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ABSTRACT

Human T cells coordinate adaptive immunity by localization in diverse tissue sites, though blood T
cells are the most readily studied. Here, we used single-cell RNA-seq to define the functional
responses of T cells isolated from human lungs, lymph nodes, bone marrow, and blood to TCR-
stimulation. We reveal how human T cells in tissues relate to those in blood, and define activation
states for CD4" and CD8'T cells across al sites, including an interferon-response state for CD4'T
cells and distinct effector states for CD8'T cells. We further show how profiles of individual tumor-

associated T cells can be projected onto this healthy reference map, revealing their functional state.
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INTRODUCTION

T lymphocytes coordinate adaptive responses and are essential for establishing protective
immunity and maintaining immune homeostasis. Activation of naive T cells through the antigen-
specific T cell receptor (TCR) initiates transcriptional programs that drive differentiation of
lineage-specific effector functions, CD4'T cells secrete cytokines to recruit and activate other
immune cells while CD8'T cells acquire cytotoxic functions to directly kill infected or tumor
cells. Most of these effector cells are short-lived, although some develop into long-lived memory
T cellswhich persist as circulating central (TCM) and effector-memory (TEM) subsets, and non-
circulating tissue resident memory T cells (TRM) in diverse lymphoid and non-lymphoid sites'™.
Recent studies in mouse models have established an important role for CD4" and CD8"TRM in
mediating protective immunity to diverse pathogens®®”. Defining how tissue site impacts T cell

function istherefore important for targeting T cell immunity.

In humans, most of our knowledge of T cell activation and function derives from the
sampling of peripheral blood. Recent studies in human tissues have revealed that the majority of
human T cells are localized in lymphoid mucosal and barrier tissues® and that T cell subset
composition is a function of the specific tissue site®*. Human TRM cells can be defined based
on their phenotypic homology to mouse TRM and are distinguished from circulating T cellsin
blood and tissues by a core transcriptional and protein signature'®*3, However, the role of tissue
site in determining T cell functional responses, and a deeper understanding of the relationship
between blood and tissue T cells beyond composition differences are key unanswered questions

in human immunology.

The functional responses of T cells following antigen or pathogen exposure have been

largely defined in mouse models, and are generally classified based on whether or not they
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secrete specific cytokines or effector molecules. Effector CD4 T cells comprise different
functional subtypes (Thl cells secrete IFN-y and IL-2; Th2 secrete IL-4, 13; Th17 secrete IL-17,
etc.)™, while effector CD8 T cells secrete pro-inflammatory cytokines (IFN-y, TNF-o.) and/or
cytotoxic mediators (perforin and granzymes)™. Certain conditions can lead to inhibition of
functional responses; for example, CD4'T cells encountering self-antigen become anergic and
fail to produce 1L-2, while CD8'T cells responding to chronic infection, tumors, or lacking
CD4'T cell help become functionally exhausted, and express multiple inhibitory molecules (e.g.,
PD-1, LAG3)**8. While human T cells can produce similar cytokines, effector and inhibitory
molecules as mouse counterparts'®>#, the full complement of functional responses for human T
cells in tissues has not been elucidated. Establishing a comprehensive basdine of healthy T cell
states in humans is essentia for defining dysregulated and pathological functions of T cellsin
disease.

Single cdll transcriptome profiling (SCRNA-seq) has enabled high resolution mapping of
cellular heterogeneity, development, and activation states in diverse systems™?*. This approach has
been applied to analyze human T cells in diseased tissues™?® and in response to immunotherapies in
cancer %’; however, the baseline functional profiles of human T cells in healthy blood and tissues
have not been defined. We have established a tissue resource where we obtain multiple lymphoid,
mucosal, and other peripheral tissue sites from human organ donors’***3%2° enabling study of T
cells across different anatomical spaces. Here, we used scRNA-seq of over 50,000 resting and
activated T cdlls from lung (LG), lymph nodes (LN), bone marrow (BM) and blood, along with
innovative computational analysis to define cellular states of homeostasis and activation of human
blood and tissue-derived T cells. We reveal how human T cells in tissues relate to those in blood,
and identify a conserved tissue signature and activation states for human CD4" and CD8'T cells

conserved across all sites. We further show how scRNA-seq profiles of T cells associated with
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human tumors can be projected onto this healthy baseline dataset, revealing their functional state.
Our results establish a comprehensive high dimensional dataset of human T cell homeostasis and

function in multiple sites, from which to define the origin, composition and function of T cells in

disease.
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RESULTS
High Resolution analysis of human T cellsin tissues and comparison to blood

We obtained BM, LN, and LG as representative primary lymphoid, secondary lymphoid
and mucosal tissue sites, respectively, from two adult organ donors who met the criteria of health
for donation of physiologically healthy tissues for lifesaving transplantation, being free of
chronic disease, cancer, and infections (Supplementary Table 1). For comparison, we obtained
blood from two healthy adult volunteers. CD3'T cells isolated from tissues and blood were
cultured in media aone (“resting’) or in the presence of anti-CD3/anti-CD28 antibodies
(“activated”) (Fig. 1a). Single cells were encapsulated for cDNA synthesis and barcoding using
the 10x Genomics Chromium system, followed by library construction, sequencing, and

computational identification of T cells (Supplementary Fig. 1, Supplementary Tables 2,3).

We initially analyzed tissue T cell populations from the two individual donors,
comprising six samples per donor (resting and activated samples from three tissue sites). We
merged all data for each donor, performed unsupervised community detection® to cluster the
data based on highly-variable genes (Supplementary Table 4), and projected cells in two
dimensions using Uniform Manifold Approximation and Projection (UMAP)®.. For both donors,
the dominant sources of variation between cells were activation state (vertical axis) and
CD4/CDS8 lineage (horizontal axis) (Fig. 1b). Tissue site was also a source of variability; T cells
from BM and LN co-clustered while LG T cells were more distinct (Fig. 1b), consistent with T
cell subset composition differences in these sites from phenotype anaysis (Supplementary

Figure 2 and previous studies'®**%).

Differential gene expression from the scRNA-seq data resolved T cell subsets and

functional states within and between sites and lineages into 10-11 clusters (Fig. 1c,
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Supplementary Tables 5,6). CD4'T cells comprised 6-7 clusters: resting cells expressing CCR?,
SELL and TCF7, (corresponding to naive or TCM cells); three activation-associated clusters
expressing 1L2, TNF, and IL4R at different levels; TRM-like resting and activated clusters

113%: and a distinct regulatory T cell

expressing canonical TRM markers CXCR6 and ITGA
(Treg) cluster expressing Treg-defining genes FOXP3, IL2RA, and CTLA4 (Fig. 1¢). CD8'T cells
comprised four clusters distinct from CD4'T cells and included: two TEM/TRM-like clusters
expressing CCL5, cytotoxicity-associated genes (GZMB, GZMK), and TRM markers (CXCR6,
ITGALl); an activated TRM/TEM cluster expressing IFNG, CCL4, CCL3; and clusters
representing terminally differentiated effector cells (TEMRA) expressing cytotoxic markers
PRF1 and NKG7 (Fig. 1c). In terms of tissue distribution, TRM cells were largely in the lung,
Tregs were primarily identified in LN, while TEMRA cells were enriched in BM (consi stent
with phenotype analysis, Supplementary Fig. 2); the remaining resting and activated CD4" and

CD8" clusters derived from all sites (Fig. 1b,c). These results show subset-specific profiles in

human tissues, but suggest similar **activation profiles across sites.

