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Abstract 12 

Reliable identification of brain cell types is necessary for studying brain cell 13 

biology. Many brain cell marker genes have been proposed, but their reliability 14 

has not been fully validated. We evaluated 540 commonly-used marker genes 15 

of astrocyte, microglia, neuron, and oligodendrocyte with six transcriptome and 16 

proteome datasets from purified human and mouse brain cells (n=125). By 17 

setting new criteria of cell-specific fold change, we identified 22 gold standard 18 

marker genes (GSM) with stable cell-specific expression. Our results call into 19 

question the specificity of many proposed marker genes. We used two single-20 

cell transcriptome datasets from human and mouse brains to explore the co-21 

expression of marker genes (n=3337). The mouse co-expression modules were 22 

perfectly preserved in human transcriptome, but the reverse was not. Also, we 23 

proposed new criteria for identifying marker genes based on both differential 24 

expression and co-expression data. We identified 16 novel candidate marker 25 

genes (NCM) for mouse and 18 for human independently, which have the 26 

potential for use in cell sorting or other tagging techniques. We validated the 27 

specificity of GSM and NCM by in-silico deconvolution analysis. Our systematic 28 

evaluation provides a list of credible marker genes to facilitate correct cell 29 

identification, cell labeling, and cell function studies.  30 

 31 

Introduction 32 

The human brain is a heterogeneous organ with numerous cell types. It has 33 

billions of cells including half neurons and half glia1. The major classes of glia 34 

are astrocyte, microglia and oligodendrocyte. Identifying these cell types is 35 

important because it would permit the brain to be understood in greater detail 36 

and would be especially useful for studying cellular contributions to the 37 

psychiatric disorders. A critical need in neuroscience research, is to develop 38 

methods to reliably identify specific brain cell types. 39 

A strategy that has been employed to identify specific cell types is the 40 
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development of marker genes, which are sets of genes that express specifically 41 

in a cell type. Thousands of genes have been proposed as marker genes2. One 42 

well-known marker gene, RBFOX3 (gene of NeuN), is only expressed in nuclei 43 

of most neuronal cell types3. Marker genes can be used in several applications. 44 

Protein products of marker genes can be used to label different cell types, which 45 

may be used in fluorescence activated cell sorting (FACS). Marker genes also 46 

can be used to determine cell composition in bulk tissue samples. A 47 

computational method known as supervised deconvolution was developed to 48 

infer cell proportions in bulk tissue samples based on the expression of marker 49 

genes4-6. This method has been applied to studying the composition of bulk 50 

brain samples7,8. High specificity of marker genes is critical for generating 51 

reliable results in all of these applications. 52 

  Differential gene expression (DGE) analysis of transcriptome or proteome 53 

data is the most straightforward way to define the specificity of marker genes9-54 
15. One of the drawbacks of DGE is that the outcomes is study-dependent. The 55 

outcomes are affected by many factors such as species, cell or tissue source, 56 

and the data generation platform. Human and mouse genomes are 80% 57 

orthologous16, but differences in gene expression between species are often 58 

greater than those between tissues within one species17. Within a species, cells 59 

isolated from primary culture or acutely from tissue showed different gene 60 

expression patterns18. Also, the expression estimates of the marker may vary 61 

considerably depending on whether mRNA or protein is measured. The 62 

statistical variation in transcriptome only explained 40% of the statistical 63 

variation in protein level19. Besides these biological confounders, the 64 

experimental platforms used to quantify gene expression level may also impact 65 

marker gene selection. RNA-Seq provides a larger dynamic range for the 66 

detection of transcripts and has less background noise, resulting in RNA-Seq 67 

being more sensitive in calling cell type-specific genes than microarray 68 

platforms20. Another weakness of DGE is that relationships among marker 69 

genes are not considered in the analysis. Groups of marker genes are often 70 

used to describe a cell type, and marker genes work with each other to execute 71 

functions in specific cell type. The relationship between marker genes 72 

represents their coordinated functions, specificities, and expressions. In DGE 73 

analysis, marker genes are defined independently, and the relationship among 74 

them is ignored. 75 

Co-expression (COE) is a method of identifying interactions among genes by 76 

assigning genes with similar expression patterns into a module21,22. There was 77 

study reported that the co-expression modules in brain enriched cell type 78 

marker genes23. So it suggested that the co-expression can detected the cell 79 

type-specific marker genes, even in the heterogenous samples. The module 80 

formed by marker genes indicates their coordinated functions and specificities 81 

for a cell type. The correlation of genes with cell type-specific module suggests 82 

it’s cell specificity. COE has the potential to systematically capture marker 83 

genes group that DGE cannot.  84 
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  In this study, we evaluated the specificity of 540 published brain cell marker 85 

genes and discovered novel marker genes by DGE and COE analyses. We 86 

used six datasets containing transcriptome and proteome data from purified 87 

astrocytes, microglia, neurons and oligodendrocytes from both mouse and 88 

human brains. We identified 22 brain cell marker genes out of the 540 89 

candidates, referred as gold-standard marker genes (GSM), that specifically 90 

express in one cell type. We constructed brain cell-related gene co-expression 91 

modules for human and mouse, and found large differences among species. 92 

We found a statistically significant correlation between cell-specific fold change, 93 

