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ABSTRACT 

Inbreeding depression has been demonstrated to impact vital rates, productivity, and 

performance in many domestic species. Many in the field have demonstrated the value of 

genomic measures of inbreeding compared to pedigree-based estimates of inbreeding; further, 

standardized, high-quality phenotype data on all individuals is invaluable for longitudinal 

analyses of a study cohort. We compared measures of reproductive fitness in a small cohort of 

Golden Retrievers enrolled in the Golden Retriever Lifetime Study (GRLS) to a genomic 

measurement of inbreeding,  FROH. We demonstrate a statistically significant negative 

correlation between fecundity and FROH.This work sets the stage for larger scale analyses to 

investigate genomic regions associated with fecundity and other measures of fitness. 

INTRODUCTION 

 

The term “inbreeding depression” encompasses a reduction of a trait, often associated with 

lifetime fitness, as a sequelae to a sustained rate of breeding of closely related individuals 

(reviewed in Charlesworth and Willis, 2009; Hedrick and Garcia-Dorado, 2016). While 

inbreeding depression has been extensively explored in plants (Lande and Schemske, 1984), 

geographically isolated wild animal populations (Furlan et al, 2012, Hagenblad et al, 2009), and 

endangered and zoo populations (Roelke et al, 1993), much research of late has addressed the 

same phenomenon in domestic species, many of which have been selectively bred for 

performance, production, and companionship. The correlation between inbreeding and impaired 

production in the dairy, wool, and meat industry has been well described (Ercanbrak et al, 1991; 

Noren et al, 2015; Mokhtari et al, 2014; Pereira et al, 2017; Perez et al, 2018). More recently, 
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inbreeding has been correlated with reduced performance in Australian Thoroughbred horses 

(Todd et al, 2018).  

 

In the past, the estimation of inbreeding has relied on in-depth pedigrees, whereby a coefficient 

of inbreeding (COI), estimated from pedigree-based relationships between ancestors (FPED), is 

used in lieu of measurement of true autozygosity (Wright, 1922). Genomic measures of the COI 

based on runs of homozygosity (FROH) preclude the need for pedigree-based COIs, which 

depend heavily on pedigree depth and accuracy (Zhang et al, 2015); even with detailed 

pedigrees, estimated COIs can deviate substantially from true autozygosity due to 

recombination and segregation (Hill et al, 2011; Keller et al, 2011). With the availability of high-

density SNP arrays and affordable DNA sequencing, FROH has proven more effective than 

pedigrees (Huisman et al, 2016) or limited microsatellite panels (Hoffman et al, 2014) in 

assessing inbreeding and fitness in animal and human populations (Bruniche-Olsen et al, 2018). 

 

As accurate as genome-wide assessments of inbreeding have proven, equally high-quality 

phenotype data are necessary to detect inbreeding depression. In humans and wild populations, 

inbreeding depression can be assessed by tracking vital rates--birth rate, mortality rate--in a 

population over time (Bittles et al, 2002; Robert et al, 2005; Robert et al, 2009; Johnson et al, 

2011). In domestic species, additional measures of inbreeding depression include litter size, 

reproductive success, body size, and performance traits are used (as discussed earlier). 

Naturally, these analyses can be clouded by external factors including environment, 

demographics, record completeness and accessibility, and genetic heterogeneity. In that 

specific regard, the domestic dog, Canis familiaris, is an ideal candidate species in which to 

assess inbreeding depression. In effect, purebred dogs represent naturally occurring 

populations with limited genetic variation, the result of closed breed registries and strict breed 

standards for appearance and affect. Further, dogs have an average gestational period of two 

months and are polytocous, providing rapid collection of fecundity data, and have an average 

lifespan of roughly 10% of the average human lifespan, permitting timely collection of 

multigenerational mortality data. 

