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Abstract

Structural brain networks derived from diffusion magnetic resonance imaging data have been
used extensively to describe the human brain, and graph theory has allowed quantification of
their network properties. Schemes used to construct the graphs that represent the structural
brain networks differ in the metrics they use as edge weights and the algorithms they use to de-
fine the network topologies. In this work, twenty graph construction schemes were considered.
The schemes use the number of streamlines, the fractional anisotropy, the mean diffusivity or
other attributes of the tracts to define the edge weights, and either an absolute threshold or a data-
driven algorithm to define the graph topology. The test-retest data of the Human Connectome
Project were used to compare the reproducibility of the graphs and their various attributes (edges,
topologies, graph theoretical metrics) derived through those schemes, for diffusion images ac-
quired with three different diffusion weightings. The impact of the scheme on the statistical
power of the study and on the number of participants required to detect a difference between
populations or an effect of an intervention was also calculated.

The reproducibility of the graphs and their attributes depended heavily on the graph con-
struction scheme. Graph reproducibility was higher for schemes that used thresholding to define
the graph topology, while data-driven schemes performed better at topology reproducibility.
Additionally, schemes that used thresholding resulted in better reproducibility for local graph
theoretical metrics, while data-driven schemes performed better for global metrics. Crucially,
the number of participants required to detect a difference between populations or an effect of an
intervention could change by a large factor depending on the scheme used, affecting the power
of studies to reveal the effects of interest.
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1 Introduction

The view that the human brain is a network of cortical and subcortical areas connected via white
matter tracts emerged several decades ago and has been very useful in characterizing brain struc-
ture and function in both healthy participants and diseased populations (Hagmann et al.| (2008));
Griffa et al.| (2013)); |(Caeyenberghs and Leemans| (2014); |Fischer et al.| (2014); [van den Heuvel
and Fornito| (2014); [Yuan et al.| (2014)); Baker et al.| (2015]); |Collin et al.| (2016); |Drakesmith
et al. (2015)); |Aerts et al.| (2016); Nelson et al.| (2017)); |Vidaurre et al.| (2018); Imms et al.| (2019)),
to name just a few of the studies). Structural networks can be constructed using data collected
non-invasively via magnetic resonance imaging (MRI) and diffusion MRI (dMRI). Graph the-
ory allows quantification of the organizational properties of structural brain networks by using
graphs to represent those networks (Bullmore and Sporns| (2009) and references therein).

For inferences drawn from graph theoretical analyses of structural brain networks to be reli-
able, it is essential that the graphs representing the structural networks reflect the true structural
organization of the brain. If that is the case, such graphs are bound to be reproducible, within
experimental error, when generated from data collected at different times, in the absence of any
true changes in the structural connectome. Conversely, this means that graphs that are not repro-
ducible in the absence of age-related changes or intervention-induced plasticity are not reliable
in representing the structural organization of the human brain. This is important because various
graph construction schemes have been presented in the literature that use different techniques to
perform tractography, define graph topology and assign edge-weights, all producing graphs that
are quite different from each other, with different levels of robustness and reproducibility. Using
schemes that result in highly reproducible graphs and graph-attributes means that any observed
changes (in longitudinal studies) or differences between populations (in comparative studies)
can be reliably attributed to maturation or to differences between populations respectively, rather
than to random fluctuations resulting from experimental or analysis errors. Additionally, high
reproducibility and low within-participant variability results in higher power for the studies and
therefore a lower number of required participants, which in turn results in reduction of the cost
and resources required for the study. Several papers have investigated different aspects of the
the reproducibility of structural brain networks and their graph theoretical metrics (Dennis et al.,
2012 |Owen et al.l [2013; [Buchanan et al., 2014; Smith et al., 2015} |(Owen et al., |2013}; [Zhong
et al., 2015; |[Dimitriadis et al., 2017b; [Yuan et al., [2018)), each using a specific scheme for con-
structing the graphs, predominantly using data acquired with low diffusion weightings (b-values
of up to 1500 s/mm?). The work of Roine et al.| (2018) also investigated a higher diffusion
weighting of b = 3000 s/mm?.

In this work, we compared the reproducibility of structural brain networks generated with
different graph-construction schemes for three different diffusion weightings. We investigated
the reproducibility of the graphs themselves as well as their topologies, edge-weights and graph
theoretical metrics. The article is organized as follows: Section [2] details the data, the software
and algorithms used to perform the tractography, construct the graphs representing the struc-
tural networks, and perform the comparative analyses. Section [3| contains a comparison of the
graphs derived using different graph-construction schemes and describes the results for the re-
producibility of the graphs and their various attributes. Finally, it presents sample calculations
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for the number of participants required for different studies, for the different graph-construction
schemes. Section[d]includes a discussion of the significance of our results and the ways they can
impact graph theoretical studies of structural brain networks in the future. We conclude with
Section [5] To the best of our knowledge, this is the first time that graph-construction schemes
for structural brain networks have been compared in terms of their reproducibility across a wide
range of diffusion weightings, in particular with an aim to inform decisions on the number of
participants required in related studies.

2 Methods

All analyses were performed using MATLAB (MATLAB and Statistics Toolbox Release 2015a,
The MathWorks, Inc., Massachusetts, Unites States), unless otherwise stated.

2.1 Data

We used the Human Connectome Project (HCP) (Essen et al., 2013} [Sotiropoulos et al., 2013bj;
Glasser et al., 2013) test-retest MRI and diffusion-MRI data, in which participants were scanned
twice. The diffusion-weighted images (DWIs) have resolution of (1.25 x 1.25 x 1.25) mm?,
and were acquired for three different diffusion weightings (b-values: 1000 s/mm?, 2000 s/mm?
and 3000 s/mm?). We used the data from 37 participants for whom there were 90 gradient
directions for each b-value. The HCP acquisition details are described in |Sotiropoulos et al.
(2013b); [Feinberg et al.| (2010); Moeller et al.| (2010); [Setsompop et al.| (2012)); |Sotiropoulos
et al.|(2013a)); [Xu et al.| (2012). We performed the analyses described below separately for the
DWISs collected with each diffusion weighting.

2.2 Tractography

We performed whole-brain tractography using ExploreDTI-4.8.6 (Leemans et al.l [2009). Con-
strained Spherical Deconvolution (CSD) (Tournier et al., [2004) was used to estimate the fiber
orientation distribution function. In the tractography algortihm, the seed point resolution was
(2 x 2 x 2 mm?), the step size was 1 mm, the angle threshold was 30°, and the fiber length range
was 50 — 500 mm.

2.3 Graph Generation

We constructed graphs using twenty different graph-construction schemes. We normalized all
graphs so that the maximum edge weight in each graph was equal to 1. We also set the elements
of the diagonal of all graph matrices equal to 0, since they correspond to connections of a node
with itself.