a measure developed in this study, and gene membership in the brain cell-94 

related coexpression modules. Combining DGE and COE, we identified 16 95 

novel candidate marker genes (NCM) in mouse brain and 18 NCM in the human 96 

brain. Through supervised cell deconvolution analysis, we showed that using 97 

GSM and NCM improved the performance of deconvolution.  98 

 99 

Results 100 

To evaluate and discover brain cell marker genes, we performed DGE and 101 

COE analysis on transcriptomic or proteomic data (Figure 1). We used six 102 

datasets of purified cell populations for DGE analysis (DGEDat) and two single 103 

cell datasets for COE analysis (COEDat) (Table 1). The DGEDats included 104 

transcriptome and proteome data from human and mouse brain purified cell 105 

populations. The COEDats were single-cell RNA sequencing data from both 106 

human and mouse brains.  107 

 108 

Commonly-used marker genes of four major cell types 109 

We collected 540 marker genes that were commonly used for labeling cells 110 

and validating cell isolation (Supplementary Table 1). These marker genes were 111 

identified in published literature9,10,13-15, company websites24,25, and ISH 112 

databases, such as the Allen Brain Atlas (ABA) and GENSAT26-28 for labeling 113 

neurons, astrocytes, microglia, oligodendrocytes, and other cell types in the 114 

brain. Of 540 candidate marker genes, only eight genes were reported in all 115 

data sources while most of the marker genes were source-specific 116 

(Supplementary Figure 1). Genes annotated as marker genes of more than two 117 

cell types by different sources were considered as “conflict marker genes.” We 118 

found 27 conflict marker genes in the 540 collected genes (Supplementary 119 

Table 1). The other genes had no conflict annotations in different data sources 120 

and were classified as “consistent marker genes.” 121 

 122 

DGE-based specificity evaluation of commonly-used marker genes 123 

We identified Gold-Standard Marker genes (GSM) that showed cell-type 124 

specificity across multiple types of data through DGE analysis. We found that 125 

the classical fold-change value, which is typically calculated as the expression 126 

in the target cell divided by averaged expression in other cells14,29, may produce 127 
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inaccurate calls of marker genes (Supplementary Figure 2, Supplementary 128 

Table 2). To avoid this problem, we created a measure of cell-specific fold 129 

change (csFC). The csFC was defined as equation (1).  130 

csFC = 
expression in the target cell type

the highest expression in all other cell types
       (1) 131 

To be considered a GSM, the following four criteria had to be met based the 132 

datasets we collected: 1) the gene must be detected in the target cell type in all 133 

six DGEDats. There were 113 of the 540 candidates that met this criterion. 2) 134 

csFC ≥ 2 in all six DGEDats. 3) Benjamin-Hochberg (BH) corrected p-value of 135 

the two-sample Wilcoxon test of expression in the target cell, and expression in 136 

other cell types should be lower than 0.05 in more than two of the six DGEDats. 137 

4) the gene must be shown to be specific in at least one proteomic dataset. 138 

Using these criteria, we identified 22 GSM in total. Nineteen of the 22 GSM 139 

were from the consistent marker genes group, and three were from the conflict 140 

marker genes group (Table 2). 141 

 142 

COE analysis of two large single-cell datasets 143 

To discover the co-expression of marker genes, we performed weighted gene 144 

co-expression network analysis (WGCNA) on human and mouse brain single-145 

cell transcriptome data in parallel with DGE. We annotated the co-expression 146 

modules using pSI packages30, which can identify genes enriched in specific 147 

cell populations and test gene overrepresentation by Fisher’s exact test. Figure 148 

2A shows the p-value of cell type enrichment of each module after correcting 149 

for multiple testing by BH. We chose the most significant module in the cell type 150 

enrichment analysis as the brain cell co-expression module (BCCM) for each 151 

cell type (Table 3, Supplementary Figure 3 and Supplementary Figure 4). We 152 

used Gene Ontology analysis to determine the biological functions of each 153 

BCCM (Supplementary Table 3). The BCCMs were enriched in biological 154 

processes for specific cell types. For example, the oligodendrocyte-related 155 

module was enriched in the axon ensheathment pathway.  156 

Next, we used the module preservation test to compare the BCCMs in 157 

human and mouse. The BCCMs of mouse brain were preserved in the human 158 

brain co-expression network. However, only the human neuron module was 159 

preserved in the mouse brain co-expression network (Figure 2B). Therefore, 160 

we analyzed the BCCMs for mouse and human brain separately in subsequent 161 

analysis to ensure we discover marker genes tailored specifically for human 162 

and mouse. 163 

 164 

DGE-COE relationship of brain cell marker genes 165 

After the independent analyses of DGE and COE, we explored the 166 

relationships between them. We first asked whether marker genes with stronger 167 

specificity have a higher probability to enter the BCCMs than those with lower 168 

specificity. We tested 107 marker genes covered by six DGEDats and human 169 

COEDat. These 107 genes had 72 clustered into the four cell-type specific 170 
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BCCMs and 35 into the other non-BCCMs. We found that csFC values of the 171 