To assess how blood T cells relate to those in tissue, we performed scRNA-seq analysis
of resting and activated blood T cells from two adult donors, and projected the merged data onto
the UMAP embeddings of T cells from each tissue donor (Fig. 2ab, Online Methods). The
majority of blood T cells co-localized with resting or activated T cells from BM but did not
exhibit substantial overlap with LG or LN T cells from either donor, particularly in the resting
state (Fig. 2a,b). We also quantified the number of blood T cells that were transcriptionally
similar to CD4" and CD8'T cells from each tissue within resting or activated samples (Fig. 2c,d,
Online Methods). Resting blood T cells were highly represented among CD4" and CD8'T cdlls

in BM (Fig. 2c, d). Interestingly, a substantial number of unstimulated blood T cells projected
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onto activated CD4'T cellsin BM for both donors (Fig. 2c,d, Ieft panels). In contrast, activated
blood T cells were strongly represented among activated CD4'T cells for all tissue sites and in
LN for CD8'T cells (Fig. 2c,d; right panels). Consistent results were obtained analyzing each
blood sample separately (Supplementary Fig. 3). These results suggest that blood T cells are
fundamentally distinct from tissue T cells and may persist in a more activated basal state than in

tissues, while activated blood and tissue-derived T cells share common signatures.
A universal gene signature distinguishestissue T cellsfrom blood

The maor transcriptional differences between tissue and blood T cells based on
population RNAseq originate from the presence of TRM in tissues™. Because sScCRNA-seq
enables high resolution detection of gene expression differences that can be unambiguously
traced to specific T cells, we investigated whether there were intrinsic features of tissue T cells
that distinguished them from blood. Resting memory T cells in tissues and blood express high
levels of CCL5 (Supplementary Fig. 4, Online Methods), a marker of CD8'TEM cells®,
enabling direct comparison of gene expression between similar subsets. We identified a similar
complement of genes that were highly expressed in TEM cells from each tissue compared to
blood (Fig. 3ac). Interestingly, these tissue-intringc genes include those associated with
microtubules and the cytoskeleton (tubulin-encoding genes TUBALA, TUBA1B, TUBB,
TUBB4B; S100A4) and genes encoding cell matrix, membrane scaffolding, and adhesion
molecules (VIM or vimentin, galectins LGALSI/LGALS3, AMICAL, ITM2C, EZR, annexins
ANXAT/ANXA2) (Fig. 3a-c). TRM signature genes including ITGAL1 and ITGAE were aso
upregulated in tissues compared to blood, particularly in the lung (Fig. 3a-c). These findings
suggest that localization of T cells in tissues likely involves structural changes in the cell that

facilitate interactions with tissue matrix.
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We compared the single-cell distribution of average expression of tissue signature genes
in the blood and three tissues (Fig. 3d). CCL5'TEM cells from all three tissues (both donors)
express higher levels of tissue signature genes compared to blood, though LG and LN T cdlls
have higher expression than those from BM (Fig, 3d). Notably, a minute fraction of blood TEM
cels (<0.5%) express this tissue signature at levels comparable to that in LN (within one
standard deviation of the mean for all tissues). Shown in a heat map are the relative expression
levels for genes within the tissue signature including TRM signature genes™ cytoskeletal, cell-
matrix interactions, cell division, apoptotic, and signaling genes (Fig. 3e). Gene expression is
highest in LG followed by LN and BM expressing only a subset of tissue-associated genes; the
outlier subpopulation from blood expresses a fraction (<40%) of tissue signature genes at levels
comparable to those in tissues (Fig. 3e). Together, these results show that tissue T cells express
genes associated with infiltration and localization in tissues along with residency markers, while
blood contains only trace numbers of cells expressing these genes.

Defining functional states common to blood and tissue T cells

The clustering analysis above suggested that activated T cells were more similar across
sites than resting counterparts. To uncover gene expression patterns that were conserved across T
cell populations in different tissues, we applied a new analytica method called single-cell
Hierarchical Poisson Factorization (scHPF)®. The scHPF algorithm identifies a small number of
expression patterns, called factors that vary coherently across cells. These factors can represent
discrete, subpopulation-specific or continuous programs like T cell activation that are expressed
as agradient across cellsin different stages of a biological process. We applied scHPF to merged
resting and activated T cells from each tissue and donor separately and hierarchically clustered

the resulting factors (Online Methods, Fig. 4a, Extended Data Fig. 4a, Supplementary Fig. 5).
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This analysis revealed seven gene expression modules (3 resting and 4 activated/functional) that
were highly conserved across tissues and donors, for which the highest scoring genes formed
interpretable gene signatures (Fig. 4a, Extended Fig. 4a, Supplementary Table 7). The three
modules associated with a resting state (Fig. 4a) included a Treg module defined by canonical
genes (FOXP3, CTLA4, IRF4, TNFRSF4 (0X40)*); a putative resting CD4" Naive/Central
memory (NV/CM) module enriched in CD4'T cells and defined by genes associated with
lymphoid homing, egress and quiescence (SELL, KLF2, LEF1, respectively), while the
CD4"/CD8" Resting module was distinguished by expression of IL7R, a receptor required for T

cel survival®®

, and AQP3, which encodes a water channel protein of unclear function in
lymphocytes®. Importantly, the CD4*/CD8* Resting module did not contain factors from blood
and had the highest enrichment for the tissue signature identified in Fig. 3 (Supplementary Fig.

6).

There were four modules associated with T cell activation and/or function, some of which
were lineage-specific. A Proliferation module expressed by activated CD4* and CD8" lineages
included genes associated with T cell activation/proliferation (IL2, LIF) and cell division
(CENPV, G0X2, ORC6) (Fig. 4a). This module was also marked by expression of NMEL, a
metastasis suppressor/endonuclease-encoding gene™ not previously associated with T cells (Fig.
48). An Interferon (IFN) Response module enriched among activated CD4'T cells included
multiple gene families associated with canonical IFN responses™™ (IFIT3, IFIT2, STAT1, MX1,
IRF7, and JAK2). In contrast, CD8'T cell-enriched modules included a Cytotoxic module
containing genes associated with cytotoxicity (GNLY, GZMK) and transcription factors
associated with effector/memory differentiation (ZEB2, EOMES, ZNF683)***°, and a Cytokine

module with genes encoding chemokines and cytokines (CCL3, CCL4, CCL20, IFNG, IL10,

10


https://doi.org/10.1101/555557
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/555557; this version posted February 20, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

TNF), inhibitory molecules (LAG3, CD226 (TIGIT), HAVCR2 (TIM3)), and the widey
expressed homeobox protein HOPX “°. These results indicate a limited spectrum of functional
states for human T cells across blood and tissue sites.

To understand how these gene modules correspond to resting and activated states in
CD4" and CDS8'T cells, we visualized the average expression of their top-ranked genes on
diffuson maps for each donor and tissue (Fig. 4b-e, Online Methods). This visualization defined
activation trgjectories with resting T cells on the | eft (blue) and activated T cells projecting to the
right (red, Fig. 4b,c). In all four sites and individuals, module expression for CD4'T cell was
positioned along activation trgjectories from CD4 NV/CM Resting (left) to IFN-Response
(middle) to Proliferation (right) (Fig. 4d). Expression of genes within the Proliferation module
co-localized with peak expression of NMEL and IL2RA (Extended Data Fig. 4b,c), while the IFN
Response module genes exhibited peak expression at the middle of the trajectory as exemplified
by IFIT3 expression (top ranked gene) (Extended Data Fig. 4d), suggesting a potential
intermediate activation state. In CD8'T cells, the Cytokine module localized in the most
activated cells for all sites also shown by IFNG expression (Fig. 4e, extended data Fig. 4€), while
the Cytotoxic module was expressed among resting and activated cells (Fig. 4e). Therefore,
scHPF takes an unbiased approach to uncover mgjor functiona states, reference signatures and

activation trgjectories for human T cells that are conserved across sites.