 

Initiatives for banking of biological samples in combination with standardized, detailed 

phenotype data are gaining greater traction in the canine community as a means to identify 

genetic, epigenetic, and environmental variants that impact canine health and longevity. One 

such initiative, the Morris Animal Foundation’s (MAF) Golden Retriever Lifetime Study (GRLS), 

seeks to identify genetic and environmental variables that impact longevity in the Golden 

Retriever (Guy et al, 2015). Known for its sunny coat and disposition, the Golden Retriever is 

widely recognized as one of America’s favorite dog breeds and is consistently ranked in the top-

five highest breeds in AKC registrations annually (American Kennel Club, a). Unfortunately, 

Golden Retrievers are also overrepresented in neoplasia cases, with more documented 

mortalities due to cancer than nearly any other breed (Kent et al, 2018; Dobson et al, 2014). 

And while some genetic variants have been associated with increased risk for certain cancers 

(Arendt et al, 2015), other major genetic contributors to Golden Retriever lifespan and fitness 

remain unidentified. 
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In four years, the GRLS has amassed a sample set of over 3,000 Golden Retrievers, complete 

with annual biological samples and standardized phenotype data collection from owners and 

veterinarians (Simpson et al, 2017), and represents a one-of-a-kind dataset for genomic 

analysis. Here, we combine detailed reproductive data gathered on 93 GRLS participants with 

high-density SNP genotyping. We evaluate the correlation of the genomic coefficient of 

inbreeding, FROH, with various indicators of female reproductive success, and we identify a 

negative correlation between  FROH and live litter size. 

 

RESULTS 

 

Study participants were drawn from the GRLS cohort of 3,044 dogs. 1,504 were female; 239 of 

these had been bred at least once. A random stratified sample of 100 dogs, termed the Embark-

GRLS cohort, was selected based on number of attempted breedings to enrich for dogs who 

had been bred several times and had the potential of producing several litters (Summarizing 

statistics available in Table S1). 93 dogs were successfully genotyped, ranging from 1 to 7 

years of age. A total of 407 heats were recorded; heat frequency ranged from 0 to 4 heats per 

dog per year. Recorded heats for dogs over the age of five years decreased dramatically, likely 

reflecting the relative youth of the GRLS cohort as well as increased likelihood for elective spay 

in older bitches. 66 dogs had produced at least one litter, with a total of 99 litters observed. FROH 

ranged from 0.187 to 0.479, with mean FROH of 0.316 (Fig 1). 

 

Many have demonstrated a negative impact of FROH on body size (Fredrickson et al, 2012; Lacy 

et al, 2013; Fareed et al, 2014; Cecci et al, 2018). We regressed the median shoulder 

measurement for each dog against FROH and found that in this dataset, FROH  was not 

appreciably correlated with median reported height at the shoulder (Fig S1a, P=.71). 

 

Body size has been observed to impact both age at first estrus, ovulation frequency, and parity 

across dog breeds (Borge et al, 2011). To ascertain whether body size was impacting litter size 

in this cohort, we regressed litter size against median shoulder height. We found a statistically 

insignificant positive association between median height at the shoulder and litter size (Fig S1b, 

P=.19). 

 

Finally, age at time of parturition has been shown to impact litter size (Borge et al, 2011; 

Mandigers et al, 1994). We regressed litter size against the dog’s age at the time of litter 

recording and did not observe an appreciable correlation between these two factors (Fig S1c, 

P=.65). 

 

The canine interestrus cycle is roughly seven months with high variation across breeds; bitches 

can also vary individually in their interestrus cycle depending on age and season (Sokolowski et 

al, 1977; Concannon et al, 1986; Davidson, 2006). Shorter interestrus periods, ergo, more 

frequent estrous cycles (heats), provide greater opportunities for conception and could therefore 

contribute to high conception rates. We plotted recorded annual heat frequency versus FROH, 

separating samples by calendar age. We saw no significant correlation between estrous cycle 

frequency and FROH at any age. (Fig S2); however, we did note that dogs who had more than 1 
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heat per year were likely to maintain this higher than average heat frequency over all years 

recorded. 