72 BCCM marker genes were higher than those of the 35 non-BCCM marker 172 

genes in all six DGEDats (Figure 3A, p-value of two-sample Wilcoxon test 173 

<0.05). In other words, marker genes in the BCCMs were more specific than 174 

the marker genes in the non-BCCMs. Significantly higher csFC values of 175 

marker genes in BCCMs than in non-BCCMs were also observed in mouse 176 

data (Supplementary Figure 5A, p-value of two-sample Wilcoxon test <0.05). 177 

This suggests that the highly-specific marker genes are more likely to be placed 178 

in a BCCM. 179 

Based on the test above, we next hypothesized that the highly-specific 180 

marker genes positioned close to the hub of the BCCMs have module 181 

membership rankings that are higher than non-GSM in the same BCCM. We 182 

divided the 72 marker genes in the human BCCMs into 20 GSM as identified 183 

above and 52 non-GSM. To compare the module membership ranking of these 184 

two gene groups, we performed a two-sample Wilcoxon test on their module 185 

membership (kME). kME is a measurement parameter used to assess the 186 

correlation between a gene and the eigengene, the hub of the co-expression 187 

module. A gene with high kME means that it has high correlations with other 188 

genes and consequently high ranking in the module. The kME values of GSM 189 

were significantly higher than those of non-GSM in the human BCCMs (p-value 190 

of two-sample Wilcoxon test<0.05, Figure 3B). However, the ranking of GSM in 191 

the BCCMs was not significantly higher than non-GSM in the mouse data (p-192 

value of two-sample Wilcoxon test = 0.13, Supplementary Figure 5B).  193 

These two analyses suggested that a connection did exist between DGE and 194 

COE for the marker genes. We further chose csFC representing DGE, and kME 195 

representing COE, to study the relationship between them. Significant 196 

correlations were observed between csFC values from five of the six DGEDats 197 

and kME values from human co-expression network (Spearman rho>0.2, p < 198 

0.05; Figure 3C). In the mouse data, kME values of the marker genes were 199 

significantly correlated with csFC values in four of the six DGEDats (Spearman 200 

rho>0.2, p < 0.05; Supplementary Figure 5C). This indicates that high cell-201 

specific fold change and high correlation with other marker genes in the BCCMs 202 

are two related properties of marker genes. 203 

 204 

Novel candidate brain cell marker genes are revealed by integration of 205 

COE and DGE 206 

Based on the relationship observed between DGE and COE, we developed 207 

new criteria for selecting novel candidate brain cell marker genes (NCM). Since 208 

the BCCMs of human and mouse were not completely preserved, NCM was 209 

defined in human and mouse separately. The mouse NCM should have 1) csFC 210 

equal to or greater than 2 in at least two DGEDats from DGEDat2-DGEDat6 211 

(BH corrected p-value of two samples of Wilcox test < 0.05), and 2) kME should 212 

be greater than 0.6 in COEDat2. We identified 16 mouse NCMs according to 213 

the criteria (Table 4, Supplementary Table S4). Because only one DGEDat for 214 
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the human brain was available for analysis, we set relatively stricter criteria for 215 

human NCM to make more conservative calls. The human NCM should have 216 

1) csFC significantly larger than 4 in the DGEDat1 (BH corrected p-value < 0.05) 217 

and 2) kME should be greater than 0.8 in the COEDat1. We identified 18 human 218 

NCM meeting these criteria (Table 4, Supplementary Table S5).  219 

 220 

GSM and NCM improve the performance of supervised deconvolution 221 

We used supervised deconvolution to examine how the choice of marker 222 

genes impacts deconvolution results using mouse data. We hypothesized that 223 

including GSM and NCM would improve deconvolution accuracy compared to 224 

not having them in the calculations. We downloaded mouse expression data 225 

from purified neuron, astrocyte, oligodendrocyte, and microglia, as well as RNA 226 

mixtures with known proportions of each cell type31. The purified cell expression 227 

data was used as a reference profile, and the mixture data was used for 228 

deconvolution. We constructed four types of reference gene sets: baseline, 229 

GSM_plus, NCM_plus, and NCM_GSM_plus. The baseline reference gene set 230 

included all the genes except for GSM and NCM. The other references were 231 

constructed by adding GSM, NCM, and their combination into the baseline 232 

reference. We used the root mean square error (RMSE) between estimated cell 233 

proportions and the true proportion to evaluate deconvolution performance. 234 

Higher RMSE indicated poorer performance of deconvolution. The optimal 235 

number of marker genes for deconvolution was determined (Materials and 236 

Methods). We found that the deconvolutions with baseline reference of 400 237 

genes had the lowest RMSE, so we used this number of genes to construct the 238 

four tested references.  239 

We observed that adding either set of GSM or NCM into the reference 240 

reduced the RMSE (Figure 4), suggesting that the inclusion of GSM and NCM 241 

can improve the performance of deconvolution. The reference including both 242 

NCM and GSM performed the best. To prove that the improved performance of 243 

the reference with NCM or GSM was not because of a larger number of marker 244 

genes used, we completed permutations by constructing three permutated 245 

references with randomly selected genes, excluding GSM and NCM. The 246 

permutation was repeated 1000 times for each type of permutated reference. 247 

Deconvolution using a reference with GSM or NCM outperformed the 248 

deconvolution using a permutated reference without GSM or NCM, showing 249 

that improved deconvolution performance when GSM and NCM were included 250 

was not related to the increased reference size (Figure 4B).  251 

  252 

Discussion 253 

The current study describes the first systematic evaluation of marker gene 254 

specificity and their reliability for identifying cell types in human and mouse 255 

brains. We not only evaluated the published marker genes but also designed 256 

new criteria to discover novel marker genes based on both differential gene 257 
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expression and co-expression. Applying our proposed novel marker genes to 258 

deconvolution improved the performance of deconvolution and resulted in more 259 

accurate cell proportion estimates. 260 

This study identified a set of marker genes to discriminate neurons, 261 

astrocytes, microglia, and oligodendrocytes. New brain cell types have recently 262 

been identified  with the development of single-cell RNA sequencing32. The 263 

evaluation of marker genes for these new cell types cannot be achieved 264 

currently because the multi-omics for these new cell types are not available. 265 

