

Prey abundance drives habitat occupancy by jaguars in Amazonian floodplain fluvial islands

Rafael M. Rabelo^{1,2*}, Susan Aragón³, and Júlio César Bicca-Marques⁴

¹Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia

²Grupo de Pesquisa em Ecologia de Vertebrados Terrestres, Instituto de Desenvolvimento Sustentável Mamirauá

³Programa de Pós-Graduação em Recursos Naturais da Amazônia, Universidade Federal do Oeste do Pará

⁴Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul

Abstract

The jaguar (*Panthera onca*) is widely distributed across a broad range of habitat types, where its feeding habits and habitat use patterns vary significantly. The jaguar and its main arboreal preys – the brown-throated sloth (*Bradypus variegatus*) and the red howler monkey (*Alouatta juara*) – are widespread in the Amazonian floodplain forests Mamirauá Reserve. These forest-dwelling species are the most common mammal species both in the continuous forest and the forest patches surrounded by a river matrix – the fluvial islands – at Solimões and Japurá rivers. We used sign surveys along line-transects to assess the pattern of habitat occupancy by jaguars in Amazonian floodplain forests. Specifically, we (i) tested whether habitat occupancy by jaguars differs between river islands and continuous forest; and (ii) evaluated whether and how the local abundance of sloths and howler monkeys influence the probability of site occupancy by jaguars. We built an occupancy model and used Bayesian inference to reach these goals. The proportion of sites estimated to be used by jaguars was $\psi = 0.75$ (HPD95: 0.36–1.00), and it did not differ between islands and continuous forest. The abundance of both prey species had a direct influence on jaguar's habitat use, whereas the aquatic matrix seems to have a negligible effect on the use of islands by jaguars. We conclude that prey search modulates jaguars' habitat occupancy patterns with both prey species having a similar effect. This finding reinforces the importance of sloths to the diet of jaguars in the study region despite its lower abundance than howlers. Finally, we suggest that sign surveys are an alternative method to assess the pattern of jaguar habitat occupancy in floodplain forests.

Keywords: Bayesian inference; hierarchical models; howler monkeys; occupancy modelling; predator-prey interaction; sloths.

* rrmrabelo@gmail.com

¹ Introduction

² Predation is a remarkable interspecific interaction that has long interested ecologists
³ (Gause et al., 1936). Large carnivores are prominent top predators that prevent prey
⁴ populations to overcrowd and deplete their food sources, and whose demise can initiate
⁵ substantial cascading ecological effects in the food chain that compromise ecosystem
⁶ structure and functioning (Ripple et al., 2014). Therefore, assessments of carnivore
⁷ distribution and population size are essential for developing informed conservation actions
⁸ for these species and their ecosystems.

⁹ Jaguars (*Panthera onca*) are the largest American felids. They are widely distributed
¹⁰ across a broad range of habitat types (Sanderson et al., 2002), where their feeding habits
¹¹ and habitat use patterns vary significantly (Astete et al., 2007; Morato et al., 2016). They
¹² are opportunistic predators that exploit most of their medium to large terrestrial prey
¹³ species (González and Miller, 2002) according to their availability (Rabinowitz and
¹⁴ Nottingham, 1986). The species is often range resident and move over long daily distances
¹⁵ (2.3–16.4 km) in highly variable home ranges (8.8–718.6 km²; Morato et al., 2016).

¹⁶ Jaguars' predominant terrestriality does not preclude them from occurring in
¹⁷ Amazonian seasonally flooded forests (herein *várzea* forests). This is the case at the
¹⁸ Mamirauá Sustainable Development Reserve – a protected area of *várzea* forests in Central
¹⁹ Amazon – where jaguars reach high densities probably because of high prey abundance
²⁰ (Ramalho, 2012). The availability of arboreal (e.g., sloths and monkeys; Rabelo et al., 2017)
²¹ and water-associated (e.g., caimans and their eggs; Ramalho, 2012; Torralvo et al., 2017)
²² prey species allows jaguars to reside yearlong in flooded forests, including the 4- to 6-
²³ month-long high-water season (Ramalho et al., 2009; Ramalho, 2012).

