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Abstract

de novo Mutations (DNMs), or mutations that appear in an individual despite not being seen in
their parents, are an important source of genetic variation whose impact is relevant to studies of
human evolution, genetics, and disease. Utilizing high-coverage whole genome sequencing data
as part of the Trans-Omics for Precision Medicine (TOPMed) program, we directly estimate and
analyze DNM counts, rates, and spectra from 1,465 trios across an array of diverse human
populations. Using the resulting call set of 86,865 single nucleotide DNMs, we find a significant
positive correlation between local recombination rate and local DNM rate, which together can
explain up to 35.5% of the genome-wide variation in population level rare genetic variation from
41K unrelated TOPMed samples. While genome-wide heterozygosity does correlate weakly with
DNM count, we do not find significant differences in DNM rate between individuals of
European, African, and Latino ancestry, nor across ancestrally distinct segments within admixed
individuals. However, interestingly, we do find significantly fewer DNMs in Amish individuals
compared with other Europeans, even after accounting for parental age and sequencing center.
Specifically, we find significant reductions in the number of T—C mutations in the Amish,
which seems to underpin their overall reduction in DNMs. Finally, we calculate near-zero
estimates of narrow sense heritability (h?), which suggest that variation in DNM rate is
significantly shaped by non-additive genetic effects and/or the environment, and that a less

mutagenic environment may be responsible for the reduced DNM rate in the Amish.

Significance
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Here we provide one of the largest and most diverse human de novo mutation (DNM) call sets
to date, and use it to quantify the genome-wide relationship between local mutation rate and
population-level rare genetic variation. While we demonstrate that the human single nucleotide
mutation rate is similar across numerous human ancestries and populations, we also discover a
reduced mutation rate in the Amish founder population, which shows that mutation rates can
shift rapidly. Finally, we find that variation in mutation rates is not heritable, which suggests that

the environment may influence mutation rates more significantly than previously realized.

Introduction

de novo mutations (DNM) appear constitutively in an individual despite not being seen in
their parents, and their identification and study are critically important to our understanding of
human genomic evolution!-!!. For example, it is necessary to understand the rate at which DNMs
accumulate in order to calibrate evolutionary models of species divergence. DNMs are also
implicated in many diseases, including rare genetic disorders®!>!13, and common complex
diseases, such as autism and schizophrenia'3-13, Early studies indirectly inferred mutation rate
estimates from patterns of rare Mendelian diseases or from DNA substitution rates between
species*!®17. More recently, modern sequencing technologies have enabled the use of pedigree
data to directly estimate the number of new mutations found across the genome!’-1°. These
pedigree based studies have identified both paternal and maternal age effects, and estimate
contributions of 1.51 and 0.37 DNMs per year of paternal and maternal age, respectively®:1%-29,
While these effects are often explained on the basis of DNA replication errors, recent studies
have found that DNA repair processes are likely to be major contributors to the mutations that
accrue in both paternal and maternal gametes?!24. Some of this repair-associated mutation
accumulation has been found to be due to maternal age dependent DNA damage in oocytes and
to maternal age dependent post-zygotic mutation increases??. These studies have also identified
specific mutation patterns, such as C—G transversions, that strongly associate with DNA double
strand breaks and repair?>?4. In addition, these repair-associated mutations have been found to
cluster together in distinct patterns, to predominate in certain genomic regions, and to be

associated with recombination?!-22:24, which has itself been shown to influence mutation rates?%-26.
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Other features have also been reported to influence variation in mutation rates across the
genome. GC content was recently shown to directly increase single nucleotide and structural
mutation rates, and was also interestingly shown to increase recombination rates?’. Chromatin
structure has also been shown to associate with DNA mutations, with DNA replication times
associating significantly with point mutations?®, and nucleotide positioning found to significantly
modulate mutation rate?”. Recent work has tied a number of these features together by providing
resolute and individualized recombination maps, and using them to demonstrate a positive
relationship between maternal age and the rates and locations of meiotic crossovers*’.
Specifically, older mothers have increased recombination that also shifts towards late replicating
regions and low GC regions, and this study also identified numerous loci that seem to genetically
influence meiotic recombination. Other recent work evaluates nucleotide content, histone and
chromatin features, replication timing, and recombination to provide one of the clearest pictures
to date of the factors that shape genome-wide variability in the human mutation rate?2. With
regard to base content, Amos3! has proposed the “Heterozygote Instability” hypothesis, which
challenges the assumption that population size and mutation rate are independent, and suggests
their interdependence on the basis of heterozygosity. According to this hypothesis, the
occurrence of gene conversion events at heterozygous sites during meiosis could locally increase

mutation rates, and Amos uses substitution rates to provide support for this32.