We required the cell types in evaluation to be measured at both transcriptome 266 

and proteome level, and currently only the four major cell types above satisfied 267 

the criteria. Our method will be adaptable to the newly identified brain cell types 268 

when multi-omics data are available. 269 

One of the important outcomes of the current study was validating the 270 

specificity of marker genes reported in the literature. Most of the genes 271 

(304/540) included in the current study were claimed to be marker genes in a 272 

single source, and only eight genes had a consistent claim supported by all the 273 

collection sources (Supplementary Figure 1). Some genes that we tested (27 / 274 

540) had conflict definitions for different cell types including several well-known 275 

marker genes, such as GFAP33 and ITGAM34. Our evaluation refined a list of 276 

reliable marker genes and supported using GFAP as a marker of astrocytes 277 

and ITGAM as a marker of microglia.  278 

We were strict in assessing the specificity of marker genes, which led to 279 

removing some genes from commonly used marker gene lists. We compared 280 

the classic fold-change and cell type-specific fold-change of consistent marker 281 

genes (Supplementary Table 2). Eight marker genes were imprecisely defined 282 

in more than three of six DGEDats using the classic fold change. For example, 283 

SELENBP1 was a claimed astrocyte marker gene using averaged ranks across 284 

comparisons with each of other cell types13. However, its expression in 285 

microglia is close to, or even higher than expression in astrocytes in DGEDat2-286 

DGEDat6. We removed it from the marker gene list because of its similar 287 

expression in microglia and astrocyte (Supplementary Figure 2). Most of the 288 

candidate marker genes failed to meet our criteria of GSM due to either being 289 

expressed at a similar level in more than two cell types (17%) or not being 290 

detectable as protein in the target cell type (20%), such as RBFOX3 and 291 

TMEM119. These two genes both showed target cell specificity when they 292 

could be detected (Supplementary Table 6). We expect that more marker genes 293 

including these two genes may be reclassified as GSM when more reliable 294 

proteomics data becomes available.  295 

We showed a positive correlation between the csFC and kME of marker 296 

genes in both human and mouse brain. This is in line with our expectation that 297 

good marker genes will have similar expression patterns across cell types and 298 

strongly correlate with each other, which forms the core part of the cell module. 299 

The most important meaning of the strong correlation is that it suggests COE 300 

can be used for discovering marker genes. COE used all cell types, both 301 
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characterized and uncharacterized, in brain tissue while DGE only used the 302 

several measured cell types to identify marker genes. The marker genes 303 

identified by COE should be more robust because they showed cell type-304 

specificity across a broader range of cell types. This relationship will help to 305 

identify more brain cell marker genes from single-cell sequencing data, a 306 

technique that is increasing in popularity. 307 

To explore the potential use of antibodies of NCM for cell labeling, we 308 

checked NCM’s subcellular localization of expression in the COMPARTMENTS 309 

database35 and the Allen Brain Atlas36. Eight human NCM and six mouse NCM 310 

are expressed on the plasma membrane, suggesting that antibodies made to 311 

these gene products have potential for use in FACS. One human NCM and 312 

seven mouse NCM are expressed at the nucleus, suggesting their potential use 313 

in sorting nuclei. Most of the mouse NCM already had archive ISH data except 314 

Elavl4. However, for the human brain, only SNTA1 had ISH data in the database. 315 

More experiments are needed to verify the subcellular location of the human 316 

NCM.  317 

Supervised deconvolution was developed to replace the physical sorting of 318 

cell types. Supervised deconvolution infers cell proportion based on the 319 

expression of cell marker genes. Consequently, cell-type specificity of marker 320 

genes determines the accuracy of estimated proportions37. The deconvolution 321 

method is relatively well established, but validated marker genes for supervised 322 

deconvolution are lacking. NCM we proposed reduced the RMSE of 323 

deconvolution from 7.9% to 7.6% and resulted in improved accuracy of cell 324 

proportion estimates. The marginal improvement was expected because the 325 

baseline reference was composed of 400 genes with > 2-fold csFC. Instead of 326 

completing computations with 400 genes, using only the 21 GSM and 13 NCM 327 

we identified improved the performance of deconvolution slightly (0.3%) and is 328 

less resource intensive.  329 

To date, various studies have found similarities and differences between 330 

tissue of humans and mice at the transcriptome level17,38-40. A study found a 331 

high degree of co-expression module preservation between human and mouse 332 

brain, and all mouse modules showed preservation with at least one human 333 

module whereas there were multiple human-specific modules41. The modules 334 

enriched in neuronal markers were more preserved between species than 335 

modules enriched glial marker genes41. This work conducted at the tissue level 336 

is consistent with our results showing that mouse shared BCCMs with human, 337 

but the BCCMs of the human brain were human-specific, except the neuron-338 

related module. Our results also supported  a recently published work at the 339 

single-cell level by Xu et al. who observed that hundreds of orthologous gene 340 

differences between human and rodent were cell type-specific42. Our data add 341 

to accumulating evidence that human have more cell-specific co-expression 342 

modules than mouse. Importantly, this implies that research on brain-related 343 

diseases using mouse models may have limited applicability to humans 344 

because of the difference between human and mouse brain cells. Furthermore, 345 
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the definitions of brain cell types should consider species differences.  346 