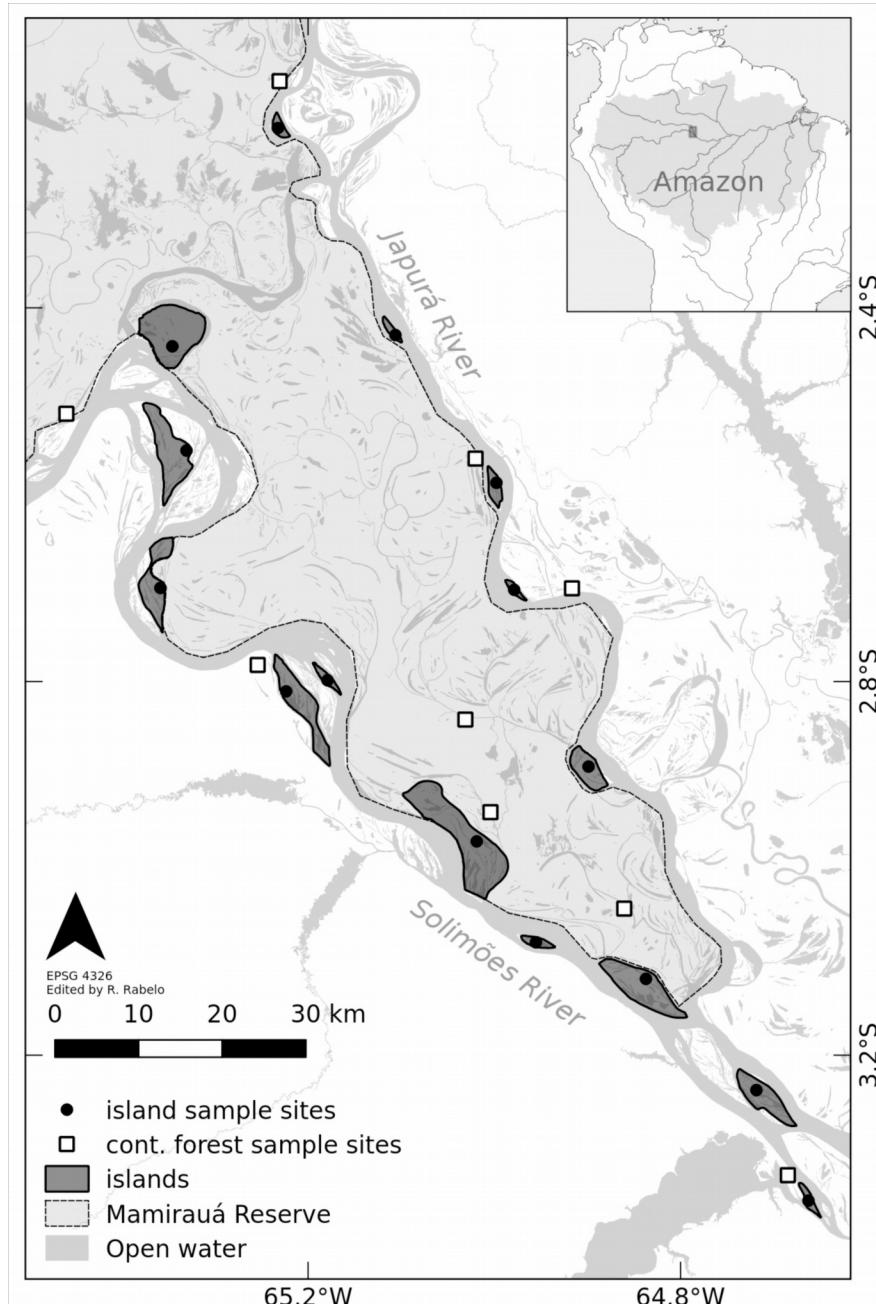
²⁴ Red howler monkeys (*Alouatta juara*), brown-throated sloths (*Bradypus variegatus*)
²⁵ and jaguars are the most common mammal species in both the continuous forest and the
²⁶ fluvial islands (Rabelo et al., 2019). These islands originate from a complex river dynamics,
²⁷ in which the deposition of sediments as sandbars in the river channel that are followed by
²⁸ primary succession (Kalliola et al., 1991). Therefore, island colonization by howlers, sloths
²⁹ and jaguars requires that they move through other land cover types, including the crossing
³⁰ of inhospitable water bodies by swimming (see Holt, 1932; Nunes, 2014).

³¹ Several factors influence the success of this dispersal through the matrix, including
³² the distance to be crossed, the matrix permeability to the species movement and the
³³ disperser's motivation to find food resources in the new habitat (Lima and Zollner, 1996).
³⁴ Thus, given that jaguar can use and easily move through a wide range of land cover types
³⁵ (Morato et al. 2018), it is plausible to expect that the search for prey plays a major role in
³⁶ their dispersal across rivers to reach fluvial islands.

37 Here we developed an occupancy modelling study of the pattern of habitat
38 occupancy of Amazonian *várzea* forests by jaguars to test the influence of prey
39 availability on it. We used jaguar sign surveys along line-transects together with
40 records of two important prey species, the brown-throated sloth and the red howler
41 monkey, to evaluate their patterns of habitat use and co-occurrence using a Bayesian
42 occupancy modelling (Royle and Dorazio, 2008). Specifically, we (i) compare habitat
43 use by jaguars in sites embedded in islands and the continuous forest, and (ii) evaluate
44 whether the local relative abundance of both prey species influences the probability of
45 habitat use by jaguars. We hypothesize that jaguars' habitat use is similar in islands
46 and continuous forest, and that prey abundances are strong predictors of it.

47 Methods

48 Study area


49 Our study region comprises the *várzea* forest, a floodplain forest ecosystem
50 located at the confluence of the Solimões and Japurá rivers in Central Amazon (Fig.
51 1). The interfluvium at these rivers' junction is protected by the Mamirauá
52 Sustainable Development Reserve (IDSM, 2010). *Várzea* forests are seasonally flooded
53 by nutrient-rich white-water rivers, whose average annual water level range is 12 m
54 (Ramalho et al., 2009). The maximum water level is reached around June and its
55 minimum between October and November (IDSM, 2010).

56 River dynamics constantly modifies the spatial structure of these riverscapes by
57 the erosion of margins and the transport and deposition of sediments (Peixoto et al.,
58 2009). This process creates fluvial islands that emerge and can disappear in a few
59 decades (Kalliola et al., 1991). Although some islands represent ephemeral habitat
60 patches for mammals with long generation times, such as jaguars, these species often
61 use them (Rabelo et al., 2019).

62 Sampling design and data collection

63 We sampled 14 focal islands ranging from 151 to 3,625 ha and nine independent
64 sample sites embedded in the adjacent continuous forest (Fig. 1). We chose islands (i)
65 permanently surrounded by the water matrix (that is, even during the low-water
66 season), (ii) whose edge was at least 2 km distant from the edge of the nearest sampled
67 island to avoid sampling islands that are too close to each other, and (iii) ≥ 30 years-
68 old (island age was determined using a historical series of Landsat Thematic Mapper

69 satellite images) to avoid islands that are too ephemeral for our study species (jaguar
70 generation time: ~7 years, de la Torre et al., 2018). Although we believe that jaguars
71 can visit islands younger than 30-years old during their daily journeys, it is unlikely
72 that these islands have an adequate forest structure to harbor arboreal mammals, as
73 most islands younger than 30 years are dominated by pioneer vegetation and rarely
74 present late-succession forest patches (Peixoto et al. 2009).