While identifying these mutational correlates have helped us better understand the biological
processes that drive mutation, genetic estimates of mutation rate are one half the magnitude of
those originally inferred phylogenetically!’. This has raised questions about the accuracy of these
genetics estimates, as well as about the accuracy of human evolutionary time points calculated
using phylogenetic estimates. While it has been proposed that the failure of genetic methods to
account for post-zygotic mutations in the parent might bias estimates down and partly explain
this discrepancy!?, recent work using sibling recurrence suggests only minor mutation rate
estimate increases when accounting for a substantial portion of these mutations®3. This

discrepancy has also raised the possibility that mutation rates have evolved more rapidly than
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previously assumed, and that molecular clock type analyses are therefore flawed!”. For example,
analyses of base pair substitution patterns have identified mutational differences between human
populations, and showed most notably that the rate of TCC—=TTC transitions appears to have
increased in Europeans thousands of years ago for some finite period of time*#33. This work
demonstrated that mutational processes can change rapidly and have changed recently, and also

suggested the possibility of identifying mutational modifiers.

These findings, along with Amos’ “Heterozygote Instability” hypothesis 32, provide a rationale
for how mutation rates might differ between human populations. However, since most studies of
DNMs have used data from small cohorts of individuals with predominantly European
ancestry®1036_ little is known about the role of DNMs in the evolution and health of populations
of predominantly non-European ancestry, and it is unclear whether DNM rates vary across
different human populations. To address this and other questions about mutation, we use a high-
coverage whole genome sequencing dataset generated by the NHLBI Trans-Omics for Precision
Medicine (TOPMed) program?” to directly estimate and analyze DNM accumulation across
multiple human ancestries and populations. After analyzing genome-wide patterns of mutation
using a call set of 86,565 single nucleotide variant (SNV) DNMs, we compare the number of
SNV DNMs per individual across five TOPMed cohorts that represent European, African, and
Native American (Latino) ancestry individuals, and that include Amish individuals from a
founder population with European ancestry. We also estimate the correlation between
heterozygosity and SNV DNM count, and then test whether mutation rate is a heritable trait in
anticipation of using GWAS to look for mutation rate modifying loci. Finally, we explore
whether environmental exposures and/or random effects might significantly shape mutation rates

and processes.

Results

TOPMed dataset and positive correlation between DNMs and parental age
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Using whole genome sequencing data for 1,465 individuals and their parents from the TOPMed
initiative®’, we identify a de novo mutation (DNM) call set and compare DNM accumulation
rates across ancestral background (Table 1). The analyzed individuals belong to five TOPMed
cohorts with varied ancestral backgrounds: the Amish are an an isolated European founder
population, the Barbados Asthma Genetics Study (BAGS) consists of individuals with
predominantly African ancestry, the Cleveland Family Study (CFS) consists of both European
and African American individuals, the Genetic Epidemiology of Asthma in Costa Rica (GACRS)
and the Childhood Asthma Management Program (CAMP) are collectively referred to as the
CRA cohort and consist of admixed Latino individuals, and the Framingham Heart Study (FHS)
consists of individuals with European American ancestry. For our analyses, we treated the CFS
study as two separate cohorts (signified as CFS_EUR and CFS_AFR, respectively). These make
up our six analysis cohorts (Amish, BAGS, CFS_EUR, CFS_AFR, CRA, FHS, Table 1). After
removing samples with DNM counts that were extreme outliers (often due to pedigree errors, see
methods), we were left with a DNM call set of 86,865 SNV across 1,453 individuals. This
equates to an average of about 60 mutations per individual, which is directly in line with
previous findings?®2%24, These 1,453 individuals come from 1205 independent nuclear families,
and for our analysis, we treat each child and there two parents as a trio. To control for any
potential confounding effects from this sibling data, we repeat all of our analyses that focus on
per individual DNM measures after randomly choosing one child per family. The results from
these repeated analyses are qualitatively the same as those from our full analysis, and for
simplicity, we only report results from analyses run with our full dataset (except when noted with

our heritability models).