  Our work is limited by the lack of cell-specific gene expression data with a 347 

large sample size and replication. This made the criteria for the evaluation less 348 

universal and more specific to our data sets.  We could only calculate the p-349 

value for four of six DGEDats due to lack of replication. Another limitation is the 350 

data used in the discovery of the relationship between DGE and COE were not 351 

from the same samples. This may explain why we did not observe strong 352 

correlations in all tested datasets.  353 

Through a comprehensive evaluation of the brain cell marker genes; we 354 

developed a new method to identify marker genes, and provide a list of reliable 355 

marker genes for brain cells to guide the cell identification. Recently, studies 356 

reported methylome43 and regulome44 of brain cells, creating the potential to 357 

develop marker genes at epigenetics level. It would be meaningful to construct 358 

a framework by combining different omics data and methods to fully describe 359 

the cell types in the brain. 360 

 361 

Materials and Methods 362 

DGEdats pre-processing and quality control 363 

We collected six datasets for the DGE-based evaluation. 1) DGEDat115: Cells 364 

were isolated from the human temporal lobe cortex by immunopanning. We 365 

downloaded the fragments per kilobase of transcript per million mapped reads 366 

(FPKM) matrix. Fetal samples and genes with FPKM<0.1 in more than one 367 

sample were removed. 2) DGEDat214: Cells were isolated from mouse cerebral 368 

cortex by immunopanning and FAC. We downloaded the expression level 369 

estimation which was quantified as FPKM. Genes with FPKM<0.1 in more than 370 

two samples were removed. 3) DGEDat310: Gene expression of  cells isolated 371 

from mouse brain cortex were measured by microarray. The microarray data 372 

contained 12 cell populations, which made use of the Mouse430v2 Affymetrix 373 

platform. We downloaded the raw CEL file. All the CEL files were subjected 374 

together to background correction, normalization and summary value 375 

calculation using the R package affy45 (‘rma’ function). The probes with ‘A’ or 376 

‘M’ state in more than two samples were removed. 4) DGEDat411: Cells were 377 

isolated from E16.5 and P1 mouse brain to culture neuron and glia cells. We 378 

downloaded the expression matrix which were quantified as reads per kilobase 379 

of transcript per million mapped reads (RPKM). Genes with RPKM<0.1 in more 380 

than three samples were removed. 5) DGEDat5 and DGEDat611: both primary 381 

cultured cells and acutely isolated cells were collected from four replicates of 9-382 

week-old whole mouse brains. Liquid chromatography-tandem mass 383 

spectrometry analysis was performed. We downloaded the quantified 384 

expression matrix. Genes with one missing value were removed. 385 

 386 

COEdats pre-processing and quality control 387 

Two large-scale single-cell RNA sequencing datasets from both human and 388 
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mouse brain were collected for co-expression analysis. 1) COEDat1. The 389 

human single cell transcriptome was from adult human individual’s temporal 390 

lobes46. In total, 332 cells from eight adult human brains (three males and five 391 

females) were collected and profiled by Illumina MiSeq and Illumina NextSeq 392 

500. Raw sequencing reads were aligned using STAR and per gene counts 393 

were calculated using HTSEQ. We downloaded the counts matrix.  2) 394 

COEDat2. The mouse single cell transcriptomes of 3005 cells from 395 

somatosensory cortex and hippocampal CA1 regions were collected from 396 

juvenile (P22 - P32) CD1 mice including 33 males and 34 females47. The 397 

sequencing platform was Illumina HiSeq 2000. Raw reads were mapped to the 398 

mouse genome using Bowtie and the mapped reads were quantified to raw 399 

counts. We downloaded the counts matrix. 400 

COEDats were pre-processed in Automated Single-cell Analysis Pipeline 401 

(ASAP)48. Genes with Counts per Million (CPM) lower than 1 in more than ten 402 

samples were removed from human brain data, and genes with CPM lower than 403 

1 in more than 50 samples were removed from mouse brain data. After quality 404 

control, 13941 and 12149 genes were retained for human and mouse brain, 405 

respectively. The human brain data were normalized by voom function. Mouse 406 

data was normalized by scLVM. In total, 57 ERCC spike-ins in mouse data were 407 

used for fitting of technical noise. The normalized data were retained. 408 

 409 

Deconvolution data pre-processing and quality control 410 

Gene expression data of brain samples with known cell proportion from rat 411 

was used in cell type-specific deconvolution31 (GEO accession: GSE19380). 412 

This dataset contains four different cell types including neuron, astrocyte 413 

oligodendrocyte and microglia, and two replicates of five different mixing 414 

proportions (Supplementary Table 7). The platform used was Affymetrix Rat 415 

Genome 230 2.0 Array. All the CEL files were subjected together to background 416 

correction, normalization and summary value calculation using ‘rma’ function. 417 

 418 

Co-expression analysis 419 

To determine the gene networks of specific cell types, we completed 420 

weighted gene co-expression network analysis (WGCNA22) on single-cell 421 

sequencing data from both human and mouse brain using the signed network 422 

type. The parameter settings were as follows: Pearson correlation function, 423 

signed Topological Overlap Matrix (TOM) matrix, minimal module size of 20, 424 

deepSplit of 4, mergeCutHeight of 0.25 and pamStage of true. The power for 425 

human and mouse data was 7 and 6, respectively. The number of modules for 426 

human and mouse data was 22 and 10, respectively. The pSI package was 427 

used to identify the cell-related modules. The threshold for the enrichment test 428 

was BH-corrected p-value<0.05. The GO terms analysis was identified by 429 

Gorilla49. The expression localizations of genes were provided by 430 

COMPARTMENTS35.  431 

 432 
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Module preservation test 433 

