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ABSTRACT 

Human T cells coordinate adaptive immunity by localization in diverse tissue sites, though blood T 

cells are the most readily studied. Here, we used single-cell RNA-seq to define the functional 

responses of T cells isolated from human lungs, lymph nodes, bone marrow, and blood to TCR-

stimulation. We reveal how human T cells in tissues relate to those in blood, and define activation 

states for CD4+ and CD8+T cells across all sites, including an interferon-response state for CD4+T 

cells and distinct effector states for CD8+T cells.  We further show how profiles of individual tumor-

associated T cells can be projected onto this healthy reference map, revealing their functional state. 
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INTRODUCTION 
 

 T lymphocytes coordinate adaptive responses and are essential for establishing protective 

immunity and maintaining immune homeostasis. Activation of naïve T cells through the antigen-

specific T cell receptor (TCR) initiates transcriptional programs that drive differentiation of 

lineage-specific effector functions; CD4+T cells secrete cytokines to recruit and activate other 

immune cells while CD8+T cells acquire cytotoxic functions to directly kill infected or tumor 

cells. Most of these effector cells are short-lived, although some develop into long-lived memory 

T cells which persist as circulating central (TCM) and effector-memory (TEM) subsets, and non-

circulating tissue resident memory T cells (TRM) in diverse lymphoid and non-lymphoid sites1-4. 

Recent studies in mouse models have established an important role for CD4+ and CD8+TRM in 

mediating protective immunity to diverse pathogens2,5-7. Defining how tissue site impacts T cell 

function is therefore important for targeting T cell immunity.  

 In humans, most of our knowledge of T cell activation and function derives from the 

sampling of peripheral blood. Recent studies in human tissues have revealed that the majority of 

human T cells are localized in lymphoid mucosal and barrier tissues8 and that T cell subset 

composition is a function of the specific tissue site9,10. Human TRM cells can be defined based 

on their phenotypic homology to mouse TRM and are distinguished from circulating T cells in 

blood and tissues by a core transcriptional and protein signature10-13. However, the role of tissue 

site in determining T cell functional responses, and a deeper understanding of the relationship 

between blood and tissue T cells beyond composition differences are key unanswered questions 

in human immunology. 

 The functional responses of T cells following antigen or pathogen exposure have been 

largely defined in mouse models, and are generally classified based on whether or not they 
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secrete specific cytokines or effector molecules. Effector CD4 T cells comprise different 

functional subtypes (Th1 cells secrete IFN-γ and IL-2; Th2 secrete IL-4, 13; Th17 secrete IL-17, 

etc.)14, while effector CD8 T cells secrete pro-inflammatory cytokines (IFN-γ,TNF-α) and/or 

cytotoxic mediators (perforin and granzymes)15. Certain conditions can lead to inhibition of 

functional responses; for example, CD4+T cells encountering self-antigen become anergic and 

fail to produce IL-2, while CD8+T cells responding to chronic infection, tumors, or lacking 

CD4+T cell help become functionally exhausted, and express multiple inhibitory molecules (e.g., 

PD-1, LAG3)16-18. While human T cells can produce similar cytokines, effector and inhibitory 

molecules as mouse counterparts19-22, the full complement of functional responses for human T 

cells in tissues has not been elucidated. Establishing a comprehensive baseline of healthy T cell 

states in humans is essential for defining dysregulated and pathological functions of T cells in 

disease. 

 Single cell transcriptome profiling (scRNA-seq) has enabled high resolution mapping of 

cellular heterogeneity, development, and activation states in diverse systems23,24. This approach has 

been applied to analyze human T cells in diseased tissues25,26 and in response to immunotherapies in 

cancer 27; however, the baseline functional profiles of human T cells in healthy blood and tissues 

have not been defined. We have established a tissue resource where we obtain multiple lymphoid, 

mucosal, and other peripheral tissue sites from human organ donors9-11,13,28,29, enabling study of T 

cells across different anatomical spaces. Here, we used scRNA-seq of over 50,000 resting and 

activated T cells from lung (LG), lymph nodes (LN), bone marrow (BM) and blood, along with 

innovative computational analysis to define cellular states of homeostasis and activation of human 

blood and tissue-derived T cells. We reveal how human T cells in tissues relate to those in blood, 

and identify a conserved tissue signature and activation states for human CD4+ and CD8+T cells 

conserved across all sites. We further show how scRNA-seq profiles of T cells associated with 
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human tumors can be projected onto this healthy baseline dataset, revealing their functional state. 

Our results establish a comprehensive high dimensional dataset of human T cell homeostasis and 

function in multiple sites, from which to define the origin, composition and function of T cells in 

disease.  
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RESULTS 

High Resolution analysis of human T cells in tissues and comparison to blood  

 We obtained BM, LN, and LG as representative primary lymphoid, secondary lymphoid 

and mucosal tissue sites, respectively, from two adult organ donors who met the criteria of health 

for donation of physiologically healthy tissues for lifesaving transplantation, being free of 

chronic disease, cancer, and infections (Supplementary Table 1). For comparison, we obtained 

blood from two healthy adult volunteers. CD3+T cells isolated from tissues and blood were 

cultured in media alone (“resting”) or in the presence of anti-CD3/anti-CD28 antibodies 

(“activated”) (Fig. 1a). Single cells were encapsulated for cDNA synthesis and barcoding using 

the 10x Genomics Chromium system, followed by library construction, sequencing, and 

computational identification of T cells (Supplementary Fig. 1, Supplementary Tables 2,3). 

 We initially analyzed tissue T cell populations from the two individual donors, 

comprising six samples per donor (resting and activated samples from three tissue sites). We 

merged all data for each donor, performed unsupervised community detection30 to cluster the 

data based on highly-variable genes (Supplementary Table 4), and projected cells in two 

dimensions using Uniform Manifold Approximation and Projection (UMAP)31. For both donors, 

the dominant sources of variation between cells were activation state (vertical axis) and 

CD4/CD8 lineage (horizontal axis) (Fig. 1b). Tissue site was also a source of variability; T cells 

from BM and LN co-clustered while  LG T cells were more distinct (Fig. 1b), consistent with T 

cell subset composition differences in these sites from phenotype analysis (Supplementary 

Figure 2 and previous studies10,13,32).   

 Differential gene expression from the scRNA-seq data resolved T cell subsets and 

functional states within and between sites and lineages into 10-11 clusters (Fig. 1c, 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2019. ; https://doi.org/10.1101/555557doi: bioRxiv preprint 

https://doi.org/10.1101/555557
http://creativecommons.org/licenses/by-nc/4.0/


7 

 

Supplementary Tables 5,6). CD4+T cells comprised 6-7 clusters: resting cells expressing CCR7, 

SELL and TCF7, (corresponding to naïve or TCM cells); three activation-associated clusters 

expressing IL2, TNF, and IL4R at different levels; TRM-like resting and activated clusters 

expressing canonical TRM markers CXCR6 and ITGA113,33; and a distinct regulatory T cell 

(Treg) cluster expressing Treg-defining genes FOXP3, IL2RA, and CTLA4 (Fig. 1c). CD8+T cells 

comprised four clusters distinct from CD4+T cells and included: two TEM/TRM-like clusters 

expressing CCL5, cytotoxicity-associated genes (GZMB, GZMK), and TRM markers (CXCR6, 

ITGA1); an activated TRM/TEM cluster expressing IFNG, CCL4, CCL3; and clusters 

representing terminally differentiated effector cells (TEMRA) expressing cytotoxic markers 

PRF1 and NKG7 (Fig. 1c). In terms of tissue distribution, TRM cells were largely in the lung, 

Tregs were primarily identified in LN, while TEMRA cells were enriched in BM (consistent 

with phenotype analysis, Supplementary Fig. 2); the remaining resting and activated CD4+ and 

CD8+ clusters derived from all sites (Fig. 1b,c). These results show subset-specific profiles in 

human tissues, but suggest similar 13activation profiles across sites.     

