
Geistlinger et al.

RESEARCH

Multi-omic analysis supports a developmental
hierarchy of molecular subtypes in high-grade
serous ovarian carcinoma
Ludwig Geistlinger1,2, Seyhun Oh1,2, Marcel Ramos1,2,3, Lucas Schiffer1,2, Boris Winterhoff4,5, Martin
Morgan3, Giovanni Parmigiani6, Michael Birrer7, Li-Xuan Qin8, Markus Riester9, Tim Starr4,5 and Levi
Waldron1,2*

Abstract

Background: The majority of ovarian carcinomas are of high-grade serous histology, which is associated with
poor prognosis and limited treatment options. Several studies have identified gene expression-based subtypes of
high-grade serous ovarian carcinoma (HGSOC) as a basis for targeted therapy, yet extensive ambiguity in
subtype classification impairs translation of these subtypes into clinical practice. Furthermore, although
HGSOC tumors are known to be frequently polyclonal, it is unknown whether clones within the same tumor
share the same subtype.

Results: We investigate whether ambiguity in subtype classification can be attributed to the polyclonal
composition of HGSOC tumors, addressing the currently unresolved question whether proposed subtypes are
early or late events in tumorigenesis. This hypothesis is first tested in The Cancer Genome Atlas HGSOC cases
by (i) analyzing recurrent somatic copy number alterations for their association with subtypes, (ii) inferring
per-alteration clonality from complementary analysis of SNP arrays and whole-exome sequencing, and (iii)
testing whether subtype-associated alterations tend to predominantly occur clonally (early events) or
subclonally (late events). As opposed to the genomically distinct evolution of soft-tissue sarcoma subtypes, we
find that subtype association of HGSOC alterations significantly correlate with subclonality. This correlation is
particularly evident for the high-purity proliferative subtype spectrum, which is also characterized by extreme
genomic instability, absence of immune infiltration, and increased patient age. This is in stark contrast to the
high-purity differentiated subtype spectrum, which is characterized by largely intact genome integrity, high
immune infiltration, and younger patient age. Other subtypes showed intermediate levels for these
characteristics. From single cell sequencing of an independent HGSOC tumor, we demonstrate that ambiguity
in subtype classification extends to individual tumor epithelial cells, further supporting a developmental
transition from one subtype spectrum to another.

Conclusion: We propose a novel model of HGSOC tumor development that complements the subtype
perspective. In this model, individual tumors develop from an early differentiated spectrum to a late
proliferative spectrum, and may exhibit characteristics of different previously defined ”subtypes” at different
points along a timeline characterized by increasing genomic instability and subclonal expansion. This model is
more consistent with available bulk and single-cell data, and provides an explanation for ambiguity in subtype
classification as the result of assigning discrete, mutually exclusive subtypes to a genomically complex process
of tumor evolution.
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Introduction

High-grade serous ovarian cancer (HGSOC) is a ge-

nomically complex disease, for which the accurate

characterization of molecular subtypes is difficult but
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anticipated to improve treatment and clinical outcome.
Several previous studies have devoted substantial re-
search effort to identifying molecularly distinct HG-
SOC subtypes by clustering tumors together that have
similar overall transcriptome profiles [1–5]. Among
these studies, The Cancer Genome Atlas (TCGA)
project reported four subtypes, and termed these dif-
ferentiated, immunoreactive, mesenchymal, and pro-
liferative [2]. These names are based on marker gene
expression and have been adopted by subsequent sub-
typing efforts.
However, robustness and clinical utility of these sub-
types remain controversial [6, 7]. Based on a com-
pendium of 15 microarray datasets consisting of
≈1,800 HGS ovarian tumors, corresponding subtype
classifiers identified subsets significantly differing in
overall survival, but were not robust to re-fitting
in independent datasets and grouped only approxi-
mately one third of patients concordantly into four
subtypes [8].
This ambiguity in tumor classification might arise from
an intra-tumor admixture of different subtypes. Re-
cent studies have indicated that most HGS ovarian
tumors are polyclonal, meaning that a single tumor is
a heterogeneous assembly of distinct cancer genotypes
arising from different subclones. Lohr et al. estimated
that 95% of the tumors in the TCGA HGSOC dataset
are polyclonal, and ≈40% consist of ≥4 subclones [9].
Given the extensive polyclonality of HGS tumors, we
hypothesize that subtype assignment via transcrip-
tome clustering is biased towards late events. Identi-
fied subtypes will thus be subclone-specific, making
transcriptome clustering unlikely to provide patient
subsets that will benefit from specific treatment. If a
tumor contains multiple subclones that are classified
as different subtypes, subtype-specific treatments will
only be effective against selected subclones within a
single tumor.
To test this hypothesis, we focus on somatic copy num-
ber alterations (SCNAs) given their known causal roles
in oncogenesis and their reported potential to discrim-
inate between cancer types and subtypes [10–12]. The
GISTIC2 method detects SCNAs that are more re-
current than expected by chance, in order to distin-
guish cancer-driving events from random passenger
alterations [13]. The method also separates arm-level
events, defined as broad SCNAs covering a large frac-
tion of a chromosome arm, from focal events of rel-
atively small range. Recurrent focal SCNAs have re-
peatedly been shown to harbor known oncogenes and
tumor suppressor genes [14, 15].
The ABSOLUTE algorithm infers tumor purity and
ploidy directly from the analysis of SCNAs [16]. Ac-
counting for the intermixture of cancer cells with nor-
mal cells within a tumor sample (purity), and the often

abnormal DNA content of cancer cells (ploidy), is cru-
cial for the accurate quantification of an alteration’s
absolute copy number per cancer cell. Furthermore,
it also allows to identify SCNAs not fitting a tumor’s
purity and ploidy relationship as a consequence of sub-
clonal evolution.
Leveraging publicly available GISTIC2 and ABSOLUTE

