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ABSTRACT  
 
Background. The gut microbiome is an important determinant of human health. Its 
composition has been shown to be influenced by multiple environmental factors and likely by 
host genetic variation.  In the framework of the Milieu Intérieur Consortium, a total of 1,000 
healthy individuals of western European ancestry, with a 1:1 sex ratio and evenly stratified 
across five decades of life (age 20 – 69), were recruited. We generated 16S ribosomal RNA 
profiles from stool samples for 858 participants. We investigated genetic and non-genetic 
factors that contribute to individual differences in fecal microbiome composition. 
 
Results. Among 110 demographic, clinical and environmental factors, 11 were identified as 
significantly correlated with α-diversity, ß-diversity or abundance of specific microbial 
communities in multivariable models. Age and blood alanine aminotransferase levels showed 
the strongest associations with microbiome diversity. In total, all non-genetic factors explained 
16.4% of the variance. We then searched for associations between >5 million single nucleotide 
polymorphisms and the same indicators of fecal microbiome diversity, including the significant 
non-genetic factors as covariates. No genome-wide significant associations were identified 
after correction for multiple testing. A small fraction of previously reported associations 
between human genetic variants and specific taxa could be replicated in our cohort, while no 
replication was observed for any of the diversity metrics. 
 
Conclusion. In a well-characterized cohort of healthy individuals, we identified several non-
genetic variables associated with fecal microbiome diversity. In contrast, host genetics only 
had a negligible influence. Demographic and environmental factors are thus the main 
contributors to fecal microbiome composition in healthy individuals.   
 
 
KEYWORDS   
 
Microbiome, gut, human, genomics, 16S rRNA gene sequencing, GWAS, healthy, 
demographics, environment.  
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BACKGROUND 
 
A wide diversity of microbial species colonizes the human body, providing considerable 
benefits to the host through a range of different functions [1]. Notably, these microbes generate 
metabolites that can act as energy sources for cell metabolism, promote the development and 
the functionality of the immune system, and prevent colonization by pathogenic 
microorganisms [2].  
 
The human intestine harbors a particularly diverse microbial ecosystem. Multiple 16S 
ribosomal RNA (rRNA) gene sequencing and metagenomic studies established that each 
individual gut microbiome harbors a unique combination of microbial life [3, 4]. An estimated 
150 to 400 bacterial species reside in each person’s gut [5].  
 
Typically, the human gut microbiome is dominated by five bacterial phyla: Firmicutes, 
Bacteroidetes, Proteobacteria, Actinobacteria and Verrucomicrobia [6, 7]. These contain 
almost all of the bacterial species found in the human gastrointestinal tract, which can also be 
classified in higher-level taxonomic groups such as genera, families, orders and classes [8]. 
The relative proportions of microbial species vary extensively between individuals [9] and has 
been shown to be age-dependent [10]. The microbiome composition evolves rapidly during the 
first three years of life, followed by a more gradual maturation [11], then is predicted to remain 
relatively stable throughout adult life [12].  
 
A variety of environmental and clinical factors including diet, lifestyle, diseases and 
medications can induce substantial shifts in the microbiome composition [13, 14]. Multiple 
studies have shown that diet and medications are the main forces influencing gut microbial 
diversity [15, 16, 17, 18, 19, 20, 21, 22]. Yet, they only explain a small percentage of the 
microbiome variation observed in the human population. Host genetics has also been proposed 
as a contributor in determining the relative abundance of specific gut microbes [23, 24]. Several 
studies have searched for associations between human genetic variation and gut microbiome 
diversity [20, 21, 22, 25, 26, 27, 28], but only a few genetic loci have been replicated across 
these studies. As a consequence, most of the interindividual variability in gut microbiome 
composition remains unexplained. 
 
In this study, we leveraged the in-depth phenotypic and genotypic information available for the 
Milieu intérieur (MI) cohort - a population-based study of 1,000 healthy individuals of western 
European ancestry, evenly stratified by sex (1:1) and age. We investigated the role of socio-
demographic and environmental factors in inter-individual gut microbiome variation (Figure 
1). In particular, we were able to assess the impact of family status, income, occupational status 
and educational level, smoking habits, sleeping habits, psychological problems, and nutritional 
behavior. We also evaluated the influence of basic physiological parameters (such as body 
mass index), family and personal medical history (including vaccination history) and multiple 
laboratory results (comprising mostly blood biochemical measurements). Finally, we 
investigated the potential impact of human genetic variation using a genome-wide association 
study (GWAS) framework, including as covariates the non-genetic factors that were found to 
be correlated with various measures of gut microbiome diversity. 
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RESULTS  
 