To assess how blood T cells relate to those in tissue, we performed scRNA-seq analysis 

of resting and activated blood T cells from two adult donors, and projected the merged data onto 

the UMAP embeddings of T cells from each tissue donor (Fig. 2a,b, Online Methods). The 

majority of blood T cells co-localized with resting or activated T cells from BM but did not 

exhibit substantial overlap with LG or LN T cells from either donor, particularly in the resting 

state (Fig. 2a,b). We also quantified the number of blood T cells that were transcriptionally 

similar to CD4+ and CD8+T cells from each tissue within resting or activated samples (Fig. 2c,d, 

Online Methods). Resting blood T cells were highly represented among CD4+ and CD8+T cells 

in BM (Fig. 2c, d). Interestingly, a substantial number of unstimulated blood T cells projected 
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onto activated CD4+T cells in BM for both donors (Fig. 2c,d, left panels). In contrast, activated 

blood T cells were strongly represented among activated CD4+T cells for all tissue sites and in 

LN for CD8+T cells (Fig. 2c,d; right panels). Consistent results were obtained analyzing each 

blood sample separately (Supplementary Fig. 3). These results suggest that blood T cells are 

fundamentally distinct from tissue T cells and may persist in a more activated basal state than in 

tissues, while activated blood and tissue-derived T cells share common signatures.    

A universal gene signature distinguishes tissue T cells from blood 

The major transcriptional differences between tissue and blood T cells based on 

population RNAseq originate from the presence of TRM in tissues13. Because scRNA-seq 

enables high resolution detection of gene expression differences that can be unambiguously 

traced to specific T cells, we investigated whether there were intrinsic features of tissue T cells 

that distinguished them from blood. Resting memory T cells in tissues and blood express high 

levels of CCL5 (Supplementary Fig. 4, Online Methods), a marker of CD8+TEM cells34, 

enabling direct comparison of gene expression between similar subsets. We identified a similar 

complement of genes that were highly expressed in TEM cells from each tissue compared to 

blood (Fig. 3a-c). Interestingly, these tissue-intrinsic genes include those associated with 

microtubules and the cytoskeleton (tubulin-encoding genes TUBA1A, TUBA1B, TUBB, 

TUBB4B; S100A4) and genes encoding cell matrix, membrane scaffolding, and adhesion 

molecules (VIM or vimentin, galectins LGALS1/LGALS3, AMICA1, ITM2C, EZR, annexins 

ANXA1/ANXA2) (Fig. 3a-c). TRM signature genes including ITGA1 and ITGAE were also 

upregulated in tissues compared to blood, particularly in the lung (Fig. 3a-c). These findings 

suggest that localization of T cells in tissues likely involves structural changes in the cell that 

facilitate interactions with tissue matrix.  
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We compared the single-cell distribution of average expression of tissue signature genes 

in the blood and three tissues (Fig. 3d). CCL5+TEM cells from all three tissues (both donors) 

express higher levels of tissue signature genes compared to blood, though LG and LN T cells 

have higher expression than those from BM (Fig, 3d). Notably, a minute fraction of blood TEM 

cells (<0.5%) express this tissue signature at levels comparable to that in LN (within one 

standard deviation of the mean for all tissues). Shown in a heat map are the relative expression 

levels for genes within the tissue signature including TRM signature genes13 cytoskeletal, cell-

matrix interactions, cell division, apoptotic, and signaling genes (Fig. 3e). Gene expression is 

highest in LG followed by LN and BM expressing only a subset of tissue-associated genes; the 

outlier subpopulation from blood expresses a fraction (<40%) of tissue signature genes at levels 

comparable to those in tissues (Fig. 3e). Together, these results show that tissue T cells express 

genes associated with infiltration and localization in tissues along with residency markers, while 

blood contains only trace numbers of cells expressing these genes. 

Defining functional states common to blood and tissue T cells  

The clustering analysis above suggested that activated T cells were more similar across 

sites than resting counterparts. To uncover gene expression patterns that were conserved across T 

cell populations in different tissues, we applied a new analytical method called single-cell 

Hierarchical Poisson Factorization (scHPF)35.  The scHPF algorithm identifies a small number of 

expression patterns, called factors that vary coherently across cells. These factors can represent 

discrete, subpopulation-specific or continuous programs like T cell activation that are expressed 

as a gradient across cells in different stages of a biological process. We applied scHPF to merged 

resting and activated T cells from each tissue and donor separately and hierarchically clustered 

the resulting factors (Online Methods, Fig. 4a, Extended Data Fig. 4a, Supplementary Fig. 5). 
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This analysis revealed seven gene expression modules (3 resting and 4 activated/functional) that 

were highly conserved across tissues and donors, for which the highest scoring genes formed 

interpretable gene signatures (Fig. 4a, Extended Fig. 4a, Supplementary Table 7). The three 

modules associated with a resting state (Fig. 4a)  included a Treg module defined by canonical 

genes (FOXP3, CTLA4, IRF4, TNFRSF4 (OX40)36); a putative resting CD4+ Naïve/Central 

memory (NV/CM) module enriched in CD4+T cells and defined by genes associated with 

lymphoid homing, egress and quiescence (SELL, KLF2, LEF1, respectively), while the 

CD4+/CD8+ Resting module was distinguished by expression of IL7R, a receptor required for T 

cell survival37,38, and AQP3, which encodes a water channel protein of unclear function in 

lymphocytes39. Importantly, the CD4+/CD8+ Resting module did not contain factors from blood 

and had the highest enrichment for the tissue signature identified in Fig. 3 (Supplementary Fig. 

6).  

There were four modules associated with T cell activation and/or function, some of which 

were lineage-specific.  A Proliferation module expressed by activated CD4+ and CD8+ lineages 

included genes associated with T cell activation/proliferation (IL2, LIF) and cell division 

(CENPV, G0S2, ORC6) (Fig. 4a). This module was also marked by expression of NME1, a 

metastasis suppressor/endonuclease-encoding gene40 not previously associated with T cells (Fig. 

4a). An Interferon (IFN) Response module enriched among activated CD4+T cells included 

multiple gene families associated with canonical IFN responses41-43 (IFIT3, IFIT2, STAT1, MX1, 

IRF7, and JAK2). In contrast, CD8+T cell-enriched modules included a Cytotoxic module 

containing genes associated with cytotoxicity (GNLY, GZMK) and transcription factors 

associated with effector/memory differentiation (ZEB2, EOMES, ZNF683)43-45,  and a Cytokine 

module with genes encoding chemokines and cytokines (CCL3, CCL4, CCL20, IFNG, IL10, 
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TNF), inhibitory molecules (LAG3, CD226 (TIGIT), HAVCR2 (TIM3)), and the widely 

expressed homeobox protein HOPX 46. These results indicate a limited spectrum of functional 

states for human T cells across blood and tissue sites.  

To understand how these gene modules correspond to resting and activated states in 

CD4+ and CD8+T cells, we visualized the average expression of their top-ranked genes on 

diffusion maps for each donor and tissue (Fig. 4b-e, Online Methods). This visualization defined 

activation trajectories with resting T cells on the left (blue) and activated T cells projecting to the 

right (red, Fig. 4b,c). In all four sites and individuals, module expression for CD4+T cell was 

positioned along activation trajectories from CD4 NV/CM Resting (left) to IFN-Response 

(middle) to Proliferation (right) (Fig. 4d). Expression of genes within the Proliferation module 

co-localized with peak expression of NME1 and IL2RA (Extended Data Fig. 4b,c), while the IFN 

Response module genes exhibited peak expression at the middle of the trajectory as exemplified 

by IFIT3 expression (top ranked gene) (Extended Data Fig. 4d), suggesting a potential 

intermediate activation state.  In CD8+T cells, the Cytokine module localized in the most 

activated cells for all sites also shown by IFNG expression (Fig. 4e, extended data Fig. 4e), while 

the Cytotoxic module was expressed among resting and activated cells (Fig. 4e). Therefore, 

scHPF takes an unbiased approach to uncover major functional states, reference signatures and 

activation trajectories for human T cells that are conserved across sites. 