 

We next measured the association of successful conception rate (SCR) versus FROH. SCR is a 

derived value calculated from total number of litters produced over total number of attempted 

breedings. Dogs who had been bred one or less times were excluded from this analysis under 

the assumption that a single breeding (which would result in an SCR of either 0% or 100%) may 

not be reflective of a dog’s potential for SCR. We found that, while dogs with lower FROH had 

subjectively higher SCR, this result was not statistically significant (Fig S3). 

 

We next regressed FROH against the number of live puppies born per litter using a mixed effects 

linear model, considering  FROH, median height, and age at time of litter log as fixed effect 

variables and dam ID as a random effect variable. We found a statistically significant negative 

correlation between FROH and number of live puppies (Fig 2, P=0.02). 

 

A alternative mixed effects linear model was performed using  FROH, median height, and age at 

time of litter log as fixed effect variables and dam ID as a random variable, defining a 

standardized kinship matrix generated from GEMMA as the variance family to be used for the 

dam ID. This model also yielded a statistically significant  negative correlation between FROH and 

number of live puppies (P=0.02). 

 

While other measures of reproductive success could include variables for parturition and post-

natal care, our dataset included just 5 reported cases of dystocia and 1 case of mastitis; data on 

puppy survival and progress post-partum were not available in all cases. However, post-natal 

measurements for reproductive success are likely to be much more complex in nature, and will 

likely require a much larger dataset to inform them. 

 

DISCUSSION 

 

We and others have already demonstrated the potential of direct-to-consumer genomics to 

discover novel genetic variants affecting coloration (Deane-Coe et al, 2018; Eriksson et al, 

2010), behavior (Hyde et al, 2016), and disease risk (Chang et al, 2017). Our present findings 

also emphasize the power of multi-institutional collaboration to expedite and improve the 

process of data-driven discovery. The longitudinal, all-encompassing nature of the GRLS 

represents a wealth of phenotypic data. Combined with high-quality, high-density SNP 

genotyping, the potential for rapid identification of genetic contributions to lifespan and 

healthspan in the Golden Retriever is unprecedented. The work described here is clear 

evidence: even with a relatively small sample size of purebred Golden Retrievers, we describe a 

statistically significant negative correlation between FROH and litter size.  

 

The effects of inbreeding on reproductive success can be obscured by genotypic and 

phenotypic variation in the sample population. By using a subset of GRLS participants, we find 

ourselves in the lucky position of assessing this complex relationship in a natural population 

with, by definition, minimal variation. We do not observe a significant correlation between litter 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/554592doi: bioRxiv preprint 

https://doi.org/10.1101/554592
http://creativecommons.org/licenses/by/4.0/


 

5 

size and maternal body weight, though this has described by others (Borge et al, 2011). 

However, litter size trends have historically been documented across, but not within breeds, and 

it could be possible that body size variation within a breed with an already narrow range of 

acceptable body size could be insufficient to impact litter size. This hypothesis could be more 

definitively assessed in a larger sample set. Similarly, the negative effect of inbreeding on body 

weight has been explored in many species (reviewed in LeRoy et al, 2014). While we observe a 

subtle negative relationship between FROH and median shoulder height, in this cohort, this 

correlation was not significant, suggesting that a larger sample set could prove more 

informative. 

 

Strikingly, the only variable that significantly impacts litter size in this cohort is FROH. A negative 

correlation between pedigree-based estimates of inbreeding and litter size has been reported 

(LeRoy et al, 2015). To our knowledge, our work is the first to identify a significant correlation 

between a genomic estimate of inbreeding, FROH, and fecundity, predicting a roughly one puppy 

reduction in litter size with every 10% increase in  FROH.  

 

We also identify a suggestive negative correlation between successful conception rate, a 

measure derived from number of attempted breedings versus number of litters born. Given the 

many variables upon which successful conception depends upon, for example, appropriate 

timing of breeding relative to estrus, semen viability, and method of breeding, it is perhaps 

unsurprising that in this small cohort, this correlation was statistically insignificant. As such, we 

intend to examine SCR and other measures of fecundity in a larger cohort of Golden Retrievers. 