SCNA calls in TCGA HGSOC tumors, we analyze
whether recurrent subtype-associated copy number
alterations display greater intra-tumor heterogeneity
than other alterations. We assess the reliability of these
calls by absolute copy number analysis on whole-exome
sequencing data, and complement results with single-
cell subtype classification on an independent HGSOC
tumor.

Results
We previously reported a systematic assessment of the
four reported HGSOC subtypes (differentiated, im-
munoreactive, mesenchymal, and proliferative) with
respect to robustness and association to overall sur-
vival [8]. Based on 1,774 HGSOC tumors from 12
studies available in the curatedOvarianData database
[17], we found that only a minority of the tumors can
be classified robustly.
Here, we test the hypothesis that the observed ambi-
guity in tumor classification is a consequence of intra-
tumor heterogeneity (Figure 1). For the purpose of
testing this hypothesis, we focus on the subtypes pro-
posed by TCGA [2], and integrate information as avail-
able for 516 TCGA HGS ovarian tumors.

Subtype purity, ploidy, and subclonality
Previous studies reported specific clinical and tumor
pathology characteristics of the four subtypes [2, 8].
Using per-tumor estimates as obtained with ABSOLUTE,
we observed significant differences in tumor purity be-
tween subtypes (Supplementary Figure S1a). In par-
ticular, tumors of differentiated subtype are charac-
terized by high purity, but significantly lower ploidy
and subclonality than the other three subtypes (Sup-
plementary Figure S1b,c). Lower ploidy for tumors of
differentiated subtype was in agreement with a signifi-
cantly lower number of genome doublings (Supplemen-
tary Figure S1d).

Subtype association of recurrent SCNAs
We next analyzed recurrent focal SCNAs as identified
with GISTIC2 in TCGA HGS ovarian tumors for asso-
ciation with the four subtypes (Figure 2). We tested a
total of 70 recurrent focal SCNAs comprising 31 am-
plifications and 39 deletions (Figure 2, outer ring).
Nominal p-values for the 70 focal alterations showed
a concentration of p-values near zero (Supplementary
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Figure S2a), corresponding to 35 of 70 alterations be-
ing significantly associated with subtypes (FDR < 0.1,
Figure 2, inner ring).
Associations with the proliferative subtype were signif-
icantly overrepresented among the subtype-associated
regions (20 out of 35, p = 0.007, Fisher’s exact test,
Figure 2, barplot). Regions of strongest subtype as-
sociation included the FRS2 -containing amplification
on chromosome 12 and the BLC2L1 -containing ampli-
fication on chromosome 20 (Figure 2, gene names).

Correlation of subtype association with subclonality
We test the hypothesis that the reported HGSOC sub-
types differentiate late in tumorigenesis by assessing
the correlation between subtype association and sub-
clonality of recurrent CN alterations (Figure 1A-E).
Subtype association of an alteration is calculated via
a score SA, corresponding to the χ2 test statistic (Fig-
ure 3A). Subclonality of an alteration is calculated via
a score SC , defined as the fraction of samples for which
this alteration is subclonal (Figure 3B). See also Meth-
ods for details on how both scores are calculated.
Under the null hypothesis that subtype-associated al-
terations occur no earlier or later than other alter-
ations, Spearman correlation ρ between SA and SC

would be expected to be zero:

H0 : ρ(SA, SC) = 0 (1)

Rejection of H0 has clear interpretation: if subtype-
associated SCNAs tend to be subclonal, i.e.

ρ(SA, SC) > 0, (2)

this suggests that the subtypes are late events in tumor
evolution. If subtype-associated alterations tend not to
be subclonal, i.e.

ρ(SA, SC) < 0, (3)

this would suggest that subtypes are early events, con-
sistent with these being intrinsic subtypes.
As illustrated in Figure 3C, we obtained a significant
positive correlation between subtype association and
subclonality of the 70 recurrent focal SCNAs depicted
in Figure 2. To account for non-independence of the
occurrence of different SCNAs, we also carried out
a permutation test, which confirmed the significance
of this finding (p = 0.006). When stratifying tumors
by purity to assess the possibility of confounding, the
correlation was positive in all strata and did not sig-
nificantly differ between strata (Supplementary Fig-
ure S3). Regions of highest subtype association and
subclonality comprised throughout amplifications, and

repeatedly displayed increased alteration frequency for
the proliferative subtype (including the BRD4 amplifi-
cation and the telomeric 20q13.33 amplification shown
in Figure 4 bottom left; additional regions shown in
Supplementary Figure S4). A notable exception was
the highly subconal MYC -containing amplification on
chromosome 8, which displayed decreased alteration
frequency for tumors of proliferative subtype as pre-
viously reported [2]. In contrast, predominantly clonal
alterations were enriched for deletions (9 of 10 regions
with SC < 0.3) with comparatively moderate subtype
association (including loss of PPP2R2A and MGA as
shown in Figure 4 top left). In agreement with previ-
ous studies that reported frequent loss of PTEN, RB1,
and NF1 in HGS ovarian tumors [2, 18], we also ob-
served alterations in these regions to occur predomi-
nantly clonal and largely irrespective of subtype clas-
sification (Supplementary Figure S5).