CD4+ T cell activation states result from distinct responses to TCR and type II IFN 

signaling 

 The functional states identified for human CD8+T cells in Fig. 4 were consistent in with 

those seen in vivo in mouse infection models15. By contrast, the modules identified for CD4+T 

cell activation revealed markers and functional states not typically associated with effector 
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CD4+T cells. We therefore assessed expression kinetics of the top-scoring genes in the 

Proliferation and IFN Response modules, NME1 and IFIT3, respectively, during the course of T 

cell activation ex vivo by qPCR. Expression of NME1 transcripts rapidly increased after TCR-

stimulation, peaking between 16-24hrs and remaining elevated for up to 72hrs, for both CD4+ 

and CD8+T cells compared to unstimulated controls, a pattern of expression similar to the 

canonical T cell activation marker IL2RA (Fig. 5a). Notably, the extent of activation-associated 

upregulation of NME1 transcripts was greater in CD4+ compared to CD8+T cells, while IL2RA 

was more upregulated in CD8+T cells (Fig. 5a). At the protein level, NME1 expression increased 

in CD4+ and CD8+T cells after TCR-mediated stimulation from 24-120 hours (Fig. 5b, upper), 

and with each successive round of T cell proliferation, while CD25 was expressed similarly 

independent of cell division (Fig. 5b, lower). These results establish NME1 expression as a 

marker of T cell activation, coupled to the extent of proliferation. 

 In contrast to NME1/IL2RA upregulation, expression of IFIT3 transcripts showed biased 

and transient upregulation by CD4+T cells following TCR-stimulation, peaking at 16hrs and 

returning to near baseline levels by 48hrs post-stimulation (Fig. 5c). As IFIT3 expression is 

associated with responses to IFN41, we assessed the kinetics of IFIT3 upregulation after IFN 

compared to TCR-mediated signaling and the contribution type I or type II IFN signaling to 

TCR-triggered IFIT3 induction. In response to IFN-α (type I) or IFN-γ (type II), IFIT3 was more 

rapidly (within 2hrs) and persistently upregulated compared to TCR stimulation (Fig. 5d,e). 

Inhibiting type I IFN signaling (using neutralizing antibodies for type I IFNs and IFNαR2) 

abrogated IFNα-induced IFIT3 upregulation, as expected, but did not affect TCR-mediated 

upregulation of IFIT3 by CD4+T cells (Fig. 5d). However, blockade of type II IFN signaling via 

a combination of anti-IFNγ and anti-IFNγR1 antibodies inhibited upregulation of IFIT3 induced 
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by TCR-mediated activation, as well as that induced by culture with IFN-γ (Fig. 5e). Notably, 

blocking type II (or type I) IFN signaling did not inhibit T cell activation as assessed by 

induction of NME1 transcript expression, and addition of IFN-α or –γ did not induce NME1 

expression (Fig. 5d,e). These results establish that the IFN-responsive state suggested by the 

scRNA-seq trajectories is recapitulated in real-time as part of an intermediate activation state 

driven by TCR-triggered IFN-γ production.  

Defining T cell activation states in cancer through projecting on the high resolution 

reference map 

 Although there have been several large-scale scRNA-seq studies of disease-associated T 

cells, these data are generally not placed in the context of T cell activation in healthy individuals.  

To demonstrate the utility of our resource as a reference point for human disease, we used 

UMAP to project recently reported scRNA-seq profiles of tumor-associated T cells from four 

different human cancers onto our map of T cell activation states. Fig. 6a shows a merged UMAP 

embedding of our entire data set colored by tissue site, donor, stimulation, cluster-level 

CD4/CD8 status, and CCL5 expression, indicative of effector status. We projected scRNA-seq 

profiles of tumor-associated T cells from four different human cancers27,47-49 (non-small cell lung 

cancer (NSCLC), colorectal cancer (CRC), breast cancer (BC), and melanoma (MEL)) onto this 

embedding to compare each tumor-associated T cell to healthy T cells (Fig. 6b,c). We also 

investigated expression of activation state and lineage markers in the healthy T cell embedding 

and tumor projections (Fig. 6c). Tumor-associated CD8+T cells project onto healthy CD8+T cells 

from all sites in both resting and activated states (Fig. 6b). Moreover, genes associated with 

TRM (CXCR6) and the Cytotoxic and Cytokine modules are all represented among tumor-

associated CD8+T cells (Fig. 6c, Extended data fig. 6, Supplementary Fig. 7,8). By contrast, 
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tumor-associated CD4+T cells projected mostly onto resting blood and tissue T cells (Fig. 6b), 

while CD4+T cell activation states and associated markers (NME1, IFIT3) were largely absent 

(Fig. 6c). This analysis reveals that tumor-associated T cells contain activated CD8+T cells, but 

lack the presence of functionally activated CD4 T cells.   

 A hallmark of tumor-associated T cells is a state of hyporesponsiveness or functional 

exhaustion, marked by persistent expression of surface inhibitory markers including PD-1, 

CTLA4, LAG3, TIM3 and others, many of which are expressed following T cell 

activation17,50,51. Some of these molecules (PD-1, CTLA4) are important targets for 

immunotherapy to promote anti-tumor immunity52-56. We compared expression of exhaustion 

and functional markers across healthy and tumor-associated T cells (Extended Data Fig. 6; 

Supplementary Fig. 7, 8). Tumor-associated CD8+T cells expressing exhaustion markers across 

all four tumor types project onto activated CD8+T cells in our map, and express genes within the 

Cytokine module (CCL3, CCL4, XCL1, XCL2, and IFNG, Supplementary Fig. 8), and to a lesser 

extent Cytotoxic module (Extended Data Fig. 6). Interestingly, a subset of these tumor-

associated CD8+T cells, but not healthy T cells, express high levels of MKI67, associated with 

proliferating cells and other cell cycle control markers (Extended Data Fig. 6, Supplementary 

Fig. 8). Therefore, tumor-associated T cells expressing exhaustion markers also express genes 

associated with normal CD8 effector T cell function and ongoing proliferation.  
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DISCUSSION 

 Human T cells persist in distinct anatomic sites, maintain protective immunity and 

surveillance, and are key targets for immune modulation in tumor immunotherapy, 

transplantation, and autoimmunity. Here, we used scRNA-seq profiling of resting and TCR-

stimulated T cells from blood, lymphoid and mucosal tissues to generate a reference map of 

human T cells and understand how T cell homeostasis and function are related to the tissue site. 

Our findings demonstrate fundamental differences between T cells from tissues and blood, but 

similar functional and activation states across sites that are intrinsic to lineage; human CD4 T 

cell activation is defined by response to cytokines and proliferation while CD8 T cells are 

defined by effector function. We further demonstrate that this high resolution map of T cell 

homeostasis and activation across sites, lineages, and individuals can serve as a new baseline for 

defining human T cell states in disease.  