2.3.1 Node definition

We used the Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) to
define the 90 cortical and subcortical areas of the cerebrum that correspond to the nodes of
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Metric Abbreviation
Fractional anisotropy FA
Mean diffusivity MD
Radial diffusivity RD
Number of streamlines NS
Percentage of streamlines PS
Streamline density SLD
Tract volume TV
Tract length TL
Euclidean distance between nodes ED

Table 1: Metrics used in connectivity matrices.

the structural networks. The white matter (WM) tracts linking those areas are the connections,
or edges, of the networks. The network generation was performed in ExploreDTI-4.8.6 (Lee-
mans et al., 2009). This process resulted in nine connectivity matrices (CMs) for the data for
each diffusion weighting and each scan of each participant. Each CM had edges weighted by
a different metric averaged along the corresponding WM tracts. Those metrics are: fractional
anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), number of streamlines (NS),
streamline density (SLD), percentage of streamlines (PD), tract volume (TV), tract length (TL)
and Euclidean distance between the nodes (ED), and are listed in Table

2.3.2 Integrated graphs

We used the algorithm described by |Dimitriadis et al.| (2017bic) to generate an integrated net-
work for the data from each diffusion-weighting and each scan of each participant. Following
Dimitriadis et al.| (2017b), for each participant at each time point, a two-step process was fol-
lowed:

1) We used the diffusion-distance (Hammond et al., 2013)) between individual CMs to max-
imise information provided by each metric and create a linear-combination (or integrated) graph,
and

2) we used an Orthogonal Minimal Spanning Tree (OMST) algorithm (Dimitriadis et al.,

2017alc) to selectively remove edges of the resulting graph, so as to maximize the difference
(Global Efficiency - Cost), while maintaining the connectivity of the nodes.
The benefit of the method lies in the fact that both the topology that results from selectively
removing edges and the assignment of the edge weights are performed in a data-driven manner,
and no arbitrary threshold needs to be imposed. This additionally ascertains that both strong and
weak edges are treated equally.

Motivated by the fact that the nine metrics shown in Table[I|exhibit a number of covariances,
we also considered integrated graphs formed from subsets of those metrics, to explore whether
using fewer variables to define edge-weights has an impact on network reproducibility.
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Mean Graph
Abbreviation Initial Edge Weights Topology Final Edge Weights Similarity
(b=2000 s/mm?)

NS - OMST NS OMST unchanged 0.918

NS+FA OMST | lin. comb. of NS and FA OMST unchanged 0.785

9-m OMST lin. comb. of all 9 OMST unchanged 0.852
metrics in Table

NS-thr NS keep highest-NS edges unchanged 0.962

NS-t/FA-w NS keep highest-NS edges re-weight with FA 0.878

NS-t/MD-w NS keep highest-NS edges | re-weight with MD 0.867

FA-t/NS-w FA keep highest-FA edges re-weight with NS 0.887

8 lin. comb. of NS, FA, MD OMST unchanged 0.771

9 lin. comb. of NS, FA OMST unchanged 0.786

MD and SLD

10 lin. comb. of NS, FA OMST unchanged 0.744
MD, SLD and TL

11 lin. comb. of NS, FA, MD OMST unchanged 0.808

SLD, TL, TV

12 lin. comb. of NS, FA, MD OMST unchanged 0.852
SLD, TL, TV, PT

13 lin. comb. of NS, FA, MD OMST unchanged 0.859

SLD, TL, TV, PT, ED

14 FA keep highest-FA edges unchanged 0.667

15 MD keep highest-MD edges unchanged 0.559

16 FA OMST unchanged 0.558

17 MD OMST unchanged 0.473

18 FA keep highest-FA edges | re-weight with MD 0.649

19 MD keep highest-MD edges | re-weight with NS 0.752

20 MD keep highest-MD edges | re-weight with FA 0.554

Table 2: Graph-construction schemes. The first seven schemes are the ones that we discuss in detail in this article.
The remaining 13 either give smaller reproducibility or are very similar to one of the first seven and therefore are not
discussed in detail - and thus are numbered rather than given an abbreviation.

2.3.3 Single-metric graphs

In addition to using the algorithm of Dimitriadis et al.[| (2017b)), we also constructed networks
using the NS, FA or MD as edge weights, due to their prevalent use in the literature (for example
Honey et al.[(2009) and Collin et al.[(2016)), employing the OMST algorithm to select the edges
in a data-driven manner.

2.3.4 Thresholded graphs

Finally, we constructed graphs with topology determined by the CM that is weighted the NS, FA
or MD, and a threshold applied to remove edges with the lowest weights. Instead of imposing
an arbitrary threshold, the threshold was determined by imposing the constraint that the graphs
exhibit the same sparsity as the OMST graphs that exhibited the highest reproducibility (more
on this is included in Section [3). Once the topology of each of those graphs was specified, the
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weights of the edges were either kept as they were or re-weighted with one of the remaining two
metrics.

2.3.5 Summary of graphs investigated

The details of all the schemes that we considered are listed in Table [2] for easy reference. In
the same table we also list the mean graph similarity (see Section [2.5) between scans for those
schemes, for graphs generated from the DWIs with b = 2000 s/mm?, because that guided the
decision of which schemes to look into in more detail. We discuss this more in Section 3l

2.4 Graph Theory

We computed graph theoretical metrics for all the graphs using the Brain Connectivity Toolbox
(Rubinov and Sporns| 2010). Specifically, we calculated the node degree, clustering coefficient,
local efficiency and betweenness centrality for each node. We also calculated the global effi-
ciency and the characteristic path length for each graph.

2.5 Comparison and Statistical Analysis

We performed three different forms of comparison:

1. Longitudinal Reproducibility: This was established by comparing the graphs from test
and retest data, for each graph-construction scheme, independently for each diffusion weighting.

2. Between-Scheme Agreement: This was assessed by comparing graphs generated via
different construction schemes, for each scan and diffusion weighting, for each participant.

3. Inter-B-Value Agreement: This was assessed by comparing graphs generated from the
same scan using the same graph-construction scheme, but DWIs with two different diffusion
weightings.

2.5.1 Graph reproducibility

The graph similarity between two graphs was computed as the dot product of two vectors, each
formed by concatenating the unique edges of each graph, normalized by the magnitudes of those
two vectors. Even though it is informative, the similarity between two graphs encompasses both
how similar the topologies of the graphs are (i.e. which edges exist in each graph) and how
similar the edge weights are. In order to assess the impact of each of these contributions to the
overall graph similarity, we looked into each contribution independently.

2.5.2 Topology reproducibility

As a measure for the topology similarity, we constructed a vector containing as many entries as
the total number of unique edges in our graphs, and assigned to each entry the value of 1 if the
corresponding edge existed in both graphs being compared or if the edge did not exist in either
of the graphs being compared, and the value of 0 if the edge in question existed in one of the
two graphs being compared but not the other. We then averaged the entries of that vector to get
the topology similarity between the two graphs.
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2.5.3 Edge reproducibility

In order to assess the edge reproducibility we calculated the intra-class correlation coefficient
(ICC) for the edge weights, for all edges that appeared in both scans of at least 12 (one third) of
the 37 participants in the group. The choice to use one third as a representative subgroup was
partially arbitrary, but motivated by the fact that in order for the ICC to be a sensible measure, it
is necessary to have a representative group of participants. We also calculated the absolute value
of the fractional difference of the edge weights, namely the absolute value of the difference
divided by the mean value of the edge weights, for each edge of each graph. The ICC gives the
range of variability of each edge weight between scans in the context of the overall variability of
the weights of that edge among participants. On the other hand, the absolute fractional difference
gives a participant-specific measure of that variability.