CD4" T cell activation states result from distinct responses to TCR and type Il IFN

signaling

The functional states identified for human CD8'T cells in Fig. 4 were consistent in with
those seen in vivo in mouse infection models™. By contrast, the modules identified for CD4'T

cell activation revealed markers and functional states not typically associated with effector
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CD4'T cels. We therefore assessed expression kinetics of the top-scoring genes in the
Proliferation and IFN Response modules, NMEL1 and IFIT3, respectively, during the course of T
cell activation ex vivo by gPCR. Expression of NME1 transcripts rapidly increased after TCR-
stimulation, peaking between 16-24hrs and remaining elevated for up to 72hrs, for both CD4"
and CDS8'T cells compared to unstimulated controls, a pattern of expression similar to the
canonical T cell activation marker IL2RA (Fig. 5a). Notably, the extent of activation-associated
upregulation of NME1 transcripts was greater in CD4" compared to CD8'T cells, while IL2RA
was more upregulated in CD8'T cells (Fig. 5a). At the protein level, NME1 expression increased
in CD4" and CD8'T cells after TCR-mediated stimulation from 24-120 hours (Fig. 5b, upper),
and with each successive round of T cell proliferation, while CD25 was expressed similarly
independent of cell division (Fig. 5b, lower). These results establish NME1 expression as a

marker of T cell activation, coupled to the extent of proliferation.

In contrast to NMEL/IL2RA upregulation, expression of IFIT3 transcripts showed biased
and transient upregulation by CD4'T cells following TCR-stimulation, pesking at 16hrs and
returning to near baseline levels by 48hrs post-stimulation (Fig. 5¢). As IFIT3 expression is
associated with responses to IFN*, we assessed the kinetics of IFIT3 upregulation after IFN
compared to TCR-mediated signaling and the contribution type | or type Il IFN signaling to
TCR-triggered IFIT3 induction. In response to IFN-a (type ) or IFN-y (type I1), IFIT3 was more
rapidly (within 2hrs) and persistently upregulated compared to TCR stimulation (Fig. 5d,e).
Inhibiting type | IFN signaling (using neutralizing antibodies for type | IFNs and IFNaR2)
abrogated IFNo-induced IFIT3 upregulation, as expected, but did not affect TCR-mediated
upregulation of IFIT3 by CD4'T cells (Fig. 5d). However, blockade of type Il IFN signaling via

a combination of anti-IFNy and anti-IFNyR1 antibodies inhibited upregulation of 1FIT3 induced
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by TCR-mediated activation, as well as that induced by culture with IFN-y (Fig. 5e). Notably,
blocking type Il (or type I) IFN signaling did not inhibit T cell activation as assessed by
induction of NMEL1 transcript expression, and addition of IFN-o or —y did not induce NME1
expression (Fig. 5d,e). These results establish that the IFN-responsive state suggested by the
scRNA-seq trajectories is recapitulated in real-time as part of an intermediate activation state

driven by TCR-triggered IFN-y production.

Defining T cell activation states in cancer through projecting on the high resolution
reference map

Although there have been several large-scale SCRNA-seq studies of disease-associated T
cells, these data are generally not placed in the context of T cell activation in healthy individuals.
To demonstrate the utility of our resource as a reference point for human disease, we used
UMAP to project recently reported scRNA-seq profiles of tumor-associated T cells from four
different human cancers onto our map of T cell activation states. Fig. 6a shows a merged UMAP
embedding of our entire data set colored by tissue site, donor, stimulation, cluster-level
CD4/CDS8 status, and CCL5 expression, indicative of effector status. We projected scRNA-seq
profiles of tumor-associated T cells from four different human cancers?” " (non-small cell lung
cancer (NSCLC), colorectal cancer (CRC), breast cancer (BC), and melanoma (MEL)) onto this
embedding to compare each tumor-associated T cell to healthy T cels (Fig. 6b,c). We also
investigated expression of activation state and lineage markers in the healthy T cell embedding
and tumor projections (Fig. 6¢). Tumor-associated CD8'T cells project onto healthy CD8'T cells
from all sites in both resting and activated states (Fig. 6b). Moreover, genes associated with
TRM (CXCR6) and the Cytotoxic and Cytokine modules are all represented among tumor-

associated CD8'T cells (Fig. 6¢, Extended data fig. 6, Supplementary Fig. 7,8). By contrast,
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tumor-associated CD4'T cells projected mostly onto resting blood and tissue T cells (Fig. 6b),
while CD4'T cell activation states and associated markers (NMEL, IFIT3) were largely absent
(Fig. 6¢). This analysis reveals that tumor-associated T cells contain activated CD8'T cells, but
lack the presence of functionally activated CD4 T cells.

A hallmark of tumor-associated T cells is a state of hyporesponsiveness or functional
exhaustion, marked by persistent expression of surface inhibitory markers including PD-1,
CTLA4, LAGS3, TIM3 and others, many of which are expressed following T cell

activation">,

Some of these molecules (PD-1, CTLA4) are important targets for
immunotherapy to promote anti-tumor immunity®>>®. We compared expression of exhaustion
and functional markers across healthy and tumor-associated T cells (Extended Data Fig. 6;
Supplementary Fig. 7, 8). Tumor-associated CD8'T cells expressing exhaustion markers across
all four tumor types project onto activated CD8'T cells in our map, and express genes within the
Cytokine module (CCL3, CCL4, XCL1, XCL2, and IFNG, Supplementary Fig. 8), and to alesser
extent Cytotoxic module (Extended Data Fig. 6). Interestingly, a subset of these tumor-
associated CD8'T cdlls, but not healthy T cells, express high levels of MKI67, associated with
proliferating cells and other cell cycle control markers (Extended Data Fig. 6, Supplementary

Fig. 8). Therefore, tumor-associated T cells expressing exhaustion markers also express genes

associated with normal CD8 effector T cell function and ongoing proliferation.
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DISCUSSION

Human T cells persist in distinct anatomic Sites, maintain protective immunity and
aurveillance, and are key targets for immune modulation in tumor immunotherapy,
transplantation, and autoimmunity. Here, we used scRNA-seq profiling of resting and TCR-
stimulated T cells from blood, lymphoid and mucosal tissues to generate a reference map of
human T cells and understand how T cell homeostasis and function are related to the tissue site.
Our findings demonstrate fundamental differences between T cells from tissues and blood, but
similar functional and activation states across sites that are intrinsic to lineage; human CD4 T
cell activation is defined by response to cytokines and proliferation while CD8 T cells are
defined by effector function. We further demonstrate that this high resolution map of T cell
homeostasis and activation across sites, lineages, and individuals can serve as a new baseline for
defining human T cell statesin disease.