 The study of healthy human T cells has largely focused on blood, while the majority of T 

cells persist in diverse lymphoid, mucosal and barrier sites8,57. Human tissue T cells are largely 

memory subsets, comprising tissue-resident (TRM) and non-resident (TEM, TCM) populations; 

TRM predominate in mucosal sites, while TEM are found in spleen, LN and BM13,33,58. The 

relationship of these tissue-localized TEM to blood TEM has been unclear. Profiling using 

scRNAseq enabled unambiguous assessment of T cell-intrinsic differences in tissue versus blood 

T cells. We show that TEM from all sites examined (LG, LN, BM) exhibit fundamental changes 

in expression of cytoskeletal, cell-matrix interaction, and proliferative genes, indicating 

alterations in cellular structure. These tissue-intrinsic expression patterns are distinct from 

previously identified TRM-associated genes13, and are lowly expressed in T cells from blood. 

Whether T cells require these markers to localize within the tissue architecture, and/or their loss 

of expression enables egress to circulation remains to be established. 
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 Our results reveal conserved functional states for human blood and tissue-derived T cells.  

CD8+T cells segregate into two major effector subsets based on expression of genes involved in 

cellular cytotoxicity (Cytotoxic module) and myriad cytokines and chemokines (Cytokine 

module). These predominant effector states within activated human CD8+T cells are consistent 

with results showing that mouse CD8+T cell activation triggers an effector differentiation 

program59,60. We identified two major activation states that were not associated with effector 

function: one associated with proliferation and IL-2 production, and a second, CD4-enriched 

state characterized by induction of a panoply of IFN-responsive genes including IFIT3, MX1, 

IRF7, and others. Induction of this IFN-response state is due to TCR-mediated IFN-γ production 

(likely autocrine responses), and appears as a kinetic intermediate early after CD4+T cell 

activation that subsequently shuts down upon induction of the proliferative program. We propose 

that the IFN-responsive state for human CD4+T cells may serve an autoregulatory function to 

temper high IFN levels produced by predominant memory responses, and ongoing responses to 

persistent viruses.   

 This scRNA-seq analysis provides a high resolution map for human T cells from which to 

define T cell states in disease. We demonstrate this approach by projecting T cell profiles from 

human tumors onto our reference map. We identify predominant CD8+ effector populations, 

Tregs, and resting (but not activated) CD4+T cells in datasets derived from diverse tumor types 

(breast, lung, skin, colon). Interestingly, the tumor-associated CD8+T cells exhibited 

transcriptional features similar to healthy activated CD8+T cells including expression of multiple 

effector molecules such as perforin, IFN-γ and chemokines. We also examined the expression of 

multiple markers associated with exhaustion, a functionally hyporesponsive state found in tumor-

infiltrating T cells targeted by checkpoint blockade immunotherapies53,55,61. Interestingly, 

exhaustion markers were upregulated in activated T cells in both healthy and tumor tissues 
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expressing CD8-associated cytokines. Moreover, subsets of these CD8+T cells in all four tumors 

expressed higher levels of proliferation markers compared to healthy T cells, consistent with a 

recent report that T cells expressing exhaustion markers in melanoma exhibit aberrant 

proliferation62. This analysis can therefore enable precise identification of features of resting and 

activated T cells that are associated with tissues, activation and disease. 

 In summary, our high resolution analysis of human T cells across sites, lineages, and 

activation states provides insights into human T cell adaptations to tissues and their intrinsic 

activation properties. This novel reference map can serve as a valuable resource for the study of 

human T cell immunity in disease, immunotherapies, vaccines and infections, and for 

diagnosing, screening and monitoring immune responses.  
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ONLINE METHODS 

Acquisition of Human Tissues and Blood 

We obtained human tissues from deceased, brain-dead donors at the time of organ acquisition for 

clinical transplantation through an approved research protocol and MTA with LiveOnNY, the 

organ procurement organization for the New York metropolitan area. Obtaining tissue samples 

from deceased organ donors does not qualify as “human subjects” research, as confirmed by the 

Columbia University Institutional Review Board (IRB). Donors were free of chronic disease, 

cancer and chronic infections such as Hepatitis B, C and HIV. Clinical and demographic data 

regarding organ donors used in this study are summarized in Supplementary Table 1. We 

obtained peripheral blood from healthy consenting adult volunteers by venipuncture, through an 

protocol approved by the Columbia University IRB.  

Isolation and Stimulation of T cells for Single-Cell RNA-seq 

Tissues acquired from donors were maintained in cold saline during transport to the laboratory, 

typically within 2-4 hours of procurement. We isolated mononuclear cells from donor lungs, 

lung lymph nodes and bone marrow as previously described 11,63. Briefly, we flushed the left 

lobe of the lungs with cold complete medium (RPMI 1640, 10% FBS, 100 U/ml penicillin, 100 

μg/ml streptomycin, 2 mM L-glutamine) and isolated lymph nodes from the hilum, near the 

intersections of major bronchi and pulmonary veins and arteries, removing all fat. To obtain 

mononuclear cell suspensions, hilar lymph nodes and the left lateral basal segment of the lung 

were mechanically processed using a gentleMACS tissue dissociator (Miltenyi Biotec), 

enzymatically digested (complete medium with 1 mg/ml collagenase D, 1 mg/ml trypsin 

inhibitor and 0.1 mg/ml DNase for 1 hour at 37°C in a mechanical shaker) and centrifuged on a 

density gradient using 30% Percoll Plus (GE Healthcare). We aspirated bone marrow from near 
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the anterior superior iliac crest. For bone marrow and peripheral blood, we isolated mononuclear 

cells by density gradient centrifugation using Lymphocyte Separation Medium (Corning). Next, 

we enriched single cell suspensions from all tissues and blood for untouched CD3+ T cells using 

magnetic negative selection (MojoSort Human CD3+ T cell Isolation Kit; BioLegend). To 

eliminate any dead cells prior to stimulation, we used a dead cell removal kit (Miltenyi Biotec). 

We cultured 0.5 – 1 x 106 CD3+ enriched cells from each donor tissue for 16 hours at 37°C in 

complete medium, with or without TCR stimulation using Human CD3/CD28 T Cell Activator 

(STEMCELL Technologies). After stimulation, we removed dead cells as above before 

preparing cells for single-cell RNA-seq. 

Single-Cell RNA-seq 

We loaded single-cell suspensions into a Chromium Single Cell Chip (10x Genomics) according 

to the manufacturer’s instructions for co-encapsulation with barcoded Gel Beads at a target 

capture rate of ~5,000 individual cells per sample. We barcoded the captured mRNA during 

cDNA synthesis and converted the barcoded cDNA into pooled single-cell RNA-seq libraries for 

Illumina sequencing using the Chromium Single Cell 3’ Solution (10x Genomics) according to 

the manufacturer’s instructions. We processed all of the samples for a given donor 

simultaneously with the Chromium Controller (10x Genomics) and prepared the resulting 

libraries in parallel in a single batch.  We pooled all of the libraries for a given donor, each of 

which was barcoded with a unique Illumina sample index, for sequencing in a single Illumina 

flow cell. All of the libraries were sequenced with an 8-base index read, a 26-base read 1 

containing cell-identifying barcodes and unique molecular identifiers (UMIs), and a 98-base read 

2 containing transcript sequences on an Illumina HiSeq 4000. Cell counts and transcript 

detection rates are summarized in Supplementary Table 2. 
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Single-Cell RNA-seq Data Processing 

Prior to gene expression analysis, we corrected the raw sequencing data for index swapping, a 

phenomenon that occurs during solid-phase clonal amplification on the Illumina HiSeq 4000 

platform and results in cross-talk between sample index sequences. We corrected index 

swapping using the algorithm proposed by Griffiths et al 64. First, we aligned the reads 

associated with each sample index to GRCh38 (GENCODE v.24) using STAR v.2.5.0 after 

trimming read 2 to remove 3’ poly(A) tails (> 7 A’s) and discarding fragments with fewer than 

24 remaining nucleotides as described in Yuan et al 65. For each read with a unique, strand-

specific alignment to exonic sequence, we constructed an address comprised of the cell-

identifying barcode, unique molecular identifier (UMI) barcode, and gene identifier. Next, we 

counted the number of reads associated with each address in each sample. Because of index 

swapping, we found that some addresses occurred in multiple samples at much higher 

frequencies than one would expect by chance. For the vast majority of addresses, there was a 

single sample containing most of the associated reads. If >80% of reads for a given address were 

associated with a single sample (e.g. a single index sequence), we kept all of the reads 

corresponding to that address in that sample and removed all of the reads associated with that 

address from all other samples64.  We also identified addresses for which no sample contained 

>80% of the corresponding reads and removed all of these reads from all samples. After 

correcting for index swapping, we collapsed amplification duplicates using the UMIs and 

corrected errors in both the cell-identifying and UMI barcodes to generate a preliminary matrix 

of molecular counts for each cell as described previously 65. 