75 **Figure 1.** Map of the study region showing the distribution of sample sites in the
76 Central Amazonia floodplain forest landscape.

77 We sampled mammals along line-transects that are independent sample sites.
78 Transect length on islands varied from 1.2 km to 11.6 km and it was directly
79 correlated to island size (Pearson correlation: $r = 0.94$, $P < 0.001$), making island size
80 an intrinsic characteristic of each sample. We established line-transects with the same
81 length range within the continuous forest sample sites to survey species. Surveys
82 consisted of quiet walks on trails by two trained observers at *ca.* 1.5 km/h following a
83 standardized protocol (Peres, 1999). We carried out the surveys in the morning (0630–
84 1130 h) and afternoon (1300–1700 h). We stopped surveying when it was raining. We
85 recorded sloths and howler monkeys via sighting and vestiges (e.g., calls and feces)
86 and jaguars via fresh feces and footprints (recorded signs were marked to avoid
87 double detection). Although some researchers can argue that the other wild
88 Amazonian big cat (puma, *Puma concolor*) could be responsible for the vestiges, no
89 records of this species were obtained in an effort of 2,040 camera*day at Mamirauá
90 Reserve (Alvarenga et al., 2018). Therefore, we assumed that there is no resident
91 puma population in the reserve. We conducted four replicate surveys per transect (i.e.,
92 four occasions), separated by one to four days, during the low-water season
93 (September to November) of either 2013 or 2014. We limited surveys to the low-water
94 season to minimize potential seasonal effects on species detection. We were unable to
95 visit all sample sites during a single low-water season due to logistical constraints.

96 Data analysis

97 We assessed the pattern of jaguar occurrence across our sample sites using an
98 occupancy modelling approach. This approach estimates the probability of a site
99 being occupied/used (ψ) by a given species when its detection is imperfect, that is,
100 when the detection probability is less than 1 (Mackenzie et al., 2006). Given that the
101 non-detection of a species at a sample site results from either its true absence or the
102 failure to detect it, repeated surveys (occasions) on multiple sample sites are used to
103 estimate the detection probability (p) of a species conditional on occupancy. In our
104 model, the occurrence of jaguar at a given site “ j ” of type “ k ” (i.e., island or
105 continuous forest) is denoted as O_{jk} (i.e., the true occupancy state: 1 if present, 0
106 otherwise), and is the outcome of a Bernoulli trial with probability of occupancy ψ_{jk} ,

$$107 \quad O_{jk} \sim \text{Bernoulli}(\psi_{jk})$$

108 Similarly, the binomial detection/non-detection (1 = present; 0 = not detected)
109 of jaguars (D) during a given occasion “ i ” and in a given sample site “ j ” are input in
110 the form of an array D_{ij} . Therefore, whether the species is detected during a given
111 occasion in a given site is conditional on the occupancy state O_{jk} , as follows:

112
$$D_{ij} \sim \text{Bernoulli}(p_{ij} * O_{jk})$$

113 where p_{ij} is the probability of jaguar detection during an occasion (survey) in a site.

114 We estimated both ψ and p parameters as linear responses to predictor variables
115 using a logit link function as performed in a regular logistic model. Then, we added
116 the line-transect length (values were standardized before running the model) into the
117 model as a jaguar detection covariate, that is, we expected that the more we walked,
118 the higher is the likelihood of detecting jaguar signs. We modeled the logit
119 transformation of detection probability as follows:

120
$$\text{logit}(p_{ij}) = \alpha_0 + \alpha_1 * \text{transect length}_{ij}$$

121 We also expected that transect length, which was positively correlated with
122 island size, influences prey species counts. We estimated prey relative abundances (λ_{lj})
123 as linear responses to transect length using a log-link function as in a Poisson
124 regression model as follows:

125
$$\log(\lambda_{lj}) = \gamma_0 + \gamma_1 * \text{transect length}_j$$

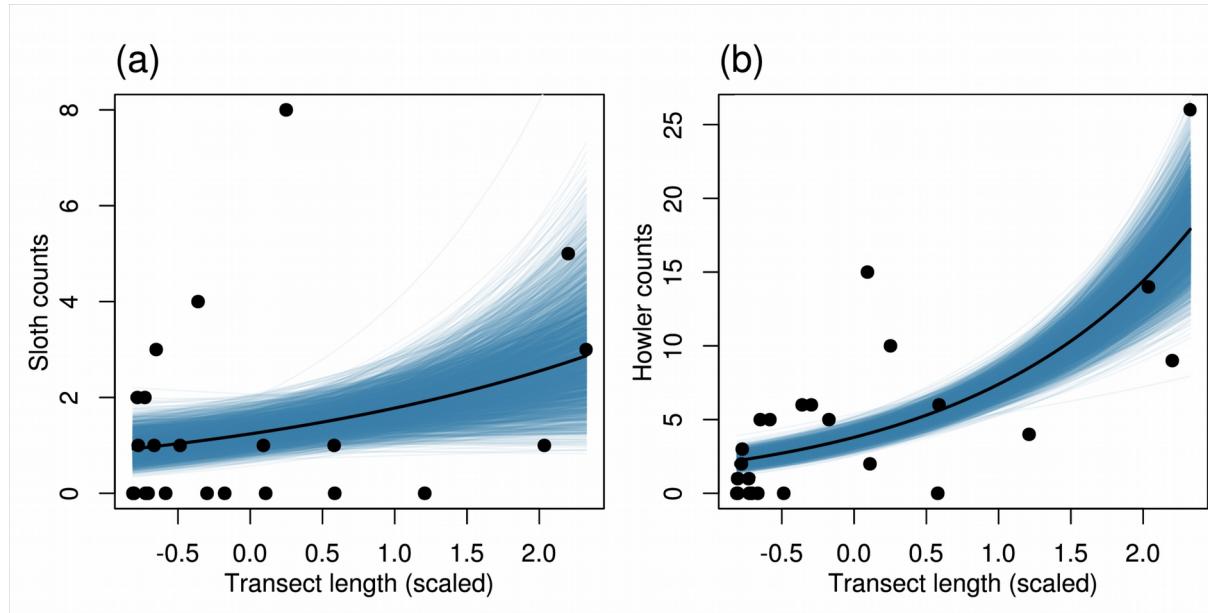
126 where λ_{lj} is the relative abundance of prey species “ l ” (i.e., sloth or howler monkey) in
127 site “ j ”. Finally, we considered that the occupancy probability ψ_{jk} depends on the type
128 of site “ k ” determined by β_0 and on the relative abundances of sloths and howlers on
129 site “ j ” (counts of prey species were centered and scaled before running the model to
130 compare their coefficients), in a logit transformation of a linear model as follows:

131
$$\text{logit}(\psi_{jk}) = \beta_0 + \beta_1 * \text{Sloth}_j + \beta_2 * \text{Howler}_j$$

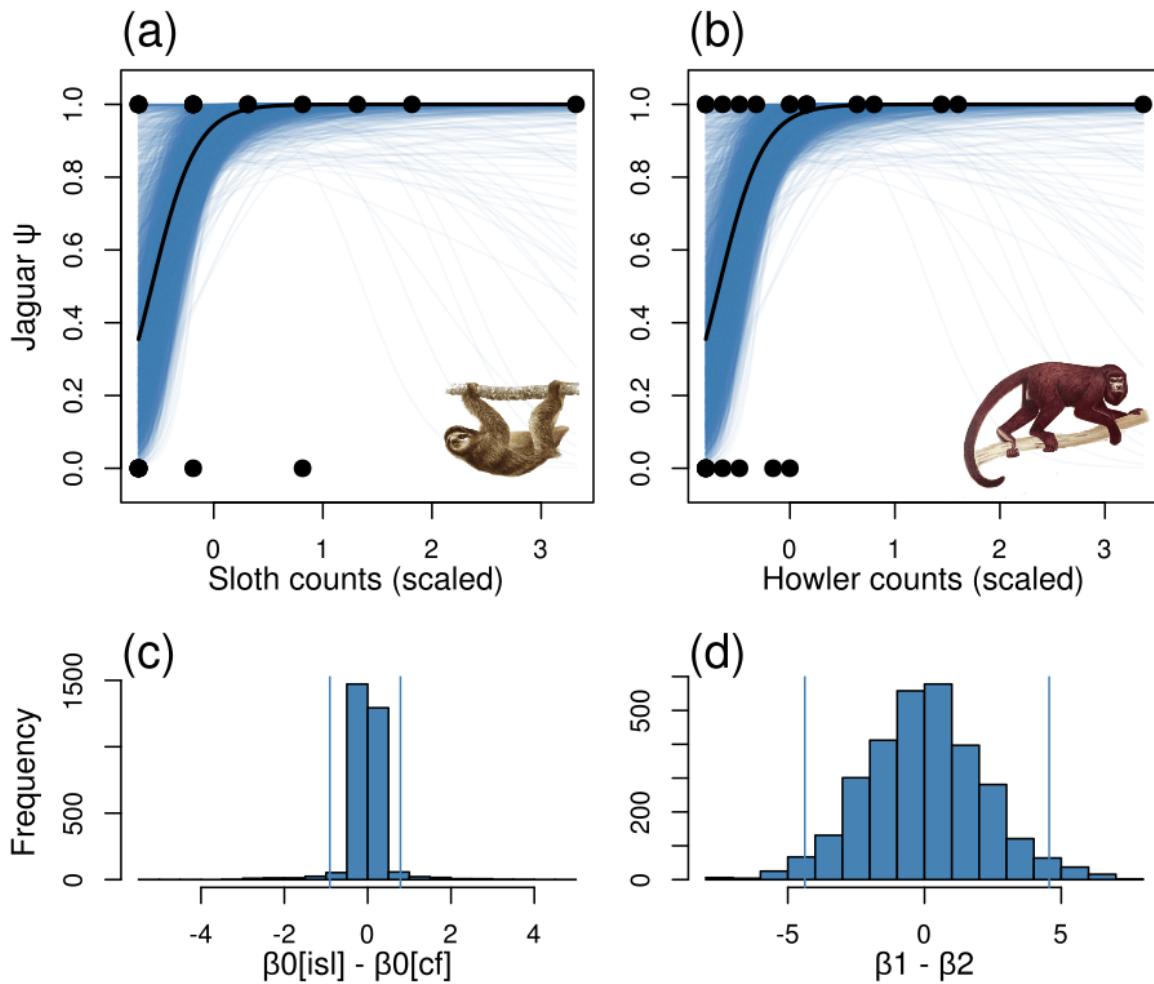
132 The full hierarchical model formulation is presented in Fig. S1. We implemented
133 the model in a Bayesian framework using JAGS accessed via the software R, version
134 3.4.1 (R Core Team, 2017) using the package ‘rjags’ (Plummer, 2016) (see the R code
135 available in Appendix S1). We used flat priors normally distributed with mean = 0
136 and variance = 100 for all model parameters, except for SD of β_0 , for which we used a
137 gamma distribution with shape and rate equal to 0.1. The estimation of posterior
138 parameters was performed with the Markov Chain Monte Carlo (MCMC) method
139 using three parallel MCMC chains of 100,000 in length after discarding the first 10,000
140 steps of each as burn-in, and with a thinning rate of 100 steps. This combination of
141 values ensured that all chains converged, i.e. essentially oscillated around the same
142 mean parameter value (see Fig. S2) We report the posterior distribution of all
143 estimated parameters as mean and standard error (SE), as well as the median and the

¹⁴⁴ 2.5 and 97.5 percentiles, which are the Bayesian equivalent to the 95% confidence
¹⁴⁵ interval (highest posterior density in 95% – HPD95).

