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2 
 

Abstract 18 

Errors in gene transcription can be costly, and organisms have evolved to prevent their 19 

occurrence or mitigate their costs. The simplest interpretation of the drift barrier hypothesis 20 

suggests that species with larger population sizes would have lower transcriptional error rates. 21 

However, Escherichia coli seems to have a higher transcriptional error rate than species with 22 

lower effective population sizes, e.g. Saccharomyces cerevisiae. This could be explained if 23 

selection in E. coli were strong enough to maintain adaptations that mitigate the consequences 24 

of transcriptional errors through robustness, on a gene by gene basis, obviating the need for 25 

low transcriptional error rates and associated costs of global proofreading. Here we note that if 26 

selection is powerful enough to evolve local robustness, selection should also be powerful 27 

enough to locally reduce error rates. We therefore predict that transcriptional error rates will 28 

be lower in highly abundant proteins on which selection is strongest. However, we only expect 29 

this result when error rates are high enough to significantly impact fitness. As expected, we find 30 

such a relationship between expression and transcriptional error rate for non C→U errors in E. 31 

coli (especially G→A), but not in S. cerevisiae. We do not find this pattern for C→U changes in E. 32 

coli, presumably because most deamination events occurred during sample preparation, but do 33 

for C→U changes in S. cerevisiae, supporting the interpretation that C→U error rates estimated 34 

with an improved protocol, and which occur at rates comparable to E. coli non C→U errors, are 35 

biological.  36 

 37 
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Main Text 39 

Errors are costly, and we therefore expect natural selection to reduce their rate. However, 40 

selection cannot achieve everything. In particular, it is only able to purge deleterious mutations 41 

when their selection coefficient s is significantly greater than one divided by the “effective 42 

population size”. This numerical limit to selection may reflect not just the number of individuals 43 

in a population, but also competing selection at linked sites (Good and Desai 2014; Lynch 2007). 44 

The “nearly neutral theory” holds that deleterious mutations close to this limit are abundant 45 

(Ohta 1973), and the “drift barrier hypothesis” holds that differences in the precise location of 46 

this limit explain important differences among species (Lynch 2007). For example, codon usage 47 

bias is stronger in species believed to have higher effective population sizes (Vicario et al. 48 

2007), indicating stronger selection to purge slightly deleterious synonymous mutations.  49 

 50 

Rajon and Masel (2011) highlighted the distinction between a “global” solution that ameliorates 51 

a problem at many loci at once, and a set of “local” solutions that solve them one at a time. 52 

Because mutations affecting single loci are likely to have smaller fitness consequences than 53 

mutations with genome‐wide effects, the drift barrier forms a more formidable barrier to local 54 

solutions than it does to global solutions. When local solutions evolve (in populations with large 55 

effective population sizes), they can obviate the need for global solutions. This yields the 56 

counterintuitive prediction that when global solutions are examined, it may be species with low 57 

effective population sizes that show the most extreme adaptations. Specifically, rates of error in 58 

transcription and translation could be higher in species with high effective population sizes, 59 
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since reducing error rates by kinetic proofreading is a costly global solution (Rajon and Masel 60 

2011).  61 

 62 

Here we focus on mistranscription errors, where during transcription, the wrong nucleic acid is 63 

incorporated at a single site. This can lead to non‐functional proteins, incurring three types of 64 

costs. First is the energetic cost of futile transcription and translation (Wagner 2007); which can 65 

be significant in bacteria with large population sizes (Lynch and Marinov 2015; Petrov and Hartl 66 

2000). Second, there is the opportunity cost of not using ribosomes to make other gene 67 

products (Dekel and Alon 2005; Kafri et al. 2016; Scott et al. 2014). Third, there is the cost of 68 

disposing of a misfolded and potentially toxic protein (Drummond and Wilke 2009; Geiler‐69 

Samerotte et al. 2011; Tomala and Korona 2013). Rajon and Masel (2011) predicted that in 70 

populations with smaller effective population sizes and more loci, costly proofreading might 71 

evolve to reduce the rate of mistranscription and hence the frequency with which these three 72 

costs are born, while in populations with very large effective population sizes and fewer loci, 73 

local solutions might evolve to reduce the cost of each mistranscription event, allowing their 74 

rate to stay high. 75 

 76 

This prediction seems to have been confirmed for mistranscription (Xiong et al. 2017), whose 77 

rate of 8.2x10‐5 in Escherichia coli (Traverse and Ochman 2016b) is far higher than that in 78 