We filtered the cell-identifying barcodes to avoid dead cells and other artifacts as 

described in Yuan et al 65. Briefly, we removed all cell-identifying barcodes where >10% of 

molecules aligned to genes expressed from the mitochondrial genome or for which the ratio of 
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molecules aligning to whole gene bodies (including introns) to molecules aligning exclusively to 

exons was >1.5. Finally, we also removed cell-identifying barcodes for which the average 

number of reads per molecule or average number of molecules per gene deviated by >2.5 

standard deviations from the mean for a given sample. 

Computational Identification of T Cells 

As described above, we used negative selection to experimentally remove as many non-T cells as 

possible from our single-cell suspensions. This procedure was imperfect, and so all of our 

samples inevitably contained some non-T cells (average T cell purity was ~80%). Thoroughly 

removing non-T cells from the data set is complicated by technical issues such as molecular 

cross-talk, multiplet capture, and a broad coverage distribution. We developed a procedure to 

remove non-T cells that accounts for these issues by identifying both individual cells and clusters 

of cells that are enriched in expression of a blacklisted gene set that is highly specific to 

contaminating cell types.  

We began by clustering the single-cell profiles within each sample using a pipeline that we 

reported previously 65,66. Briefly, we identified highly variable genes that are likely markers of 

specific subpopulations by normalizing the molecular counts for each cell to sum to one, 

ordering all genes by their normalized expression values, and computing a drop-out score dsg for 

each gene g defined as: 

��� �  |��  � �����|/	����� , 

where fg is the fraction of cells in which we detected g and fg
max is the maximum fg in a 25-gene 

rolling window centered on g. We selected genes with dsg > 0.15 or with dsg > 6σds + < dsg >, 

where σds and < dsg >  are the standard deviation and mean of the dropout score distribution. 

Using these genes, we computed a cell-by-cell Spearman’s correlation, from which we 
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constructed a k-nearest neighbor’s graph (k=20) and used this as input for the Phenograph30 

implementation of Louvain clustering to identify cellular subpopulations. 

 

Next, we used the pooled normalization approach described by Lun et al as implemented in the 

scran package with the computeSumFactors function to compute size factors for each cell 67,68. 

We supplied the computeSumFactors function with the cluster identifiers obtained from 

Phenograph to account for cell type-specific coverage differences. Using the resulting 

normalized expression profiles, we identified Phenograph clusters with positive enrichment of 

average CD3D and TRAC expression and labeled these clusters as T cell clusters (Supplementary 

Fig. S1). Within each sample, we conducted differential expression analysis between all pairs of 

T cell and non-T cell clusters via the Wilcoxon rank-sum test using the SciPy function ranksums 

and Benjamini-Hochberg corrected p-values with the StatsModels function multipletests in 

Python. Finally, we established an initial blacklist of genes that are highly specific to the non-T 

cell clusters by taking any gene with p < 0.001 and greater than 10 fold-enrichment in a non-T 

cell cluster for any of the above pairwise comparisons in any sample. To refine the blacklist and 

avoid including genes that are specific to T cell subsets found in only a limited set of samples or 

clusters, we also generated a whitelist of genes with positive enrichment in any T cell cluster. We 

removed any member of this whitelist from the initial blacklist to produce a final, refined 

blacklist containing 744 genes highly specific to contaminating cell types (Supplementary Table 

3). As expected, genes on the final blacklist included markers of epithelial cells, dendritic cells, 

mast cells, B cells, neutrophils, and red blood cells. 

We used the blacklist to remove cells from the T cell clusters that are either improperly 

clustered (unlikely to be T cells) or potentially multiplets (a cell-identifying barcode co-

encapsulated both T cells and non-T cells). Importantly, because of molecular cross-talk in 
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scRNA-seq libraries from PCR recombination, we only considered a cell to be expressing a 

blacklisted gene if the average number of reads supporting the detected molecules was above a 

certain threshold. This threshold depends on the average depth to which we sequenced the 

libraries in a given sample. The distributions of the number of reads-per-molecule are generally 

bimodal for a given sample. We assume that the mode with lower read counts per molecule 

arises from PCR recombination in which a molecule originating from one cell receives the cell-

identifying barcode of a different cell at an intermediate point in PCR, thereby resulting in a 

detected molecule supported by an unusually small number of reads (i.e. amplicons). We 

therefore considered the sample h with the highest coverage (and therefore the clearest 

separation between the two modes) and took the minimum point between the two modes in the 

reads-per-molecule distribution to be the threshold number of reads per molecule, 
�,  below 

which a detected molecule would be considered to arise from cross-talk. We extrapolated a 

reads-per-molecule threshold for each of the other samples s as  
�  �  
�  � ���	�

��	�


, where ���� 

is the average number of reads per molecule detected in sample s.  

Finally, for each cell � in a sample with threshold 
�, we computed �
, the per-cell 

fraction of blacklisted genes detected with an average number of reads per molecule above 
�. 

As expected, �
 was typically bimodally distributed within each sample (Supplementary Fig. 1e).  

The vast majority of cells in the lower mode were in the T cell clusters described above, while 

the high mode was composed mainly, but not exclusively, of cells from non-T cell clusters 

(Supplementary Fig. 1e). In each sample, we fit a Gaussian to �
’s distribution across cells 

assigned to T cell clusters and established a threshold at two standard deviations above the fitted 

mean. We considered any cell with �
 above this threshold and any cell that clustered among the 

non-T cell clusters to be a non-T cell and discarded these cells from all downstream analysis.  
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Course-Grained Clustering of Merged T Cells from Each Donor 

Once we had identified the T cells from each sample using the methodology described 

above, we merged resting and activated samples from all of the tissues in each donor and 

clustered the T cells from the two donors separately to generate Fig. 1b,c. We used the 

methodology described above to identify a set of highly variable genes for each sample 

(including the blood samples), and then merged those sets to generate a large list of 315 highly-

variable genes (Supplementary Table 4) with which we clustered the merged samples from both 

donors. We computed Louvain clusters from the two merged data sets with k = 12 and a 

minimum cluster size of 100 cells using a k-nearest neighbors graph constructed from the 

Spearman’s correlation matrix calculated using the 315 highly variable genes. We used the 

Python implementation Uniform Manifold Approximation and Projection (UMAP)31 to produce 

the two-dimensional projections shown in Fig. 1b,c. To obtain CD4/CD8 ratios for each cluster, 

we first computed the expression level of CD4 and CD8A in each cell using the normalized 

counts from computeSumFactors as described above. For both CD4 and CD8A, we then 

computed the average log2(normalized counts + 1) for each cluster and normalized this value by 

the average log2(normalized counts + 1) for all cells. We then took the log-ratio of these values 

for CD4 and CD8A to generate Fig. 1b, where all the cells in each cluster are labeled with the 

cluster’s log-ratio. 