A module preservation test was performed using the modulePreservation50 434 

function in the WGCNA R package. Zsummary is a measurement to assess the 435 

preservation based on the size, density and the connectivity of modules. 436 

Zsummary < 2 indicated the module was not preserved, 2 < Zsummary < 10 437 

indicated weak to moderate preservation, and Zsummary > 10 indicated high 438 

module preservation. We performed the module preservation test twice, once 439 

withmouse data as the reference and human data as the test set and once with 440 

roles reversed. 441 

 442 

Supervised deconvolution 443 

We used function ‘lsfit’ in CellMix4 for deconvolution. In each mixture sample, 444 

we tested i probes and j cell types. The expression of each probe equals the 445 

sum of expression of purified cell types times corresponding cell proportions: 446 

𝐴11𝑋1 + 𝐴12𝑋2 + ⋯ + 𝐴1𝑗𝑋𝑗 = 𝐵1 447 

𝐴21𝑋1 + 𝐴22𝑋2 + ⋯ + 𝐴2𝑗𝑋𝑗 = 𝐵2 448 

⋯ ⋯ ⋯ 449 

𝐴𝑖1𝑋1 + 𝐴𝑖2𝑋2 + ⋯ + 𝐴𝑖𝑗𝑋𝑗 = 𝐵𝑖 450 

Where Aij is an expression signal of probe i in a purified cell j, Bi is an expression 451 

signal of probe i in a mixture of cells, and Xj is a proportion of cell type j. The 452 

formula can be summarized in a matrix equation: 453 

𝐴𝑋 = 𝐵 454 

where A is the reference matrix of the expression of all probe sets in all cell 455 

types, B is the vector of expression levels of all probe sets in the mixture, and 456 

X is the vector of the proportions of all cell types comprising B. The equation 457 

was solved for X with the R function ‘lsfit’ (linear least squares algorithm).  458 

The change of reference size was achieved by the following steps: 1) 459 

Construct the marker gene pool for four cell types and calculate the csFC. 2) 460 

Sort the marker gene pool according to the csFC in descending order. 3) 461 

Separate the reference genes into three types: GSM, NCM, and base genes. 462 

4) Pick the desired number of marker genes from the base gene pool to 463 

construct baseline reference and perform deconvolution. 5) Add the GSM, 464 

mouse_NCM, or both GSM and NCM into the baseline reference to construct 465 

three tested references: gsm_plus, ncm_plus, gsm_ncm_plus. 6) perform 466 

deconvolution with three types of references separately. 7) Calculate RMSE 467 

between the estimated proportion and true proportion using the ‘rmse’ function 468 

in Metrics packages for each type of references. 9) Repeating step 2~step 8 for 469 

increasing reference sizes. 470 
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Figures and Tables 633 

 634 

 635 
Figure 1. Analysis workflow. Six DGEDats of the purified cell population and two COEDats of single cells 636 

were used to evaluate 540 commonly-used brain cell marker genes.  Differential gene expression (DGE) 637 

was performed on six DGEDats and the cell-specific fold change (csFC) was defined to measure the cell 638 

specificity for the marker genes. Co-expression (COE) analyses were performed on two COEDats and 639 

cell-specific networks were constructed. The correlation of genes with the module eigengene in the cell 640 

network was measured as module membership (kME). Through DGE-based evaluation, 22 gold-standard 641 
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marker genes (GSM) were identified. Combining DGE and COE, 34 novel candidate marker genes (NCM) 642 

were identified. The specificities of GSM and NCM were demonstrated in supervised deconvolution. 643 

 644 

 645 

 646 

 647 

 648 

Figure 2. Cell type enrichment and preservation test of co-expression modules for human and mouse 649 

brain. (A) Enrichment of brain cell marker genes in human and mouse co-expression modules. The most 650 

significantly enriched module was defined as the brain cell co-expression module (BCCM) for each cell 651 

type. The human BCCMs are blue (astrocyte), brown (microglia), turquoise (neuron), and yellow 652 

(oligodendrocyte). The mouse BCCMs are red (astrocyte), green (microglia), turquoise (neuron), blue 653 

(oligodendrocyte). (B) Preservation of BCCMs between human and mouse brain. The top panel is the 654 

preservation test of BCCMs of the human brain in mouse data. The bottom panel is the preservation test 655 

of BCCMs of the mouse brain in human data. The arrows point to the BCCMs. Zsummary < 2 indicates 656 

the module is not preserved, 2 < Zsummary < 10 indicates weak to moderate preservation, and Zsummary > 657 

10 indicates high module preservation.  658 

 659 

 660 

 661 
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 673 
Figure 3. The relationship between DGE and COE of marker genes in human brains. (A) The comparison 674 

of csFC of BCCM marker genes and non-BCCM marker genes. The turquoise box denotes the marker 675 

genes in BCCMs and the mustard box denotes the marker genes in non-BCCMs (NBCCM = 72, NNON-BCCM 676 

= 35). The p-value is from a two-sample Wilcoxon test between csFC of marker genes in BCCMs and 677 

non-BCCMs. (B) The comparison of kME of the GSM and non-GSM in the BCCMs. A two-sample 678 

Wilcoxon test was used to test the significance of the difference (NGSM=20, Nnon-GSM=52). (C) The 679 