Saccharomyces cerevisiae (3.9x10‐6) (Gout et al. 2017) or Caenorhabditis elegans (4.1x10‐6) 79 

(Gout et al. 2013), which have lower effective population sizes. Indeed, the rate is higher even 80 
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than that of Buchnera aphidicola (4.7x10‐5) (Traverse and Ochman 2016b). Buchnera is a highly 81 

mutationally degraded species in which the drift barrier is an obstacle to the maintenance of 82 

fidelity in many other important cellular functions (McCutcheon and Moran 2012); this high 83 

rate in Buchnera may thus indicate that the drift barrier forms an obstacle even to global 84 

solutions (Xiong et al. 2017). All these error rates except for that of C. elegans (Gout et al. 85 

2013), were estimated using Cir‐Seq (Acevedo and Andino 2014), and should therefore be 86 

comparable, although sample preparation techniques differ in vulnerability to deamination. 87 

 88 

If the drift barrier theory of Rajon and Masel (2011) explains the high rate of mistranscription in 89 

E. coli, this implies that selection in E. coli must be potent enough to be sensitive to the 90 

consequences of transcription errors in a local (i.e. site‐specific) way, not just to its global rate. 91 

Local solutions to mistranscription fall into two categories: local robustness to the 92 

consequences of mistranscription when it occurs (this evolved robustness is hypothesized to be 93 

responsible for permitting globally high mistranscription rates), and locally reduced 94 

mistranscription rates at the sites most sensitive to it.  95 

 96 

Here we test whether selection is able to maintain locally lower transcriptional error rates in 97 

highly expressed genes. Selection to purge deleterious mutations is generally more effective in 98 

highly expressed genes, as evidenced, for example, by stronger codon bias (Cutter and 99 

Charlesworth 2006; Duret and Mouchiroud 1999; Ran et al. 2014; Sharp et al. 2010), which 100 

lowers translational error rates (Zhang et al. 2016). Somatic mutations (Frigola et al. 2017), 101 
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alternative transcriptional start sites (Xu et al. 2019), post‐transcriptional modifications (Liu and 102 

Zhang 2018a, b), alternative mRNA polyadenylation (Xu and Zhang 2018), and translation errors 103 

(Mordret et al. 2019) also occur at lower rates at sites where they are likely to have larger 104 

effects. We similarly predict that because high mistranscription rates matter more for highly 105 

expressed genes, highly expressed genes should evolve a lower rate of mistranscription. We 106 

make this prediction for E. coli, where mistranscription rates are globally high and thus so is 107 

local selection pressure. In contrast, we do not expect a relationship between expression level 108 

and mistranscription rate in S. cerevisiae, where mistranscription rates are globally much lower.  109 

 110 

Mistranscription rate data in E. coli were taken from Traverse and Ochman (2016a), who used 111 

Cir‐Seq (Acevedo and Andino 2014) to distinguish mistranscription events from sequencing 112 

errors. Within the largest and highest‐quality batch of their data (see Methods), data from four 113 

experimental conditions (minimal vs. rich media, and midlog vs. stationary phase) were 114 

sometimes analyzed separately and sometimes pooled. Mistranscription rates are much higher 115 

for CU substitutions: ~10‐4 rather than ~10‐5 for other mistranscription types. Since CU 116 

changes are more sensitive to preparation artifacts (Chen et al. 2014), i.e. they may not be 117 

mistranscription errors, we excluded them from most of our analysis. 118 

 119 

To further ensure the data quality, we exclude “hotspot” nucleotide sites experiencing 120 

significantly (p<10‐9) more errors of one type than expected from our model fitted as described 121 

below. This eliminates recent mutations, inaccurate mapping of reads to the genome, or other 122 
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artifacts of the experiment or pipeline, as well as any sites subject to programmed post‐123 

transcriptional RNA editing. We excluded 5 protein‐coding and 2,390 non‐coding sites that met 124 

this “hotspot” criteria for at least one experimental condition. The high rate of apparent 125 

mistranscription hotspots in non‐coding genes has been interpreted (Traverse and Ochman 126 