¹⁴⁶ Results


¹⁴⁷ We obtained a total of 20 jaguar independent detections at 15 (63%) of the 24
¹⁴⁸ sample sites during the four sampling occasions. Counts of both prey species were
¹⁴⁹ similar in islands and continuous forest (Fig. S3). Sloth counts per transect ranged
¹⁵⁰ from 0 to 8 individuals. They occurred at 13 (54%) sample sites. Sloth median counts
¹⁵¹ per transect were 1 (first quartile (Q1) and third quartile (Q3) = 0 and 2.5,
¹⁵² respectively) in islands and 0 (Q1 = 0; Q3 = 1) in continuous forest (Fig. S3a). Howler
¹⁵³ counts per transect ranged from 0 to 26 individuals. They inhabited 17 (71%) sample
¹⁵⁴ sites. The median value of howler counts per transect was 3 individuals (Q1 = 0; Q3 =
¹⁵⁵ 5.5) in islands and 5 individuals (Q1 = 2; Q3 = 6) in the continuous forest (Fig. S3b).
¹⁵⁶ The number of sites with predator-prey co-occurrences was 13 (54%) for sites shared
¹⁵⁷ by jaguars and howlers, and 11 (46%) for jaguars and sloths.

¹⁵⁸ The mean jaguar detection probability across sites was $p = 0.26$ (HPD95: 0.15–
¹⁵⁹ 0.39), and it was directly influenced by transect length (Table 1). Transect length was
¹⁶⁰ also a good predictor of the relative abundance of both prey species (Table 1; Fig. 2).


¹⁶¹ Jaguar probability of site occupancy was positively influenced by the abundance
¹⁶² of both howlers and sloths (Table 1; Fig. 3a and b). Although both estimates were not
¹⁶³ significant at HPD95 (i.e., the HPD95 interval included the zero), we found strong
¹⁶⁴ evidence that sloth and howler abundances increase the probability of habitat
¹⁶⁵ occupancy by jaguars [likelihood estimates: $p(\beta_1 > 0) = 0.93$ and $p(\beta_2 > 0) = 0.94$,
¹⁶⁶ respectively]. We estimated a similar proportion of island and continuous forest sites
¹⁶⁷ used by jaguars ($\psi = 0.75$, HPD95: 0.36–1.00, Fig. 3c). Additionally, we found that the
¹⁶⁸ abundances of both sloths and howlers have similar effects on jaguar probability of
¹⁶⁹ occurrence ($\beta_1 - \beta_2 = -0.002$, HPD95: -4.38–4.56; Fig. 3d).

¹⁷⁰ **Table 1.** Parameter estimates (link scale) from the hierarchical occupancy model for
¹⁷¹ jaguar occurrence in Mamirauá's floodplain forest in Central Amazonia. γ and δ are
¹⁷² the coefficients (intercept and slope) of Poisson regressions for the effect of transect
¹⁷³ length on sloths and howlers counts, respectively; a = coefficients (intercept and
¹⁷⁴ slope) of logistic model of jaguar detection probability p ; β = coefficients (intercept
¹⁷⁵ and slopes) of logistic model of jaguar probability of occurrence ψ . See full model
¹⁷⁶ formulation in Fig. S1.

Species	Parameter	Estimate (SE)	2.5%	Median	97.5%
Sloth	γ_0	0.21 (0.00)	-0.18	0.22	0.58
	γ_1	0.36 (0.00)	0.06	0.36	0.65
Howler	δ_0	1.33 (0.00)	1.10	1.33	1.54
	δ_1	0.67 (0.00)	0.52	0.67	0.81
Jaguar	a_0	-1.05 (0.01)	-1.71	-1.04	-0.43
	a_1	0.33 (0.00)	-0.19	0.33	0.85
	β_0 [islands]	3.27 (0.03)	1.53	2.99	6.72
	β_0 [cont. forest]	3.26 (0.03)	1.53	2.97	6.70
	β_1 (sloth)	2.52 (0.03)	-0.66	2.37	6.44
	β_2 (howler)	2.52 (0.03)	-0.53	2.43	6.06

¹⁷⁷ **Figure 2.** Effects of line-transect length on counts of prey species in Mamirauá's
¹⁷⁸ floodplain forest in Central Amazonia. Prey counts were used to represent the relative
¹⁷⁹ local abundances of each species. The longer the walk, the higher the number of
¹⁸⁰ records of both sloths (a) and howlers (b). The black line represents the median
¹⁸¹ exponential response of prey abundance as predicted by a GLM with Poisson
¹⁸² distribution formulated in a Bayesian framework. Blue lines represent all models
¹⁸³ fitted according to posteriors estimates.