The study of healthy human T cells has largely focused on blood, while the majority of T
cells persist in diverse lymphoid, mucosal and barrier sites®™’. Human tissue T cells are largely
memory subsets, comprising tissue-resident (TRM) and non-resident (TEM, TCM) populations;
TRM predominate in mucosal sites, while TEM are found in spleen, LN and BM*3**%, The
relationship of these tissue-localized TEM to blood TEM has been unclear. Profiling using
scRNAseq enabled unambiguous assessment of T cell-intrinsic differences in tissue versus blood
T cells. We show that TEM from all sites examined (LG, LN, BM) exhibit fundamental changes
in expression of cytoskeletal, cell-matrix interaction, and proliferative genes, indicating
aterations in cellular structure. These tissue-intrinsic expression patterns are distinct from
previously identified TRM-associated genes™, and are lowly expressed in T cells from blood.
Whether T cells require these markers to localize within the tissue architecture, and/or their loss
of expression enables egress to circulation remains to be established.
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Our results reveal conserved functional states for human blood and tissue-derived T cells.
CDS8'T cells segregate into two major effector subsets based on expression of genes involved in
cellular cytotoxicity (Cytotoxic module) and myriad cytokines and chemokines (Cytokine
modul€e). These predominant effector states within activated human CD8'T cells are consistent
with results showing that mouse CD8'T cell activation triggers an effector differentiation
program>>®. We identified two major activation states that were not associated with effector
function: one associated with proliferation and IL-2 production, and a second, CD4-enriched
state characterized by induction of a panoply of IFN-responsive genes including IFIT3, MX1,
IRF7, and others. Induction of this IFN-response state is due to TCR-mediated IFN-y production
(likely autocrine responses), and appears as a kinetic intermediate early after CD4'T cell
activation that subsequently shuts down upon induction of the proliferative program. We propose
that the IFN-responsive state for human CD4'T cells may serve an autoregulatory function to
temper high IFN levels produced by predominant memory responses, and ongoing responses to
persistent viruses.

This scRNA-seq analysis provides a high resolution map for human T cells from which to
define T cell states in disease. We demonstrate this approach by projecting T cell profiles from
human tumors onto our reference map. We identify predominant CD8" effector populations,
Tregs, and resting (but not activated) CD4'T cells in datasets derived from diverse tumor types
(bresst, lung, skin, colon). Interestingly, the tumor-associated CD8'T cells exhibited
transcriptional features similar to healthy activated CD8'T cells including expression of multiple
effector molecules such as perforin, IFN-y and chemokines. We also examined the expression of
multiple markers associated with exhaustion, a functionally hyporesponsive state found in tumor-
infiltrating T cells targeted by checkpoint blockade immunotherapies™>>®, Interestingly,

exhaustion markers were upregulated in activated T cells in both healthy and tumor tissues
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expressing CD8-associated cytokines. Moreover, subsets of these CD8'T cellsin all four tumors
expressed higher levels of proliferation markers compared to healthy T cells, consistent with a
recent report that T cells expressing exhaustion markers in melanoma exhibit aberrant
proliferation®. This analysis can therefore enable precise identification of features of resting and
activated T cellsthat are associated with tissues, activation and disease.

In summary, our high resolution analysis of human T cells across sites, lineages, and
activation states provides insights into human T cell adaptations to tissues and their intrinsic
activation properties. This novel reference map can serve as a valuable resource for the study of
human T cel immunity in disease, immunotherapies, vaccines and infections, and for

diagnosing, screening and monitoring immune responses.
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ONLINE METHODS

Acquisition of Human Tissues and Blood

We obtained human tissues from deceased, brain-dead donors at the time of organ acquisition for
clinical transplantation through an approved research protocol and MTA with LiveOnNY, the
organ procurement organization for the New Y ork metropolitan area. Obtaining tissue samples
from deceased organ donors does not qualify as “human subjects’ research, as confirmed by the
Columbia University Institutional Review Board (IRB). Donors were free of chronic disease,
cancer and chronic infections such as Hepatitis B, C and HIV. Clinical and demographic data
regarding organ donors used in this study are summarized in Supplementary Table 1. We
obtained peripheral blood from healthy consenting adult volunteers by venipuncture, through an

protocol approved by the Columbia University IRB.

I solation and Stimulation of T cellsfor Single-Cell RNA-seq

Tissues acquired from donors were maintained in cold saline during transport to the laboratory,
typically within 2-4 hours of procurement. We isolated mononuclear cells from donor lungs,
lung lymph nodes and bone marrow as previously described "%, Briefly, we flushed the left
lobe of the lungs with cold complete medium (RPMI 1640, 10% FBS, 100 U/ml penicillin, 100
ug/ml streptomycin, 2 mM L-glutamine) and isolated lymph nodes from the hilum, near the
intersections of maor bronchi and pulmonary veins and arteries, removing all fat. To obtain
mononuclear cell suspensions, hilar lymph nodes and the left lateral basal segment of the lung
were mechanically processed using a gentleMACS tissue dissociator (Miltenyi Biotec),
enzymatically digested (complete medium with 1 mg/ml collagenase D, 1 mg/ml trypsin
inhibitor and 0.1 mg/ml DNase for 1 hour at 37°C in a mechanical shaker) and centrifuged on a

density gradient using 30% Percoll Plus (GE Healthcare). We aspirated bone marrow from near
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the anterior superior iliac crest. For bone marrow and peripheral blood, we isolated mononuclear
cells by density gradient centrifugation using Lymphocyte Separation Medium (Corning). Next,
we enriched single cell suspensions from all tissues and blood for untouched CD3+ T cellsusing
magnetic negative selection (MojoSort Human CD3+ T cdl Isolation Kit; BioLegend). To
eliminate any dead cells prior to stimulation, we used a dead cell removal kit (Miltenyi Biotec).
We cultured 0.5 — 1 x 10° CD3" enriched cells from each donor tissue for 16 hours at 37°C in
complete medium, with or without TCR stimulation using Human CD3/CD28 T Cell Activator
(STEMCELL Technologies). After stimulation, we removed dead cells as above before

preparing cells for single-cell RNA-seq.

Single-Cell RNA-seq

We loaded single-cell suspensions into a Chromium Single Cell Chip (10x Genomics) according
to the manufacturer’s instructions for co-encapsulation with barcoded Gel Beads at a target
capture rate of ~5,000 individual cels per sample. We barcoded the captured mRNA during
cDNA synthesis and converted the barcoded cDNA into pooled single-cell RNA-seq libraries for
[llumina sequencing using the Chromium Single Cell 3' Solution (10x Genomics) according to
the manufacturer’s instructions. We processed all of the samples for a given donor
simultaneously with the Chromium Controller (10x Genomics) and prepared the resulting
libraries in paralld in a single batch. We pooled all of the libraries for a given donor, each of
which was barcoded with a unique Illumina sample index, for sequencing in a single lllumina
flow cell. All of the libraries were sequenced with an 8-base index read, a 26-base read 1
containing cell-identifying barcodes and unique molecular identifiers (UMIs), and a 98-base read
2 containing transcript sequences on an lllumina HiSeq 4000. Cell counts and transcript

detection rates are summarized in Supplementary Table 2.
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Single-Cell RNA-seq Data Processing
Prior to gene expression analysis, we corrected the raw sequencing data for index swapping, a
phenomenon that occurs during solid-phase clonal amplification on the Illumina HiSeq 4000
platform and results in crosstalk between sample index sequences. We corrected index
swapping using the algorithm proposed by Griffiths et al ®. First, we aligned the reads
associated with each sample index to GRCh38 (GENCODE v.24) using STAR v.2.5.0 after
trimming read 2 to remove 3' poly(A) tails (> 7 A’s) and discarding fragments with fewer than
24 remaining nucleotides as described in Yuan et al ®. For each read with a unique, strand-
specific alignment to exonic sequence, we constructed an address comprised of the cell-
identifying barcode, unique molecular identifier (UMI) barcode, and gene identifier. Next, we
counted the number of reads associated with each address in each sample. Because of index
swapping, we found that some addresses occurred in multiple samples at much higher
frequencies than one would expect by chance. For the vast mgjority of addresses, there was a
single sample containing most of the associated reads. If >80% of reads for a given address were
associated with a single sample (e.g. a single index sequence), we kept all of the reads
corresponding to that address in that sample and removed all of the reads associated with that
address from all other samples™. We also identified addresses for which no sample contained
>80% of the corresponding reads and removed all of these reads from all samples. After
correcting for index swapping, we collapsed amplification duplicates using the UMIs and
corrected errors in both the cell-identifying and UMI barcodes to generate a preliminary matrix
of molecular counts for each cell as described previously .