2016a) as a consequence of E. coli having multiple polymorphic rRNA operons, making mapping 127 

of reads inaccurate. We therefore restrict our analysis to protein‐coding genes. 128 

 129 

We modeled the number of errors observed per nucleotide site as count data, using a 130 

generalized linear model. The number of errors expected is the product of the number of 131 

observations of that nucleotide site, and the modeled mistranscription rate, the latter a linear 132 

function of log protein abundance, experimental condition, and substitution type (see 133 

Methods). The dependence on protein abundance (Figure 1; slope of 0 rejected from Eq. 1 134 

model with p=2×10‐14) supports our prediction from drift barrier theory, a result that gets 135 

slightly stronger if we omit our hotspot removal procedure. The 11 non‐CU substitution types 136 

have substantially different mistranscription rates (Supplementary Figure S1); fitting different 137 

intercepts for each type (while leaving their slopes the same) is strongly supported for inclusion 138 

in our Eq. 1 model (p = 2×10‐16).  139 

 140 
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  141 

Figure 1. Highly expressed E. coli genes are subject to lower mistranscription rates. The 142 

dashed line shows the Eq. 1 model applied to the 11 non C→U subsƟtuƟon types, in which both 143 

condition and substitution type affect the intercept but not the slope, plotted as a weighted 144 

average over conditions and substitutions, with weights proportional to the frequencies of 145 

opportunity to occur (i.e. by the numbers of reads of sites with A/C/G/U). Solid line show the 146 

pooled data, binned by protein abundance as described in the Methods, and plotted according 147 

to mean protein abundance and the mean and 95% CI of the mistranscription rate within each 148 

bin. Data were divided into 10 bins; because of the limited availability of reads for low‐149 

expression genes, data within the first three bins were pooled. Note that mistranscription rate 150 

is per possible error, so the total mistranscription rate per nucleotide is around three times 151 

larger. 152 

 153 

Different intercepts for different experimental conditions are also supported, in addition (p = 154 

1.5×10‐3). Fitting different slopes for each experimental condition only marginally improves the 155 

fit relative to our Eq. 1 model (p = 0.052), mostly attributable to a steeper slope in the minimal‐156 

static condition, which had far fewer data points than the other conditions (Figure S2). 157 

   158 
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 159 

Figure 2. CU errors in E. coli are mostly artifacts, GA depend most strongly on protein 160 

abundance, but the other 10 error types also show dependence. Dotted lines (left) show linear 161 

models with both the slope and intercept fitted separately for each error type using data 162 

pooled across all four conditions; for a comparison of all 12 error types, see supplemental 163 

Figure S1. The C→U slope is not different than 0 (p=0.91). The dashed line (right) shows an Eq. 1 164 

model in which the slope is the same across all 10 error types (non‐C→U, non‐G→A). To display 165 

this model, we averaged the intercept over the four conditions, weighted according to the 166 

numbers of reads in each condition. Solid lines show the mean mistranscription rates, binned 167 

by protein abundance as described in the Methods, plotted according to mean protein 168 

abundance within each bin; error bars show 95% CI. Data were divided into 8 bins; because of 169 

the limited availability of reads for low‐expression genes, data within the first three bins were 170 

pooled. Note that mistranscription rate is per possible error, so total mistranscription rate per 171 

nucleotide is around three times larger.  172 

 173 

Standing out from results on all non C→U error types in Figure S1, and shown in Figure 2, is the 174 

fact that G→A errors depend more strongly on protein abundance than other error types do 175 

(p=3×10‐4, Eq. 2 as improvement on Eq. 1). A separate model fit to G→A error data only, gives a 176 
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slope of ‐2.9×10‐6 (95% CI of ‐1.6×10‐6 to ‐4.2×10‐6) with log10 protein abundance, i.e. there are 177 

1.6 to 4.2 fewer G→A errors per million G transcription events per 10‐fold increase in 178 

expression, against a background of about 20‐40 errors per million G transcription events. To 179 

ensure that the non‐zero slope of Figure 1 is not driven solely by G→A errors, we repeated the 180 

analysis for the 10 error types, i.e. excluding both C→U and G→A (Figure 2, right). This yields a 181 

slope of ‐8.4×10‐7 (p=1×10‐7) with log10 protein abundance, with a 95% confidence interval 182 

corresponding to 0.4 and 1.2 fewer expression errors per million opportunities per 10‐fold 183 

increase in expression.  184 

 185 

Traverse and Ochman (2016a) reported that mistranscription errors were more commonly 186 

synonymous (32%) than would be predicted if errors occurred at random across the genome 187 