We were also interested in whether dMRI-measured attributes of the WM tracts (for exam-
ple mean FA, NS, etc.) are related to the reproducibility of edge weights. We constructed a
general linear model (GLM) with the absolute fractional difference (between scans) of the edge
weights as the dependent variable. We hypothesized that the fractional difference between edge
weights would depend both on the attributes of the edges and on the absolute difference of those
attributes between scans. Additionally, because the values of attributes of WM tracts are highly
correlated between scans (a fact confirmed in our analysis, with all WM tract attributes exhibit-
ing correlation coefficients of 0.83 or higher between scans, with p-values of 10~ or lower),
we used only the attributes listed in Table |1| for graphs generated from the first scan and their
differences between scans, as independent variables (all variables were z-transformed).

We also wanted to assess whether the edges that appear in the graph from only one of the
two scans have any particular attributes. We used two-sample t-tests to compare the distributions
of the nine edge attributes for edges that appeared in both scans to their distributions for edges
that appeared in only one of the two scans.

2.5.4 Most significant edges

To identify the edges that have the highest weights across participants for each scheme, we
selected the edges with weight of 0.9 or higher from the graphs of each participant and summed
up the weights. The edges with the highest sums of edge weights were identified as the strongest
for each scheme and each scan.

2.5.5 Reproducibility of graph theoretical metrics

To assess the longitudinal reliability of graph theoretical metrics for the different graph-construction
schemes, we calculated the ICC and the absolute value of the fractional difference for the graph
theoretical metrics between the two scans, both for the local and the global graph theoretical
metrics listed in Sec. 2241

2.6 Power of Structural Network Analyses

We were interested in evaluating the impact of different graph-construction schemes on the
number of participants required in: a) comparative studies, namely studies where groups of
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participants exhibiting different characteristics (cognitive abilities, disease, etc.) are compared to
each other; and b) longitudinal studies, namely studies in which specific measures are computed
at two or more different time points for the same participants. A detailed calculation of the
number of participants requires knowledge of the specific quantities of interest as well as of the
populations involved, therefore such calculations need to be made on a case-by-case basis.

To estimate the impact of the choice of scheme on the power of such studies and on the
required number of participants, we assume that we have two populations, each with the same
number of participants N, and we measure the quantity x for each participant. Alternatively, we
have a population with N participants who undergo an intervention, and we measure the quantity
x for all participants before and after the intervention. We also assume that the distribution p; (x)
of x for the first population (in the former scenario) or for the population before the intervention
(in the latter scenario) is normal with a mean of 0, while for the second population (in the former
scenario) or for the population after the intervention (in the latter scenario) the distribution p;(x)
is a normal with a mean of u. Finally, we assume that the standard deviations (SD) of both
distributions are equal to each other, and denoted by . As demonstrated by [Mumford (2012},
if we specify the confidence level at which we wish to detect a possible difference in the means
of the distributions, the quantity

Q=+VNu/o 2.1)

determines the power of the study to identify a possible effect. The higher Q is, the higher the
power of the study. This means that the tighter the distributions (lower &), the lower the number
of participants needed to detect the effect. The fact that it is the square root of N that shows up in
QO means that even a modest improvement in ¢ can lead to a significant reduction in the number
of participants required to detect a given effect with the same power, for a given statistical-
significance threshold. On the other hand, an increase in ¢ can lead to a deterioration of the
power of a study, if not enough participants can be recruited to allow for confident detection of a
given effect. If the number of participants cannot be changed, the dependence of Q on the mean
u of the second distribution indicates that reducing ¢ implies that a smaller value of i, and
thus of deviation from the zero-mean distribution, is required for the effect to be observed with
a given power at a given statistical-significance threshold. Taking this into account, in order to
assess the impact of the choice of graph-construction scheme of the various metrics of interest,
we calculated the SD of their distributions. We then calculated the increase in the number of
participants that would be required, for all the graph-construction schemes in comparison to the
scheme with the lowest SD for the metrics of interest.

2.7 A Note on b-Values

As mentioned in Sec. the DWIs were acquired for three different diffusion weightings. B-
values of up to 2000 s/mm? give very good fit for the diffusion tensor (DT) and its fractional
anisotropy, while for higher b-values the higher order effects of diffusion need to be taken into
account and kurtosis terms need to be included in the fit (Jensen et al., 2005} Jensen and Helpern,
2010; Tabesh et al.,[2011). On the other hand, b-values of under 1500 s/mm? can be problematic
when it comes to resolving crossing fibers with CSD tractography algorithms (Tuch et al., [ 2002;
Tournier et al., 2004, 2008 (Cho et al., 2008), which is important given the prevalence of such
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fibers in the human brain (Jeurissen et al., |2012). Here, we present the results derived from
DWIs acquired with b = 2000 s/mm? in more detail than for the other weightings, because,
unlike the other two diffusion weightings, this one gives reliable tractography results with the
CSD algorithm and reliable results for the DT fits. It is, however, important to understand
how similar or different the results are for the other two diffusion weightings in comparison to
b = 2000 s/mm?, specifically for single-shell experiments or datasets as will be discussed in
Sec.[d] We therefore also present the reproducibility results for those two diffusion weightings.

3 Results

As explained in Sec. 2] we considered twenty graph-construction schemes (see Table [2). We
present detailed results for the seven schemes that a) resulted in reproducibility (for the graphs
and their various attributes) that is high enough for the graphs to be useful for comparative and
longitudinal studies and b) are different enough from each other to convey a different picture of
the structural connectome. Specifically, we excluded all schemes that resulted in mean graph
similarity over participants of under 0.75 (schemes 10, 14, 15, 16, 17, 18 and 20 in Table Q];
also see Messaritaki et al.|(2019) for more details on the graph similarity for the FA- and MS-
schemes). We also excluded schemes for which the graph similarity was under 0.7 for any of
the participants regardless of the mean graph similarity (schemes 8, 9, 19 in Table [2). Schemes
11, 12 and 13 resulted in graphs that are very similar to the 9-m OMST scheme, and we decided
to discuss the latter in detail due to the fact that it exhibits higher reproducibility for the graph
theoretical metrics. The schemes we discuss in detail, then, and the abbreviations used to refer
to them, are:

e Scheme 1: The edge weights are equal to the NS, and the OMST algorithm is used to
select the edges (NS-OMST).