Soft tissue sarcoma as a negative control
HGS ovarian carcinoma and adult soft tissue sarcoma
(STS) are both characterized by low levels of somatic
mutations, but high levels of SCNAs [19]. In contrast
to TCGA ovarian carcinomas which are exclusively of
high-grade serous type, TCGA ST sarcomas represent
several major types each characterized by specific ge-
nomic features as expected for true intrinsic subtypes
in the sense of Equation 3.
Transcriptome clustering of 259 TCGA ST sarco-
mas [19] was largely determined by STS type with (i)
one cluster exclusively composed of Leiomyosarcoma
(LMS), (ii) another cluster dominated by dedifferenti-
ated liposarcoma (DDLPS), and (iii) the third cluster
mostly consisting of undifferentiated pleomorphic sar-
coma (UPS) and myxofibrosarcoma (MFS), two molec-
ularly closely related STS types [20].
When testing a total of 64 recurrent focal SCNAs (23
amplifications / 41 deletions) for association with the
three transcriptome clusters, we found a strong en-
richment of nominal p-values near zero, corresponding
to 41 of 60 alterations being significantly associated
(FDR < 0.1, Supplementary Figure S2b). Association
with the STS type-dominated transcriptome clusters
was negatively correlated with subclonality of the 64
SCNAs (Figure 3D), consistent with the assumption
of these being intrinsic STS type-specific events. Re-
gions of strongest subtype association and concomi-
tantly low subclonality included the MDM2 ampli-
fication (Figure 4 top right), previously reported to
be a key driver of DDLPS and MFS/UPS, but rarely
occurring in LMS [19, 21]. A notable exception from
the observed trend was the TP73 -containing telom-
eric deletion on chromosome 1 that occurred predom-
inantly subclonal in sarcomas assigned to the DDLPS
and MFS/UPS clusters, yet predominantly clonal in
the LMS cluster (Figure 4 bottom right).
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Consistency with whole-exome sequencing
To establish the reliability of inferring SCNA subclon-
ality with ABSOLUTE from SNP-array data, we next in-
vestigated whether results are consistent when using
whole-exome sequencing data instead [22]. We applied
PureCN [20], which, conceptually similar to ABSOLUTE,
takes tumor purity and ploidy into account, but is op-
timized for SCNA calling from targeted short read se-
quencing data. As reported elsewhere [22], per-tumor
estimates of purity and ploidy were in good agree-
ment between platforms (Pearson correlation of 0.77
for purity and 0.74 for ploidy). This also applied to
individual copy number calls when analyzed in recur-
rent GISTIC2 regions, where we found a median con-
cordance of 87.7% (corresponding to the percentage of
tumors with identical CN state for one GISTIC2 region
at a time).

Evidence from single-cell sequencing
We next analyzed whether ambiguity in tumor classi-
fication arises from ambiguity on the cellular level, or
as a result of confidently classifying individual tumor
cells as different subtypes (Figure 1F). We therefore
applied the consensusOV classifier that was trained
on concordantly classified tumors by three major sub-
type classifiers across 15 microarray datasets [8]. No-
tably, the consensus classifier also displayed high con-
cordance when comparing classification on RNA-seq
data and microarray data for TCGA HGS ovarian tu-
mors (Figure 5A).
Figure 5C shows the resulting subtype calls when ap-
plying the consensus classifier to 66 cells of an HGS
ovarian tumor for which a recent study reported het-
erogeneity within ovarian cancer epithelium and can-
cer associated stromal cells [23]. The majority of ep-
ithelial cells (33 of 37) were classified as immunoreac-
tive, in agreement with the classification of the bulk
tumor (IMR: 0.646, DIF: 0.164, MES: 0.142, PRO:
0.048). Several cells (8 of 29) assigned to the stromal
group by Winterhoff et al. [23] were classified as mes-
enchymal, which we and others [24] found before to be
a low-purity subtype (Supplementary Figure S1a).
Classification margin scores, i.e. the difference between
the top two subtype scores, were systematically lower
for individual cells (0.239±0.151) than for the bulk tu-
mor (0.482, Figure 5B). Inspecting individual subtype
classification probabilities of epithelial cells classified
as immunoreactive (ClassProb bars for each subtype
in Figure 5C) thereby revealed the differentiated sub-
type to often closely placing second. Vice versa, the
four epithelial cells classified as differentiated had the
immunoreactive subtype closely placing second.
To analyze whether the observed ambiguity in classi-
fication of single cells can be solely explained by zero-
inflation of scRNA-seq data, rendering parts of the

100-gene signature of the consensus classifier not suffi-
ciently informative, we also used an extended signature
of 800 genes (see Methods). However, highly similar
subtype calls (Supplementary Figure S6) and margin
score distribution (Figure 5B) indicated that the 100-
gene signature already sufficiently captures subtype-
specific expression on the level of single cells. In a com-
plementary analysis, we downsampled the TCGA bulk
RNA-seq data to match the coverage of the scRNA-seq
data. Classification margin scores on the downsampled
data closely resembled the distribution observed on the
original data, and clearly exceeded the range of margin
scores observed on the scRNA-seq data (Figure 5B).