Gut microbiome diversity in healthy donors 
To characterize the bacterial diversity of the gut flora of the 1,000 healthy donors, we 
performed 16S rRNA gene sequencing on standardized collections of fecal samples. From this 
cohort, we obtained profiles for 858 individuals and we normalized the data for sequencing 
depth (see Methods). A total of 8,422 operational taxonomy units (OTUs) were detected, 
corresponding to 11 phyla, 24 classes, 43 orders, 103 families, 328 genera and 698 species. On 
average, we detected 193 species per individual (standard error 1.9, standard deviation 55.1), 
with a minimum of 58 and a maximum of 346 species. Inter-individual variability was already 
marked at the phylum level. Figure 2A presents the relative abundances of the 8 phyla observed 
in more than 10% of study participants. Firmicutes and Proteobacteria were detected in all 
individuals, and Bacteroidetes in all but one individual. Firmicutes was the dominant phylum 
in the vast majority of individuals (91.8%). 
 
Starting from the OTU counts, we calculated α and β microbiome diversity metrics (see 
Methods). As measures of α-diversity, which describes diversity within each sample, we used 
observed richness (number of distinct species present in the given sample), Chao1 richness 
estimate (estimate of the number of unobserved species), ACE (Abundance-based Coverage 
Estimator) and Simpson’s diversity index (probability that two randomly picked sequences 
belong to the same species). The histograms of their raw and transformed distributions are 
shown in Additional File 1: Figure S1A and S1B. We present here the results obtained using 
Simpson’s diversity index as a representative metric of α-diversity. The results for other 
indicated metrics are presented in the supplementary material. Figure 2B presents the 
distribution of Simpson’s diversity indexes depicting the continuous distribution and high 
diversity of the gut microbiome in the majority of study participants. The distributions of the 
other α-diversity metrics are shown in Additional File 1: Figure S1C. 
 
As measures of β-diversity, which describes the difference in taxonomic composition between 
samples, we used compositional Jaccard (unweighted), as well as Bray-Curtis (weighed) and 
phylogenetic Unifrac (weighted) dissimilarity matrices. We present here the results obtained 
using Bray-Curtis dissimilarity matrix as a representative metric of β-diversity. The results for 
other indexes are presented in the supplementary material. Figure 2C presents the 
multidimensional scaling (MDS) plot of the Bray-Curtis dissimilarity matrix coloring study 
participants by relative abundance of Firmicutes, indicating an absence of marked 
stratification. Similar homogeneous distributions of other dissimilarity metrics on the MDS 
plot are available in Additional File 1: Figure S2. 
 
Associations of non-genetic variables with gut microbiome parameters 
Demographic, lifestyle and environmental variables were collected via a detailed 
questionnaire, while biochemical parameters were measured in blood samples. Correlations 
between dietary consumption parameters and gut microbiome have previously been 
investigated in the MI cohort [29]. We considered an additional 274 variables and filtered them 
based on prevalence, missingness and collinearity, resulting in a final number of 110 variables 
to be included in association analyses (see Methods). Figure 1 outlines the six categories of 
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non-genetic variables considered and shows representative examples. The full list with a 
detailed description of the tested variables is provided in Additional File 2: Table S1.  
 
To investigate the potential impact of relevant demographic, social, behavioral, nutritional and 
medical data on the fecal microbiome, we searched for associations of diversity metrics and 
individual taxa with the 110 non-genetic variables selected above using Spearman rank testing 
(Additional File 2: Table S2). In total, 25 variables were significant, with on average 15 of 
them associated with each α-diversity metric (Additional File 1: Figure S3A) in univariate tests. 
Five variables (age, level of ALT, glomerular filtration rate, having breakfast and eating in fast-
food restaurants) were significant (FDR < 0.05) for all α-diversity metrics (Additional File 1: 
Figure S3B). We then used ANOVAs to test these in multivariable models, also including four 
dietary variables: consumption of raw fruits, fish, fatty sweet products and sodas (which were 
previously found to be significantly associated with α-diversity in the same study population 
[29]). Only age and the levels of alanine aminotransferase (ALT), a liver enzyme whose 
elevated plasma levels indicate liver damage, remained significant in these analyses (Figure 3 
and Additional File 2: Table S3). Simpson’s diversity index was positively associated with age 
and negatively associated with ALT levels, as shown in Additional File 1: Figure S4A and 
Additional File 1: Figure S4B. 
 