We filtered the cell-identifying barcodes to avoid dead cells and other artifacts as
described in Yuan et al . Briefly, we removed all cell-identifying barcodes where >10% of
molecules aligned to genes expressed from the mitochondrial genome or for which the ratio of
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molecules aligning to whole gene bodies (including introns) to molecules aligning exclusively to
exons was >1.5. Finaly, we also removed cell-identifying barcodes for which the average
number of reads per molecule or average number of molecules per gene deviated by >2.5
standard deviations from the mean for a given sample.

Computational Identification of T Cells

As described above, we used negative selection to experimentally remove as many non-T cells as
possible from our single-cell suspensions. This procedure was imperfect, and so all of our
samples inevitably contained some non-T cells (average T cell purity was ~80%). Thoroughly
removing non-T cells from the data set is complicated by technical issues such as molecular
cross-talk, multiplet capture, and a broad coverage distribution. We developed a procedure to
remove non-T cells that accounts for these issues by identifying both individual cells and clusters
of cells that are enriched in expression of a blacklisted gene set that is highly specific to
contaminating cell types.

We began by clustering the single-cell profiles within each sample using a pipdine that we
reported previously *%. Briefly, we identified highly variable genes that are likely markers of
specific subpopulations by normalizing the molecular counts for each cell to sum to one,
ordering all genes by their normalized expression values, and computing a drop-out score dsy for
each gene g defined as:

dsy = fy = [N,

where fq is the fraction of cells in which we detected g and fy™ is the maximum fy in a 25-gene
rolling window centered on g. We selected genes with dsy > 0.15 or with dsy > 60gys + < dsy >,
where ogs and < dsy > are the standard deviation and mean of the dropout score distribution.

Using these genes, we computed a cdll-by-cell Spearman’s correlation, from which we
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constructed a k-nearest neighbor’s graph (k=20) and used this as input for the Phenograph®

implementation of Louvain clustering to identify cellular subpopulations.

Next, we used the pooled normalization approach described by Lun et al as implemented in the
scran package with the computeSumFactors function to compute size factors for each cell "%,
We supplied the computeSumFactors function with the cluster identifiers obtained from
Phenograph to account for cell type-specific coverage differences. Using the resulting
normalized expression profiles, we identified Phenograph clusters with positive enrichment of
average CD3D and TRAC expression and labeled these clustersas T cell clusters (Supplementary
Fig. S1). Within each sample, we conducted differential expression analysis between all pairs of
T cell and non-T cell clusters via the Wilcoxon rank-sum test using the SciPy function ranksums
and Benjamini-Hochberg corrected p-values with the StatsModels function multipletests in
Python. Finally, we established an initial blacklist of genes that are highly specific to the non-T
cdl clusters by taking any gene with p < 0.001 and greater than 10 fold-enrichment in a non-T
cell cluster for any of the above pairwise comparisons in any sample. To refine the blacklist and
avoid including genes that are specific to T cell subsets found in only a limited set of samples or
clusters, we also generated a whitelist of genes with positive enrichment in any T cell cluster. We
removed any member of this whitelist from the initial blacklist to produce a final, refined
blacklist containing 744 genes highly specific to contaminating cell types (Supplementary Table
3). As expected, genes on the final blacklist included markers of epithelial cells, dendritic cells,
mast cdlls, B cells, neutrophils, and red blood cells.

We used the blacklist to remove cells from the T cdll clusters that are either improperly
clustered (unlikely to be T cells) or potentially multiplets (a cell-identifying barcode co-
encapsulated both T cells and non-T cells). Importantly, because of molecular cross-talk in
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scRNA-seq libraries from PCR recombination, we only considered a cell to be expressing a
blacklisted gene if the average number of reads supporting the detected molecules was above a
certain threshold. This threshold depends on the average depth to which we sequenced the
libraries in a given sample. The distributions of the number of reads-per-molecule are generaly
bimodal for a given sample. We assume that the mode with lower read counts per molecule
arises from PCR recombination in which a molecule originating from one cell receives the cell-
identifying barcode of a different cell at an intermediate point in PCR, thereby resulting in a
detected molecule supported by an unusually small number of reads (i.e. amplicons). We
therefore considered the sample h with the highest coverage (and therefore the clearest
separation between the two modes) and took the minimum point between the two modes in the
reads-per-molecule distribution to be the threshold number of reads per molecule, Tj,, below

which a detected molecule would be considered to arise from cross-talk. We extrapolated a

RPM;
RPM,

reads-per-molecule threshold for each of the other samplessas T, = T, * ( ), where RPM,

is the average number of reads per molecule detected in sample s.

Finally, for each cell ¢ in a sample with threshold T,, we computed b, the per-cell
fraction of blacklisted genes detected with an average number of reads per molecule above T.
As expected, b, was typically bimodally distributed within each sample (Supplementary Fig. 1€).
The vast mgjority of cells in the lower mode were in the T cell clusters described above, while
the high mode was composed mainly, but not exclusively, of cells from non-T cell clusters
(Supplementary Fig. 1€). In each sample, we fit a Gaussan to b.’s distribution across cells
assigned to T cdll clusters and established a threshold at two standard deviations above the fitted
mean. We considered any cell with b, above this threshold and any cell that clustered among the

non-T cdl clustersto beanon-T cell and discarded these cells from all downstream analysis.
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Course-Grained Clustering of Merged T Cellsfrom Each Donor

Once we had identified the T cells from each sample using the methodology described
above, we merged resting and activated samples from all of the tissues in each donor and
clustered the T cells from the two donors separately to generate Fig. 1b,c. We used the
methodology described above to identify a set of highly variable genes for each sample
(including the blood samples), and then merged those sets to generate a large list of 315 highly-
variable genes (Supplementary Table 4) with which we clustered the merged samples from both
donors. We computed Louvain clusters from the two merged data sets with k = 12 and a
minimum cluster size of 100 cells using a k-nearest neighbors graph constructed from the
Spearman’s correlation matrix calculated using the 315 highly variable genes. We used the
Python implementation Uniform Manifold Approximation and Projection (UMAP)* to produce
the two-dimensional projections shown in Fig. 1b,c. To obtain CD4/CDS8 ratios for each cluster,
we first computed the expression level of CD4 and CD8A in each cell using the normalized
counts from computeSumFactors as described above. For both CD4 and CD8A, we then
computed the average logz(normalized counts + 1) for each cluster and normalized this value by
the average logy(normalized counts + 1) for all cells. We then took the log-ratio of these values
for CD4 and CD8A to generate Fig. 1b, where all the cells in each cluster are labeled with the
cluster’slog-ratio.
Blood Projection Analysis
To project the data obtained from blood T cells onto the tissue-derived profiles from each organ
donor, we first merged the scRNA-seq profiles from both blood donors. We note that the

scRNA-seq data from blood were subjected to the same computational procedure described
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above for eliminating non-T cell profiles. We used the same highly variable gene set
(Supplementary Table 4) that was used in the origina UMAP mode of each organ donor to
compute a Spearman’s correlation matrix between the blood and tissue profiles. We then
projected the blood T cell profiles onto the UMAP models for each of the two organ donors
using the transform function in UMAP. We note that the organ donor UMAP models used for
this analysis are dlightly different from what appears in Fig. 1b,c, because a small number of
genes in the highly variable gene set were eliminated due to lack of expression in the blood. We
also note that a small modification to the UMAP source code was needed to accommodate the
use of Spearman’s correlation as a smilarity metric.