Blood Projection Analysis 

To project the data obtained from blood T cells onto the tissue-derived profiles from each organ 

donor, we first merged the scRNA-seq profiles from both blood donors. We note that the 

scRNA-seq data from blood were subjected to the same computational procedure described 
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above for eliminating non-T cell profiles. We used the same highly variable gene set 

(Supplementary Table 4) that was used in the original UMAP model of each organ donor to 

compute a Spearman’s correlation matrix between the blood and tissue profiles. We then 

projected the blood T cell profiles onto the UMAP models for each of the two organ donors 

using the transform function in UMAP. We note that the organ donor UMAP models used for 

this analysis are slightly different from what appears in Fig. 1b,c, because a small number of 

genes in the highly variable gene set were eliminated due to lack of expression in the blood. We 

also note that a small modification to the UMAP source code was needed to accommodate the 

use of Spearman’s correlation as a similarity metric. 

To generate the cell number heatmaps in Fig. 2 and Supplementary Fig. 3, we first 

computed a centroid position in the UMAP embedding for each cluster-tissue combination in the 

tissue data based on the Louvain clustering described above for Fig. 1b,c. For example, for 

Donor 2, we computed the average position of lung-, bone marrow-, and lymph node-derived 

cells in the first cluster (CD4 Rest 1). We then identified the nearest cluster-tissue combination 

for each cell in the blood samples based on the Euclidean distance between a given blood-

derived cell’s position in the UMAP model (following projection of the blood data onto the 

tissue UMAP model) and each cluster-tissue centroid position.  The heatmaps summarize the 

results of these calculations, providing the number of blood-derived cells that are closest to each 

cluster-tissue combination in the organ donor data. 

Comparison of Tissue and Blood Effector Memory T Cells 

To identify a tissue-specific T cell signatures, we compared the expression profiles of effector 

memory cells from resting LG, BM, and LN T cells from the two tissue donors to resting blood T 

cells from the two blood donors. We found CCL5 to be an extremely highly expressed marker of 

effector memory cells that exhibited strong anti-correlation with SELL, a marker of non-effector 
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memory cells, in all of our resting samples (Supplementary Fig. 4a). We also found that the 

average number of reads per molecule for CCL5 was bimodally distributed, consistent with 

spurious detection of CCL5 in a population of cells due to PCR recombination (Supplementary 

Fig. 4b). For each sample, we used the point between these two modes where the probability 

density was minimal as a threshold for the minimum average number of reads per molecule of 

CCL5 required for a cell to be considered positive for CCL5. For each sample, we normalized the 

matrix of molecular counts for the CCL5+ effector memory T cells using the computeSumFactors 

function in scran to compute size factors for each cell67,68. For each tissue site, we then identified 

differentially expressed genes for all four pairwise comparisons of resting tissue to resting blood 

CCL5+ T cells (tissue donor 1 vs. blood donor A, tissue donor 2 vs. blood donor A, etc.) using 

the Wilcoxon rank-sum test with the SciPy function ranksums and computed Benjamini-

Hochberg corrected p-values with the StatsModels function multipletests in Python after 

removing genes from the blacklist described above (Supplementary Table 3). For each tissue, we 

took all genes with padj < 0.05 and fold-change > 2 in all four pairwise comparisons to comprise 

a tissue-specific effector memory T cell signature (Fig. 3).  

Next, all of the genes in the tissue-specific effector memory T cell signature and 

computed the average normalized expression of the resulting gene set to obtain Fig. 3d. Z-scored 

normalized expression for each of these genes appears in the heatmap in Fig. 3e for each site / 

donor, which also includes a set of blood T cells with outlier expression of the tissue-enriched 

gene signature (blood T cells with average expression within one standard deviation of that of 

the tissue T cells as indicated by the dashed line in Fig. 3d).  

Single-cell Hierarchical Poisson Factorization and Transcriptional Module Analysis 

We applied Single-cell Hierarchical Poisson Factorization (scHPF), a method that we recently 

reported for de novo discovery of gene expression signatures in scRNA-seq data, to the merged 
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activated and resting cells for each tissue and donor66.  Given a molecular count matrix, scHPF 

identifies a small number of latent factors that explain both continuous and discrete expression 

patterns across cells.  Each gene has a score for each factor, quantifying the gene’s contribution 

to the associated expression pattern.  Likewise, each cell assigns a score to each factor, which 

reflects the contribution of the factor to the observed expression in the cell.   

We applied scHPF to each tissue and blood sample after merging their respective resting 

and activated datasets. We considered only genes with GENCODE protein coding, T cell 

receptor constant or immunoglobulin constant biotypes, excluded genes on the previously 

described blacklist, and removed genes detected in fewer than 0.1% of cells in a given merged 

dataset. scHPF was run with default parameters for seven values of K, the number of factors, 

equal to all values between 6-12, inclusively. This resulted in seven candidate scHPF models per 

merged dataset. We then selected � (and a corresponding fitted model) to avoid factors with 

significant overlap in their gene signatures. For each dataset and value of �, we calculated ��: 

the maximum pairwise overlap of the 300 highest-scoring genes in each factor for the 

corresponding scHPF model. We considered overlap significant if p < 0.05 by a hypergeometric 

test with a population size equal to the number of unfiltered genes in the tissue sample and 

��  observed successes. Finally, for each dataset, we selected the model with maximum K such 

that p>=0.05 (Supplementary Fig. 5).  This resulted in eight factorizations: six from tissue donors 

(lung, bone marrow, and lymph node from each of two organ donors) and two factorizations 

from the blood of living donors.  We defined each factors’ CD4/CD8 bias as the log2 ratio of its 

mean cell score in CD4+ and CD8+T cells. 

To discover common patterns of expression across tissues and donors, we performed 

unsupervised clustering of all factors for tissue-derived cells. First, we calculated Pearson 

correlation on the union of the fifty highest and lowest scoring genes in each factor for each 
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tissue factorization (2,291 genes total) using the Python pandas package’s DataFrame.corr 

function. Next, we hierarchically clustered the factor-factor correlation matrix using 

scipy.cluster.hierarchy.linkage with method=’average’ and scipy.cluster.hierarchy.dendrogram 

(Extended Data Fig. 4). This defined clusters of tightly correlated expression patterns, which we 

call expression modules. We focused on seven modules (out of nine) whose factors had mean 

pairwise correlations greater than 0.25. Most modules contained at least one factor from each 

tissue and donor. To identify the top genes in each module (Fig. 4a, Supplementary Table 7), we 

ranked genes by their mean gene score across all constituent factors. Finally, we noticed that the 

CD4 IFN response module contained two factors from Donor 2’s bone marrow; however, one of 

the two factors was far more tightly correlated with the rest of the factors in the module than the 

other. As the top genes in the module were nearly identical with and without the less tightly-

correlated factor, we excluded it from the module in downstream analyses for clarity. 