We then investigated the impact of non-genetic variables on the β-diversity indexes, running 
PERMANOVAs for the 110 variables. PERMANOVA tests a multivariate model where 
distance matrix is a response variable. The results of these test are presented in Additional File 
2: Table S4. A total of 35 factors were significantly associated (FDR < 0.05) in univariate tests 
with, on average, 24 being associated with each β-diversity index (Additional File 1: Figure 
S5A). Fifteen factors were significant for all 3 β-diversity metrics (Additional File 1: Figure 
S5B). Those were then tested in multivariable models, also including raw fruit consumption 
(which was previously found to be significantly associated with β-diversity in our study 
population [29]) and reran PERMANOVAs. A total of 10 factors remained significant in the 
final models (Figure 4 and Additional File 2: Table S5). Of these, age, sex and plasma levels 
of ALT were the strongest associated factors. Also significant were chicken pox vaccination, 
having breakfast, having lunch, diastolic blood pressure, consumption of raw fruits, decreased 
or increased appetite and medical record of tooth extraction. Sex and age were able to explain 
the biggest portion of the observed variance of all the significantly associated variables, albeit 
with small individual coefficients of correlation (R2 < 0.01, Figure 4). We then calculated the 
cumulative explained variance of Bray-Curtis dissimilarity by using all the non-genetic 
variables available. This analysis revealed that 16.4% of the variance can be explained by non-
genetic factors (Additional File 2: Table S6). 
 
Next, we searched for associations between demographic and environmental variables and 
individual taxa. We used multivariate association with linear models to search for associations 
between the 110 factors discussed above and 475 taxa that were observed in more than 10% of 
study participants. The full list of tested taxa is available in Additional File 2: Table S7. Table 
1 shows the only three significant associations (FDR corrected p-value < 0.05). We observed 
associations of age with the Comamonadaceae family and the Schlegelella genus, and of 
consumption of mineral supplements with the Clostridium papyrosolvens species.  
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Table 1. Significant associations of non-genetic variables with individual taxa. 
 

Covariate Taxa Prevalence Coefficient P-value Q-value 
Age Comamonadaceae 36.8% 3.99 x 10-4 3.09 x 10-9 5.89 x 10-5 
Age Schlegelella 29.6% 3.32 x 10-4 5.48 x 10-6 3 x 10-2 

Consumption of  
mineral supplements Clostridium papyrosolvens 13.8% 2.44 x 10-2 8.32 x 10-7 4.72 x 10-3 

 
Data plots showing positive correlations of the three identified associations are presented in 
Additional File 1: Figure S6A-C. 
 
Association of human genetic variants with gut microbiome parameters 
We next searched for potential associations between human genetic variants and gut 
microbiome diversity, using a GWAS framework. We included in the regression models all the 
statistically significant demographic and environmental variables identified above, for each 
respective phenotype. The full list of all the covariates used, including the first two principal 
components of the genotyping matrix, is available in Additional File 2: Table S8.  
 
We performed GWAS using the four α-diversity metrics and the three β-diversity indexes as 
phenotypic outcomes. We did not observe any statistically significant association upon 
correction for the number of polymorphisms and of phenotypes tested (Pα-threshold < 1.25 x 10-8 
and Pβ-threshold < 1.67 x 10-8) (Figure 5A and Additional File 1: Figure S7; Figure 5B and 
Additional File 1: Figure S8). The quantile-quantile plots and lambda values, assessing the 
false positive rate and genomic inflation rate for all genome-wide analyses are shown in 
Additional File 1: Figure S9 and Figure S10. We then attempted to replicate the previously 
published associations between specific SNPs and β-diversity, by relaxing the genome-wide 
significant threshold [19, 20, 21]. Upon correction for the 66 SNPs considered (Pthreshold < 
0.05/66), none was significantly associated (Additional File 2: Table S9). 
 
We also used a GWAS approach to search for associations between the abundance of individual 
taxa and human genetic variation. We used a quantitative phenotype (non-zero log-transformed 
relative abundance) and a binary phenotype (presence vs. absence) for each taxon. After 
correction for the number of polymorphisms and of phenotypes tested, we did not observe any 
statistically significant signal. A total of 170 suggestive associations (PSuggestiveThreshold < 5 x 10-

8) were detected with the quantitative phenotype of 53 taxa, and 65 suggestive SNPs were 
detected with the binary phenotype of 23 taxa. The lists of these SNPs and their association p-
values are available in Additional File 2: Table S10 and Additional File 2: Table S11, 
respectively.  
 
We also imputed HLA and KIR alleles and tested them for association with all the considered 
phenotypes, observing no significant associations (Additional file 1: Figure S11 and 
association summary statistics results available). 
 
