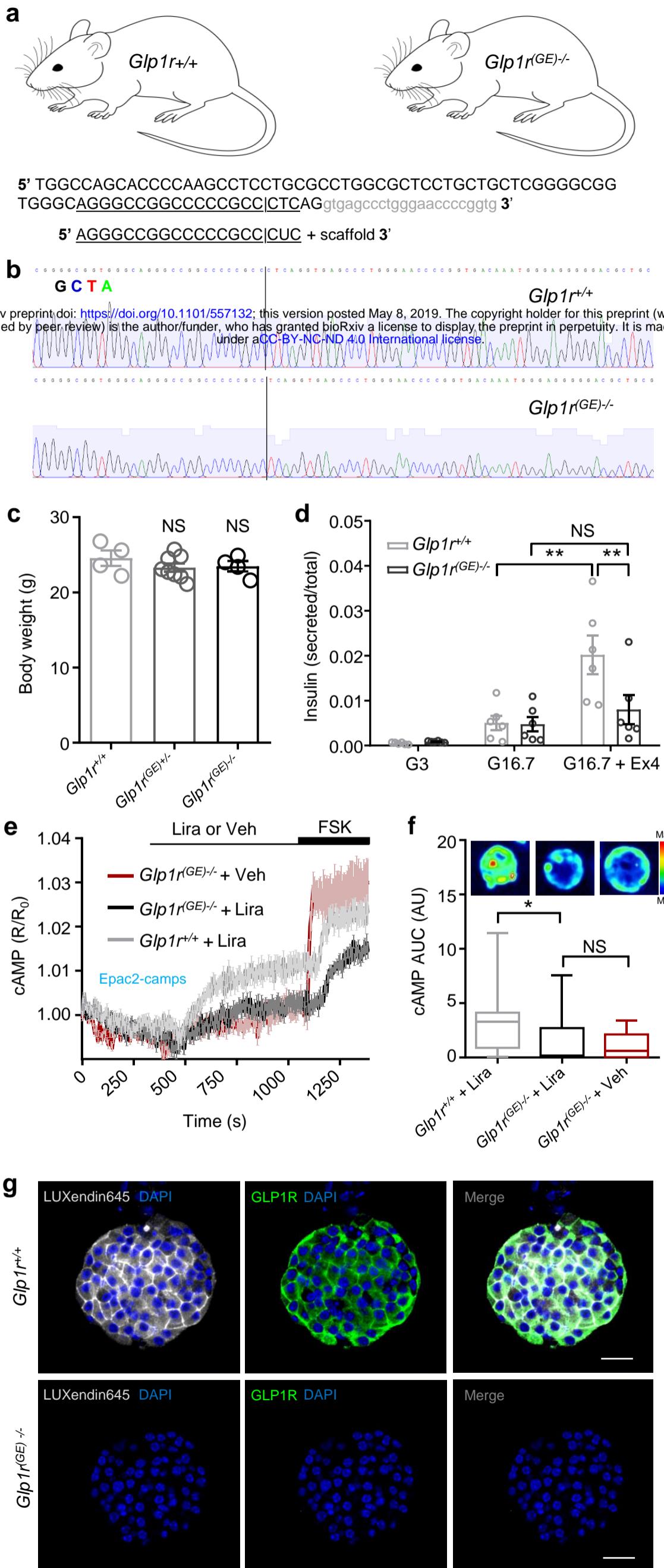


Figure 4