(24%). When controlling for the effects of substitution type, condition, and protein abundance 188 

in our Eq. 2 model of mistranscription rates, the synonymous vs. non‐synonymous status of the 189 

potential mistranscription error did not predict the error rate (p = 0.89). Indeed, following our 190 

data processing and quality filters, the overall frequency with which a mistranscription error 191 

was synonymous was 23.4%, suggesting that the previously reported excess of synonymous 192 

mistranscription events was due to data quality issues. In any case, whatever molecular 193 

mechanism is responsible for variation in mistranscription rates, it seems to act at the level of 194 

the gene rather than at the level of the nucleotide site. 195 

 196 
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Molecular chaperones play a critical role in mitigating the harm from mistranscription by 197 

reducing misfolding. Genes that are chaperone clients might tolerate higher mistranscription 198 

rates. Alternatively, sensitivity to mistranscription might select both for a lower 199 

mistranscription rate and chaperone use. We found no support for either hypothesis; adding an 200 

intercept term for GroEL chaperonin use was not a significant improvement on top of our Eq. 2 201 

model (p = 0.085). We also tested other predictors including gene length, absolute position of a 202 

locus (number of nucleotides from the start of gene), and relative position of a locus (absolute 203 

position / total gene length), but neither slope nor intercept were significantly different from 0 204 

(i.e. p>0.05) for any of the three metrics. 205 

 206 

As discussed in the Introduction, Cir‐Seq data on the yeast S. cerevisiae indicates a much lower 207 

mistranscription rate than E. coli (Gout et al. 2017), suggesting that it uses a global solution, 208 

reducing site‐specific selection pressures on mistranscription rates. We therefore do not predict 209 

a relationship between gene expression and local mistranscription rate in this species, and do 210 

not find one for the 11 non C→U subsƟtuƟon types (Figure 3 bottom; p=0.2 in our Eq. 1 model 211 

controlling for substitution type as a fixed effect).  212 
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Figure 3. In S. cerevisiae, only CU mistranscription errors depend on protein abundance. 213 

Dashed line shows a linear model fitted to a pooled dataset of the 11 non‐CU substitution 214 

types. Dotted line shows a linear model fitted to C→U data alone. To display non‐C→U model 215 

fit, we took a weighted average of the intercept over substitution types as a function of the 216 

frequencies of opportunity to occur. Solid line shows pooled data, binned by protein abundance 217 

as described in the Methods, and plotted according to mean protein abundance and the mean 218 

and 95% CI of the mistranscription rate within each bin. C→U data were divided into 8 bins; 219 

because of the limited availability of reads for low‐expression genes, data within the first three 220 

bins were pooled. For non‐C→U data, two out of 10 bins were pooled. Note that 221 

mistranscription rate is per possible error, so total mistranscription rate per nucleotide is 222 

around three times larger. All 12 error types are shown separately in Supplementary Fig. S3. 223 

 224 

However, C→U subsƟtuƟons, which occur at much higher rates than other substitution types 225 

and hence are subject to more selection even in S. cerevisiae, are less frequent for highly 226 

abundant proteins (Fig. 3 top; p= 0.006 for non‐zero slope on a C→U equivalent of Eq. 2). This 227 

confirms that the protocol of Gout et al. (2017) succeeded in avoiding deamination events 228 

during sample preparation (which should not depend on protein abundance), where that of 229 

Traverse & Ochman (2016a) did not. 230 
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 231 

The high rate of mistranscription errors in E. coli came as a surprise to many (Traverse and 232 

Ochman 2016a, b). This naturally raises the hypothesis that it is the data that are in error. While 233 

the Cir‐Seq technique is effective in preventing sequencing errors from inflating estimated 234 

mistranscription rates (Acevedo and Andino 2014), it does not eliminate artifacts of the sample 235 

preparation and analysis such as mutations occurring during the Cir‐Seq experiment, nor 236 

inaccurate mapping of reads to the genome. While these could artificially inflate estimated 237 

mistranscription rates, we are not aware of any plausible mechanism by which the degree of 238 

such inflation would be a function of protein abundance. Our results thus confirm the credibility 239 

of the data, and hence of the statement that E. coli has a strikingly high non‐CU 240 

mistranscription rate. After applying our quality filters, we calculate the total rate of all non‐241 