In addition, pending availability of phenotype, we would be eager to examine the effects of 

inbreeding on other indices of fertility including early fetal resorption, incidence of dystocia or 

perinatal complications, or, from the male point of view, sperm count or motility. 

 

Purebred animal registries are no stranger to popular sire effect. Animals with significant titles 

and accomplishments are more likely to contribute to the next generation with the hopes that 

progeny will exhibit the same excellent performance, conformation, or work ethic of the parent. 

Perhaps the most dramatic example of popular sire effect exists within the Thoroughbred 

racehorse industry (Catton and Wezerek, 2018). However, selective use of just a few highly 

accomplished individuals essentially pushes the population into an artificial bottleneck, leading 

to reduced genetic diversity in the next generation.  In the purebred dog world, certain measures 

do exist to control popular sire effect (Federation Cynologique Internationale, American Kennel 

Club (b)); further, most purebred dog breeders keep meticulous records in order to monitor and 

control the relatedness of their breeding animals. However, pedigree analysis of large 

populations of dogs still demonstrate a reduction in effective breeding population over the past 

50 years (Calboli et al, 2008). Though our analyses remain preliminary, it is possible that the 

consequences of popular sire usage and the contribution of just a select number of individuals 

to the next generation have come to roost for many well-known dog breeds. We believe that this 

work sets the stage for a much larger population analyses by which regions of the genome 

associated with aspects of inbreeding depression--higher mortality, reduced reproductive 

success--could be pinpointed and breeding recommendations could be made to increase 
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heterozygosity in these regions. In this regard, high density, high resolution genotyping could be 

invaluable for the maintenance and perpetuation of popular dog breeds. 

 

 
 

Fig 1. Box and whisker plot of FROH for 93 genotyped dogs in the Embark-GRLS cohort.  FROH 

ranged from 0.187 to 0.479, with mean FROH of 0.316. 

 

 
 

Figure 2. Litter size as measured by number of live puppies born is inversely correlated with  

FROH. Individual litters are plotted in blue; linear regression (R2=0.102, P=.02) is shown in yellow 

with 95% confidence interval in gray. 

 

MATERIALS AND METHODS 

 

Genomic DNA and phenotype information relative to reproductive status and success was 

requested from 100 female intact Golden Retriever dogs enrolled in the GRLS study had been 

bred at least once (Document S1).  

 

Phenotype information was compiled and provided by the MAF; information was gathered via 

veterinary- and owner-submitted questionnaire annually and at each veterinary visit per MAF 

guidelines. Participants’ date of birth, physical exam findings, most recent estrous (heat) cycle 
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and duration, date and method of last breeding and litter, litter size (puppies born, puppies 

weaned), and reproductive complications (dystocia, pyometra) were included. 

 

Peripheral blood mononuclear cell (PBMC)-derived gDNA for each dog was provided by the 

MAF. gDNA was diluted to roughly 200 ng/uL; 50 uL of each sample as submitted for 

genotyping using on the Embark 220K SNP array platform as previously described (Deane-Coe 

et al, 2018). FROH was calculated using runs of homozygosity ⋧ 500 kb as described in Sams et 

al, 2018. Successful conception rate (SCR) was calculated as the ratio of attempted breedings 

to number of litters born for each dog; dogs with zero attempted breedings were excluded from 

analysis. Violin plots of SCR relative to COI quartiles and regression plots for litter size relative 

to COI were generated with ggplot2 (Wickham, 2016). 