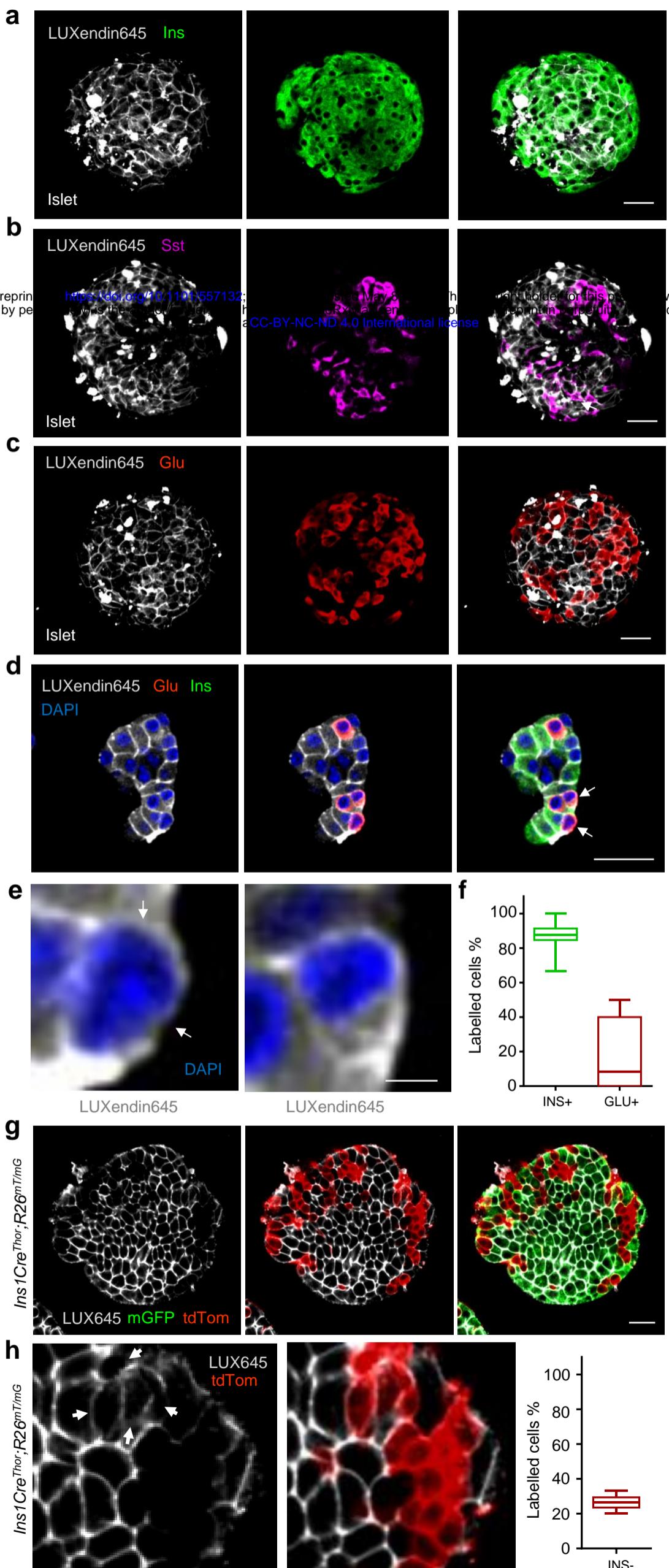


Figure 5

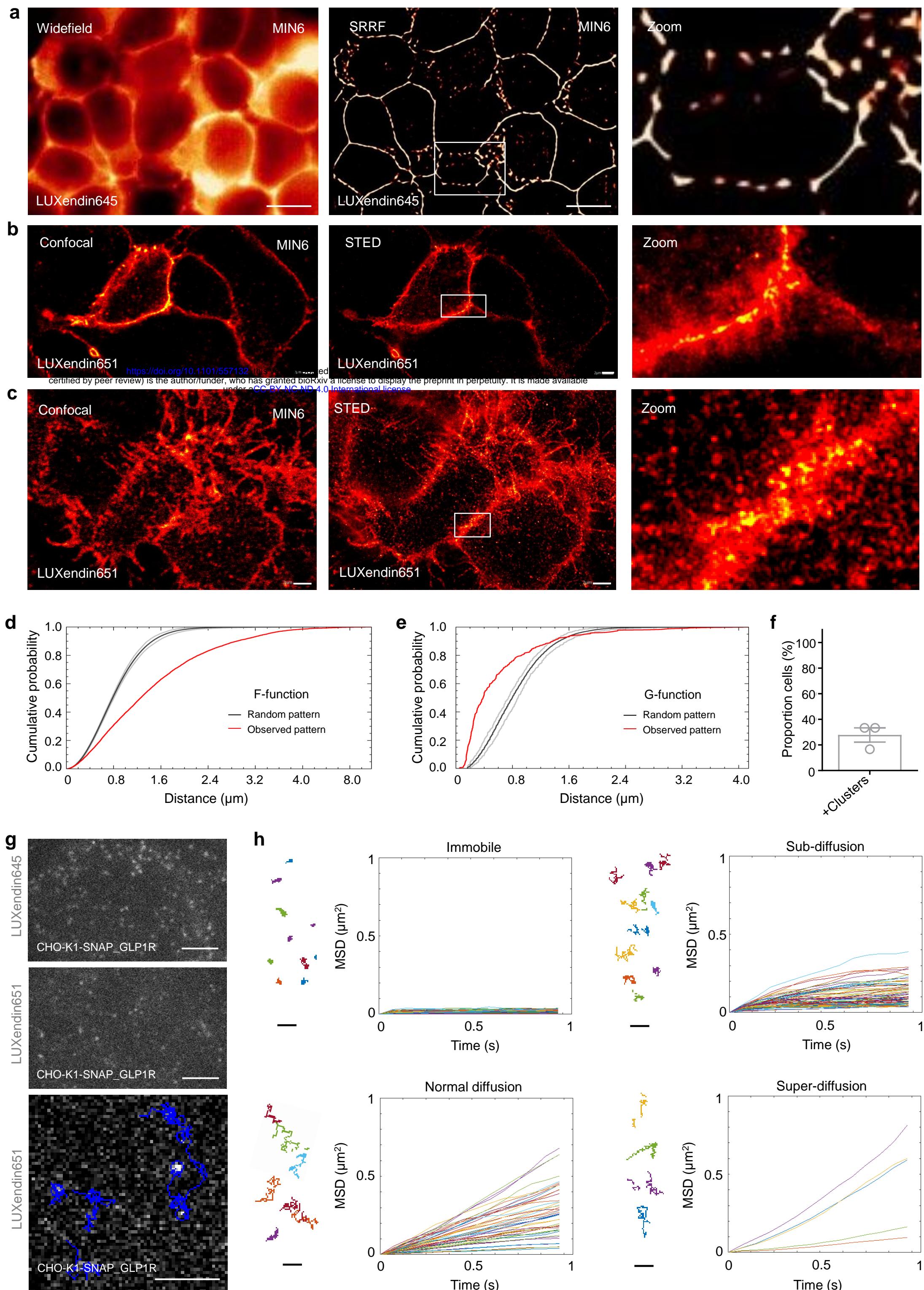