¹⁸⁴ **Figure 3.** Predictors of jaguar occupancy across sample sites in Mamirauá's
¹⁸⁵ floodplain forest in Central Amazonia. The logit transformation of jaguar probability
¹⁸⁶ of habitat occupancy (ψ) was modelled as a linear function of sample site type (i.e.,
¹⁸⁷ embedded either in island or in continuous forest), and the abundance of prey species
¹⁸⁸ at the sample site. Jaguar mean probability of occurrence (black lines) increases
¹⁸⁹ markedly with increasing abundance of both sloths (a) and howlers (b). Blue lines
¹⁹⁰ represent all models fitted according to posteriors estimates and higher density of
¹⁹¹ lines indicates the area with higher model confidence. There is strong evidence that
¹⁹² jaguar probability of occurrence does not differ between sites embedded in islands or
¹⁹³ continuous forest, as shown by the distribution of differences between β_0 for islands
¹⁹⁴ and for continuous forest (c). Both sloth (β_1) and howler (β_2) counts showed similar
¹⁹⁵ effects on jaguar probability of habitat use (d).

196 Discussion

197 Here we provide the first estimates of jaguar occupancy patterns using sign
198 surveys along line-transects. We recorded jaguar feces and footprints on trails of
199 different lengths, accounting for imperfect detection and considering transect length
200 as a detection covariate. We found a higher average probability of jaguar detection (p
201 = 0.26) than estimates based on camera trap studies, and a higher probability of
202 habitat occupancy than most reported estimates (Table 2). Jaguar populations of
203 Amazonian *várzea* forests have high densities and abundances (Ramalho, 2012),
204 which allow to expect that they also have high detectability and habitat occupancy.
205 However, we acknowledge that care needs to be taken in interpreting comparisons
206 between survey estimates from studies differing in survey method (Table 2) and other
207 factors (e.g., habitat type and quality, sampling effort, location, etc.). Despite that, we
208 suggest that sign surveys along line-transects are useful for assessing jaguar
209 occupancy patterns as they do not require expensive equipment. We urge for such
210 comparative studies to assess the level of correlation between their estimates.

211 **Table 2.** Comparisons of jaguar mean probabilities of habitat occupancy (ψ) and
212 detection (p) among studies.

Survey method	ψ	p	Location	Reference
Line-transects	0.75	0.26	Mamirauá Reserve, Northern Brazil	This study
Interviews	0.57	0.28	Atlantic Coast, Nicaragua	Zeller et al. (2011)
Camera traps	0.77	0.12	Madre de Dios Department, Peru	Tobler et al. (2015)
	0.69	0.18	Iguaçu National Park, Southern Brazil	Silva et al. (2018)
	0.54	0.21	Emas National Park, Central Brazil	Sollmann et al. (2012)
	0.42	0.26	Magdalena River Valley, Colombia	Boron et al. (2018)
	0.42	0.03	Iwokrama Forest, Guyana	Roopsind et al. (2017)

213 We found no difference in jaguar probability of habitat use between island and
214 continuous forest samples sites. Jaguars' probability of occurrence tends to be higher
215 in core areas with high forest cover and close to water (Boron et al., 2018; Silva et al.,
216 2018; Sollmann et al., 2012; Zeller et al., 2011), and that experience low levels of

²¹⁷ anthropogenic disturbance (Roopsind et al. 2017; Silva et al. 2018). Although river
²¹⁸ dynamics constantly changes the spatial structure of Amazonian riverscapes (Peixoto
²¹⁹ et al., 2009), our study *várzea* landscape of Central Amazonia is characterized by high
²²⁰ forest cover and low human density. Additionally, jaguars move far and easily among
²²¹ distinct environments (Morato et al., 2016) and spontaneously cross rivers and lakes
²²² (Holt, 1932). Therefore, we expect that the aquatic matrix that surrounds fluvial
²²³ islands do not hamper jaguar dispersal across rivers to reach these well-preserved
²²⁴ island forests.

²²⁵ We found that the relative local abundance of prey species were good predictors
²²⁶ of jaguar habitat use patterns. Prey density was the best predictor of habitat use by
²²⁷ tigers (*Panthera tigris*) in a metapopulation also surveyed via signs along trails in
²²⁸ southern India (Karanth et al., 2011). Likewise, the local occurrence of prey species
²²⁹ was more important than the distance to water or forest structure to explain jaguar
²³⁰ habitat use at the Calakmul Biosphere Reserve in southeastern Mexico (Booker, 2016).
²³¹ Given that both prey species are equally abundant in islands and continuous forest
²³² sites (Fig. S3), we suggest that foraging for prey plays a critical role in jaguars'
²³³ decision to use fluvial islands.

²³⁴ We found that both prey species had similar effects on jaguar probability of
²³⁵ habitat use, despite the lower range of sloth counts per site. Whereas jaguars
²³⁶ inhabiting non-flooded habitats feed mostly on terrestrial prey (González and Miller,
²³⁷ 2002), Mamirauá's jaguars rely heavily on caimans and their eggs (Torralvo et al.,
²³⁸ 2017) and on arboreal mammals (e.g., sloths, howlers and lesser tamanduas
²³⁹ [*Tamandua tetradactyla*]), as terrestrial prey is often missing in flooded forests
²⁴⁰ (Ramalho, 2012). On the other hand, caimans (Da Silveira et al., 2008), sloths and
²⁴¹ howlers (Queiroz, 1995) occur at high densities in these forests, facilitating predator-
²⁴² prey encounters. Despite the aforementioned lower abundance of sloths in our flooded
²⁴³ forests, their solitary life-style and lower mobility and defense ability, make them an
²⁴⁴ easy prey, thereby potentially explaining the equal effect of both prey species on
²⁴⁵ jaguar habitat use and the importance of sloths to its diet.

²⁴⁶ In sum, we show that the aquatic matrix surrounding fluvial islands does not
²⁴⁷ hamper jaguars to use them. The importance of the abundance of both prey species as
²⁴⁸ predictors of jaguar habitat use is compatible with the hypothesis that they often visit
²⁴⁹ these islands as part of their prey search strategies. Additionally, we showed that sign
²⁵⁰ surveys along trails is an alternative method for assessing the pattern of habitat use
²⁵¹ by jaguars in Amazonian *várzea* forests. Finally, although we conducted this study
²⁵² during the low-water season, we believe that the importance of these arboreal

²⁵⁰ mammals in the diet of jaguars is even higher during the high-water season, when
²⁵¹ jaguars spend most of their time in the forest canopy.