e Scheme 2: The edge weights are equal to a linear combination of the NS and the FA, with
the coefficients identified by the diffusion-distance algorithm. The OMST algorithm is
used to select the edges (NS+FS OMST). This is the same scheme that is described by
Dimitriadis et al.| (2017b)), using only two metrics to weigh the edges.

e Scheme 3: The edges are weighted by linear combinations of 9 metrics, with the coef-
ficients identified via the diffusion-distance algorithm. The OMST algorithm is used to
select the edges (9-m OMST).

e Scheme 4: The edges are weighted by the NS, and an absolute threshold is used to keep
the edges that have the highest NS (NS-thr).

e Scheme 5: The edges are first weighted by the NS and thresholded to keep the ones with
the highest NS. Then they are re-weighted by their FA. In other words, the topology of
the graph is defined by the thresholded-NS scheme and the weights are equal to the FA
(NS-t/FA-w).
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Figure 1: Sample graphs representing the structural connectome for the first scan of one of the participants, derived
from the DWIs with b = 2000 s/mm?2. All graphs have been normalized so that the maximum edge weight within
each graph is 1. The colors in the colorbar correspond to the edge weights. By construction, the NS-OMST graph is
the sparsest, while the other graphs have the same sparsity as each other.

e Scheme 6: The edges are first weighted by the NS and thresholded to keep the ones with
the highest NS. Then they are re-weighted by their MD. In other words, the topology of
the graph is defined by the thresholded-NS scheme and the weights are equal to the MD
(NS-t/MD-w).

e Scheme 7: The edges are first weighted by the FA and thresholded to keep the ones with
the highest FA. Then they are re-weighted by their NS. In other words, the topology of
the graph is defined by the thresholded-FA scheme and the weights are equal to the NS
(FA-t/NS-w).

We remind the reader that, for the four thresholded schemes, the threshold was defined so
that the networks exhibited the same sparsity as the corresponding 9-m OMST networks, which
had the highest mean network similarity of the OMST networks that use more than one metric

(see Sec.[3.2.1).

3.1 Representative Graphs

Fig. [T] shows the graphs for the structural networks of the first scan of one participant for the
seven different schemes, derived from DWIs acquired with b = 2000 s/mm?.

For six of the seven graph-construction schemes the majority of the edges close to the diag-
onal were non-zero. The graph resulting from the FA-t/NS-w scheme was the only exception, in

10
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NS+FA OMST 0.633
9-m OMST 0.637 0.617
NS-thr 0.883 0.754 0.744
NS-t/FA-w 0.538 0.696 0.685 0.808
NS-t/MD-w 0.537 0.664 0.694 0.798 0.988
FA-t/NS-w 0.552 0.539 0.427 0.637 0.503 0.438
NS OMST | NS+FA OMST | 9-m OMST | NS-thr | NS-t/FA-w | NS-t/MD-w

Table 3: Mean between-scheme similarity of graphs, for b = 2000 s/mm?2. The mean is over all participants and then
over the two scans. The highest values of the similarity are indicated in bold letters.

which the edges close to the diagonal for nodes up to node 30 were not present, or not as strong
in relation to the rest of the edges as for the other schemes.

The weights of the edges were very variable between schemes, as was the relative weight of
the edges within each scheme. For the NS-OMST and NS-thr schemes, which rely exclusively
on the NS for the topology and edge weights, only a few edges had weights close to 1, while all
the others had weights of 0.6 or lower. For the NS-t/MD-w graph, on the other hand, most edges
had values close to 1, reflecting the fact that the MD of white matter tracts is quite uniform in
the human brain. The remaining four schemes exhibited a more uniform distribution of edge
weights between the values of 0 and 1.

3.1.1 Between-scheme similarity of graphs

The mean of the graph similarity between schemes (over the 37 participants and the two scans)
is given in Table 3] for all pairs of graph-construction schemes. The high similarity of the graphs
generated by the NS-t/FA-w and NS-t/MD-w schemes is, of course, a result of their topologies
being identical. The graphs generated by the NS-OMST and NS-thr schemes were also highly
similar to each other, which is due to the fact that the weights used for the edges are the same.
Notably, this is true despite of the fact that these graphs generally exhibited very different spar-
sities (the mean sparsity of the NS-OMST graphs across participants was 0.044 while that of the
NS-thr graphs was 0.096.)

3.2 Reproducibility Results
3.2.1 Graph reproducibility

The between-scan graph similarity for the 37 participants is shown in Fig. We show the
similarity for the graphs constructed via the OMST schemes separately from that for the four
thresholded schemes, using the same scale on the vertical axis in both plots.

The NS-OMST had the highest graph similarity among the OMST schemes, just over 0.9
for most participants. Of the seven schemes considered, the NS-thresholded scheme resulted
in the highest similarity, about 0.95 for all participants. Notably, even though the FA-t/NS-w
scheme resulted in a very high mean graph similarity, it also resulted in the widest range of
graph similarity among the 37 participants, ranging from 0.75 to 0.95.
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Figure 2: Graph similarity between the two scans for the 37 participants, for b = 2000 s/mm?. The similarity for the
OMST schemes is plotted separately from that for the thresholded schemes, however both plots use the same scale
for ease of comparison.

NS OMST | NS+FA | 9-m OMST | NS-thr | NS-t/FA-w | NS-t/MD-w | FA-t/NS-w
b: 1000 smm? | mean 0.901 0.763 0.852 0.952 0.862 0.845 0.855
SD 0.020 0.034 0.026 0.010 0.022 0.023 0.045
b: 2000 s/mm> | mean 0.918 0.785 0.852 0.962 0.878 0.867 0.888
SD 0.021 0.028 0.023 0.008 0.018 0.020 0.041
b: 3000 smm? | mean 0.917 0.779 0.847 0.923 0.878 0.865 0.882
SD 0.023 0.025 0.025 0.009 0.021 0.023 0.051

Table 4: Mean and SD of the similarity distributions of the graphs for the three diffusion weightings.

1000 s/mm? vs. 2000 s/mm? | 1000 s/mm? vs. 3000 s/mm? | 2000 s/mm? vs. 3000 s/mm?2
NS OMST X X
NS+FS OMST X
9-m OMST
NS-thr X X
NS-t/FA-w X X
NS-t/MD-w X X
FA-t/NS-w X

Table 5: Comparison of similarity distributions across b-values (paired t-tests). The cells marked with X indicate
the pairs of b-values for which the distributions were statistically significantly different, after FDR correction for
multiple comparisons has been applied, at a p-value threshold of 0.01.
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NS+FA
9-m OMST
NS-thr
NS-t/FA-w 1000
NS-t/MD-w 1000
FA-t/NS-w 1000 1000, 2000, 3000 | 1000, 2000, 3000
NS OMST | NS+FA | 9-m OMST | NS-thr NS-t/FA-w NS-t/MD-w

Table 6: Comparison of distributions of network similarity across schemes, for the 3 b-values (paired t-tests, followed
by FDR multiple-comparison correction with p-value threshold of 0.01). Blank cells indicate pairs of schemes for
which the distributions are statistically significantly different for all three b-values. The numbers in the filled cells
indicate the b-values (in s/mm?) for which the similarity distributions are not statistically significantly different.