 

Litter size was calculated as the variable livepup, number of live puppies born, compiled from 

MAF records. A linear mixed model (coi.with.barcode) was generated with the lmer function 

(lme4, Bates et al, 2015) in R, considering FROH (coi_with_public), median withers height 

(median_height), and age in years at the time of litter recording (age_at_visit_year) as fixed 

effect variables and unique dam ID (barcode) as a random effect variable (as described in 

Cnaan et al, 1998 and implemented in Lüpold et al, 2010, Koch et al, 2008): 

 

coi.with.barcode <- lmer(livepup ~ coi_with_public + 

age_at_visit_year + median_height + (1|barcode), 

data=all_data_for_kinship) 

 

A second linear mixed-effects model (coi.with.kinship)  was performed using lmekin function in 

coxme (Therneau 2018): 

 

coi.with.kinship <- lmekin(livepup ~ coi_with_public + 

median_height + age_at_visit_year + (1|barcode), 

data=all_data_for_kinship, varlist=kinship.matrix.pdv) 

 

Using a standardized kinship matrix (kinship.matrix.pdv) generated with GEMMA (version 0.97) 

as a random effective variable (Zhou et al, 2012). 

 

For all regressions, significance of Pearson’s correlation coefficient is reported as P. 

 

DATA AVAILABILITY 

 

Additional data and complete summary statistics from the analyses in this paper will be made  

available to researchers through Embark Veterinary Inc., under an agreement with Embark that 

protects the privacy of Embark customers and their dogs. Please contact the corresponding 

author for more information and to apply for access to the data. 
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SUPPLEMENTAL FIGURES & TABLES 

 

 
Fig S1. Linear regression plots of a) median shoulder height against FROH, b) litter size 

against median height, and c) litter size against age at time of litter recording. While correlations 

between all three sets of factors have been demonstrated in the literature, we do not observe 

significant correlations between them in this dataset. 

 

 
Fig S2. Regression of estrous cycles (heats) recorded against FROH for Embark-GRLS 

dogs at a) 1, b) 2, c) 3, d) 4, e) 5, f) 6, and g) 7 years of age. Recorded heats range from 1 to 

4 heats per year at any age with no significant correlation between with FROH and annual heats 

at any year of age. Data points decrease dramatically for 6 (tan) and 7 (black) year old dogs. 
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Fig S3. Violin plots of SCR of GRLS dogs who had been bred at least twice (n=44) 

separated into FROH quartiles. Number of observations per quartile are indicated in each violin 

plot. Crossbars represent average SCR within quartiles Dogs in the fourth quartile (0.344 <  

FROH < 0.479) have a lower average SCR than dogs in the first, second, and third quartiles, 

though this difference is insignificant (P=.21).  

 

 
 Integer Age (years) 

Characteristic 1 2 3 4 5 6 7 

Number of visits 63 133 136 109 46 19 6 

Median body condition 
score (min, max) 

4(4,7) 4(2,7) 5(4,7) 5(2,6) 5(2,8) 5(3,7) 5(5,7) 

Mean Height at 
shoulders in cm (±sd) 

54.7(3.2) 55.2(3.2) 54.9(3.1) 54.6(2.6) 54.9(2.3) 53.8(1.5) 54.6(2.0) 

Mean Weight in kg 
(±sd) 

25.4(3.8) 26.7(3.5) 27.9(3.4) 28.3(3.2) 27.6(3.7) 28.8(4.5) 28.9(4.8) 

Total breedings 1 13 58 62 27 8 3 

Total litters 0 7 41 42 20 5 3 

% of breeding resulting 
in litter 

0% 54% 71% 68% 74% 63% 100% 

Total live births (min, 
max) 

n/a 59(4,11) 273(2,11) 251(2,10) 143(2,12) 32(7,10) 13(2,6) 

Total stillborn (min, 
max) 

n/a 3(0,3) 24(0,3) 33(0,5) 7(0,2) 1(0,1) 2(0,2) 

Total weaned (min. 
max) 

n/a 56(4,10) 227(0,10) 241(1,10) 125(2,12) 32(7,10) 13(2,6) 
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Number of c-sections 
(% of pregnancies) 

n/a 2(28%) 13 (32%) 9(21%) 4(20%) 0 0 

 

Table S1. Summarizing table of statistics on the 100 dogs selected for the Embark-GRLS 

cohort. Note that not all dogs represented in this table were genotyped; their statistics are not 

included in this study. 
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