Discussion
We analyzed HGSOC subtypes in the context of intra-
tumor heterogeneity and investigated whether ambi-
guity in subtype classification can be attributed to the
polyclonal composition of HGSOC tumors, addressing
the currently unresolved question whether proposed
subtypes are early or late events in tumorigenesis. We
therefore (i) analyzed recurrent focal SCNAs for asso-
ciation with subtypes, and (ii) tested whether subtype-
associated SCNAs tend to predominantly occur clon-
ally (early events) or subclonally (late events).
From subtype association analysis, we found a large
fraction of recurrent SCNAs detected in TCGA HGS
ovarian tumors to be associated with subtypes. Asso-
ciation with the proliferative subtype was significantly
over-represented, which comprised a disproportional
large fraction of CN amplifications. This was in line
with an overall higher ploidy and increased frequency
of genome duplication for tumors of proliferative sub-
type.
Association of SCNAs with subtypes was positively
correlated with subclonality of SCNAs, particularly
driven by alterations associated with the proliferative
subtype such as amplifications of BCL2L1, BRD4, and
MYC. Closer inspection of individual SCNAs repeat-
edly displayed decreased alteration frequency with rel-
atively small subclonal fractions for tumors of differ-
entiated subtype, as opposed to increased alteration
frequency with relatively large subclonal fractions for
the proliferative subtype. The diametral behavior of
the differentiated and the proliferative subtype, both
comprising tumors of high purity, was also evident in
a close-to-normal ploidy and a small subclonal genome
fraction of the differentiated subtype.
A subtype model based on HGSOC tumor evo-
lution: our observations are consistent with a model
that places the differentiated and the proliferative sub-
type at opposite ends of the timeline of HGSOC tumor
developement; with the differentiated subtype being
an early subtype, the proliferative a late subtype, and
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the immunoreactive and the mesenchymal being in-
termediate subtypes. HGSOC development along this
timeline is thereby reportedly characterized by an in-
creasing level of genomic instability and subclonal ex-
pansion [25, 26].
Several previous findings support this model: (i) mean
age at diagnosis was lowest for patients of differenti-
ated subtype, but significantly increased for patients
of proliferative subtype [8], and (ii) tumors of differ-
entiated subtype displayed a high level of infiltrating
immune cells, indicating an active immune response
at an early time point of tumor development, whereas
tumors of proliferative subtype displayed a negligi-
ble level of infiltrating immune cells, consistent with
an adapted tumor successfully evading the immune
response at a late point in tumor evolution [27]. It
seems initially counterintuitive that the proliferative
subtype displayed a lower risk than the mesenchymal
subtype with respect to overall survival [8]. However,
this is in agreement with several previous studies that
found an extreme level of genomic instability associ-
ated with improved outcome compared to intermedi-
ate levels [26, 27].
A recent analysis of transcriptome subtypes in col-
orectal cancer generally questioned the existence of
discrete subtypes, and proposed a continuum of tran-
scriptomes instead [28]. Analogously dismissing the as-
sumption of discrete subtypes for HGSOC rather war-
rants the notion of a spectrum for each of the four sub-
types with transient boundaries between them. Such
a subtype interpretation seems particularly plausible
given also a recent study reporting a continuum of
HGSOC genomes shaped by individual copy number
signatures [18].
In agreement with the proposed model, our findings
from single-cell subtyping imply a tumor at the tran-
sition from the differentiated to the immunoreactive
spectrum. This was evident from the subtype calls on
epithelial cells that were throughout at the border be-
tween differentiated and immunoreactive. The obser-
vation that subtype calls on single cells were typically
less confident than on the corresponding bulk tumor
likely results from a summarization effect. Small, but
consistent expression changes towards the immunore-
active spectrum for individual cells thereby sum up
across the bulk, which was more confidently assigned
to the immunoreactive spectrum.
We also point out that the analysis of subtype asso-
ciation and subclonality of recurrent DNA alterations
can be straightforward applied to other cancer types,
as demonstrated for TCGA soft tissue sarcoma. How-
ever, concentrating the analysis on SCNAs is particu-
larly suited for HGSOC and STS, both characterized
by high levels of SCNAs and low levels of somatic mu-
tations [19]. Using a combined approach that also takes