We then attempted to replicate associations for the SNPs previously reported to be associated 
with individual taxa (Additional File 2: Table S12) [19, 20, 21, 22, 25, 27]. Only 13 out of 336 
SNPs passed the corrected nominal significance threshold (Pthreshold < 1.49 x 10-4, i.e. 0.05/336) 
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for association with a quantitative phenotype. Of these, 9 were concordant at the phylum level 
with the original report (i.e. the strongest associated taxon in our study belonged to the same 
phylum as the previously observed association). For binary phenotypes, 10 SNPs passed the 
corrected nominal significance threshold, including 2 that were concordant at the phylum level. 
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DISCUSSION 
 
We investigated the potential influence of demographic, environmental, clinical and genetic 
factors on the fecal microbiome composition in 858 unrelated healthy individuals of French 
descent. The Milieu Intérieur cohort is particularly well suited for such a comprehensive 
assessment [30]. The study participants have a homogeneous genetic background, live in the 
same region and are evenly stratified by sex and age, which provides an excellent opportunity 
to search for unique determinants of gut microbiome diversity.  
 
First, we used the rich data collected through questionnaires that gathered detailed medical 
history as well as lifestyle and socio-demographic information. We also considered laboratory 
results that could indicate underlying physiological differences (e.g. levels of hemoglobin, 
glucose, hepatic transaminases, etc.). We searched for potential association of these variables 
with several α- and β- diversity metrics of the gut microbiome, as well as with quantitative and 
binary phenotypes derived from the detected abundance of individual microbial taxa.  
 
As the MI cohort was designed to better understand healthy immunity, strict criteria were used 
during enrollment to exclude individuals with chronic medical conditions. Similarly to other 
studies in healthy individuals, the distribution of major phyla was in the same range as observed 
before (Additional file 2: Table S13). The use of prescription drugs, on the other hand, was 
very limited among MI participants. In fact, the final set of 110 non-genetic variables contained 
only one drug-related variable (“on any type of medication”). Even the use of over-the-counter 
drugs, such as proton pump inhibitors, was observed in less than 1% of the individuals (i.e. 
only in 4 individuals). The potential impact of drugs on the gut microbiome, suggested by 
previous studies [11, 16, 18], was therefore not evaluated in our study.  
 
The influence of dietary variables on the gut microbiome has already been evaluated in the MI 
cohort [29]. Increased α-diversity was found to be associated with foods generally considered 
as healthy (fruits, fish), while a decrease was associated with foods for which limited 
consumption is generally recommended (e.g. fried products). Dissimilarity measure by β-
diversity level was driven by consumption of raw fruits, fried products, ready-cooked meals, 
and cheese [29]. In the current analysis, we focused our attention on additional environmental 
influences, lifestyle variables and biochemical measurements. Age showed a strong positive 
association with α-diversity in all models, whereas sex and BMI did not show any consistent 
association. Interestingly, we replicated a correlation between higher plasma levels of alanine 
aminotransferase and lower microbiome diversity (previously also observed in a Belgian 
cohort, but not replicated in a Dutch study population [16]). The causality of the observed 
correlation is unclear. Indeed, much work is still needed to get a better understanding of the 
interplay between the gut microbiome and liver disease [31].  
 
In the analysis of β-diversity indexes, we identified ten factors that were significant in the 
multivariable PERMANOVA models. In line with previous reports [6, 14, 26], we observed 
sex and age as the strongest influencers on all β-diversity indexes, with the lowest association 
p-values and highest proportion of variance explained by these factors. As other co-variates, 
such as environmental and host-extrinsic, are also known to impact the overall composition 
[32], we identified factors related to medical history (in particular chicken pox vaccination and 
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teeth extraction), blood measurements (ALT levels and diastolic blood pressure) and lifestyle 
(such as tendency to have breakfast or lunch and variable appetite) having mild, yet significant, 
correlations with β-diversity in MI cohort. We also confirmed the independent effects of diet, 
in particular the consumption of raw fruits [29]. Interestingly, we could not confirm any 
significant association between BMI and microbiome diversity, in contrast to the recent 
population-based observations in the FGFP study [16]. This apparent contradiction could be 
partly explained by the MI study design [30]: the careful selection of healthy individuals 
resulted in a more limited distribution of BMI values among study participants (mean ± SD: 
24.26 ± 3.26 kg/m2; min 18.59 and max 32). This ascertainment bias reduced our power to 
detect potential correlations between more extreme BMI values and microbiome diversity 
measurements [33]. Furthermore, an estimation of the explained variance in β-diversity metrics 
demonstrated a small individual effect of each variable (Additional File 2: Table S4), which 
together explained 16.4% of the variance. This is concordant with previous reports, where a 
similar proportion of variance (18.7% [16], 16.4% [17| and 20% [19]) could be explained by 
demographic and environmental factors. In contrast to what we observed in the MI cohort, 
prescription medication explained an important fraction of the variance in these other studies 
(up to 10% [17]), attesting to the uniqueness of our healthy study sample.  
 