To generate the cell number heatmaps in Fig. 2 and Supplementary Fig. 3, we first
computed a centroid position in the UMAP embedding for each cluster-tissue combination in the
tissue data based on the Louvain clustering described above for Fig. 1b,c. For example, for
Donor 2, we computed the average position of lung-, bone marrow-, and lymph node-derived
cellsin the first cluster (CD4 Rest 1). We then identified the nearest cluster-tissue combination
for each cell in the blood samples based on the Euclidean distance between a given blood-
derived cel’s position in the UMAP modd (following projection of the blood data onto the
tissue UMAP model) and each cluster-tissue centroid position. The heatmaps summarize the
results of these calculations, providing the number of blood-derived cells that are closest to each
cluster-tissue combination in the organ donor data.

Comparison of Tissue and Blood Effector Memory T Célls

To identify a tissue-specific T cell signatures, we compared the expression profiles of effector
memory cellsfrom resting LG, BM, and LN T cells from the two tissue donors to resting blood T
cells from the two blood donors. We found CCL5 to be an extremely highly expressed marker of
effector memory cells that exhibited strong anti-correlation with SELL, a marker of non-effector

25


https://doi.org/10.1101/555557
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/555557; this version posted February 20, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

memory cells, in all of our resting samples (Supplementary Fig. 4a). We also found that the
average number of reads per molecule for CCL5 was bimodally distributed, consistent with
spurious detection of CCL5 in a population of cells due to PCR recombination (Supplementary
Fig. 4b). For each sample, we used the point between these two modes where the probability
density was minimal as a threshold for the minimum average number of reads per molecule of
CCL5 required for acell to be considered positive for CCL5. For each sample, we normalized the
matrix of molecular counts for the CCL5" effector memory T cells using the computeSumFactors
function in scran to compute size factors for each cell®”®, For each tissue site, we then identified
differentially expressed genes for all four pairwise comparisons of resting tissue to resting blood
CCL5" T cells (tissue donor 1 vs. blood donor A, tissue donor 2 vs. blood donor A, etc.) using
the Wilcoxon rank-sum test with the SciPy function ranksums and computed Benjamini-
Hochberg corrected p-values with the StatsModels function multipletests in Python after
removing genes from the blacklist described above (Supplementary Table 3). For each tissue, we
took all genes with psg < 0.05 and fold-change > 2 in all four pairwise comparisons to comprise
atissue-specific effector memory T cell signature (Fig. 3).

Next, al of the genes in the tissue-specific effector memory T cell signature and
computed the average normalized expression of the resulting gene set to obtain Fig. 3d. Z-scored
normalized expression for each of these genes appears in the heatmap in Fig. 3e for each site /
donor, which also includes a set of blood T cells with outlier expression of the tissue-enriched
gene signature (blood T cells with average expression within one standard deviation of that of

thetissue T cdls asindicated by the dashed linein Fig. 3d).

Single-cell Hierarchical Poisson Factorization and Transcriptional Module Analysis
We applied Single-cell Hierarchical Poisson Factorization (scHPF), a method that we recently

reported for de novo discovery of gene expression signatures in sScCRNA-seq data, to the merged
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activated and resting cells for each tissue and donor®. Given a molecular count matrix, scHPF
identifies a small number of latent factors that explain both continuous and discrete expression
patterns across cells. Each gene has a score for each factor, quantifying the gene’s contribution
to the associated expression pattern. Likewise, each cell assigns a score to each factor, which
reflects the contribution of the factor to the observed expression in the cell.

We applied scHPF to each tissue and blood sample after merging their respective resting
and activated datasets. We considered only genes with GENCODE protein coding, T cell
receptor constant or immunoglobulin constant biotypes, excluded genes on the previously
described blacklist, and removed genes detected in fewer than 0.1% of cells in a given merged
dataset. scHPF was run with default parameters for seven values of K, the number of factors,
equal to all values between 6-12, inclusively. This resulted in seven candidate scHPF models per
merged dataset. We then selected K (and a corresponding fitted model) to avoid factors with
significant overlap in their gene signatures. For each dataset and value of K, we calculated Nk:
the maximum parwise overlap of the 300 highest-scoring genes in each factor for the
corresponding scHPF model. We considered overlap significant if p < 0.05 by a hypergeometric
test with a population size equal to the number of unfiltered genes in the tissue sample and
N observed successes. Finally, for each dataset, we selected the model with maximum K such
that p>=0.05 (Supplementary Fig. 5). Thisresulted in eight factorizations: six from tissue donors
(lung, bone marrow, and lymph node from each of two organ donors) and two factorizations
from the blood of living donors. We defined each factors CD4/CD8 bias as the log2 ratio of its
mean cell scorein CD4" and CD8'T cells.

To discover common patterns of expression across tissues and donors, we performed
unsupervised clustering of all factors for tissue-derived cells. First, we calculated Pearson

correlation on the union of the fifty highest and lowest scoring genes in each factor for each
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tissue factorization (2,291 genes total) using the Python pandas package's DataFrame.corr
function. Next, we hierarchically clustered the factor-factor correlation matrix using
scipy.cluster.hierarchy.linkage with method="average’ and scipy.cluster.hierarchy.dendrogram
(Extended Data Fig. 4). This defined clusters of tightly correlated expression patterns, which we
call expression modules. We focused on seven modules (out of nine) whose factors had mean
pairwise correlations greater than 0.25. Most modules contained at least one factor from each
tissue and donor. To identify the top genes in each module (Fig. 4a, Supplementary Table 7), we
ranked genes by their mean gene score across all constituent factors. Finally, we noticed that the
CD4 IFN response module contained two factors from Donor 2's bone marrow; however, one of
the two factors was far more tightly correlated with the rest of the factors in the module than the
other. As the top genes in the module were nearly identical with and without the less tightly-
correlated factor, we excluded it from the module in downstream analyses for clarity.