The mean and SD of the graph similarity for the three different diffusion weightings is given
are Table[] The values of the mean similarity were very close to each other for the graphs gener-
ated with the same scheme across b-values, for all seven schemes. We compared the distributions
of the graph similarity for each scheme for all pairs of the three diffusion weightings with paired
t-tests, and applied false-discovery-rate (FDR) multiple comparison correction with a threshold
of p < 0.01. The results are shown in Table 5| where ”X” indicates pairs of distributions that
are statistically significantly different from each other. There are no statistically significant dif-
ferences in the graph similarity distributions between b = 2000 s/mm? and b = 3000 s/mm? for
any of the seven schemes, indicating that the graph similarities are not affected by the b-value
for those stronger diffusion weightings. Additionally, the 9-m OMST scheme does not show
any statistically significant differences in the similarity distributions regardless of the pair of b-
values compared. It is possible that using several metrics to weigh the edges reduces the effect
of inaccuracies in the evaluation of tract metrics, and therefore makes that scheme more robust
across b-values, as far as the graph similarity is concerned.

We also compared the distributions of graph similarity for graphs generated with two dif-
ferent schemes separately for each diffusion weighting, for all possible pairs of schemes (paired
t-test, after FDR multiple comparison corrections at a threshold of p = 0.01). The results are
shown in Table [§] Blank cells indicate pairs of schemes for which the distributions are statis-
tically significantly different for all three b-values. The numbers in the filled cells indicate the
b-values for which the graph similarity distributions are not statistically significantly different.
For most of the pairs of schemes, the graph similarity distributions are statistically significantly
different from each other, indicating that the graph similarity depends on the scheme. For five
pairs of schemes, the distributions were not statistically significantly different for » = 1000
s/mm?, while two of these pairs of schemes also resulted in distributions that were not statisti-
cally significantly different for the two higher diffusion weightings.

3.2.2 Topology reproducibility

The topology similarity is shown in Fig. [3|for the different schemes for » = 2000 s/mm 2. The
mean and the SD of the topology similarity for each scheme are given in Table [/ for the three
diffusion weightings. The topology similarity was over 0.9, for all participants regardless of
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Figure 3: Topology similarity between the two scans for the 37 participants, for b = 2000 s/mm?. For clarity of the
plot, the similarity for the OMST schemes is plotted separately from that for the thresholded schemes, however both
plots use the same scale for ease of comparison.

NS OMST | NS+FA | 9-m OMST | NS-thr | NS-t/FA-w | NS-t/MD-w | FA-t/NS-w
b: 1000 s/mm’ | mean 0.981 0.944 0.966 0.973 0.973 0.973 0.931
SD 0.003 0.008 0.005 0.004 0.004 0.004 0.009
b: 2000 s/mm’ | mean 0.984 0.947 0.963 0.974 0.974 0.974 0.931
SD 0.002 0.007 0.007 0.005 0.005 0.005 0.011
b: 3000 ssmm’> | mean 0.983 0.947 0.962 0.974 0.974 0.974 0.934
SD 0.003 0.005 0.006 0.005 0.005 0.005 0.010

Table 7: Mean and SD of the topology similarity distributions of the graphs for the 3 b-values.

the scheme used to construct the graphs. The NS-OMST scheme had the highest mean and the
smallest SD of topology similarity for all three diffusion weightings. The NS-thr, NS-t/FA-w and
NS-t/MD-w schemes all had the same topology similarity since they share the same topology.

We compared the distributions of the topology similarity for the five schemes (omitting
the NS-t/FA-w and NS-t/MD-w because they have the same topology as the NS-thr scheme)
with paired t-tests, for each diffusion weighting. For all three diffusion weightings, all pairs
of schemes exhibited statistically significantly different distributions of topology similarity (all
p < 1079, and survived FDR multiple comparison corrections for a p-value threshold of 0.01),
indicating that the topology similarity is dependent on the chosen scheme.

3.2.3 Edge reproducibility

The ICC for the edge weights is shown in Fig. 4] for graphs generated from the DWIs acquired
with b = 2000 s/mm?. For all except the 9-m OMST scheme, the majority of the edge weights
exhibited ICCs above 0.7. In order for the plots in Fig. ] to be easily interpretable, the scale
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Figure 4: ICC of the edges present in both scans of at least 12 of the 37 participants, for the different schemes
considered.

was set to be between 0 and 1 and therefore the few edges that have ICCs less than zero, i.e.,
edges for which the between-scan variability of the edge-weights is larger than the range of
values of those weights, are not evident. Fig.[5]shows the percentage of edges versus ICC for the
seven schemes, with the full range of values for each scheme. The FA-t/NS-w scheme resulted
in the highest percentage, 66.4%, of edges with ICCs of 0.85 or higher, while the NS-thr and
NS-t/FA-w schemes had 61.9% and 61.4% edges with ICCs greater than 0.85 respectively. It is
noteworthy that the 9-m OMST schemes resulted in distributions that are shifted to lower values
compared to those of the other six schemes. That is possibly due to the fact that the nine WM
tract metrics that are combined to form the edge weights result in some added variability that
leads to larger ICCs.

Fig. [6] shows the percentage of edges in the graphs of all participants versus the absolute
fractional difference between scans of the edge weights, for graphs generated from the DWIs
acquired with b = 2000 s/mm?. In each panel, the points at the left part of the plot correspond
to edges for which the absolute fractional difference is small and therefore the weights do not
differ much between the two scans. The points at the right part of the plot correspond to edges
that appear in one of the two scans of a given participant, but not the other, and as a result
have absolute fractional differences equal to 2. For a scheme to be deemed reliable as far as
the reproducibility of edges and edge-weights is concerned, it must result in most of the edges
having small edge-weight fractional differences, and zero, or as few as possible, edges with an
absolute fractional difference of edge weights equal to 2.

The NS-t/FA-w and NS-t/MD-w schemes performed the best, with 76.2% of the edges ex-
hibiting very small fractional differences and only 23.6% of the edges appearing in the graphs
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Figure 5: Percentage of edges versus ICC, for b = 2000 s/mm?. Left panel: OMST schemes, right panel: thresholded
schemes. Only edges that show up in the graphs from both scans of at least 12 participants have been included.
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scans, for b = 2000 s/mm?2. Left panel: OMST schemes, right panel: thresholded schemes. The points at the

rightmost side of each figure correspond to absolute fractional difference of 2, namely to edges that appear in graphs
from only one of the two scans.
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NS OMST | NS+FA OMST NS-thr NS-t/FA-w NS-t/MD-w FA-t/NS-w
variables |ANNS)|: 0.63 | |ANNS)|: 0.55 | |ANNS)|: 0.73 | |A(FA)|: 0.71 | |AMMD)|: 0.41 | TV;: -0.60
TV;: -0.50 |A(FA)|: 0.22 NS;: -0.46 FA,: -0.22 |A(TV)]: 0.39
% variability 39.2 33.2 48.1 57.2 16.5 31.7
explained