Employing this call set along with metrics from our sequencing experiments measuring coverage
and quality, we estimate a human SNV DNM rate of 1.017 x 10-® mutations per base pair per
generation (see methods). This is in complete concordance with recent genetic estimates!”7-33-49,
and lends support to our filtering approach. As expected based on previous studies®!?, we find a
highly significant association between SNV DNM count per individual and paternal age (linear

regression, R?>=0.428, P<9x10-'72, Figure S1A), which provides an additional degree of
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validation for our approach and our call set. While the high correlation in our dataset between
paternal and maternal age makes it difficult to evaluate the separate effect of each on DNM
count, a generalized linear Poisson model succeeds in identifying significant paternal and
maternal age effects that are consistent in magnitude with those of recent studies (1.30 mutations
per year of father’s age, and 0.37 mutations per year of mother’s age) '>2. DNM totals per
individual do not differ significantly on the basis of the sex of the individual for whom the
DNMs are called (Figure S1B), their year of birth (Figure S1C), or the age of their DNA (i.e. the

individual’s age) at the time of collection (Figure S1D).

DNM mutation types and patterns

Consistent with previous findings, the most frequent mutation types in our DNM call set are
C—T (43.47%) and T—C (25.53%) transitions (Figure 1A, Table S1). After accounting for the
significant positive association between each DNM type and paternal age at conception (Figure
1A, blue stars), we identify significant positive correlations between maternal age at conception
and C—T, C—G, and T—A mutations (Figure 1A, red stars). While DNM type composition is
similar across the genome (Figure S2), regions with significant deviations from the mean may
serve as good candidates for the identification and investigation of atypical mutational processes.
When viewing each DNM as a 3-mer by considering the bases in the human reference genome
immediately preceding and following each mutation, the influence of base context on mutational
frequency can be better appreciated (Figure 1B). For example, T—C mutations preceded by an A
appear to be more common than might have been predicted based on their central base pair
mutation type alone, and they also comprise three of the twelve 3-mers significantly associated
with paternal or maternal age at conception. While CpG to TpG transitions already comprise four
of the five most common 3-mer DNMs, their mutational potential is particularly highlighted by
normalizing each 3-mer DNM count for background 3-mer frequency, which demonstrates an
excess of CpG to TpG transitions compared to the expectation based on genome frequency
(Figure S3). Normalization also reveals other mutations with frequencies that are greater or

lesser than what would have been expected on the basis of their central base pair mutation type
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(e.g. greater GCG—GAG, lesser TCT—TTT, etc), which further supports the notion that local

base context influences mutational patterns.

To evaluate the relationship between mutation and recombination, we use our DNM call set to
calculate local mutation rate across 1 megabase (Mb) windows, and test the correlation between
these rates and local recombination rate estimates from the International HapMap Consortium?*!.
We find a significant positive correlation in which regions of higher recombination have more
DNMs (Figure S4A, R?=0.0291, P=3.0 x 10-'9). This relationship varies across the autosomes,
with chromosomes 7, 8, and 16 showing strong positive correlations in which recombination
explains as much as 35% of the variation in DNM rates (Figure S4B). Conversely, this
correlation is either absent or limited across a number of the other autosomes. We then test the
degree to which these local mutation rate estimates explain the distribution of genomic variation
seen at the human population level. To do this, we use genomic variation data from the TOPMed
consortium that was ascertained by performing whole genome sequencing on ~41k diverse
unrelated individuals®’. We then calculate the total number of rare variants (AF < 0.005) within 1
Mb windows across the genome, and use normalized Z-scores derived from these counts as a
measure of localized levels of recent human genomic variation. Notably, after accounting for
local recombination rates, local DNM rates explain up to 30.79% of the variation in these
normalized rare variation counts (P<1.5x1021%). When considering local recombination rates
along with DNM rates, we can explain up to 35.48% of this rare genomic variation
(P<9.5x10-2%¢, Figure 2). Regions with the highest levels of rare variation, such as megabases
1-7 on chromosome 8 and 1-9 and 78-90 on chromosome 16, have the highest DNM rates, and
are largely comprised of regions in the top 10% of recombination values. Interestingly, these
regions have a unique DNM profile, with increased proportions of C—A and C—G mutations,
and even greater proportions of C—T mutations than high recombination regions, which already
have elevated C—T proportions compared to the genome average (Table S2). Conversely, low
recombination regions have reduced C—T and C—G proportions, as well as increased
proportions of T—A, T—C, and T—G mutations (Table S2, Figure S5). These patterns hold

when using linear regression to implement a conservative adjustment for coding proportion and
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mappability concerns, with DNM rates still explaining 21.32% of the variation in rare variant
levels (P<1x10-41), and DNM rates plus recombination rates explaining 27.3% (P <3x10-18,
Figure S6). These associations reflect the degree to which de novo mutations shape the landscape
of human genomic variation, and also have implications for the complex relationship between

recombination and mutation.