²⁵² Acknowledgements

²⁵³ The Instituto de Desenvolvimento Sustentável Mamirauá (IDSM-OS/MCTI) funded
²⁵⁴ this research. RMR received fellowships from National Council for Scientific and
²⁵⁵ Technological Development (CNPq, #131077/2014-7 and #142352/2017-9). We thank
²⁵⁶ the field assistance of Jonei Brasil, André Neves and Jairo Neves. The Infrastructure
²⁵⁷ and Logistics and Administration Teams of the Instituto de Desenvolvimento
²⁵⁸ Sustentável Mamirauá supported our field activities. We also thank Cristian Dambros
²⁵⁹ for providing valuable help on modeling formulation and implementation, Daniel
²⁶⁰ Rocha for insightful contributions on the first draft, and two anonymous reviewers
²⁶¹ for their critical evaluation of the manuscript.

²⁶² Supporting Information

²⁶³ **Figure S1.** Model formulation.

²⁶⁴ **Appendix S1.** R code for model implementation.

²⁶⁵ **Figure S2.** Chain convergence.

²⁶⁶ **Figure S3.** Prey species counts on island and continuous forest sample sites.

²⁶⁷ References

- ²⁶⁸ Alvarenga, G.C., Ramalho, E.E., Baccaro, F.B., Rocha, D.G., Ferreira-Ferreira, J.,
²⁶⁹ Dineli Bobrowiec, P.E. 2018. Spatial patterns of medium and large size mammal
²⁷⁰ assemblages in várzea and terra firme forests, Central Amazonia, Brazil. PLoS
²⁷¹ One 13, e0198120.
- ²⁷² Astete, S., Sollmann, R., Silveira, L. 2007. Comparative Ecology of Jaguars in Brazil.
²⁷³ CAT News 4, 9–14.
- ²⁷⁴ Booker, H. 2016. The application of occupancy modeling to evaluate the determinants
²⁷⁵ of distribution of jaguars (*Panthera onca*), pumas (*Puma concolor*), and valued

- 276 prey species in a protected area. Master Thesis. University of Waterloo, Waterloo,
277 Canada.
- 278 Boron, V., Xofis, P., Link, A., Payan, E., Tzanopoulos, J. 2018. Conserving predators
279 across agricultural landscapes in Colombia: habitat use and space partitioning by
280 jaguars, pumas, ocelots and jaguarundis. *Oryx*, 1-10.
- 281 de la Torre, J.A., González-Maya, J.F., Zarza, H., Ceballos, G., Medellín, R.A. 2018. The
282 jaguar's spots are darker than they appear: Assessing the global conservation
283 status of the jaguar *Panthera onca*. *Oryx* 52, 300–315.
- 284 Gause, G.F., Smaragdova, N.P., Witt, A.A. 1936. Further studies of interaction
285 between predators and prey. *J. Anim. Ecol.* 5, 1–18.
- 286 González, C.A.L. and Miller, B.J. 2002. Do jaguars (*Panthera onca*) depend on large
287 prey? *West. North Am. Nat.* 62, 218–222.
- 288 Holt, E.G. 1932. Swimming cats. *J. Mammal.* 13, 72–73.
- 289 IDSM. 2010. Plano de Gestão Reserva de Desenvolvimento Sustentável Mamirauá
290 RDSM. Plano de Gestão. Tefé: MCTI/IDSM-OS.
- 291 Kalliola, R., Salo, J., Puhakka, M., Rajasilta, M. 1991. New site formation and
292 colonizing vegetation in primary succession on the western Amazon floodplains.
293 *J. Ecol.* 79, 877–901.
- 294 Karanth, K.U., Gopalaswamy, A.M., Kumar, N.S., Vaidyanathan, S., Nichols, J.D.,
295 Mackenzie, D.I. 2011. Monitoring carnivore populations at the landscape scale:
296 Occupancy modelling of tigers from sign surveys. *J. Appl. Ecol.* 48, 1048–1056.
- 297 Lima, S.L. and Zollner, P.A. 1996. Towards a behavioral ecology of ecological
298 landscapes. *Trends Ecol. Evolut.* 11, 131–135.
- 299 Mackenzie, D.I., Nichols, J.D., Royle, J.A., Pollock, K.H., Bailey, L.L., Hines, J.E. 2006.
300 Occupancy estimation and modeling: Inferring patterns and dynamics of species
301 occurrence. London: Academic Press.
- 302 Morato, R.G., Stabach, J.A., Fleming, C.H., Calabrese, J.M., De Paula, R.C., Ferraz,
303 K.M.P.M., Kantek, D.L.Z., Miyazaki, S.S., Pereira, T.D.C., Araujo, G.R., Paviolo,
304 A., De Angelo, C., Di Bitetti, M.S., Cruz, P., Lima, F., Cullen, L., Sana, D.A.,
305 Ramalho, E.E., Carvalho, M.M., Soares, F.H.S., Zimbres, B., Silva, M.X., Moraes,
306 M.D.F., Vogliotti, A., May, J.A., Haberfeld, M., Rampim, L., Sartorello, L., Ribeiro,
307 M.C., Leimgruber, P. 2016. Space use and movement of a neotropical top
308 predator: The endangered jaguar. *PLoS One* 11, e0168176.