CU errors as 4.1x10‐5 per site, or 8.6x10‐5 if CU errors are also included. In contrast, in S. 242 

cerevisiae, we calculate from the data of Gout et al. (2017) a non‐CU mistranscription rate of 243 

2.3x10‐6, or 3.5x10‐6 with the CU error type included.   244 

 245 

The dependence of the E. coli mistranscription rate on the strength of selection (as reflected by 246 

protein abundance), but not the S. cerevisiae mistranscription rate, is consistent with proposed 247 

drift barrier explanations (McCandlish and Plotkin 2016; Rajon and Masel 2011; Xiong et al. 248 

2017). In particular, E. coli is smaller and is generally accepted to have a larger effective 249 

population size than S. cerevisiae. E. coli also has fewer loci, occurring within 4453 genes in K‐12  250 

(Riley et al. 2006) compared to 5178 genes in S. cerevisiae (Engel et al. 2014), which makes it 251 
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easier to evolve robustness at each one. What is more, the average E. coli mRNA produces 252 

about 540 proteins out of a total of 2.5 ൈ 106 per cell (Lu et al. 2007), i.e. 0.02% of the 253 

proteome, which is twice as much as the average yeast mRNA producing 5600 proteins out of a 254 

total of 5 ൈ 107 per cell (Lu et al. 2007), i.e. 0.01% of the proteome. While a typical yeast mRNA 255 

has a longer half‐life and so makes proteins over a longer time (6.7 vs. 27.4 minutes; Siwiak and 256 

Zielenkiewicz 2013), the magnitude of this should not be enough to counteract all other factors 257 

making local solutions easier to evolve in E. coli.  258 

 259 

We have shown that local mistranscription rates vary in a systematic way on a per‐gene basis, 260 

but have not determined the mechanisms by which expression error rates vary. 261 

Mistranscription rates are affected by local sequence characteristics such as long 262 

mononucleotide repeats (Ackermann and Chao 2006; Gu et al. 2010) and at the gene level by 263 

the presence or absence of specific RNA polymerase subunits (Thomas et al. 1998; Walmacq et 264 

al. 2009) or transcription factors (Bubunenko et al. 2017; Irvin et al. 2014; Roghanian et al. 265 

2015). Our finding that GA errors depend more strongly on expression than do other error 266 

types in E. coli suggests that GreA, which specifically reduces GA transcription errors 267 

(Traverse and Ochman 2018), may be a likely mechanistic candidate. 268 

 269 

We have also shown that the local mistranscription rates even of highly expressed E. coli genes 270 

are higher than the global mistranscription rate in S. cerevisiae, suggesting that E. coli genes are 271 

somehow more robust to the consequences of mistranscription than are S. cerevisiae genes. 272 

However, the robustness associated with E. coli’s global solution is not so complete as to 273 
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eliminate selection for locally lower mistranscription rates in the genes subject to the strongest 274 

selection, leading to the trend detected here. 275 

 276 

Methods 277 

Scripts used in these analyses are available at https://github.com/MaselLab/Meer‐et‐al‐278 

Transcriptional‐Error‐Rates.   279 

 280 

E. coli mistranscription data 281 

Pre‐processed data were obtained from Traverse and Ochman (2016a), that included how many 282 

times each of the 4,641,652 nucleotide loci in the K‐12 MG155 reference genome (GenBank 283 

accession: NC.000913.3) was observed, and how often each nucleotide was seen there. We 284 

assigned these loci to 4,140 protein coding genes and 178 non‐coding genes using the 285 

annotation of GenBank accession NC.000913.3. We analyzed the 3,935,551 nucleotide loci 286 

within annotated non‐overlapping protein‐coding ORFs, and 47,344 nucleotide loci from non‐287 

coding genes based on annotated ‘start’ and ‘stop’ positions. We excluded any sites that were 288 

present in overlapping genes, as we could not assign a single error rate or protein abundance in 289 

such cases.  290 

 291 

Traverse and Ochman (2016a) data were obtained in multiple batches (referred to as 292 