In testing the relationship between heterozygosity and DNM count across all individuals, we find
a marginally significant positive correlation (P<0.01, Figure S7A). However, while this persists
after adjusting for parental age (Figure S7B), heterozygosity at most explains 0.5% of the
variation in DNM count. Furthermore, we find no relationship between heterozygosity and DNM
count when looking at only individuals from FHS, which represents our largest cohort (Figure
S8). This is only minimally consistent with predictions that heterozygosity drives de novo
mutation, as the most recent work into the Heterozygote Instability hypothesis suggests a strong

relationship between heterozygosity and DNMs32.

DNM rate comparisons across ancestrally diverse cohorts

When comparing the number of DNMs per individual across all six ancestrally diverse cohorts
(Table 1), we find significant differences, even after accounting for parental age (ANOVA,
P<1.14x10-3, Figure 3,S9A). However, this difference appears to be driven by the Amish, who
have significantly fewer DNMs per individual than the other cohorts. To control for sequencing
center differences that could potentially influence the number DNMs identified, we performed a
sub-analysis comparing DNMs between cohorts that were sequenced at the same center. This
sub-analysis does not include individuals from the BAGS cohort, since they alone were
sequenced directly by Illumina Inc. This within-sequence-center analysis also revealed
significantly fewer DNMs per individual in the Amish compared with European individuals from
FHS (Anova, P<0.005), whereas we found no significant difference in DNMs per individual
between European American individuals from CFS, African American individuals from CFS, and

Latino individuals from CRA (Figure S9B,S9C). These results persist after adjusting for parental
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age, (Anova, P<1.76x10-3, Figure S9D), and suggest that differences between ancestry thought
to influence the DNM rate, such as heterozygosity, do not appreciably shape the accumulation of
de novo mutations. When repeating these analyses after randomly choosing one offspring per
nuclear family, our results are qualitatively the same. This was the case for all of our analyses
that focus on per individual DNM measures, and for simplicity, we only report results from

analyses run with our full dataset (except when noted with our heritability models).

To test more directly how inter-ancestral differences might influence DNM accumulation, we
assessed the relationships between DNM count and African ancestry proportion, and DNM count
and Native American ancestry proportion. Within the BAGS, CFS_AFR, and CRA individuals,
which represent the three cohorts with significant African ancestry, we found no significant
correlation between African ancestry proportion and DNM count after adjusting for parental age
(P=0.647, Figure S10). This absence of a relationship persists when looking only within BAGS
individuals or only within CRA individuals (Figure S11A, S11B), and there is also no
relationship when comparing Native American ancestry proportion and DNM count within

Latino ancestry individuals from the CRA cohort (Figure S11C).

When evaluating whether single base or 3-mer mutation frequencies correlate with global
genomic ancestral proportion, we do not find significant differences. However, TCC—=TTC 3-
mer mutations showed a trend of being negatively associated (P<6.5x10-%) with European
ancestry proportion within the BAGS cohort of admixed African ancestry individuals (Figure
S12). This is interesting when considered in conjunction with recent evidence that an ancestry
specific pulse increased the occurrence of these 3-mer mutations in Europeans?®. We also find

significant differences in DNM totals across families with > 2 children (P<0.005) (Figure S13).

Shifts in the mutational spectrum of the Amish founder population

To further assess the reduced number of SNV DNMs seen in the Amish, we compared DNM

counts for each single base mutation type across cohort. Linear regression reveals differences in
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C—A, T—C, and T—G mutation across cohort, which are largely driven by decreases in these
mutations in the Amish and increases in these mutations in individuals from the BAGS cohort
(Figure S14). To further evaluate these differences while controlling for sequencing center, we
compare mutations between the Amish and FHS cohorts, and find the reduced number of T—=C
mutations in the Amish to persist in this conservative sub analysis (Figure 4). C— A mutations
also show marginally significant reductions in the Amish compared to FHS (P=0.053), although
the reduction in T—C mutations is notably more significant (P<8x10-4), and explains about 50%

of the overall DNM reduction seen in the Amish.