into account somatic mutations is better suited for
cancer types that are equally or especially driven by so-
matic mutations. Such an extension seems further war-
ranted given that we found results from purity/ploidy-
aware calling of DNA alterations to be highly con-
sistent across platforms (whole-exome sequencing and
SNP arrays) and computational methods (ABSOLUTE
and PureCN).
We conclude that the previously proposed notion of
four discrete subtypes does not realistically represent
the genomic complexity of HGSOC. We propose a con-
tinuous subtype model in which HGS ovarian tumors
evolve from a still largely intact genome (early DIF
spectrum) towards a comprehensive loss of genome in-
tegrity (late PRO spectrum). In this model, stochastic
and individually different genomic alterations from a
constrained set of evolutionary moves give rise to in-
creasing genomic instability and subclonal expansion
(intermediate IMR/MES spectrum) that ultimately
converge in the late PRO spectrum. This provides
ready explanation for ambiguity in HGSOC subtype
classification, which we found not only to be present
on the cellular level, but in the instance analyzed to
also exceed classification ambiguity on the bulk tu-
mor. With the anticipated availability of more single-
cell data for HGSOC in the near future, further con-
firmation of this observation is warranted and should
particularly target tumors at the critical IMR/MES
transition.

Methods
Statistical analysis was carried out in R [29] using pack-
ages of the Bioconductor repository [30].

Subtype assocation of SCNAs
Regions of recurrent focal CN amplification and dele-
tion as detected with GISTIC2 [13] for TCGA HGS
ovarian tumors were obtained from the latest run of
the TCGA Firehose pipeline (2016-01-28). The regions
were classified depending on their type (deletion / am-
plification) for each tumor by GISTIC2 as either nor-
mal (0), loss / gain of a single copy (1), or loss / gain
of two or more copies (2). Results from transcriptome
clustering using consensus non-negative matrix factor-
ization (CNMF), which assigned each tumor to one
of the four reported subtypes [2], were also retrieved
from the 2016-01-28 Firehose run. Association of the
obtained focal GISTIC2 regions with the four subtypes
was tested by χ2 test with df = 6. Multiple testing
correction was carried out using the method from Ben-
jamini and Hochberg [31] with an FDR cutoff of 0.1.

Subclonality of SCNAs
Results from the application of the ABSOLUTE al-
gorithm [16] to TCGA HGS ovarian tumors geno-
typed by Affymetrix SNP 6.0 arrays were obtained
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from the Pan-Cancer Atlas aneuploidy study [32].
This included per-tumor estimates of purity, ploidy,
subclonal genome fraction, and number of genome
doublings as well as segmented absolute copy num-
ber calls classified as occurring clonal or subclonal
for each tumor. ABSOLUTE calls were managed in the
R/Bioconductor data class RaggedExperiment, which
implements a general ragged array schema for genomic
location data [33]. This facilitated summarization of
ABSOLUTE’s subclonality calls in GISTIC2 regions us-
ing the qreduceAssay function. A GISTIC2 region was
hereby called subclonal for one tumor at a time if it was
overlapped by at least one subclonality call. GISTIC2
peaks were extended by 500 kb up- and downstream to
account for uncertainty of the peak calling heuristic.

Correlation of subtype association with subclonality
Using the χ2 test statistic as the subtype association
score SA of an alteration (Figure 3A) and the frac-
tion of tumors for which this alteration is subclonal
as the subclonality score SC (Figure 3B), Spearman’s
rank correlation was computed to assess the relation-
ship between SA and SC . Statistical significance of the
correlation was assessed using Spearman’s rank corre-
lation test. To account for non-independence of the
occurrence of different SCNAs, we also carried out a
permutation test, where we permuted the observed SA

values 1000 times and recalculated the correlation with
the observed SC values. A p-value was then obtained
by calculating the fraction of permutations in which
the correlation of the permuted setup exceeded the
observed correlation.

Absolute copy number analysis of whole-exome
sequencing data
Whole-exome sequencing data available for 324 TCGA
HGS ovarian tumors was downloaded from the NCI’s
Genomic Data Commons (https://gdc.cancer.gov)
and subjected to absolute copy number analysis with
PureCN [34] as described elsewhere [22]. Comparison
to ABSOLUTE results with respect to per-tumor purity
and ploidy estimates as well as individual copy number
calls was done for 277 intersecting samples.

Subtype classification on single cell sequencing data
Bulk and single-cell RNA-seq data for one fresh
HGSOC specimen was obtained from the Supple-
mentary Material in [23]. Subtypes were classified
using the consensus classifier implemented in the
consensusOV package [35]. The extended 800-gene
signature for classification was derived by selecting
the 200 most representative genes per TCGA subtype
cluster based on differential expression as previously
described [4]. TCGA bulk RNA-seq and microarray

data were obtained using the curatedTCGAData pack-
age [36]. Downsampling of TCGA bulk RNA-seq data
to match the coverage of the scRNA-seq data was car-
ried out using the function downsampleMatrix of the
DropletUtils package [37].

Research reproducibility
Results are reproducible using R and Bioconductor.
Code is available from GitHub (https://github.com/
waldronlab/subtypeHeterogeneity).

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

Conception and design: LG, MRi, LW. Development of methodology: LG,

GP, MB, MRi, TS, LW. Acquisition of data: LG, SO, BW, TS, LW.

Analysis and interpretation of data: LG, SO, MRa, LS, GP, MB, LXQ, MRi,

TS, LW. Writing of the manuscript: LG, LW. Administrative, technical, or

material support: BW, MM, TS. Study supervision: LW. All authors

reviewed, discussed, and approved the final version of the manuscript.