Activation Trajectory Analysis 

We used the factorizations described above to compute T cell activation trajectories by diffusion 

component analysis. We first converted the cell score matrix obtained from the factorization of 

each resting/activated merged tissue or blood sample into a cell-by-cell Euclidean distance 

matrix. We then extracted the distance submatrices corresponding to the CD4 and CD8 clusters 

in each sample as defined from the merged analysis of all samples from each donor described 

above. We used the two resulting distance submatrices to compute diffusion components for 

CD4 and CD8 activation with the C++ Accelerated Python Diffusion Maps Library (DMAPS) 

with a kernel bandwidth of four. The diffusion maps shown in Fig. 4b-e each show the first two 

diffusion components which we define as the two diffusion eigenvectors with the second- and 

third-highest eigenvalues scaled by the diffusion eigenvector with the largest eigenvalue. 
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Flow Cytometry, Intracellular Staining and Proliferation Assays 

To evaluate the expression of T cell surface markers by flow cytometry, we incubated tissue and 

blood cell suspensions with Human TruStain FcX (BioLegend) and stained with following 

fluorochrome-conjugated antibodies: CD3 (UCHT1, BD Biosciences; OKT3, BioLegend), CD4 

(SK3, BD Biosciences; SK3, Tonbo Biosciences), CD8 (SK1, BioLegend; RPA-T8, BD 

Biosciences), CCR7 (G043H7; BioLegend), CD45RA (HI100; BioLegend), CD25 (BC96; 

BioLegend), CD127 (A019D5; BioLegend), CD69 (FN50; BioLegend), CD103 (Ber-ACT8; 

BioLegend), CD45 (HI30; BioLegend), and Fixable Viability Dye eFluor 780 (eBioscience). For 

stimulation/proliferation assays, we magnetically enriched for CD3+ T cells from single cell 

suspensions, stained cells with Cell Proliferation Dye eFluor 450 (eBioscience), and cultured 

cells for up to 120 hours with or without TCR stimulation as above. At indicated time points, we 

performed intercellular staining of NME1 (11615-H07E; Sino Biological) using a 

Foxp3/Transcription Factor Staining Buffer Kit (Tonbo Biosciences) for fixation and 

permeabilization of cells according to manufacturer’s instructions. We acquired cell fluorescence 

data using a BD LSR II flow cytometer and used FCS Express (De Novo Software) for analysis. 

The results are summarized in Supplementary Fig. 2 and the gating strategy is shown in 

Supplementary Fig. 9. 

Gene Expression Kinetics by Quantitative Real-Time PCR 

We isolated mononuclear cells from peripheral blood, magnetically enriched for CD3+ T cells, 

and sorted live CD4+ and CD8+ T cells (gated for singlets, FSClowSSClow, CD45+ and Viability 

Dye-) using a BD Influx cell sorter. Sorted cells were cultured in complete medium with or 

without anti-CD3/anti-CD28 stimulation as above for up to 72 hours. For dissecting the 

contribution of type I and type II IFN signaling to gene expression, cells were pre-incubated with 

Human Type 1 IFN Neutralizing Antibody Mixture (PBL Assay Science, Cat# 39000-1) 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2019. ; https://doi.org/10.1101/555557doi: bioRxiv preprint 

https://doi.org/10.1101/555557
http://creativecommons.org/licenses/by-nc/4.0/


30 

 

according to manufacturer’s instructions, or 1 ug/mL of both anti-IFNγ (R&D Systems, 

MAB285, clone # 25718) and anti-IFNγR1 (R&D Systems, MAB6731, clone # 92101). As a 

control, CD4+ T cells were activated with 1000 units/mL of recombinant human IFNα2 (PBL 

Assay Science, Cat#11101-1) or 10 ng/mL recombinant human IFNγ (Peprotech, Cat# 300-02). 

We harvested resting and activated CD4+ and CD8+ T cells at indicated time points and 

extracted RNA using a RNeasy Micro Kit (Qiagen) with on-column DNase digestion. We 

converted RNA to cDNA via SuperScript IV VILO Master Mix (Invitrogen) and performed 

quantitative real-time PCR (qPCR) on a Viia 7 Real-Time PCR system (Applied Biosystems) 

using TaqMan Gene Expression Assays (NME1  Hs00264824_m1; IL2RA Hs00907777_m1; 

IFIT3 Hs00155468_m1; TBP Hs00427620_m1) and TaqMan Fast Advanced Master Mix, all 

from ThermoFisher Scientific. qPCR reactions were set up according to manufacturer’s 

instructions and fold changes between stimulated and unstimulated cells at each time point were 

calculated using the ∆∆ cycle threshold method in ExpressionSuite Software (ThermoFisher 

Scientific) with TBP as a reference gene. 

Tumor-Associated T Cell Projection Analysis 

We projected scRNA-seq profiles of tumor-associated T cells from four different tumor types 

onto a UMAP embedding of resting and activated T cells from across our combined tissue and 

blood data set using the methods described above for projecting blood T cells onto embeddings 

of the tissues. Briefly, we used the highly variable gene set from Supplementary Table 4 to 

generate a UMAP embedding of our tissue/blood data set from a Spearman’s correlation matrix. 

We then projected the tumor-associated T cell profiles onto this embedding using the transform 

function in UMAP. Tumor-associated T cells from non-small cell lung cancer (NSCLC)49 and 

breast cancer (BC)48, which were profiled using the 10x Genomics Chromium platform, were 

obtained from https://gbiomed.kuleuven.be/scRNAseq-NSCLC and GEO accession 
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GSE114724 (samples BC09, BC10, and BC11), respectively. For these two data sets, we used 

the UMI-corrected molecular counts provided by the authors. T cells from colorectal cancer 

(CRC)47 and melanoma (MEL)27, which were profiled using SMART-seq, were obtained from 

GEO accessions GSE108989 and GSE120575 (pre-treated samples only). For these two data 

sets, we used the TPM values provided by the authors. We note that the tissue/blood embedding 

was re-computed for each projection and is therefore slightly different in each case because not 

all of the processed data sets from the tumor studies contained all of the genes in Supplementary 

Table 4. 

The resulting projections are displayed in Fig. 6 in three different ways. In the top row, 

the projections are displayed as contour plots of estimated probability density (kernel density 

estimates) with a maximum of 14 contours. In the second row, we used a hexbin two-

dimensional histogram of the number of cells in each bin with the colorbars normalized such that 

the intensity can be compared across samples (e.g. scaled so that the melanoma projection can be 

compared to the CRC projection). Finally, we also show where individual tumor-associated T 

cells project in subsequent rows along with gene expression values for several key markers. In 

Extended Data Fig. 4, we show the average expression of several canonical exhaustion markers 

in individual cells. The markers used for this analysis were PDCD1, CTLA4, LAG3, LAYN, TIM-

3, CD244, and CD160. 
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Data Availability  

The scRNA-seq data are available on the Gene Expression omnibus (GEO) under accession 

number GSE126030.  

 

Code Availability 

The computer code for scHPF is freely available at www.github.com/simslab/scHPF . 
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FIGURE LEGENDS 

Figure 1: Single-cell RNA-seq analysis of resting and activated T cells from multiple tissue 

sites in each individual donor. (a) Experimental workflow for single-cell analysis of T cells 

from human tissues and blood including magnetic negative selection of CD3+ cells, in vitro 

culture and activation, and Chromium 3’-scRNA-seq. (b) UMAP embeddings of merged scRNA-

seq profiles from resting and activated T cells from lung (LG), bone marrow (BM), and lung-

draining lymph node (LN) in each of two organ donors colored by resting/activated condition, 

CD4/CD8 expression ratio (all cells in a given cluster assigned the same average value), and 

tissue source. (c) Identification of T cell subpopulations. UMAP embeddings colored by 

expression cluster along with heatmaps showing the z-scored average expression of differentially 

expressed marker genes for each cluster. Subsets designated based on resting (“rest”) or activated 

(“act”) condition and expression of known markers denoting effector memory (TEM), tissue 

resident memory (TRM), terminally differentiated effector cells (TEMRA), and regulatory T 

cells (Treg). 

 

Figure 2: Comparison of blood and tissue T cells. (a) UMAP embedding of T cells from tissue 

donor 1 colored by tissue and overlaid with a contour plot corresponding to the UMAP 

projection of the combined resting and activated T cells from two blood donors onto the tissue 

embedding. (b) Same as (a) for organ donor 2. (c) Heatmaps showing the number of blood T 
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cells that project most closely to each tissue/stimulation status combination in the tissue donor 1 

UMAP embedding. (d) Same as (c) for tissue donor 2.  