Local ancestry analysis does not identify ancestrally distinct mutation rates

To look more closely at whether mutation rates differ between ancestries, we compare the rates
of DNM accumulation across ancestrally distinct genomic segments within admixed samples.
Using local ancestry assignments (see Methods), we count DNMs across all possible diploid
ancestral segment combinations (e.g. homozygous African, heterozygous African and European,
etc) (Figure S15), and limit each comparison to individuals with at least 80 megabases of each
diploid category. The resulting intra-individual comparisons allow for the control of unmeasured
variables that may otherwise confound inter-individual analyses (for example environmental
exposures that increase mutation rate), since the only variable that should differ between diploid
segments is their ancestral origin, and any effects of this ancestral background on local sequence
context. After estimating DNM rates per individual by normalizing DNM counts by diploid
category base total (i.e. rates per base pair), we do not find evidence of ancestry specific
differences in DNM rate (Figure S16). While we did find a significant reduction in the mutation
rate in African/European segments compared with African/African segments (P <6.1x10#), other
comparisons between African and European segments show no differences. Given the absence of
consistent differences in SNV DNM rate across local ancestral segments, these results do not

provide compelling support for the existence of ancestry-based differences in SNV DNM rate.

The heritability of de novo mutation accumulation
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To assess whether we could use genome-wide association analysis (GWAS) to detect any genetic
loci that might underpin the inter-individual variation we see in DNM accumulation, we first
wanted to test for what proportion of the variation in DNM accumulation was explained by
genetics. One measure of this is narrow-sense heritability (h?), which represents the proportion of
phenotypic variation explained by additive genetic effects*?, and which can be used as a null
model for running associations at every locus (i.e. each locus is tested for the proportion of h?
that it explains). Treating the number of SNV DNMs per individual as a phenotype reflecting
DNM accumulation, we used the MMAP software® to estimate the h? of DNM accumulation
with a variety of models (see methods). When using all samples across all cohorts, we used
father’s age at offspring’s conception, mother’s age at offspring’s conception, and cohort label as
covariates, and a genetic relatedness matrix (GRM) to account for sample relatedness. Very
interestingly, we estimate an h>= 0.0 (SE = 0.028) with this analysis, and we reaffirm a father’s
age effect (P<2.5x10-?), a mother’s age effect (P<6.96x1077), and an effect of Amish cohort
status (P <2.99x104) (Table 2, S3). When running this base model on each cohort separately, h?
estimates are zero or near-zero (i.e. non-significantly above zero) for each cohort (the CRA

model didn’t converge, but had at least one optimum that estimated h? at zero).

To evaluate whether the portion of mutational variation explained by parental age might be
shaped by additive genetic factors, we repeated these heritability models without adjusting for
either parent’s age at conception. Interestingly, these models estimate non-zero heritability (h?=
0.239, P<2.95x104), with the BAGS cohort contributing most significantly to this non-zero
heritability estimate. However, when repeating all analyses with only one offspring randomly
chosen per nuclear family (i.e. removing sibling data), h?is zero in all models, suggesting that
the significant non-zero heritability we see here when not adjusting for parental age is driven by
the shared parental contribution of siblings and not by genotypic similarity. This is consistent
with both the significant inter-family variation and the lack of inter-ancestral variation we see

when analyzing SNV DNM rates.
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Discussion

Here we call de novo mutations across 1,465 individuals from diverse cohorts sequenced through
the TOPMed program. Our call set is determined by a filtering heuristic that is similar to
previous approaches!® , and its specificity is supported by a Bayesian approach implemented in
the TrioDeNovo software**. Furthermore, the significant correlations we find between DNMs
and paternal and maternal age at conception, and the consistency of our mutation rate estimates
with previous genetic estimates, lend additional support for the veracity of our call set. We
confirm that C—T and T—C transitions are the most frequent mutation type among DNMs, and
demonstrate that CpG mutations in a 3-mer context are highly overrepresented after accounting

for background 3-mer frequency.