Spearman correlation between csFC and kME of marker genes in BCCMs. The blue dot represents GSM 680 

and the orange dot represent other marker genes.  What are the dashed blue and orange circles?  681 

 682 
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 693 

 694 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 19, 2019. ; https://doi.org/10.1101/554626doi: bioRxiv preprint 

https://doi.org/10.1101/554626
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

 695 
Figure 4. Effect of GSM and NCM in supervised deconvolution. (A) The RMSE between true   and 696 

estimated cell proportion by supervised deconvolution with different references. The references are 697 

defined as follows: baseline = reference without GSM and mouse NCM; gsm_plus = baseline + GSM; 698 

ncm_plus = base + mouse NCM; gsm_ncm_plus = base + GSM +mouse NCM. With increasing  size of 699 

the reference, the cell-specific fold change of marker genes included in the reference decreased. The 700 

deconvolution performance of permutated references without GSM and NCM where size is equal to the 701 

gsm_plus (B), ncm_plus (C), gsm_ncm_plus (D). The colors match the five refrences in figure 4A. The 702 

red dashed lines indicate the RMSE of deconvolution using gsm_plus, ncm_plus, and gsm_ncm_plus 703 

reference of 400 genes. 704 
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Table 1 Datasets used 720 

dataset species omics platform purification Brain region #sample/(cells) study 

DGEDat1 human transcriptome RNA-seq isolated* temporal lobe 45 GSE73721 

DGEDat2 mouse transcriptome RNA-seq isolated cerebral cortex 17 GSE52564 

DGEDat3 mouse transcriptome array isolated forebrain 10 GSE9566 

DGEDat4 mouse transcriptome RNA-seq culture* Whole brain 22 
Sharma et 

al. 

DGEDat5 mouse proteome MS culture Whole brain 27 
Sharma et 

al. 

DGEDat6 mouse proteome MS isolated Whole brain 4 
Sharma et 

al. 

COEDat1 human transcriptome RNA-seq isolated 

somatosensory 

cortex and 

hippocampal 

CA1 

(3005) GSE60361 

COEDat2 mouse transcriptome RNA-seq isolated temporal lobe (332) GSE67835 

*seq =RNA-sequencing, array = microarray, MS= mass spectrum, isolated= isolated from tissue, culture = primary culture. The 721 

table has to be shrunk to fit on a page and be within margin limits for the journal 722 
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The numbers in the parentheses represent logarithmic transformed csFC, standard deviation and p-value of two-sample 743 

Wilcoxon tests (log2csFC, SD, p-value); Bold numbers indicate the BH corrected p-value of two-sample Wilcoxon tests is 744 

significant (FDR<0.05); oligo=oligodendrocyte; “*” denotes this marker gene is a conflict marker gene. The neuron of DGEDat1 745 
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and all cell types in DGEDat6 have no replicates so statistical tests were not possible. 746 
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Table 3 Brain cell co-expression modules in human and mouse 790 

Species module 
# of 

genes 
cellType Top three hub genes Gene ontology (q-value) 

human blue 731 astrocyte AGXT2L1, GPR98, SLCO1C1 
developmental process (3.85E-

11) 

human brown 377 microglia C3, ITGAX, LAPTM5 
immune system process 

(1.00E-67) 

human 
turquois

e 

111

9 
neuron GABRB2, SNAP25, SYT1 

regulation of trans-synaptic 

signaling (1.73E-19) 

human yellow 370 oligo* UGT8, ERMN, OPALIN axon ensheathment (2.39E-11) 

mouse red 187 astrocyte GJA1, AQP4, NTSR2 
multicellular organismal 

process (6.83E-08) 

mouse green 200 microglia C1QA, C1QB, TYROBP 
immune system process 

(8.79E-59) 

mouse 
turquois

e 

639

8 
neuron RAB3A, YWHAB, NDRG4 

establishment of localization in 

cell (1.20E-35) 

mouse blue 475 oligo* UGT8, CLDN11, CNP 
axon ensheathment  

(7.85E-13) 

*oligo=oligodendrocyte; The ‘top three hub genes’ column displays the top three genes that have the highest kME within BCCM. 791 

The ‘gene ontology’ column displays the top enriched category for each module. 792 
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Table 4 NCM of human and mouse brain and their cellular locations 816 