In our exploration of variables potentially associated with individual taxa, we observed a strong 
positive correlation between age and the Schlegelella genus (as well as the family it belongs 
to: Comamonadaceae). This family is very diverse, and its members have been observed both 
in man-made environments (various clean or polluted soils and waters) and in animals or 
human clinical samples [34]. The epidemiological or clinical relevance of this newly observed 
association is unknown. We also found an association between Clostridium papyrosolvens, 
belonging to the Clostridia class and Firmicutes phylum, and the oral intake of mineral 
supplements. Clostridium papyrosolvens is an anaerobic bacterium that is involved in the 
degradation of diverse carbohydrates (such as cellulose, arabinose and glucose) [35] and could 
thus play a role in modulating the individual glycemic response. 
 
Our in-depth investigation of demographic, environmental and clinical variables allowed us to 
identify factors that are associated with various measures of gut microbiome composition. 
Including them as covariates in genome-wide association studies increased our power to 
potentially detect true genetic effects. However, after correction for multiple testing, we did 
not observe any statistically significant associations. This was the case for a total of 7 different 
α- and β- diversity metrics and for 475 individual taxa, tested either as quantitative or as binary 
phenotypes. We also attempted to replicate the previously reported associations between 
human polymorphisms and gut microbiome composition at the β-diversity or the taxonomic 
levels [19, 20, 21, 22, 25, 27]. None of the variants associated with β-diversity metrics 
replicated. For individual taxa, replication at the phylum level was successful for 2 SNPs using 
binary phenotypes (presence vs. absence of the phylum) and for 9 SNPs using quantitative 
phenotypes (abundance). Of these, only one signal was replicated at the family level: the 
association between rs7856187 and Lachnospiraceae [27]. Of note, the only SNP that was 
significant in a recent meta-analysis [20], rs4988235, did not show any association in our study 
(Additional File 2: Table S12). 
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CONCLUSIONS  
 
Our study provides an in-depth investigation of potential demographic, environmental, clinical 
and genetic influences on the diversity of the fecal microbiome in healthy individuals. We 
identified variables associated with overall microbiome composition and with a small number 
of individual taxa, explaining a non-negligible fraction of microbiome diversity in healthy 
individuals in the absence of drug treatment. The lack of any significant results in the genome-
wide association analyses, on the other hand, indicates that common human genetic variants of 
large effects do not play a major role in shaping the gut microbiome diversity observed in 
healthy populations. Future studies should include larger sample sizes and a more 
comprehensive evaluation of human genetic variation, including rare and structural variants 
not captured by genotyping arrays. Evaluation of the environmental effects should be optimized 
for example by longitudinal tracking of study participants. Lastly, large-scale microbiome and 
genomic data should be pooled across cohorts, as recently proposed [36], to accelerate 
discovery in the field of human-microbiome interactions.  
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METHODS  
 
The Milieu Intérieur cohort  
The 1,000 healthy donors of the Milieu Intérieur cohort were recruited by BioTrial (Rennes, 
France). The cohort is stratified by sex (500 men, 500 women) and age (200 individuals from 
each decade of life, between 20 and 70 years of age). Participants were selected based on 
stringent inclusion and exclusion criteria, detailed elsewhere [30]. Briefly, they had no 
evidence of any severe/chronic/recurrent medical conditions. The main exclusion criteria were 
seropositivity for human immunodeficiency virus or hepatitis C virus; travel to (sub-) tropical 
countries within the previous 6 months; recent vaccine administration; and alcohol abuse. 
Subjects were excluded if they were on treatment at the time or were treated in the three months 
preceding enrolment with, nasal, intestinal or respiratory antibiotics or antiseptics. Volunteers 
following a specific diet prescribed by a doctor or dietician for medical reasons (calorie-
controlled diet or diet favouring weight loss in very overweight patients, diets to decrease 
cholesterol levels) and volunteers with food intolerance or allergy were also excluded. To avoid 
the influence of hormonal fluctuations in women during the peri-menopausal phase, only pre- 
or post-menopausal women were included. To minimize the influence of population 
substructure on genomic analyses, the study was restricted to individuals of self-reported 
Metropolitan French origin for three generations (i.e., with parents and grandparents born in 
continental France). Fasting whole blood samples were collected from the 1,000 participants 
in lithium heparin tubes between September 2012 and August 2013.  
 