Table 8: GLM for the absolute value of the fractional difference of edge weights, for edges that appear in both scans
of a given participant. The p-values for all the coefficients shown here were smaller than 10, and they all survived
FDR multiple comparison correction. The variables are listed in order of significance.
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Figure 7: NS in scan 1 versus NS in scan 2, color-coded by the absolute value of the fractional difference in edge
weights. The black dots correspond to edges that appear in the graphs from one of the two scans but not the other,
and therefore have NS equal 0 in the scan in which the edge is not reproduced.

from only one of the two scans. The NS-thr scheme resulted in the same small percentage of
edges appearing in the graphs from only one of the two scans, but it also resulted in 75.4%
of the edges exhibiting fractional differences of up to 0.6 in the edge weights. Of the OMST
schemes, the 9-metric scheme was the best because it resulted in nearly 68% of the edges having
a fractional difference of under 0.33, while 31.9% of the edges appeared in the graphs from only
one of the two scans. We note that these percentages are correct for the graphs generated from
the DWIs with b = 2000 s/mm?2. However, the conclusions about which schemes do better also
hold for the graphs generated from the DWIs with b = 1000 s/mm? and b = 3000 s/mm?, and the
distributions shown in Figures [5and [f| were very similar for those two b-values.

The results of the GLM analysis (see Sec. [2) are given in Table [§] For the NS-OMST,
NS+FA OMST and NS-thr schemes, the absolute difference in the number of streamlines of
the edge between the two scans was the most significant predictor variable, and the larger the
absolute difference in NS, the larger the absolute fractional difference in edge weights. For
the NS-OMST scheme, the tract volume explained some of the variability, with the negative
regression coefficient indicating that the smaller the volume of a tract, the larger the absolute
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Figure 8: TV in scan 1 versus TV in scan 2, color-coded by the absolute value of the fractional difference in edge
weights. The black dots correspond to edges that appear in the graphs from one of the two scans but not the other,
and therefore have TV equal to O in the scan in which the edge is not reproduced.

fractional difference in edge weights. For the NS-thr scheme, the number of streamlines in the
first scan was also significantly and negatively correlated with the absolute fractional difference
in edge weight. In other words, edges that have a small number of streamlines are less reliably
reproduced. For the NS-t/FA-w and NS-t/MD-w schemes, the absolute difference (between
scans) in the metric used to weigh the edges was the best predictor, and positively correlated
with the edge-weight absolute fractional difference. Finally, and somewhat surprisingly, for the
FA-t/NS-w scheme, the best predictor variable was the TV in the first scan, with the absolute
difference in TV between scans also contributing. For the 9-m OMST scheme, only a small
fraction of the variability was explained by the attributes of the edges, and the coefficients of
the GLM, even though statistically significant, were very small (less than 0.1) and therefore not
useful in predicting which edges are likely to be highly reproducible. That could be due to the
fact that the linear combination of metrics used to weigh the edges in the graphs is different
among participants.

The comparison of the distributions of edge attributes between edges that appear in graphs
from both scans and those that appear in graphs from only one of the two scans showed no
statistically significant differences. However, the edges that appear in graphs from only one of
the two scans generally had low NS and low TV, for all graph-construction schemes except the
FA-t/NS-w. This is shown in Figures [7]and [8] where it is also evident that for the NS- OMST,
NS-thr and FA-t/NS-w schemes, edges with low NS but large differences in the NS between
scans exhibited the largest absolute fractional differences in edge weights.
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Areas Connected (AAL atlas) Schemes
L superior frontal gyrus - L medial frontal gyrus NS-OMST; (NS+FA)-OMST
9-m OMST; NS-thr
R superior frontal gyrus - R medial frontal gyrus NS-OMST; (NS+FA)-OMST
9-m OMST; NS-thr
L supplementary motor area - R supplementary motor area | (NS+FA)-OMST; 9-m OMST; FA-t/NS-w
L hippocampus - L thalamus NS-t/MD-w
R hippocampus - R thalamus NS-t/MD-w
L hippocampus - R hippocampus NS-t/MD-w
L hippocampus - L amygdala NS-t/MD-w
R hippocampus - R amygdala NS-t/MD-w
L putamen - L globus pallidus NS-thr
R putamen - R globus pallidus NS-thr
L posterior cingulate gyrus - L superior occipital gyrus NS-t/FA-w
L posterior cingulate gyrus - R superior occipital gyrus NS-t/FA-w
R posterior cingulate gyrus - L superior occipital gyrus NS-t/FA-w
L cuneus - R cuneus NS-t/FA-w
R calcarine sulcus - L superior occipital gyrus NS-t/FA-w
R cuneus - L superior occipital gyrus NS-t/FA-w

Table 9: Connections that are strongest for all participants for the seven graph construction schemes.

3.2.4 Strongest edges

The edges that are the strongest in all participants depended on the scheme used. The AAL
regions interconnected by those edges are listed in Table [J] for the seven graph construction
schemes.

3.2.5 Reproducibility of graph theoretical metrics

Fig.[9 shows, the ICC distributions over the 90 nodes of the graphs, for the four local graph the-
oretical metrics: node degree, clustering coefficient, betweenness centrality and local efficiency.
The NS-thr scheme resulted in the ICC distributions with the highest mean for all these metrics,
with the distributions also appearing the tightest around the mean (the only possible exception
being the distribution for the betweenness centrality of the NS OMST scheme). The NS-t/FA-
w and NS-t/MD-w schemes also resulted in high ICCs for the node degree and the clustering
coefficient.

Fig. shows the distributions of the absolute value of the fractional difference between
the two scans for the same graph theoretical metrics, for the seven schemes. The 9-m OMST
scheme had the lowest mean values and very tight distributions around those means, for all four
node-level graph theoretical metrics considered. It is noteworthy that most schemes resulted
in comparable distributions for the absolute fractional differences, with the FA-t/NS-w scheme,
and the NS OMST scheme for the case of the local efficiency and the clustering coefficient,
being the exceptions.

The ICCs and mean absolute fractional differences of the global efficiency and the charac-
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Figure 9: ICCs for the local graph theoretical metrics (b = 2000 s/mm?). In each box, the middle line shows the
mean of the distribution, the edges of the box represent the 25% and 75% points, and the circles indicate points that
are thought to be outliers. Each distribution is over the 90 nodes of the graph.

NS OMST | NS+FA OMST | 9-m | NS-thr | NS-t/FA-w | NS-t/MD-w | FA-t/NS-w
Egiob ICC 0.86 0.23 0.64 0.87 0.58 0.64 0.50
| frac. diff. | 0.076 0.031 0.059 | 0.077 0.063 0.064 0.173
char path ICC 0.86 0.30 0.72 0.87 0.51 0.57 0.79
length | frac. diff. | 0.073 0.068 0.087 | 0.084 0.080 0.084 0.131

Table 10: ICCs and mean absolute fractional differences for the global efficiency and the characteristic path length,
for the different schemes, for & = 2000 s/mm?.

teristic path length are given in Table Most schemes resulted in low values for the mean
absolute fractional differences, however the ICCs for both the global efficiency and the char-
acteristic path length were above 0.85 only for the schemes that rely exclusively on the NS to
construct the graphs.