Activation Trajectory Analysis

We used the factorizations described above to compute T cell activation trgjectories by diffusion
component analysis. We first converted the cell score matrix obtained from the factorization of
each resting/activated merged tissue or blood sample into a cell-by-cell Euclidean distance
matrix. We then extracted the distance submatrices corresponding to the CD4 and CD8 clusters
in each sample as defined from the merged analysis of all samples from each donor described
above. We used the two resulting distance submatrices to compute diffusion components for
CD4 and CD8 activation with the C++ Accelerated Python Diffusion Maps Library (DMAPS)
with a kernel bandwidth of four. The diffusion maps shown in Fig. 4b-e each show the first two
diffuson components which we define as the two diffusion eigenvectors with the second- and

third-highest eigenvalues scaled by the diffusion eigenvector with the largest eigenvalue.
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Flow Cytometry, Intracellular Staining and Proliferation Assays

To evaluate the expression of T cell surface markers by flow cytometry, we incubated tissue and
blood cell suspensions with Human TruStain FcX (BioLegend) and stained with following
fluorochrome-conjugated antibodies: CD3 (UCHT1, BD Biosciences, OKT3, BioLegend), CD4
(SK3, BD Biosciences, SK3, Tonbo Biosciences), CD8 (SK1, BioLegend; RPA-T8, BD
Biosciences), CCR7 (G043H7; BioLegend), CD45RA (HI100; BioLegend), CD25 (BC96;
BioLegend), CD127 (A019D5; BioLegend), CD69 (FN50; BioLegend), CD103 (Ber-ACTS;
BioLegend), CD45 (HI130; BioLegend), and Fixable Viability Dye eFluor 780 (eBioscience). For
stimulation/proliferation assays, we magnetically enriched for CD3+ T cells from single cell
suspensions, stained cells with Cell Proliferation Dye eFluor 450 (eBioscience), and cultured
cells for up to 120 hours with or without TCR stimulation as above. At indicated time points, we
performed intercellular staining of NME1l (11615-HO7E; Sino Biological) using a
Foxp3/Transcription Factor Staining Buffer Kit (Tonbo Biosciences) for fixation and
permeabilization of cells according to manufacturer’ s instructions. We acquired cell fluorescence
datausing aBD LSR Il flow cytometer and used FCS Express (De Novo Software) for analysis.
The results are summarized in Supplementary Fig. 2 and the gating strategy is shown in
Supplementary Fig. 9.

Gene Expression Kinetics by Quantitative Real-Time PCR

We isolated mononuclear cells from peripheral blood, magnetically enriched for CD3+ T cells,
and sorted live CD4+ and CD8+ T cells (gated for singlets, FSC'*YSSC'™, CD45" and Viability
Dye) using a BD Influx cell sorter. Sorted cells were cultured in complete medium with or
without anti-CD3/anti-CD28 stimulation as above for up to 72 hours. For dissecting the
contribution of type | and type Il IFN signaling to gene expression, cells were pre-incubated with

Human Type 1 IFN Neutralizing Antibody Mixture (PBL Assay Science, Cat# 39000-1)
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according to manufacturer’s instructions, or 1 ug/mL of both anti-IFNy (R&D Systems,
MAB285, clone # 25718) and anti-IFNyR1 (R&D Systems, MAB6731, clone # 92101). As a
control, CD4+ T cells were activated with 1000 units/mL of recombinant human IFNa2 (PBL
Assay Science, Cat#11101-1) or 10 ng/mL recombinant human IFNy (Peprotech, Cat# 300-02).
We harvested resting and activated CD4+ and CD8+ T cells at indicated time points and
extracted RNA using a RNeasy Micro Kit (Qiagen) with on-column DNase digestion. We
converted RNA to cDNA via SuperScript 1V VILO Master Mix (Invitrogen) and performed
guantitative real-time PCR (qPCR) on a Viia 7 Real-Time PCR system (Applied Biosystems)
using TagMan Gene Expression Assays (NME1 Hs00264824 m1l; IL2RA Hs00907777_ml,;
IFIT3 Hs00155468 m1; TBP Hs00427620 m1) and TagMan Fast Advanced Master Mix, all
from ThermoFisher Scientific. gPCR reactions were set up according to manufacturer’s
ingtructions and fold changes between stimulated and unstimulated cells at each time point were
calculated using the AA cycle threshold method in ExpressionSuite Software (Thermokisher
Scientific) with TBP as a reference gene.

Tumor-Associated T Cell Projection Analysis

We projected scRNA-seq profiles of tumor-associated T cells from four different tumor types
onto a UMAP embedding of resting and activated T cells from across our combined tissue and
blood data set using the methods described above for projecting blood T cells onto embeddings
of the tissues. Briefly, we used the highly variable gene set from Supplementary Table 4 to
generate a UMAP embedding of our tissue/blood data set from a Spearman’s correlation matrix.
We then projected the tumor-associated T cell profiles onto this embedding using the transform
function in UMAP. Tumor-associated T cells from non-small cell lung cancer (NSCLC)* and
breast cancer (BC)*, which were profiled using the 10x Genomics Chromium platform, were

obtained from https://gbiomed.kuleuven.be/scRNAseg-NSCLC and GEO accession
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GSE114724 (samples BC09, BC10, and BC11), respectively. For these two data sets, we used
the UMI-corrected molecular counts provided by the authors. T cells from colorectal cancer
(CRC)* and melanoma (MEL)?, which were profiled using SMART-seq, were obtained from
GEO accessions GSE108989 and GSE120575 (pre-treated samples only). For these two data
sets, we used the TPM values provided by the authors. We note that the tissue/blood embedding
was re-computed for each projection and is therefore slightly different in each case because not
all of the processed data sets from the tumor studies contained all of the genes in Supplementary
Table 4.

The resulting projections are displayed in Fig. 6 in three different ways. In the top row,
the projections are displayed as contour plots of estimated probability density (kernel density
estimates) with a maximum of 14 contours. In the second row, we used a hexbin two-
dimensional histogram of the number of cellsin each bin with the colorbars normalized such that
the intensity can be compared across samples (e.g. scaled so that the melanoma projection can be
compared to the CRC projection). Finally, we also show where individual tumor-associated T
cells project in subsequent rows along with gene expression values for several key markers. In
Extended Data Fig. 4, we show the average expression of several canonical exhaustion markers
inindividual cells. The markers used for this analysis were PDCD1, CTLA4, LAG3, LAYN, TIM-

3, CD244, and CD160.
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Data Availability

The scRNA-seq data are available on the Gene Expression omnibus (GEO) under accession

number GSE126030.

Code Availability

The computer code for scHPF is freely available at www.github.com/simslab/scHPF .
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FIGURE LEGENDS

Figure 1: Single-cell RNA-seq analysis of resting and activated T cells from multiple tissue
gites in each individual donor. (a) Experimental workflow for single-cell analysis of T cells
from human tissues and blood including magnetic negative selection of CD3" cells, in vitro
culture and activation, and Chromium 3'-scRNA-seg. (b) UMAP embeddings of merged scRNA-
seq profiles from resting and activated T cells from lung (LG), bone marrow (BM), and lung-
draining lymph node (LN) in each of two organ donors colored by resting/activated condition,
CD4/CD8 expression ratio (all cells in a given cluster assigned the same average value), and
tissue source. (c) ldentification of T cell subpopulations. UMAP embeddings colored by
expression cluster along with heatmaps showing the z-scored average expression of differentially
expressed marker genes for each cluster. Subsets designated based on resting (“rest”) or activated
(“act™) condition and expression of known markers denoting effector memory (TEM), tissue
resident memory (TRM), terminally differentiated effector cells (TEMRA), and regulatory T

cells (Treg).

Figure 2: Comparison of blood and tissue T cells. (2) UMAP embedding of T cells from tissue
donor 1 colored by tissue and overlaid with a contour plot corresponding to the UMAP
projection of the combined resting and activated T cells from two blood donors onto the tissue

embedding. (b) Same as (a) for organ donor 2. (c) Heatmaps showing the number of blood T
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cells that project most closaly to each tissue/stimulation status combination in the tissue donor 1

UMAP embedding. (d) Same as (c) for tissue donor 2.