Fecal DNA extraction and amplicon sequencing 
Human stool samples were produced at home no more than 24 hours before the scheduled 
medical visit and collected in a double-lined sealable bag with the outer bag containing a 
GENbag Anaer atmosphere generator (Aerocult, Biomerieux), used to maintain anaerobic 
conditions, and an anaerobic indicator strip (Anaerotest, Merck Millipore) to record the strict 
maintenance of the anaerobic atmosphere. Upon reception at the clinical site, the fresh stool 
samples were aliquoted and stored immediately at -80°C. DNA was extracted from stool as 
previously published [37, 38]. DNA quantity was measured with Qubit using broad range 
assay. Barcoding polymerase chain reaction (PCR) was carried out using indexed primers 
targeting the V3-V5 region of the 16S rRNA gene as described in [39]. AccuPrime™ Pfx 
SuperMix (Invitrogen - 12344-040) was used to perform the PCR. PCR mix was made up of 
18 µL of AccuPrime™ Pfx SuperMix, 0.5 µL of both V3-340F and V5-926R primers (0.2 µM) 
and 1 µL of DNA (10 ng). PCR was carried out as follow: 95°C for 2 min, 30 cycles of 95°C 
for 20 sec, 55°C for 15 sec, 72°C for 5 min and a final step at 72°C for 10 min. Amplicon 
concentration was then normalized to 25 ng per PCR reaction using SequalPrep™ 
Normalization Plate Kit, 96-well (Thermo Fisher Scientific). Equal volumes of normalized 
PCR reaction were pooled and thoroughly mixed. The amplicon libraries were sequenced at 
the Institut Curie NGS platform on Illumina MiSeq using the 2*300 base pair V3 kit to 5,064 
to 240,472 sequencing reads per sample (mean ± SD: 21,363 ± 19,087 reads). 
 

16s sequencing data processing and identification of microbial taxa 
Raw reads were trimmed using sickle [40], then error corrected using SPAdes [41] and merged 
using PEAR [42]. Reads were clustered into operational taxonomy units (OTUs) at 97% of 
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identity using vsearch pipeline [43]. Chimeric OTUs were identified using UCHIME [44] and 
discarded from downstream analysis. Microbiome profiles obtained were normalized for 
sequencing depth (sequencing counts were divided to their sample size and then multiplied by 
the size of the smaller sample) [45]. We further checked the presence of the sequencing batch 
effect and principal coordinates analysis (PCoA) plot obtained at the genus level presented in 
the Additional File 1: Figure S12 shows random distribution of samples obtained from different 
sequencing batches. 
 
Taxonomy of representative OTU sequences was determined using RDP classifier [46]. OTU 
sequences were aligned using ssu-align [47]. The phylogenetic tree was inferred from the 
OTUs multiple alignments using Fastree2 [48].  We further checked the specific taxonomic 
assignations identified in our study. Schlegelella genus was made of 15 OTUs that had a 
similarity score ranging from 60% to 80% with a phylogenetically close previously identified 
environmental bacteria Schlegelella thermodepolymerans. Furthermore, taxonomic 
assignation of Clostridium papyrosolvens was at obtained with 73% of accuracy. 
 
For 138 individuals, the gut microbiome composition could not be established because of 
technical issues in the extraction and the sequencing steps (i.e. due to low DNA extraction 
yield, absence of PCR amplicons, low read counts). These were excluded from further analysis.  
 
Gut microbiome diversity estimates 
Based on OTUs, we calculated two types of microbial diversity indicators: α- and β-diversity 
indexes. As estimates of α-diversity, we used Simpson’s diversity index, observed richness, 
Chao1 richness estimate and ACE (Abundance-based Coverage Estimator). We applied Yeo-
Johnson transformation with R package VGAM [49] to normalize these phenotypes. The 
histograms of raw and transformed distributions are shown in Additional File 1: Figure S1A 
and Additional File 1: Figure S1B, respectively. As estimates of β-diversity, we used Bray-
Curtis (weighed), compositional Jaccard (unweighted) and Unifrac (weighted) dissimilarity 
matrices. All diversity indicators were generated on non-rarefied data using the R package 
vegan [50], that was corrected for sequencing depth prior to indexes computation [45]. 
 
Demographic, environmental and clinical variables  
A large number of demographical, environmental and clinical variables are available in the 
Milieu Intérieur cohort [30]. These notably include infection and vaccination history, 
childhood diseases, health- and diet-related habits, socio-demographical variables, and 
laboratory measurements. After manual curation, we considered 274 variables as potentially 
interesting for our analyses. Of those, we removed 130 that: (i) were only variable in less than 
5% of participants; or (ii) were missing in more than 10% of participants. We tested for 
collinearity among the remaining 144 variables using Spearman rank correlation. All pairwise 
correlations with a Spearman’s ρ > 0.6 or < -0.6 and a false discovery rate (FDR) < 5% were 
considered colinear; one variable from each pair was removed from further analysis, resulting 
in a final set of 110 variables (described in Additional File 2: Table S1). Of these, 39 had some 
missing values (<1% in 25, 1-5% in 10, 5-10% in 4 individuals), which were imputed using 
random forest method in the R package mice [51]. We evaluated the effects of various clinical 
measurements within their normal healthy range, such as those of BMI (mean ± SD: 24.26 ± 
3.26 kg/m2) and C-reactive protein (CRP; mean ± SD: 1.99 ± 2.58 mg/L). Several symptoms 
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of depression, such as lack of interest in doing things and poor self-image, and potentially 
relevant personal and family medical history information (such as route of birth delivery, 
immunization history with several vaccines and familial occurrence of diabetes or myocardial 
infarction) were investigated. Furthermore, smoking status and nutritional tendencies (such as 
the salt consumption habits) were kept in our analyses. 
 