Acknowledgements

The authors thank Andrew Cherniak for providing ABSOLUTE copy number

data including purity and ploidy estimates for tumors from The Cancer

Genome Atlas. LG was supported by a research fellowship from the German

Research Foundation (GE3023/1-1). GP was supported by grant

5P30CA006516-53, and LW by grants 1R03CA191447-01A1 and

U24CA180996 from the National Cancer Institute of the National Institutes

of Health.

Author details
1Graduate School of Public Health and Health Policy, City University of

New York, 55 W 125th St, New York, NY 10027, USA. 2Institute for

Implementation Science and Population Health, City University of New

York, 55 W 125th St, New York, NY 10027, USA. 3Roswell Park Cancer

Institute, 665 Elm St, Buffalo, NY 14203, USA. 4Department of

Obstetrics, Gynecology and Women’s Health, University of Minnesota, 420

Delaware St SE, Minneapolis, MN 55455, USA. 5University of Minnesota

Masonic Cancer Center, 420 Delaware Street SE, Minneapolis, MN 55455,

USA. 6Department of Biostatistics and Computational Biology,

Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline

Avenue, Boston, MA 02215, USA. 7University of Alabama Comprehensive

Cancer Center, 1824 6th Avenue South, Birmingham, AL 35233, USA.
8Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY

10065, USA. 9Novartis Institutes for BioMedical Research, 250

Massachusetts Ave, Cambridge, MA 02139, USA.

References
1. Tothill, R.W., Tinker, A.V., George, J., et al.: Novel molecular

subtypes of serous and endometrioid ovarian cancer linked to clinical

outcome. Clin Cancer Res 14(16), 5198–208 (2008)

2. The Cancer Genome Atlas Research Network: Integrated genomic

analyses of ovarian carcinoma. Nature 474(7353), 609–15 (2011)

3. Helland, A., Anglesio, M.S., George, J., et al.: Deregulation of MYCN,

LIN28B and LET7 in a molecular subtype of aggressive high-grade

serous ovarian cancers. PLoS One 6(4), 18064 (2011)

4. Verhaak, R.G., Tamayo, P., Yang, J.Y., et al.: Prognostically relevant

gene signatures of highgrade serous ovarian carcinoma. J Clin Invest

123(1), 517–25 (2013)

5. Konecny, G.E., Wang, C., Hamidi, H., et al.: Prognostic and

therapeutic relevance of molecular subtypes in high-grade serous

ovarian cancer. J Natl Cancer Inst 106(10) (2014)

6. Waldron, L., Haibe-Kains, B., Culhane, A.C., et al.: Comparative

meta-analysis of prognostic gene signatures for late-stage ovarian

cancer. J Natl Cancer Inst 106(5) (2014)

7. Waldron, L., Riester, M., Birrer, M.: Molecular subtypes of high-grade

serous ovarian cancer: the holy grail? J Natl Cancer Inst 106(10)
(2014)

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/554394doi: bioRxiv preprint 

https://gdc.cancer.gov
https://github.com/waldronlab/subtypeHeterogeneity
https://github.com/waldronlab/subtypeHeterogeneity
https://doi.org/10.1101/554394


Geistlinger et al. Page 7 of 12

8. Chen, G.M., Kannan, L., Geistlinger, L., et al.: Consensus on molecular

subtypes of high-grade serous ovarian carcinoma. Clin Cancer Res

(2018). doi:10.1101/1078-0432.CCR-18-0784

9. Lohr, J.G., Stojanov, P., Carter, S.L., et al.: Widespread genetic

heterogeneity in multiple myeloma: implications for targeted therapy.

Cancer Cell 25(1), 91–101 (2014)

10. Beroukhim, R., Mermel, C.H., Porter, D., et al.: The landscape of

somatic copy-number alteration across human cancers. Nature

463(7283), 899–905 (2010)

11. Zack, T.I., Schumacher, S.E., Carter, S.L., et al.: Pan-cancer patterns

of somatic copy number alteration. Nat Genet 45(10), 1134–40 (2013)

12. The Cancer Genome Atlas Research Network: Comprehensive molecular

portraits of human breast tumours. Nature 490(7418), 61–70 (2012)

13. Mermel, C.H., Schumacher, S.E., B, H., et al.: GISTIC2.0 facilitates

sensitive and confident localization of the targets of focal somatic

copy-number alteration in human cancers. Genome Biol 12(4), 41

(2011)

14. Solimini, N.L., Xu, Q., Mermel, C.H., et al.: Recurrent hemizygous

deletions in cancers may optimize proliferative potential. Science

337(6090), 104–9 (2012)

15. Guichard, C., Amaddeo, G., Imbeaud, S., et al.: Integrated analysis of

somatic mutations and focal copy-number changes identifies key genes

and pathways in hepatocellular carcinoma. Nat Genet 44(6), 694–8

(2012)

16. Carter, S.L., Cibulskis, K., Helman, E., et al.: Absolute quantification

of somatic DNA alterations in human cancer. Nat Biotechnol 30(5),
413–21 (2012)

17. Ganzfried, B.F., Riester, M., Haibe-Kains, B., et al.:

curatedOvarianData: clinically annotated data for the ovarian cancer

transcriptome. Database 2013, 013 (2013)