Despite this predominance of C—T mutations amongst DNMs, we do not find any differences
between populations or ancestral backgrounds in C—T mutations. This is interesting given the
high frequency of this mutational class, and it suggests that processes driving cytosine
deamination are fairly conserved. This is consistent with the assertion by others that CpG
mutation rates may serve as a better “molecular clock” than the base substitution rates that have
previously been used!”>4. Similarly, we do not find differences in other single base and 3-mer
mutation types across ancestral background. While some of this might relate to having limited
statistical power, it suggests that mutational processes and accumulation are quite similar
between ancestral groups. However, we do find the TCC—TTC mutation to be the most
significantly negatively associated with European ancestry proportion within the BAGS cohort,
which has the highest average African ancestry proportion among our cohorts. While this
correlation was nonsignificant after multiple testing correction (P<6.4x10-3), this result is
interesting when contrasted with recent findings of Europeans having had a significantly higher
rate of TCC—TTC mutations in the past**3>. Whether there are in fact no current differences
between ancestral background in the rate of this mutation, or whether Africans possibly have a
higher current rate than Europeans, our result is consistent with these earlier findings in

suggesting that the rate of this mutation evolves quickly. In other words, assuming the mutation
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rate of the TCC—=TTC 3-mer experienced a short population-specific increase, our results
suggest it subsequently experienced a rate decrease in European ancestry individuals and/or a
rate increase in African ancestry individuals, which provides support for the rapid evolution of

mutational processes.

The correlations we find between local recombination and DNM rates are concordant with
research showing that processes underpinning recombination are mutagenic?3263, and our model
comparing population-level rare variation with both recombination and DNM rates adds further
resolution to the relationship between recombination and mutation. Areas of the genome with the
highest local DNM rate are in regions with high recombination that have recently been identified
as featuring specific recombination-based processes that drive mutation?*. These processes seem
to underpin specific mutational patterns in maternal gametes, and to preferentially drive C—=G
mutations. In accordance with this, we find these regions to have increased proportions of C=G
mutations, and we find high recombination regions in general to have twice the C—=G frequency
as low recombination regions. Furthermore, we find genome-wide correlations between mutation
type and local recombination rate, with C—T and C— G mutations correlating positively with
local recombination rate and T—C and T— G mutations correlating negatively (Figure S3).
Alternatively, regions with high recombination rate estimates that have low DNM rates (Figure
2, tall blue bars) are potentially good candidates for the identification of features that may
explain less mutagenesis than recombination rate alone would predict, such as early replication
times3%4, or of circumstances in which recombination itself may be less mutagenic. While recent
research into the relationship between DNMs and fine-scale local recombination rates identified
up to 50-fold increases in DNM rates around meiotic crossover events®?, the fact that these
events are rare is likely why we only explain about 3% of the variation in DNMs on the basis of
recombination. This recombination study also found 35 loci influencing recombination rate,
which may lead one to ask why we don’t find any signal of genetic influence over DNM
accumulation (i.e. heritability > zero) given that recombination is mutagenic and associates with
DNMs in our dataset. First, this is likely due to the fact that recombination only explains a small

portion of the overall variation in DNMs, and small effect size modulators of recombination are
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unlikely to be detected as correlates of DNM rate without enormous sample sizes. Second, we
adjust for parental age effects, which would eliminate from many of our heritability models the
portion of variation in DNM rate influenced by meiotic recombination. Overall, these results

help to inform questions about where in the genome these relationships are strongest.

This model also estimates the quantitative contribution of mutation to population level variation.
Surprisingly, we are able to explain up to 35% of the variation across the genome in population
level rare variation using local recombination and DNM rates, with nearly 31% of this attributed
to local DNM rates. Regions with high mutation rates have the most variation in the genome
(e.g. chr8, chrl16), and also have high recombination rates that likely increase mutation
accumulation. Numerous recent studies have found complimentary results that describe the types
of mutations predominating in high variation regions and the likely sources of these
mutations?!-?>24, While some of this recent work demonstrated that clustered DNMs contribute
very significantly to clustered SNPs (specifically C—G SNPs), clustered DNMs make up less
than 2.5% of DNMs?4. Here we show that SNV DNMs contribute profoundly to the entirety of
rare single-nucleotide variation, and our integrative analysis provides additional insight into how

mutation shapes genetic variation across the genome.