Testing of demographic, environmental and clinical variables  
We searched for associations between the 110 demographic, environmental and clinical 
variables selected above and the various gut microbiome phenotypes. For α-diversity indexes 
(Simpson’s index, observed richness, Chao1 richness estimate and ACE), we used non-
parametric Spearman correlations. For β-diversity dissimilarities (Jaccard, Bray-Curtis and 
Unifrac matrices), we used permutational analysis of variance (PERMANOVA) with 1000 
permutations. PERMANOVAs identify variables that are significantly associated with β-
diversity and measure the fraction of variance explained by the factors tested. The variables 
that were significantly associated (Benjamini–Hochberg FDR < 0.05) with the diversity 
estimates in the univariable models were included in the respective multivariable models: we 
used multivariable ANOVAs for α-diversity and PERMANOVAs for β-diversity. We used a 
backward selection, i.e. we eliminated the variables that were not significant in the first 
multivariable model, and reran the tests iteratively until all included predictors were significant. 
Spearman correlations, ANOVA and PERMANOVAs tests were performed in R v3.5.1. 
Finally, to search for associations with individual taxa, we implemented multivariate 
association with linear models by using MaAsLin [52] with default parameters.  
 
Human DNA genotyping 
As previously described [53], blood was collected in 5mL sodium EDTA tubes and kept at 
room temperature (18–25°) until processing. After extraction, DNA was genotyped at 719,665 
single nucleotide polymorphisms (SNPs) using the HumanOmniExpress-24 BeadChip 
(Illumina). The SNP call rate was > 97% in all donors. To increase coverage of rare and 
potentially functional variation, 966 of the 1,000 donors were also genotyped at 245,766 exonic 
variants using the HumanExome-12 BeadChip. The variant call rate was < 97% in 11 donors, 
which were thus removed from this dataset. We filtered out from both datasets genetic variants 
based on a set of criteria detailed in [54]. These quality-control filters yielded a total of 661,332 
and 87,960 variants for the HumanOmniExpress and HumanExome BeadChips, respectively. 
Average concordance rate for the 16,753 SNPs shared between the two genotyping platforms 
was 99.99%, and individual concordance rates ranged from 99.8% to 100%.  
 
Genetic relatedness and structure  
Relatedness was detected using KING [55]. Six pairs of related participants (parent-child, first 
and second-degree siblings) were identified. Of those, four pairs had both genotyping and 
microbiome datasets and one individual from each pair, randomly selected, was removed from 
the genetic analyses, leaving in total 858 individuals with both genotyping and 16s rRNA gene 
sequencing data. The genetic structure of the study population was estimated using principal 
component analysis (PCA), implemented in EIGENSTRAT (v6.1.3) [56]. The PCA plot of the 
study population is shown in Additional File 1: Figure S13. 
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Genotype imputation 
As described previously [54], we used Positional Burrows-Wheeler Transform for genotype 
imputation, starting with the 661,332 quality-controlled SNPs genotyped on the 
HumanOmniExpress array. Phasing was performed using EAGLE2 (v2.0.5) [57]. As reference 
panel, we used the haplotypes from the Haplotype Reference Consortium (release 1.1) [58]. 
After removing SNPs that had an imputation info score < 0.8, we obtained 22,235,661 variants. 
We then merged the imputed dataset with 87,960 variants directly genotyped on the 
HumanExome BeadChips array and removed variants that were monomorphic or diverged 
significantly from Hardy-Weinberg equilibrium (P < 10-7). We obtained a total of 12,058,650 
genetic variants to be used in association analyses. 
We used SNP2HLA (v1.03) [59] to impute 104 4-digit human leukocyte antigen (HLA) alleles 
and 738 amino acid residues (at 315 variable amino acid positions of the HLA class I and II 
proteins) with a minor allele frequency (MAF) of >1%.  
We used KIR*IMP [60] to impute killer-cell immunoglobulin-like receptor (KIR) alleles, after 
haplotype inference on chromosome 19 with SHAPEIT2 (v2.r790) [61]. A total of 19 KIR 
types were imputed: 17 loci plus two extended haplotype classifications (A vs. B and KIR 
haplotype). A MAF threshold of 1% was applied, leaving 16 KIR alleles for association 
analysis.  
 