“replicates” in their data tables), with results reported only on two of the batches. Batch #2 had 293 
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approximately half as much data and twice the error rate of batch #1, so we restrict our 294 

analysis to batch #1 only. Combining the data from each of the four experimental conditions 295 

(minimal vs. rich media, and midlog vs. stationary phase) within batch #1 effectively yielded 296 

15,742,204 protein‐coding sites and 189,376 non‐coding sites, where “site” is used here as 297 

shorthand for condition×nucleotide locus, i.e. to describe the set of reads of a nucleotide locus 298 

within just one experimental condition. 299 

 300 

We excluded any site that had no reads and any protein‐coding transcript site with no protein 301 

abundance measure, leaving 5,994,463 coding and 182,233 non‐coding sites. Each site can 302 

experience three different substitution error types (e.g. CU, CA, and CG), which we 303 

treated separately, yielding 17,983,389 coding and 546,699 non‐coding “possible errors” for 304 

analysis. Note that data for the three alternative errors at the same site are not, strictly 305 

speaking, independent, because the occurrence of one error reduces the denominator for the 306 

other two. However, at low error rates, this effect is negligible. 307 

 308 

Mutations occurring during the Cir‐Seq experiment, inaccurate mapping of reads to the 309 

genome, or other artifacts of the experiment or pipeline can result in the appearance of 310 

mistranscription “hot spots” that are best removed. We calculated the likelihoods of seeing that 311 

many or more errors for each of the 18,530,088 possible errors being analyzed, using a 312 

significance cutoff of 10‐9 to ensure that only 10‐9×18,530,088=0.02 possible errors are falsely 313 

excluded, or potentially more if there is genuine biological variation in mistranscription rates 314 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2019. ; https://doi.org/10.1101/554329doi: bioRxiv preprint 

https://doi.org/10.1101/554329
http://creativecommons.org/licenses/by/4.0/


17 
 

beyond that captured by our linear model. We calculated likelihoods from a cumulative 315 

binomial distribution based on the number of reads at that site and the rate of error expected 316 

at that site from our model. When a possible error was excluded with likelihood < 10‐9, we 317 

excluded the entire nucleotide locus (i.e. all three possible substitutions in all four conditions). 318 

We performed an iterative procedure, first fitting a model of constant error rate for all non 319 

CU errors and a separate error rate for CU errors, using expectations from this model to 320 

exclude outliers, then using the cleaned‐up data to develop a more sophisticated error rate 321 

model of all conditions/substitution types, and using the revised expectations from this model 322 

to update which loci should be excluded etc. until convergence. In the final iteration, one or 323 

more possible errors was determined to be an outlier at 5 protein‐coding and 2,390 non‐coding 324 

loci. For protein‐coding outliers, we excluded all possible errors at each of the 5 outlier loci, i.e. 325 

up to 60 possible errors (3 possible errors at 5 loci in 4 conditions). Some sites had no transcript 326 

reads in some conditions, resulting in only 48 rather than 60 possible errors being excluded by 327 

this procedure, leaving 17,983,341 possible errors in protein‐coding transcript regions for 328 

analysis. Excluding CU substitutions, due to their significantly higher error rate and likelihood 329 

of occurring post‐transcriptionally, further reduced this to 16,466,559 non‐CU possible errors 330 

for analysis. 331 

 332 

S. cerevisiae mistranscription data 333 

Similarly pre‐processed transcript data were obtained from Gout et al. (2017), who recorded 334 

how many times each nucleotide locus was observed in the S288C reference genome (GenBank 335 
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accession: GCA_000146045.2), to which the wild‐type BY4741 strain used in their experiment is 336 

very closely related. Only one experimental condition was used in this study. Using the same 337 

methodology as for the E. coli data, we used the accession to assign nucleotide sites to the 338 

5,983 protein‐coding nuclear gene regions based on the annotated ‘start’ and ‘stop’ positions. 339 

This process identified 8,853,931 nucleotide loci within annotated protein‐coding ORFs, 340 

resulting in 26,561,793 possible errors for analysis. 341 

 342 

Excluding any transcript site without reads or with unreported or zero protein abundance left 343 

us with 18,649,818 possible errors. Using our outlier detection protocol, we identified 44 loci 344 

containing possible errors as outliers and excluded all possible errors at the associated loci (132 345 

possible errors in total), leaving 18,649,686 possible errors for analysis. 346 

 347 

CU errors were also identified as having a substantially higher error rate in the yeast data 348 