While the Heterozygosity Instability hypothesis predicts that increasingly heterozygous genomes
will have higher mutation rates3'-32, we only find evidence of a weak relationship between
heterozygosity and DNM rate. Furthermore, we don’t find the differences in DNM rate between
ancestral background that differences in heterozygosity across ancestry would have predicted.
However, very interestingly, we do find a reduced mutation rate in the Amish, which seems to be
driven by a reduction in T—C mutations, and which does not seem to be underpinned by
genetics. Despite being a founder population that diverged from other Europeans only very
recently?S, the Amish show a mutation rate reduction of about 6%, which persists when the
Amish are compared with other European ancestry individuals from the Framingham Heart
Study (FHS) in a sub-analysis that controls for sequencing center. Together with our estimation

that SNV DNMs have zero narrow-sense heritability, this suggests that the environment may
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play a bigger role in modulating the mutation rate than previously appreciated. The Amish
lifestyle features pre-industrial era aspects, and while modern Amish communities are diverse
and have adapted to the usage of some modern items, they continue to limit the influence of
technology in their daily lives*’#3. Given this, it is possible that the Amish are exposed to fewer
mutagens, and that this “clean living” may be partially responsible for the reduced mutation rate
we report here. For example, studies have shown that rural areas, such as those similar to the
areas occupied by the Amish, have fewer carcinogens and mutagens than industrialized areas**-3!.
Polycyclic Aromatic Hydrocarbons (PAHs) in particular represent a major pollutant and
carcinogenic mutagen>? that the Amish are likely to be significantly less exposed to due to their
rural and minimally industrialized lifestyles**-3133-34, Given that PAHs and other mutagens have
been found to correlate with traffic levels3*>7, to contaminate food from industrialized regions,
and to be increased by tobacco usage*, and that the Amish eschew driving in favor of horse and
buggy, feature a locally grown organic diet rich in vegetables, entirely avoid tobacco usage, and
maintain physically active lifestyles*’43, there is at least significant rational for reduced
mutagenesis in the Amish*-3-3°, Furthermore, the specific mutations we find most reduced in the
Amish (i.e. T—>C, T—G, and C—A) show the largest increases in experiments assessing the
mutagenic effects of oxidative damage on DNA repair®®. One of the most common oxidatively
modified DNA bases (e.g. 8-OH-dGuo) drives C— A mutations, and another common oxidative
lesion (e.g. thymine glycol) increases the rate of T—C transitions®’. Recent analysis of mutation
patterns has also called into question the canonical view that DNMs rise predominantly from
replicative errors, and suggests that exogenous mutagens may play a larger role in mutation
accumulation than previously appreciated?®. If the Amish do in fact experience less
environmentally driven mutagenesis, then one would predict a significant reduction in the rate of
cancer in the Amish. This is exactly what has been found in multiple Old Order Amish
populations, with a particularly large reduction in cancer rates found in men%!-%2, A similar
reduction in overall mortality has been found in Amish men compared with FHS men, which is
hypothesized to be due to lifestyle factors such as reduced tobacco use and increased physical
activity*’. Given that DNM mutation in sperm is the single largest driver of DNM accumulation,

an Amish environment that potentially limits DNA damage in Amish men is consistent with a
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reduction in DNM rate. In fact, while not significantly different than the paternal age effects
found in the other cohorts, the number of DNMs attributable to each year of paternal age at

offspring’s conception is lowest in the Amish (Table S4).

When viewed in conjunction with our finding that variation in DNM accumulation does not
appear to be heritable, the idea that the environment may explain the reduction in DNMs found
in the Amish becomes increasingly plausible. While we acknowledge these potential
explanations as entirely speculative, our findings along with the aforementioned context suggest
environmental influence as a plausible explanation worthy of additional consideration and
follow-up. The fact that the only signal of DNM heritability we detect is driven by siblings when
not accounting for parental age effects further suggests that the environmental similarity shared
by siblings (including parental age effects) is significantly influencing DNM rate. In sum, the
mutational differences we find in the Amish stand in contrast to the homogeneity seen across the
other diverse human populations we analyze, and suggest that additional work is needed to better

appreciate the forces shaping human mutational processes at fine-scales.
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Figure Legends:

Table 1 | Study Characteristics. Study cohort and meta data are described. The six cohorts used
in this study derive their names (“Study Name”) from 5 TOPMed projects (“TOPMed Project”),
and represent a diversity of populations and ancestries (“Populations”). Sample sizes are shown
(“Number of Offspring”), and average paternal and maternal ages are similar, with BAGS having

the highest average paternal age, and CFS_AFR having the lowest maternal ages.

Figure 1 | Distribution of single base and 3-mer mutation types across SNV DNM call set.
A) The distribution of single base mutation type counts across our SNV DNM call set is shown.
Colors represent mutation type, and stars represent associations with paternal (blue) and maternal
(red) age (P < 5x10-3). B) The count across our SNV DNM call set for each of 96 3-mer
mutation types is shown. Colors represent the center base mutation, and are the same as those in
A. Stars represent associations with paternal (blue) and maternal (Red) age (P < 5.0 x10%4). P
values for A and B were chosen to be more conservative than Bonferroni corrected values using

an n of 6 and 96, respectively.