Genetic association analyses 
For single-variant association analyses, we only considered SNPs with a MAF higher then 5% 
(N=5,293,637). Unless otherwise stated, we used PLINK (v1.9) [62] for association testing. In 
all tests, we included the first two first principal components of the genotyping matrix as 
covariates to correct for residual population stratification. The demographic, environmental 
and clinical variables that were identified as significantly associated were also included as 
covariates in the respective analyses. A full list of covariates for each phenotype is available in 
Additional File 2: Table S8.  
We used linear regression (within PLINK) and microbiomeGWAS [63] to test for SNP 
associations with α-diversity indexes and β-diversity dissimilarities, respectively. Linear 
regression was also used to search for associations with relative abundance of specific taxa. 
Only taxa present in at least 10% of individuals were tested (N=475), i.e. 8/11 (remaining/total) 
phyla, 16/24 classes, 20/43 orders, 50/103 families, 135/328 genera and 246/698 species. The 
list of all tested taxa is presented in Additional File 2: Table S7. We used logistic regression to 
test binary phenotypes (presence/absence of specific taxa). Here, we excluded taxa that were 
present in >90% of individuals, resulting in a total of 374 phenotypes (4 phyla, 8 classes, 15 
orders, 38 families, 104 genera and 205 species). For all GWAS, we used a significance 
threshold corrected for the number of tests performed. For α-diversity (N=4): Pα-threshold < 1.25 
x 10-8, for β-diversity (N=3): Pβ-threshold < 1.67 x 10-8, for taxa abundance (N=475): Ptaxa-linear < 
1.05 x 10-10 and for presence or absence of taxa (N=374): Ptaxa-logistic < 1.33 x 10-10. 
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LIST OF ABBREVIATIONS  
 
SNP: single nucleotide polymorphism; MAF: minor allele frequency; MI: Milieu Intérieur; 
QQ: quantile-quantile; LD: linkage disequilibrium; PCR: polymerase chain reaction; ANOVA: 
analysis of variance; PERMANOVA: permutational analysis of variance; FDR: false discovery 
rate; OTU: operational taxonomy unit; HIV: human immunodeficiency virus; HCV: hepatitis 
C virus; ACE: Abundance-based coverage estimator; GWAS: genome-wide association study; 
HLA: human leukocyte antigen; KIR: killer-cell immunoglobulin-like receptors; PCA: 
principal component analysis; MDS: Multidimensional scaling; PCoA: Principal Coordinates 
Analysis; CRP: C-reactive Protein; ALT: Alanine transaminase; rRNA: Ribosomal ribonucleic 
acid. 
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FIGURE LEGENDS  
 
Figure 1. Non-genetic variables. 
Six categories of non-genetic variables investigated in this study. In the parenthesis, number of 
variables per each category and for each two representative examples. Full description of the 
variables is available in Additional File 2: Table S1. 
 
Figure 2. Gut microbiome diversity.  
(A) Box-plots of relative abundances of 8 phyla that were observed in more than 10% of the 
donors. Outliers are also represented.  
(B) Violin plot of Simpson’s diversity index values observed among MI study participants. 
(C) Multidimensional scaling plot of Bray-Curtis dissimilarity matrix with study participants 
colored according to relative abundance of Firmicutes. 
 
Figure 3. Association of non-genetic variables with 𝜶-diversity metrics. 
Significant variables from the univariate test and their Spearman ρ values (right hand side). 
Heatmap represents the ANOVA’s p-values from the multivariable test and asterisks denote 
statistical significance (p< 0.001: ***; p < 0.01: **; p < 0.05: *). 
 
Figure 4. Association of non-genetic variables with β-diversity metrics. 
Significant variables from the univariate test and their R2 values (right hand side). Heatmap 
represents the PERMANOVA’s p-values from the multivariable test and asterisks denote 
statistical significance (p< 0.001: ***; p < 0.01: **; p < 0.05: *). 
 
Figure 5. Results of genome-wide association study between host genetic 
variants and microbiome diversity metrics. 
(A) Manhattan plot for Simpson’s diversity metric (representative 𝛼-diversity metric). The 
dashed horizontal line denotes the genome-wide significance threshold (Pα-threshold < 1.25 x 10-

8). 
(B) Manhattan plot for Bray-Curtis dissimilarity matrix (representative ß-diversity index). 
The dashed horizontal line denotes the genome-wide significance threshold (Pβ-threshold < 1.67 
x 10-8).
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