- 309 Morato, R.G., Connnette, G.M., Stabach, J.A., De Paula, R.C., Ferraz, K.M.P.M., Kantek,
310 D.L.Z., Miyazaki, S.S., Pereira, T.D.C., Silva, L.C., Paviolo, A., De Angelo, C., Di
311 Bitetti, M.S., Cruz, P., Lima, F., Cullen, L., Sana, D.A., Ramalho, E.E., Carvalho,
312 M.M., da Silva, M.X., Moraes, M.D.F., Vogliotti, A., May Jr, J.A., Haberfeld, M.,
313 Rampim, L., Sartorello, L., Araujo, G.R., Wittemyer, G., Ribeiro, M.C.,
314 Leimgruber, P. 2018. Resource selection in an apex predator and variation in
315 response to local landscape characteristics. *Biol. Conserv.* 228, 233–240.
- 316 Nunes, A.V. 2014. Report of a black spider monkey (*Ateles chamek*) swimming in a
317 large river in Central-Western Brazil. *Neotrop. Primates* 21, 204–206.
- 318 Peixoto, J.M.A., Nelson, B.W., Wittmann, F. 2009. Spatial and temporal dynamics of
319 river channel migration and vegetation in central Amazonian white-water
320 floodplains by remote-sensing techniques. *Remote Sens. Environ.* 113, 2258–2266.
- 321 Peres, C.A. 1999. General guidelines for standardizing line-transect surveys of tropical
322 forest primates. *Neotrop. Primates* 7, 11–16.
- 323 Plummer, M. 2016. rjags: Bayesian Graphical Models using MCMC. R package.
- 324 Queiroz, H.L. 1995. Preguiças e guaribas: os mamíferos arborícolas do Mamirauá. Rio
325 de Janeiro: Sociedade Civil Mamirauá e CNPq.
- 326 R Core Team. 2018. R: A language and environment for statistical computing. Vienna,
327 Austria.
- 328 Rabelo, R.M., Bicca-Marques, J.C., Aragón, S., Nelson, B.W. 2017. Are fluvial islands
329 “real” islands for arboreal mammals? Uncovering the effect of patch size under
330 the species-area relationship. *J. Biogeogr.* 44, 1802–1812.
- 331 Rabelo, R.M., Aragón, S., Bicca-Marques, J.C., Nelson, B.W. 2019. Habitat amount
332 hypothesis and passive sampling explain mammal species composition in
333 Amazonian river islands. *Biotropica* 51, 84–92.
- 334 Rabinowitz, A.R. and Nottingham, B.G. 1986. Ecology and behaviour of the Jaguar
335 (*Panthera onca*) in Belize, Central America. *J. Zool.* 210, 149–159.
- 336 Ramalho, E.E. 2012. Jaguar (*Panthera onca*) population dynamics, feeding ecology,
337 human induced mortality, and conservation in the várzea floodplain forests of
338 Amazonia. Doctoral Dissertation. University of Florida, Florida, USA.
- 339 Ramalho, E.E., Macedo, J., Vieira, T., Valsecchi, J., Calvimontes, J., Marmontel, M.,
340 Queiroz, H.L. 2009. Ciclo hidrológico nos ambientes de várzea da Reserva de
341 Desenvolvimento Sustentável Mamirauá – médio rio Solimões, período de 1990 a
342 2008. *Uakari* 5, 61–87.

- 343 Ripple, W.J., Estes, J.A., Beschta, R.L., Wilmers, C.C., Ritchie, E.G., Hebblewhite, M.,
344 Berger, J., Elmhagen, B., Letnic, M., Nelson, M.P., Schmitz, O.J., Smith, D.W.,
345 Wallach, A.D., Wirsing, A.J. 2014. Status and ecological effects of the world's
346 largest carnivores. *Science* 343, 1241484.
- 347 Roopsind, A., Caughlin, T.T., Sambhu, H., Fragoso, J.M.V., Putz, F.E. 2017. Logging
348 and indigenous hunting impacts on persistence of large Neotropical animals.
349 *Biotropica* 49, 565–575.
- 350 Royle, J.A. and Dorazio, R.M. 2008. *Hierarchical Modeling and Inference in Ecology*.
351 London: Academic Press.
- 352 Sanderson, E.W., Redford, K.H., Chetkiewicz, C.L.B., Medellin, R.A., Rabinowitz, A.R.,
353 Robinson, J.G., Taber, A.B. 2002. Planning to save a species: The jaguar as a
354 model. *Conserv. Biol.* 16, 58–72.
- 355 Silva, M.X., Paviolo, A., Tambosi, L.R., Pardini, R. 2018. Effectiveness of Protected
356 Areas for biodiversity conservation: Mammal occupancy patterns in the Iguazu
357 National Park, Brazil. *J. Nat. Conserv.* 41, 51–62.
- 358 Da Silveira, R., Magnusson, W.E., Thorbjarnarson, J.B. 2008. Factors Affecting the
359 Number of Caimans Seen during Spotlight Surveys in the Mamirauá Reserve,
360 Brazilian Amazonia. *Copeia* 2008, 425–430.
- 361 Sollmann, R., Furtado, M.M., Hofer, H., Jácomo, A.T.A., Tôrres, N.M., Silveira, L. 2012.
362 Using occupancy models to investigate space partitioning between two sympatric
363 large predators, the jaguar and puma in central Brazil. *Mamm. Biol.* 77, 41–46.
- 364 Torralvo, K., Botero-Arias, R., Magnusson, W.E. 2017. Temporal variation in black-
365 caiman-nest predation in varzea of central Brazilian Amazonia. *PLoS One* 12,
366 e0183476.
- 367 Zeller, K.A., Nijhawan, S., Salom-Pérez, R., Potosme, S.H., Hines, J.E. 2011. Integrating
368 occupancy modeling and interview data for corridor identification: A case study
369 for jaguars in Nicaragua. *Biol. Conserv.* 144, 892–901.