Figure 3: Identification of a tissue gene signature for resting memory T cells. (a) Volcano
plot showing the average log-fold-change and average Benjamini-Hochberg-corrected p-values
(FDR) for pairwise differential expression between CCL5" T cells from each resting LG sample
and each resting blood sample. Genes with negative log-fold-change are more highly expressed
among CCL5" cdls in LG, with severa highlighted in red. (b) Same as (a) for comparison of
resting CCL5" T cellsin BM and blood. (c) Same as (a) for comparison of resting CCL5" T cells
in LN in blood. (d) Violin plot showing the distributions of the average expression of all genes
with two-fold higher expression (on average) in any tissue compared to blood and average FDR
< 0.05 in any tissue for the resting CCL5" T cells in each tissue and blood sample. The dashed
line marks one standard deviation below the mean for average expression of this signature for all
tissues (note a small number of blood cells fall above this line). (€) Heatmap shows z-scored
average expression for al genes in the tissue signature from (d) among the resting CCL5" T cells
from each tissue and blood sample plus that of the rare blood subpopulation from (d), which
expresses high levels of certain genes. Previoudly identified TRM-associated genes from bulk

RNA-seq studies are highlighted in red (enriched in CD69" vs. CD69), blue (enriched in
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CD69'/CD103" vs. CD69/CD103"), and magenta (enriched in both CD69" vs. CD69  and

CD69'/CD103" vs. CD69'/CD103") (See online methods).

Figure 4. Defining conserved transcriptional states in resting and activated T cells by
single-cell Hierarchical Poisson Factorization (scHPF). (@) Heatmap shows gene scores for
the top genes (rows) in each expression module identified by clustering scHPF factors (columns)
that were computed in separate analyses of cells from each tissue and donor (Extended Figure 4a,
Online Methods). Selected genes are indicated to the left, and complete lists of top genes are
available in Supplementary Table 7. Color bars at the bottom of the heatmap indicate each
factors' tissue of origin, donor of origin, and CD4/CD8 bias. (NV/CM=naive or TCM). (b)
Diffusion maps of CD4" T cells in each tissue and donor, with cells colored by sample origin as
resting (blue) or activated (red). (c) Same as (b) but for CD8+T cells. (d) Diffuson maps of
CD4'T cells from (b), with cells colored by their average expression of the top genes from
scHPF expression modules. Colors for different modules (CD4 NV/CM Resting, IFN Response,
Proliferation) were blended using the RGB color mode!. (€) Diffusion maps of CD8'T cells from
(c), with cells colored by their average expression of the top genes from scHPF expression

modules (CD8 Cytotoxic and CD8 Cytokine).
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Figure 5: NMEL1 and IFIT3 induction during CD4'T cell activation and the role of IFN-
signaling. (a) Expression of NME1 and IL2RA mRNA by blood CD4" or CDS8'T cells after
stimulation with anti-CD3/anti-CD28 antibodies by qPCR. Data shown as mean fold-change
(+SEM) relative to unstimulated CD4" or CD8'T cell controls (dotted line) from 4 individuals
(independent experiments). Statistical analysis between stimulated and unstimulated cells (black
*) or CD4" and CD8'T cdlls (red *) made by two-way ANOVA with Sidak test for multiple
comparisons. (b) Intracellular NMEL protein expression by blood T cells after stimulation for
indicated timepoints (red) compared to unstimulated (black) and isotype control (gray). Bottom
row: CD25 and NMEL1 expression by proliferating CD3'T cells after 5 days of stimulation. Data
are representative of 4 individuals. (c) Expression of IFIT3 mRNA in blood T cells by gPCR
after TCR-stimulation, shown as mean fold-change (xSEM) relative to unstimulated controls
(dotted line) for four individuals. Two-way ANOVA with Sidak test for multiple comparisons
was used for statistical comparisons (black *, stimulated versus unstimulated) or (red *, CD4"
versus CD8'T cells). (d) IFIT3 or NME1 mRNA expression in CD4'T cells after culture with
anti-CD3/anti-CD28 or IFNa2 (1000 unitsmL) +/- type | IFN neutralizing antibody cocktail or
(e) IFNy (10 ng/mL) +/- anti-IFNy/anti-IFNyR1 antibodies (1 ug/mL each), shown as mean fold-
change (xSEM) relative to unstimulated controls (dotted line) for 3 individuals. Statistical
comparisons made by two-way ANOVA. For all pands. “ns’ denotes not significant; * p < 0.05;

** n<0.01; *** p<0.00L.

Figure 6: Comparison of tumor-associated T cellsto thereference map of healthy human T
cell activation. (a) Merged UMAP embedding for the entire healthy T cell sScRNAseq dataset

including resting and activated tissue T cells (two donors) and blood T cells (two individual)
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colored by sample source, donor, resting/activated condition, CD4/CD8 status (CD4-enriched,
green; CD8-enriched, purple), and CCL5 expression indicating TEM cdlls. (b) Merged UMAP
embedding for the entire dataset overlaid with contour plots indicating kernel density estimates
for the projection of T cells derived from organ/blood donors (column 1), non-small cell lung
cancer (NSCLC) tissue (column 2), colorectal cancer (CRC) tissue (column 3), breast cancer
(BC) tissue (column 4), and melanoma (MEL) tissue (column 5). Note that these probability
densities can be compared within each projection, but cannot be quantitatively compared across
projections. (c) Same as b) but overlaid with a two-dimensional hexbin histogram for each
projection. Histograms have been normalized to account for differences in cell numbers across
datasets and therefore can be compared quantitatively across projections. (d) Individual cellsin
the UMAP embedding (column 1) for the entire healthy T cell dataset and UMARP projections
(columns 2-5) for NSCLC, CRC, BC, and MEL tissue T cdlls colored by expression of CD4,
CD8A, FOXP3 (Treg marker), CXCR6 (TRM marker), IFIT3 (IFN response marker), NME1
(activation marker), PRF1 (cytotoxic marker), and IFNG. Expression values are normalized for

guantitative comparison within each dataset (i.e., column), but not across datasets.
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Extended Data Figure L egends

Extended Data Figure 4. (a) scHPF was used to factorize sScRNA-seq profiles of each tissue and
blood sample independently after merging resting and activated T cells. Each matrix element in
the heatmap is the pairwise Pearson’s correlation coefficient between the gene scores for a pair
of factors computed across a set of high- and low-scoring genes (see Online Methods). The
resulting modules were named based on the identities of ther highest scoring genes
(Supplementary Table 7) and the resting vs. activated status of the highest scoring cells. Lower
color bars show the tissue and donor of origin, and the CD4/CD8 bias of cell scores for each
factor. (b) Diffusion maps generated from scHPF factors (see Online Methods) for CD4" and
CD8" T cells from each tissue and blood sample after merging resting and activated T cells with
each cell colored by expression of IL2RA. (c) Same as (b) but colored by expression of NME1.
(d) Same as (b) but colored by expression of IFIT3. (€) Same as (b) but colored by expression of

IFNG.

Extended Data Figure 6. Individua cells in the UMAP embedding (far left column) for the
entire healthy T cell dataset and UMAP projections (remaining four columns) for NSCLC, CRC,
BC, and MEL tissue T cells colored by the average expression of the top 70 genes in the
Cytotoxic module, the top 70 genes in the Cytokine module, the average expression of a set of
exhaustion markers (PDCD1, CTLA4, LAYN, LAG3, TIM-3, CD244, and CD160), and
expression of the proliferation marker MKI67. Note that these expression values are normalized
so that they can be quantitatively compared within each dataset (within each column), but not

across datasets.
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