18. Macintyre, G., Goranova, T.E., De Silva, D., et al.: Copy number

signatures and mutational processes in ovarian carcinoma. Nat Genet

50(9), 1262–70 (2018)

19. The Cancer Genome Atlas Research Network: Comprehensive and

integrated genomic characterization of adult soft tissue sarcomas. Cell

171(4), 950–65 (2017)

20. Widemann, B.C., Italiano, A.: Biology and management of

undifferentiated pleomorphic sarcoma, myxofibrosarcoma, and

malignant peripheral nerve sheath tumors: State of the art and

perspectives. J Clin Oncol 36(2), 160–7 (2018)

21. Klein, M.E., Dickson, M.A., Antonescu, C., et al.: PDLIM7 and

CDH18 regulate the turnover of MDM2 during CDK4/6 inhibitor

therapy-induced senescence. Oncogene 37, 5066–78 (2018)

22. Oh, S., Geistlinger, L., Ramos, M., et al.: Reliable analysis of clinical

tumor-only whole exome sequencing data. bioRxiv (2019).

doi:10.1101/552711

23. Winterhoff, B.J., Maile, M., Mitra, A.K., et al.: Single cell sequencing

reveals heterogeneity within ovarian cancer epithelium and cancer

associated stromal cells. Gynecol Oncol 144(3), 598–606 (2017)

24. Zhang, Q., Wang, C., Cliby, W.: Cancer-associated stroma significantly

contributes to the mesenchymal subtype signature of serous ovarian

cancer. Gynecol Oncol (2018)

25. Schwarz, R.F., Ng, C.K., Cooke, S.L., et al.: Spatial and temporal

heterogeneity in high-grade serous ovarian cancer: a phylogenetic

analysis. PLoS Med 12(2), 1001789 (2015)

26. Salomon-Perzynski, A., Salomon-Perzynska, M., Michalski, B.,

Skrzypulec-Plinta, V.: High-grade serous ovarian cancer: the clone

wars. Arch Gynecol Obstet 295(3), 569–76 (2017)

27. McGranahan, N., Swanton, C.: Clonal heterogeneity and tumor

evolution: past, present, and the future. Cell 168(4), 613–28 (2017)

28. Ma, S., Ogino, S., Parsana, P., et al.: Continuity of transcriptomes

among colorectal cancer subtypes based on meta-analysis. Genome

Biol 19(1), 142 (2018)

29. R Core Team: R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria

(2018). R Foundation for Statistical Computing.

https://www.R-project.org

30. Huber, W., Carey, V.J., Gentleman, R., et al.: Orchestrating

high-throughput genomic analysis with Bioconductor. Nat Methods

12(2), 115–21 (2015)

31. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J Royal Stat Soc

57(1), 289–300 (1995)

32. Taylor, A.M., Shih, J., Ha, G., et al.: Genomic and functional

approaches to understanding cancer aneuploidy. Cancer Cell 33(4),
676–89 (2018)

33. Ramos, M., Morgan, M.: RaggedExperiment: Representation of Sparse

Experiments and Assays Across Samples. (2017).

doi:10.18129/B9.bioc.RaggedExperiment.

http://bioconductor.org/packages/RaggedExperiment

34. Riester, M., Singh, A.P., Brannon, A.R., et al.: PureCN: copy number

calling and SNV classification using targeted short read sequencing.

Source Code Biol Med 11, 13 (2016)

35. Chen, G.M., Kannan, L., Geistlinger, L., et al.: consensusOV: Gene

Expression-based Subtype Classification for High-grade Serous Ovarian

Cancer. (2017). doi:10.18129/B9.bioc.consensusOV.

http://bioconductor.org/packages/consensusOV

36. Ramos, M., Schiffer, L., Waldron, L., et al.: Curated Data from The

Cancer Genome Atlas (TCGA) as MultiAssayExperiment Objects.

(2017). doi:10.18129/B9.bioc.curatedTCGAData.

http://bioconductor.org/packages/curatedTCGAData

37. Lun, A., Griffiths, J., McCarthy, D.: Utilities for Handling Single-cell

Droplet Data. (2018). doi:10.18129/B9.bioc.DropletUtils.

http://bioconductor.org/packages/DropletUtils

Additional Files
Additional file 1 — Supplementary Figures

PDF document containing Supplementary Figures S1–S6

Additional file 2 — Analysis vignette

HTML document containing literate analysis output.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/554394doi: bioRxiv preprint 

http://dx.doi.org/10.1101/1078-0432.CCR-18-0784
http://dx.doi.org/10.1101/552711
http://dx.doi.org/10.18129/B9.bioc.RaggedExperiment
http://bioconductor.org/packages/RaggedExperiment
http://dx.doi.org/10.18129/B9.bioc.consensusOV
http://bioconductor.org/packages/consensusOV
http://dx.doi.org/10.18129/B9.bioc.curatedTCGAData
http://bioconductor.org/packages/curatedTCGAData
http://dx.doi.org/10.18129/B9.bioc.DropletUtils
http://bioconductor.org/packages/DropletUtils
https://doi.org/10.1101/554394