gene cellType species ISH location 

ABCC9 oligodendrocyte human - Plasma membrane 

ACSS1 oligodendrocyte human - Mitochondrial matrix 

AHCYL1 oligodendrocyte human - Cytoplasm 

CXCR7 oligodendrocyte human - Plasma membrane 

DDAH1 oligodendrocyte human - Cytosol 

EMX2OS oligodendrocyte human - - 

GNA14 oligodendrocyte human - Plasma membrane 

GPR125 oligodendrocyte  human - Plasma membrane 

IL33 oligodendrocyte human - Nucleoplasm 

LRRC16A oligodendrocyte human - Plasma membrane 

MT3 oligodendrocyte human - Nucleus 

PAPLN oligodendrocyte human - Extracellular region 

RHOJ oligodendrocyte human - Plasma membrane 

SLC14A1 oligodendrocyte human - Plasma membrane 

SNTA1 astrocyte human Y Plasma membrane 

TIMP3 astrocyte human - Extracellular region 

TPD52L1 astrocyte human - Cytoplasm 

WIF1 astrocyte human - Extracellular region 

C1qb microglia mouse Y Extracellular region 

Mrc1 microglia mouse Y Plasma membrane 

Csf1r microglia mouse Y Plasma membrane 

Ctss microglia mouse Y Lysosome 

Ptpn6 microglia mouse Y Nucleus 

Cacna2d1 neuron mouse Y Plasma membrane 

Elavl4 neuron mouse - Nucleus 

SPin1 neuron mouse Y Nucleus 

Gria1 neuron mouse Y Plasma membrane 

Nipsnap1 neuron mouse Y Mitochondrion 

Slc25a22 neuron mouse Y Plasma membrane 

Mapk8 neuron mouse Y Nucleus 

Stau2 neuron mouse Y Nucleus 

Sirt2 oligodendrocyte mouse Y Nucleus 

Bcas1 oligodendrocyte mouse Y Nucleus 

Plxnb3 oligodendrocyte mouse Y Plasma membrane 

ISH: in situ hybridization image data from Allen Brain Atlas, Y: yes, having ISH image to confirm the locations, -: no ISH image. 817 
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 825 

Supplementary Materials 826 

Supplementary Figure 1. The overlap of marker genes collected from different sources 827 

 828 

Supplementary Figure 2. An example to illustrate the difference between cell-specific fold 829 

change and classic fold change 830 

Supplementary Figure 3. The top 50 hub genes of human brain cell co-expression module  831 

Supplementary Figure 4. The top 50 hub genes of mouse brain cell co-expression module 832 

Supplementary Figure 5. The relationship between DGE and COE in co-expression 833 

analysis of mouse data 834 

Supplementary Figure 6. Effect of human GSM in deconvoluting mouse brain tissue 835 

 836 

Supplementary Table 1. Collected commonly-used brain cell marker gene 837 

Supplementary Table 2. The classical fold change and cell type-specific fold change of 838 

consistent marker gene 839 

Supplementary Table 3. The GO term of BCCM for human and mouse 840 

Supplementary Table 4. NCM of mouse brain cell 841 

Supplementary Table 5. NCM of human brain cell 842 

Supplementary Table 6. DGE of RBFOX3 and TMEM119 843 

Supplementary Table 7. The true proportion of cell types in the mixture for deconvolution 844 
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 867 

 868 

Supplementary Figure 1 The overlap of marker genes collected from different sources. The commonly-869 

used marker genes we evaluated were collected from three main sources: laboratory catalog, database, 870 

and published literature. The number indicates the number of marker genes belonging to corresponding 871 

sources. 872 
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 878 
Supplementary Figure 2 An example to illustrate the difference between cell-specific fold change and 879 

classical fold change. (A) The expression of SELENBP1. SELENBP1 is an un-validated marker gene of 880 

astrocyte. All six DGEDats detected it. Its expression in microglia is very close to even higher that the 881 

expression in astrocyte in DGEDat2-DGEDat6. (B) The fold change of SELENBP1. The cell type-specific 882 

fold change (csFC) and classical fold change for the SELENBP1 are measured. The red dashed line is 883 

the empirical cut-off for the fold change (log2FC=1). The error bar denotes the standard deviation of the 884 

fold change. The “*” indicate the BH-corrected p-value of two-sample Wilcoxon test is lower than 0.05. 885 

Since DGEDat6 have no replicates, the standard deviation cannot be calculated. The similar expression 886 

in the microglia will be covered up by the classical fold change calculation, while the csFC avoids this 887 

situation. 888 
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 906 

Supplementary Figure 3 The top 50 hub genes of human brain cell co-expression module. The WGCNA 907 

was performed on human single-cell transcriptome. The brain cell co-expression module was selected 908 

according to the cell type enrichment conducted in pSI package. The gene members are ordered by kME 909 

from high to low. The dot color is the module color of brain cell co-expression module. The size of points 910 

indicates the kME of genes in the module with larger point representing higher kME.  911 
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 914 
Supplementary Figure 4 The top 50 hub genes of mouse brain cell co-expression module. The WGCNA 915 

was performed on mouse single-cell transcriptome. The brain cell co-expression module was selected 916 

according to the cell type enrichment conducted in pSI package. The gene members are ordered by kME 917 

from high to low. The dot color is the module color of brain cell co-expression module. The size of points 918 

indicates the kME of genes in the module with larger point representing higher kME.  919 
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 940 

Supplementary Figure 5 The relationship between DGE and COE in co-expression analysis of mouse 941 

data. (A) The comparison of csFC of brain cell co-expression module (BCCM) marker genes and non-942 

BCCM marker genes. The turquoise box denotes the marker genes in BCCM and the mustard box 943 

denotes the marker genes in non-BCCM (NBCCM = 79, NNON-BCCM = 28). The p-value is from two-sample 944 

Wilcoxon test between csFC of marker genes in BCCMs and non-BCCMs. (B) The comparison of kME of 945 

the GSM and non-GSM in the BCCM. two-sample Wilcoxon test was used to test the significance of the 946 

difference (NGSM=19, Nnon-GSM=88). (C) The Spearman correlation between csFC and kME of marker 947 

genes in BCCMs. The blue dot represents GSM and the orange dot represent other marker genes. 948 
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 962 

Supplemental Figure 6 Effect of human GSM in deconvoluting mouse brain tissue. (A) The 963 

RMSE between true cell proportion and estimated cell proportion by supervised deconvolution 964 

with different references. The deconvolution performance of permutated references without 965 

GSM and NCM which size is equal to the reference tested above. The colors match the five 966 

references in figure 4A. The red dashed lines display the RMSE of deconvolution using tested 967 

reference of 400 genes. 968 
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