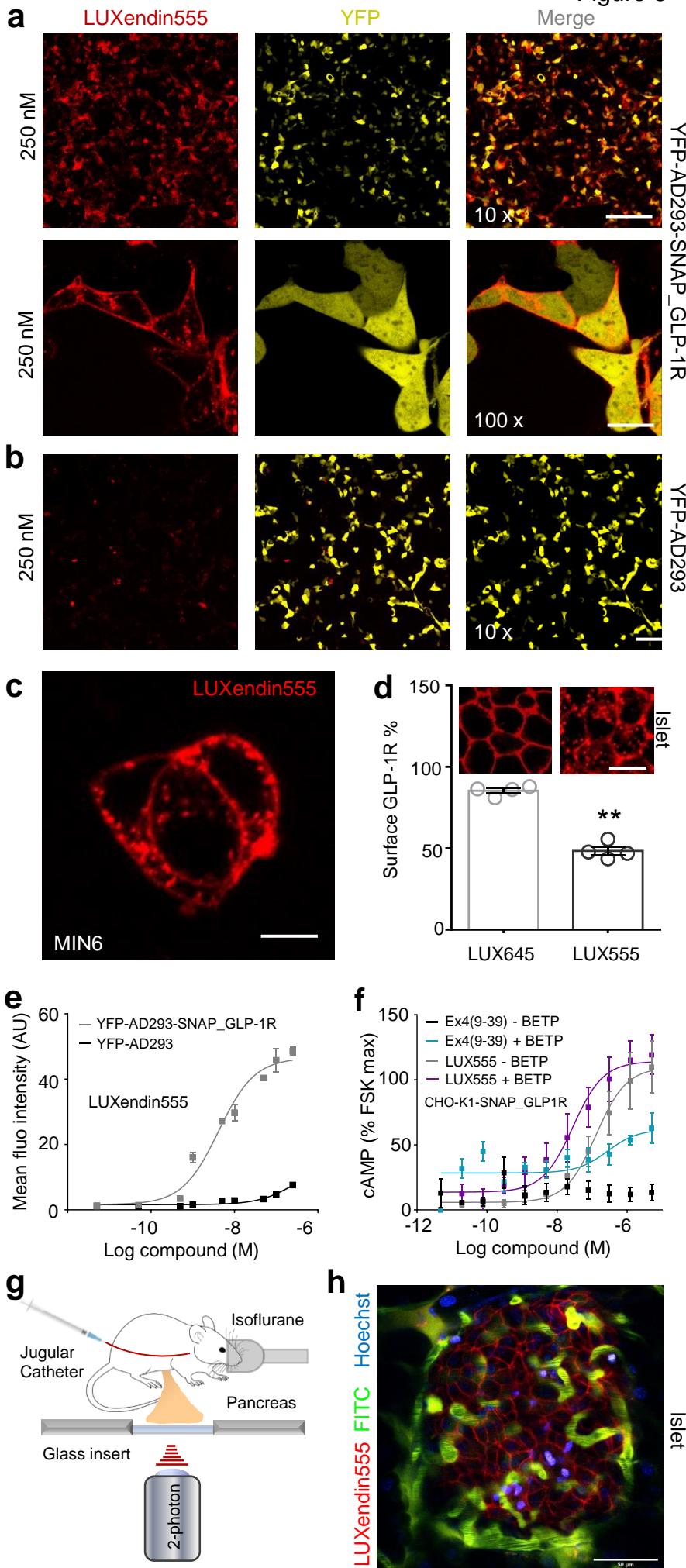



Figure 6