Geistlinger et al. Page 8 of 12

Figure 1 Study setup. Our study aims to distinguish between two possible hypotheses explaining why gene expression-based HGSOC
subtypes are ambiguous. The intrinsic hypothesis (A) is that tumor cells display ambiguous expression patterns consisting of two or
more subtype expression patterns. The subclonal hypothesis (B) is that a tumor contains multiple clones, with each clone displaying
a consistent, yet distinct subtype expression pattern. To distinguish between these two hypotheses, we analyze recurrent SCNAs
across many tumors and determine for each SCNA whether it occurs disproportionately often in tumors of a specific subtype (C),
and whether it occurs in the founder clone or a subclone (D). The bar charts in (C) and (D) show here a particular SCNA
associated with the proliferative subtype, occurring predominantly subclonally. If the subclonal hypothesis were true, there should be
a positive correlation between SCNA subtype association and SCNA subclonality prevalence, while the intrinsic hypothesis predicts a
negative correlation (E). For example, the SCNA depicted in (B-D) (high subtype association and high subclonality) is more
consistent with the subclonal hypothesis than with the intrinsic hypothesis (red X in E). However, only a trend across many
recurrent SCNAs is considered evidence for either hypothesis. Analysis of single cell gene expression patterns (F) should also
distinguish between the two hypotheses.
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Figure 2 Genomic distribution of subtype-associated SCNAs. The circle on the outside shows the genomic location of focal CN
amplifications (red) and deletions (blue) as detected with GISTIC2 [13] in TCGA HGS ovarian tumors. In the inner circle, the
detected SCNAs are colored according to subtype association (blue: proliferative, green: mesenchymal, orange: differentiated, violet:
immunoreactive). A star indicates significant association (FDR cutoff of 0.1, χ2 test, Supplementary Figure S2). For example, the
MYC-containing amplification on chromosome 8 is significantly associated with the proliferative subtype as previously reported [2].
The barplot in the center shows for each subtype (x-axis) the number of significantly associated SCNAs (FDR < 0.1, y-axis)
classified as deletion (blue) or amplification (red). Associations with the proliferative subtype are significantly overrepresented among
the subtype-associated regions (20 out of 35, p = 0.007, Fisher’s exact test).
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Figure 3 Correlation between subtype association and subclonality. The table in (A) illustrates the computation of the
subtype-association score SA. Rows of the table correspond to the focal SCNAs detected with GISTIC2 (Figure 2). Columns
correspond to the 516 TCGA HGS ovarian tumors, each one assigned to one of the 4 subtypes by transcriptome clustering (2nd
row). The cells of the table indicate whether the region is of normal state (0), or contains a single (1) or higher (2) copy gain / loss,
depending on whether the SCNA is rendered an amplification or deletion. The computation of the subclonality score SC is
analogously illustrated in (B). Here, the table cells indicate whether an SCNA is called as subclonal (1) or not (0) by ABSOLUTE [16].
The scatter plot in (C) depicts the correlation between SA and SC , showing a significant positive correlation of 0.31 with a p-value
of 0.009 (Spearman’s correlation test). The color of the dots corresponds to subtype association as in Figure 2. Correlation when
stratifying tumors by purity is shown in Supplementary Figure S3. Repeating the analysis outlined in (A-C) for TCGA soft tissue
sarcomas (64 focal SCNAs, 259 samples) results in a significant negative correlation of -0.36 with a p-value of 0.003 as depicted
in (D).
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Figure 4 Predominantly clonal or subclonal copy number alterations. The barplots illustrate individual subtype-associated GISTIC2
regions from Figure 3C,D that occur predominantly clonal (top panel, solid color) or subclonal (bottom panel, transparent color) in
TCGA HGSOC (left) or STS (right) cases. Each individual barplot displays the number of tumors (y-axis) of particular subtype
(x-axis) that carry either a 1-copy loss (green), 1-copy gain (yellow), or ≥2-copy gain (red) in the region indicated at the top of each
plot.
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Figure 5 Single cell subtyping. (A) shows resulting subtype calls when applying the consensusOV [8] classifier to TCGA HGS
ovarian tumors for which transcriptomic quantification was available via microarray (x-axis) and RNA-seq (y-axis). Concordance of
subtype calls is shown for all tumors (top 100%, left panel) and the top 75% based on margin scores (right panel). The boxplots in
(B) show margin score distributions of the subtype classification on 66 single cells (red) from Winterhoff et al. [23] as compared to
the TCGA bulk classifications (blue) analyzed in (A). Single cell margins are shown when using the default 100-gene signature of the
consensus classifier (scRNAseq100, detailed in (C)) and the extended 800-gene signature (scRNAseq800, detailed in Supplementary
Figure S6). The margin score of the bulk tumor is indicated in both cases by the red dot. The blue box named TCGA-RNAseq
(downsampled) shows the margin score distribution when downsampling TCGA bulk RNA-seq data to match the coverage of the
scRNA-seq data. The heatmap in (C) depicts log2 TPM expression values of the 100-gene signature used by the consensus classifier
(rows) across 66 cells (columns). The annotation bars at the top show resulting subtype calls (Subtype), previous characterization of
cells as epithelial or stromal by Winterhoff et al. [23] (CellType), and classification probabilities for each subtype (ClassProb).
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