(1.8x10‐5 versus 2.3x10‐6 for other mistranscription types), and were excluded from some 349 

analyses, resulting in 17,394,875 non‐CU possible errors. 350 

 351 

Protein abundance data 352 

Integrated protein abundance data were taken from PaxDB (Wang et al. 2015).  353 

 354 

GroEL client status 355 
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We labelled the 1,929,741 possible errors associated with 252 E. coli proteins as having GroEL 356 

client status, based on the identification of those proteins by Kerner et al. (2005) as specific 357 

interactors with the GroEL chaperonin.  358 

 359 

Statistical model 360 

We modeled the error rate at site i within gene j as a linear function of the log‐abundance of 361 

protein j, i.e. 362 

E௜
R௜

ൌ 𝜌 ൅  𝛽 ln ሺ𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒௝ሻ 363 

where E௜ is the number of reads containing a particular error and R௜ is the total number of 364 

reads at that nucleotide site.  365 

 366 

To better model the error function in the linear model, we multiply both sides by R௜: 367 

𝐸௜~ 𝑅௜ ൅  𝑅௜ logଵ଴ሺ𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒௝ሻ ൅ 𝜀௉௢௜௦௦௢௡ 368 

The observed number of errors E௜ has the properties of count data, and so can be modeled as a 369 

sample from a Poisson distribution. We fitted the statistical model above using a generalized 370 

linear model function in R (glm, stats package), specifying the family of the model as 371 

“poisson(link = identity)”. For E. coli, experimental condition and type of error (excluding C→U) 372 

were added as fixed effects to yield: 373 

𝐸௜ ~ 𝑡𝑦𝑝𝑒 ∶ 𝑅௜ ൅ 𝑐𝑜𝑛𝑑 ∶ 𝑅௜ ൅  𝑅௜ logଵ଴ሺ𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛௝ሻ ൅ 𝜀௉௢௜௦௦௢௡      (1) 374 
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 375 

Slope as a function of expression level can also be made dependent on type and/or condition. 376 

For S. cerevisiae, the condition term does not apply, and expression was not supported as 377 

predictive in the model. For E. coli, a separate slope for G→A errors was supported, yielding 378 

 𝐸௜ ~ 𝑡𝑦𝑝𝑒 ∶ 𝑅௜ ൅ 𝑐𝑜𝑛𝑑 ∶ 𝑅௜ ൅  𝐺𝐴:𝑅௜ logଵ଴൫𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛௝൯ ൅ 𝜀௉௢௜௦௦௢௡    (2) 379 

 380 

P‐values associated with adding or removing terms to Eq. 1 or Eq. 2 models were obtained 381 

using the anova command with the Chisq option to compare nested models in R, as given 382 

throughout the text, sometimes manually correcting the number of degrees of freedom. 383 

 384 

Data Binning  385 

We binned data by protein abundance for visualization and comparison to the fitted models. All 386 

possible errors were sorted by the abundance value of the corresponding protein. Bin 387 

boundaries were evenly spaced along our log‐abundance axis between the 5% quantile and the 388 

95% quantile, with data beyond these quantiles included in the edge bins. For each bin, one 389 

point was plotted with y‐value equal to the mean and 95% confidence interval of the 390 

mistranscription rate and an x‐value equal to the geometric mean of protein abundance. The 391 

number of mistranscription errors observed is expected to follow a binomial distribution with 𝑟 392 

trials, each with probability 𝑝 of an error. We thus estimated a standard error of ඥሺ1 െ 𝑝̂ሻ𝑝̂/𝑟, 393 

where 𝑟 is the total number of reads within the bin and 𝑝̂ is the observed error frequency 394 
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within the bin. To generate the 95% confidence interval we multiplied this standard error by 395 

1.96. To keep standard errors for low‐abundance bins reasonably low, data from several low‐396 

abundance bins were combined. 397 

 398 

Binned data is shown for the purpose of illustrating that it is appropriate to log‐transform 399 

protein abundance before using it as a linear predictor of error rate. Note that it is normal for 400 

the edge bins to depart from the linear trend (Wilke 2013), and thus the linearity of the fit 401 

should be judged within the central region of the relationship. 402 

 403 
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