3.3 Power of Structural Network Studies

Consider a study that aims to evaluate whether an intervention performed in a group of partici-
pants results in an overall change in their structural networks. Assume that the group is split into
two subgroups with equal number of participants N, with the intervention performed in only one
of the two groups, for example group 2, and no intervention is performed on group 1.
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Figure 10: Absolute fractional differences between the two scans, for the local graph theoretical metrics (b = 2000
s/mmz). In each box, the middle line shows the mean of the distribution, the edges represent the 25% and 75% points,
and the circles indicate points that are thought to be outliers. Each distribution is over the 90 nodes of the graph.

3.3.1 Impact on graph changes

The graphs before and after the intervention are constructed based on a given scheme and the
graph similarities are calculated. The distributions of the graph similarities for the two groups
will have different means, differing by , and the same SD ©. For the dataset used in this work,
the NS-thr scheme resulted in the graph similarity distribution with the lowest SD (Table [4)).
Table [T1] shows the ratio of the SD for the graph similarity distribution of each scheme over the
SD of the NS-thr scheme, as well as the factor by which the number of participants needs to
be multiplied in order to maintain the same power as when using the NS-thr scheme, based on
keeping the quantity Q from Eq. (2.1 constant. The increase in the required number of partic-
ipants can be very significant if a non-optimal scheme is chosen. For example, if the scheme
with the second smallest SD is chosen, namely the NS-t/FA-w scheme, nearly five times as many
participants would be required to observe a difference in the graph similarity between the two
groups, and therefore to ascertain a possible effect of the intervention, for a given required power
and statistical significance.

3.3.2 Impact on graph theoretical metrics

The distributions (over the 90 nodes of each graph) of the SDs of the local graph theoretical
metrics for data acquired with » = 2000 s/mm? are shown in Fig. The distributions of the
SDs for the node degree and the betweenness centrality are given in a logarithmic scale. The
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NS OMST | NS+FA OMST | 9-m OMST | NS-t/FA-w | NS-t/MD-w | FA-t/NS-w
ratio of SDs 2.54 3.36 2.77 2.21 2.48 5.58
required increase in 6.5 11.3 7.7 4.9 6.2 31.2
number of participants

Table 11: Ratio of SD of graph similarity distribution for a given scheme over the SD for the NS-thr scheme. Also
given is the increase in the number of participants required to achieve the same power of identifying a difference

between populations, assuming normal distributions with different means.
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Figure 11: Standard deviation of the local graph theoretical metrics for the seven schemes (first scan, b = 2000
s/mm?). In each box, the middle line shows the mean of the distribution, the edges of the box represent the 25% and
75% points, and the circles indicate points that are thought to be outliers.

scheme that exhibits the lowest SD for different graph theoretical metrics depends on the metric
itself, and that prevents us from giving a recommendation on the best scheme to use for all these
metrics. However, both the 9-m OMST and the NS-thr schemes result in small SDs for these
metrics, so would be good choices.

The values of the SDs for the global metrics are given in Table [I2] Considering again
the study mentioned at the start of this Section, Table (12| implies that if, for example, the NS-
thr scheme is used instead of the NS-OMST one, the number of participants needed to detect
a change in the characteristic path length, which scales as the square of the ratio of the SDs
of the two schemes, would have to be (0.003/0.002)? = 2.25 times larger. This can be a very
significant difference, specifically for interventions on patient populations, for which recruitment
of participants could be challenging.
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NS OMST | NS+FA OMST | 9-m | NS-thr | NS-t/FA-w | NS-t/MD-w | FA-t/NS-w
Egiob S1 0.013 0.007 0.025 | 0.014 0.023 0.028 0.006
S2 0.011 0.009 0.014 | 0.011 0.025 0.030 0.006
char path | Sl 0.002 0.004 0.009 | 0.003 0.008 0.009 0.002
length S2 0.002 0.004 0.006 | 0.003 0.008 0.009 0.002

Table 12: SDs for the global efficiency and the characteristic path length for the graphs from each scan, for DWIs
acquired with b = 2000 s/mm?.

3.4 Comparison of Graphs Resulting From Different Diffusion Weightings

As noted earlier, DWIs acquired with different diffusion weightings have different benefits and
drawbacks as far as parameter fit, tractography results, etc are concerned. It is important to
understand whether the graphs generated through the same scheme using DWIs acquired with
different diffusion weightings are similar to each other. Fig.[12|shows the graph similarity for
the three pairs of h-values compared.

In most cases, the graphs generated from DWIs of different b-values were very similar to
each other, with values of the graph similarity of above 0.8. The FA-t/NS-w scheme exhibited
very variable graph similarity between different b-values, in particular between b = 1000 s/mm?
and b = 3000 s/mm?>. This is likely the result of the fact that the FA, which is used to define
the topology in that scheme, is not as reliably measured with the DWIs of b = 3000 s/mm? as
it is with DWIs of smaller b. Of the OMST schemes, the NS+FA scheme had the lowest graph
similarity between graphs constructed with data acquired at different b-values. The highest
similarity was exhibited by the NS-thr graphs.

4 Discussion

We presented a study on the reproducibility of graphs and their various attributes for different
graph-construction schemes, for structural brain networks in the human brain, using the HCP
test-retest data. They key findings of our work have implications on longitudinal and compar-
ative studies, as well as on studies that combine dMRI data collected with different diffusion
weightings. They are as follows:

1. Different graph-construction schemes result in networks with distinct topologies and edge
weights. Even though not surprising, this is an important point because the structural con-
nectome supports function in the brain (Bassett and Gazzaniga, 2011; Mill et al., [2017)
and connections between nodes in structural networks can be used to understand the mech-
anisms that underlie functional connectivity. This is relevant not only for whole-brain
studies, but also, and maybe even more so, for studies that use structural sub-networks to
study the human brain (for example Drakesmith et al.| (2015))).

2. The reproducibility of the graphs depends on the graph construction scheme, with some
schemes exhibiting mean similarity of the order of 0.9 or higher while others falling in
the range of about 0.8. For the data used in this study, the NS-thr scheme gave the highest
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Figure 12: Comparison of graphs across diffusion weightings. The top row shows the plots for comparison between
b= 1000 s/mm? and b = 2000 s/mm?, the middle row between b = 1000 s/mm? and b = 3000 s/mm?, and the bottom
row b = 2000 s/mm? and b = 3000 s/mm?. Each point gives the similarity of the graphs generated with the same
scheme using the data from two different b values. For ease of comparison, the vertical axes of all the plots are the
same.
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mean graph similarity, for all three diffusion weightings. Additionally, the SD of the graph
similarity depends on the graph-construction scheme used. Knowing both the mean and
the SD of the similarity distribution for healthy participants in the absence of ageing or
intervention is essential, because it allows one to make reliable predictions for the number
of participants required to observe changes in structural brain networks in developmental,
intervention or patient studies.