 

Figure 3: Identification of a tissue gene signature for resting memory T cells. (a) Volcano 

plot showing the average log-fold-change and average Benjamini-Hochberg-corrected p-values 

(FDR) for pairwise differential expression between CCL5+ T cells from each resting LG sample 

and each resting blood sample. Genes with negative log-fold-change are more highly expressed 

among CCL5+ cells in LG, with several highlighted in red. (b) Same as (a) for comparison of 

resting CCL5+ T cells in BM and blood. (c) Same as (a) for comparison of resting CCL5+ T cells 

in LN in blood. (d) Violin plot showing the distributions of the average expression of all genes 

with two-fold higher expression (on average) in any tissue compared to blood and average FDR 

< 0.05 in any tissue for the resting CCL5+ T cells in each tissue and blood sample. The dashed 

line marks one standard deviation below the mean for average expression of this signature for all 

tissues (note a small number of blood cells fall above this line). (e) Heatmap shows z-scored 

average expression for all genes in the tissue signature from (d) among the resting CCL5+ T cells 

from each tissue and blood sample plus that of the rare blood subpopulation from (d), which 

expresses high levels of certain genes. Previously identified TRM-associated genes from bulk 

RNA-seq studies are highlighted in red (enriched in CD69+ vs. CD69-), blue (enriched in 
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CD69+/CD103+ vs. CD69+/CD103-), and magenta (enriched in both CD69+ vs. CD69- and 

CD69+/CD103+ vs. CD69+/CD103-) (See online methods). 

 

Figure 4: Defining conserved transcriptional states in resting and activated T cells by 

single-cell Hierarchical Poisson Factorization (scHPF).  (a) Heatmap shows gene scores for 

the top genes (rows) in each expression module identified by clustering scHPF factors (columns) 

that were computed in separate analyses of cells from each tissue and donor (Extended Figure 4a, 

Online Methods).  Selected genes are indicated to the left, and complete lists of top genes are 

available in Supplementary Table 7. Color bars at the bottom of the heatmap indicate each 

factors’ tissue of origin, donor of origin, and CD4/CD8 bias. (NV/CM=naïve or TCM). (b) 

Diffusion maps of CD4+ T cells in each tissue and donor, with cells colored by sample origin as 

resting (blue) or activated (red).  (c) Same as (b) but for CD8+T cells. (d) Diffusion maps of 

CD4+T cells from (b), with cells colored by their average expression of the top genes from 

scHPF expression modules. Colors for different modules (CD4 NV/CM Resting, IFN Response, 

Proliferation) were blended using the RGB color model. (e) Diffusion maps of CD8+T cells from 

(c), with cells colored by their average expression of the top genes from scHPF expression 

modules (CD8 Cytotoxic and CD8 Cytokine).  
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Figure 5: NME1 and IFIT3 induction during CD4+T cell activation and the role of IFN-

signaling. (a) Expression of NME1 and IL2RA mRNA by blood CD4+ or CD8+T cells after 

stimulation with anti-CD3/anti-CD28 antibodies by qPCR. Data shown as mean fold-change 

(±SEM) relative to unstimulated CD4+ or CD8+T cell controls (dotted line) from 4 individuals 

(independent experiments). Statistical analysis between stimulated and unstimulated cells (black 

*) or CD4+ and CD8+T cells (red *) made by two-way ANOVA with Sidak test for multiple 

comparisons. (b) Intracellular NME1 protein expression by blood T cells after stimulation for 

indicated timepoints (red) compared to unstimulated (black) and isotype control (gray). Bottom 

row: CD25 and NME1 expression by proliferating CD3+T cells after 5 days of stimulation. Data 

are representative of 4 individuals. (c) Expression of IFIT3 mRNA in blood T cells by qPCR 

after TCR-stimulation, shown as mean fold-change (±SEM) relative to unstimulated controls 

(dotted line) for four individuals. Two-way ANOVA with Sidak test for multiple comparisons 

was used for statistical comparisons (black *, stimulated versus unstimulated) or (red *, CD4+ 

versus CD8+T cells). (d) IFIT3 or NME1 mRNA expression in CD4+T cells after culture with 

anti-CD3/anti-CD28 or IFNα2 (1000 units/mL) +/- type I IFN neutralizing antibody cocktail or 

(e) IFNγ (10 ng/mL) +/- anti-IFNγ/anti-IFNγR1 antibodies (1 ug/mL each), shown as mean fold-

change (±SEM) relative to unstimulated controls (dotted line) for 3 individuals. Statistical 

comparisons made by two-way ANOVA. For all panels: “ns” denotes not significant; * p ≤ 0.05; 

** p ≤ 0.01; *** p ≤ 0.001. 

 

 

Figure 6: Comparison of tumor-associated T cells to the reference map of healthy human T 

cell activation. (a) Merged UMAP embedding for the entire healthy T cell scRNAseq dataset 

including resting and activated tissue T cells (two donors) and blood T cells (two individual) 
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colored by sample source, donor, resting/activated condition, CD4/CD8 status (CD4-enriched, 

green; CD8-enriched, purple), and CCL5 expression indicating TEM cells. (b) Merged UMAP 

embedding for the entire dataset overlaid with contour plots indicating kernel density estimates 

for the projection of T cells derived from organ/blood donors (column 1), non-small cell lung 

cancer (NSCLC) tissue (column 2), colorectal cancer (CRC) tissue (column 3), breast cancer 

(BC) tissue (column 4), and melanoma (MEL) tissue (column 5). Note that these probability 

densities can be compared within each projection, but cannot be quantitatively compared across 

projections. (c) Same as b) but overlaid with a two-dimensional hexbin histogram for each 

projection. Histograms have been normalized to account for differences in cell numbers across 

datasets and therefore can be compared quantitatively across projections. (d) Individual cells in 

the UMAP embedding (column 1) for the entire healthy T cell dataset and UMAP projections 

(columns 2-5) for NSCLC, CRC, BC, and MEL tissue T cells colored by expression of CD4, 

CD8A, FOXP3 (Treg marker), CXCR6 (TRM marker), IFIT3 (IFN response marker), NME1 

(activation marker), PRF1 (cytotoxic marker), and IFNG. Expression values are normalized for 

quantitative comparison within each dataset (i.e., column), but not across datasets. 
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Extended Data Figure Legends 

Extended Data Figure 4. (a) scHPF was used to factorize scRNA-seq profiles of each tissue and 

blood sample independently after merging resting and activated T cells. Each matrix element in 

the heatmap is the pairwise Pearson’s correlation coefficient between the gene scores for a pair 

of factors computed across a set of high- and low-scoring genes (see Online Methods). The 

resulting modules were named based on the identities of their highest scoring genes 

(Supplementary Table 7) and the resting vs. activated status of the highest scoring cells. Lower 

color bars show the tissue and donor of origin, and the CD4/CD8 bias of cell scores for each 

factor. (b) Diffusion maps generated from scHPF factors (see Online Methods) for CD4+ and 

CD8+ T cells from each tissue and blood sample after merging resting and activated T cells with 

each cell colored by expression of IL2RA. (c) Same as (b) but colored by expression of NME1. 

(d) Same as (b) but colored by expression of IFIT3. (e) Same as (b) but colored by expression of 

IFNG. 

 

Extended Data Figure 6.  Individual cells in the UMAP embedding (far left column) for the 

entire healthy T cell dataset and UMAP projections (remaining four columns) for NSCLC, CRC, 

BC, and MEL tissue T cells colored by the average expression of the top 70 genes in the 

Cytotoxic module, the top 70 genes in the Cytokine module, the average expression of a set of 

exhaustion markers (PDCD1, CTLA4, LAYN, LAG3, TIM-3, CD244, and CD160), and 

expression of the proliferation marker MKI67.  Note that these expression values are normalized 

so that they can be quantitatively compared within each dataset (within each column), but not 

across datasets. 
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