3. The reproducibility of the topology of graphs depends on the graph construction scheme.
The NS-OMST scheme gave the highest topology reproducibility, for all three diffusion
weightings. This is in contrast to the fact that the NS-thr scheme resulted in the high-
est reproducibility for the weighted graphs, and implies that studies which focus on the
topology of structural networks rather than on the specific weights of the edges, or studies
which use binary rather than weighted networks, may benefit from using different schemes
to construct the graphs representing the structural networks.

4. The graphs constructed from DWIs of different diffusion weightings exhibit very good
similarity with each other, for most schemes. Of the schemes we investigated in this
work, the schemes that rely exclusively on the NS are the most reliable across diffusion
weightings. The good similarity implies that each specific combination of algorithms used
to fit the DT, perform the tractography and construct the graphs, reveals a fairly consistent
picture of the structural connectome, regardless of the diffusion weighting used to acquire
the data. The only possible exception is the FA-t/NS-w scheme, which results in graphs
that exhibit large deviations from each other, in particular between diffusion weightings of
b = 1000 s/mm? and b = 3000 s/mm?, with the graph similarity reaching values of under
0.65 for several participants. This could be due to the limited validity of the DT formalism
for b-values above 2000 s/mm?, in combination with the limited capability of DWIs with
b = 1000 s/mm? to give good tractography results for crossing fibers. The NS+FA OMST
scheme also shows limited reliability when comparing graphs generated from DWIs with
b = 1000 s/mm? and b = 3000 s/mm?. This also argues for a possible role that the limited
accuracy of the calculation of the FA for larger b-values plays in the reproducibility of
those graphs across diffusion weightings.

5. The weights of edges that show up in the graphs from both scans of participants were more
reliably reproduced for the 9-m OMST, NS-t/FA-w and NS-t/MD-w schemes. The GLM
analysis revealed that the absolute difference in edge weights between scans correlates
with different WM tract metrics for the different schemes. The NS-t/FA-w and NS-t/MD-
w schemes also resulted in the smallest percentage of edges reproduced in the graphs from
only one of the two scans of the participants. Such edges are generally characterized by
low TV and low NS, although we did not find any statistically significant differences in the
distributions of those two quantities between edges that are and are not reproduced in the
graphs from both scans. These results give some insight into the attributes of edges that
are highly reproducible. More importantly, they highlight the fact that, regardless of the
graph construction scheme used, not all edges of structural networks are equally reliable.

6. The reproducibility of graph theoretical metrics depends on the graph construction scheme.
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The NS-thr, NS-t/FA-w and NS-t/MD-w schemes resulted in the ICC distributions over
nodes with the highest means. The 9-m OMST scheme resulted in the lowest mean for
the distributions of the absolute fractional differences of the node degree, clustering coef-
ficient and the local efficiency, also resulting in a very tight distribution for the 90 nodes.
The results held for the graphs constructed using the DWIs of different diffusion weight-
ings. For the global graph theoretical metrics, the NS-OMST and NS-thr schemes ex-
hibited the highest ICCs, while the NS+FA-OMST scheme exhibited the lowest mean
absolute fractional differences.

In addition to these important findings, we showed the effect that a non-optimal choice
of scheme can have on the power of studies to detect differences in populations or effects of
interventions. Our analysis makes it clear that a careful assessment of the impact of schemes
on the SDs of various metrics can guide the choice of scheme. Since each scheme has its own
strengths and weaknesses, such an analysis can also allow a considered choice of metrics to look
at, possibly excluding metrics that have distributions with large SDs and which are expected to
not be sufficiently informative or powerful. In addition to saving time and resources, this can
reduce the need for multiple comparison corrections, additionally strengthening the performed
analyses.

Furthermore, our results go some way into proving why different studies lead to incongruent
conclusions for the network characteristics of patient populations or for the developmental or
interventional changes observed in structural brain networks. Even if they use the same acqui-
sition protocols and diffusion weightings for data collection, studies that use different schemes
to construct the graphs representing the structural networks are bound to give different results
for the topologies and for the significance of the edges. They are also bound to exhibit differ-
ent reproducibility for the graph theoretical metrics and therefore different capability to observe
changes or differences in them. In other words, each scheme is “tuned into” specific graph
theoretical metrics and is best suited to detect differences or changes in those.

One of the main goals of brain network analyses is to understand the structural underpinnings
of the functional organization of the human brain. Functional networks generated from magne-
toencephalography or electroencephalography data have revealed that the strength of functional
connections between brain areas depends on the frequency of the signals (Brookes et al., 2011}
Deco et al., 2017; Messaritaki et al., 2017; [Tewarie et al., 2019). Additionally, they have shown
that there may be more than one mechanism of coupling between brain areas, such as phase-
phase, phase-frequency, phase-amplitude and amplitude-amplitude (Hyafil et al., 2015} |Dimitri-
adis et al.,[2015; |IDimitriadis and Salis, [2017; [Dimitriadisl 2018}; [Dimitriadis et al., [2018)). Given
the distinct mechanisms that the different frequencies and ways of coupling imply, it is possible
that different characteristics of the WM tracts support each mechanism. Therefore, different
graph construction schemes could result in structural network graphs that have higher overlap
with the different functional networks, and can therefore be better suited to understand the cor-
responding mechanisms (Tewarie et al.,[2019). This point is further solidified by our finding that
different edges appear to be strongest for each graph-construction scheme.

Our study has a few limitations which we now discuss. The main limitation is that the spe-
cific results relating to the optimal scheme to use apply specifically to the HCP dataset we used,
and cannot be generalized to other datasets that may involve different scanners or acquisitions,

26


https://doi.org/10.1101/553743
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/553743; this version posted February 19, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

or to analysis strategies that involve different tractography algorithms. The point is clear, how-
ever, that it is very much worth looking into the optimal scheme for graph construction for each
study, because such an investigation can yield a significant gain in the power of the study. Ad-
ditionally, the reproducibility was assessed on the basis of two scans. Three or more scanning
sessions would give a more robust assessment of the reproducibility. Furthermore, scanning the
participants in a controlled manner, making sure that they are scanned at the same time of day,
for example, would also be desirable. Lastly, our thresholded networks used a threshold so that
their sparsity is the same as the sparsity of the OMST networks. Different thresholds could lead
to different results for the reproducibility of the graphs and their attributes for those schemes,
and could also be worth exploring.

5 Conclusions

We presented a comprehensive analysis of the dependence of the reproducibility of graphs
and their various attributes on the graph-construction schemes used. The graph-construction
schemes had a significant impact on the reproducibility and, as a result, on the power of the
studies to detect differences between populations, maturation or intervention effects. In order
for studies to achieve the maximum power in detecting such effects, similar analysis need to
always be performed at the outset.
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