Figure 2 | City Plot of rare variation, recombination rate, and DNM rate across the
genome. The relationship between DNM rate (blue to red color range) , rare variation (Y-axis,
ranging from -5.83 to 9.06 Z-scores), and recombination rate (Z-axis, ranging from 0 to 7.77 cM/
Mb Y cM/Mb) across the genome (X-axis, dotted vertical lines divide autosomes 1-22). In going
from low to high rare variation levels, a blue to red gradient can be seen, which reflects the
significant correlation between DNM rate and population-level rare variation. Furthermore,
regions with high DNM rates and high variation levels generally have taller bars, which reflects
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the positive relationship between DNM rate, variation level, and recombination (a few

exceptions to this can be seen at the bottom corner of the plot as tall blue bars). Regions with the
highest variation levels in the genome, such as those on chromosomes 8 and 16, have the highest
DNM rates.

Figures 3 | SNV DNM totals across diverse cohorts. SNV DNM totals per individual show

significant differences across cohort, which seem to be driven by a reduction in the Amish.

Figure 4 | Single base mutation differences between Amish and FHS. Amish individuals have
significantly fewer T—C mutations, which explain about 50% of their overall SNV DNM
reduction (A and B). C— A mutations show a marginally significant reduction in the Amish
compared with FHS.

Table 2 | Heritability Model across all cohorts. Results are shown from heritability models run
with MMAP across all samples with paternal and maternal ages available (n=1388). Heritability
is estimated as zero (h? = 0.00), with a standard error of 0.03). These models confirm that

paternal age at offspring’s conception (P = 4.61x10-%), maternal age at offspring’s conception (P
=2.14x10%), and Amish cohort status (P = 1.09x10*) are significantly correlated with DNM

total per individual.

Methods

TOPMed DNA samples, sequencing, and data processing

Whole genome sequencing (WGS) was performed using whole blood from samples previously
collected and consented across 90 NHLBI funded research projects (7 Framingham samples were
sequences using cell lines as opposed to blood3”). Samples were sequenced using paired end
approaches using Illumina HiSeq X Ten machines, and featured 2 x 150 bp reads and a mean
depth of 38X. All sequencing followed the protocol in the Illumina TruSeq PCR-Free Sample
Preparation Guide (Illumina cat# FC-121-2001), and used PCR-free library preparation kits
purchased from KAPA Biosystems (see https://www.nhlbiwgs.org/topmed-whole-genome-
sequencing-project-freeze-5b-phases-1-and-2 for additional details). Periodic sequence data

processing and analysis was performed to produce genotype data “freezes” that included all the
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available samples at the time of the release. Downstream alignment and processing was done
according to a published protocol® (also see https://github.com/CCDG/Pipeline-Standardization/
blob/master/PipelineStandard.md), although the data freeze we used aligned sequences to the
build 37 of the human genome reference using bwa mem®*. Joint variant calling was then done
using the GotCloud13 pipeline for all samples available in a given freeze. This generated a
single, multi-study, genotype call set. A support vector machine (SVM) variant site quality filter
was trained using known variants and Mendelian-inconsistent variants as positive and negative
training sets, respectively (see https://github.com/statgen/topmed variant calling for more
details). To improve quality control at the level of the sample, checking was done for pedigree
errors, discrepancies between self-reported and genetic sex, and concordance with prior genotype
data. Details regarding WGS data acquisition, processing, and quality control are described on

the TOPMed website®®, and are further documented in each dbGaP release accession.

TOPMed cohorts and samples

This study utilizes samples from six cohorts from the Trans-Omics for Precision Medicine
(TOPmed) program. These consist of Amish individuals from the Genetics of Cardiometabolic
Health in the Amish study (Amish), Barbadians from the Barbados Asthma Genetics Study
(BAGS), European and African Americans from the Cleveland Family Study (CFS_EUR and
CFS_AFR), Costa Ricans from the Genetic Epidemiology of Asthma in Costa Rica (GACRS)
and Childhood Asthma Management Program (CAMP) studies (collectively referred to as CRA),
and European Americans from the Framingham Heart Study (FHS). As detailed in
Supplementary Table 1, we utilized samples from a total of 1,465 children across these cohorts,
which came from a total of 1,214 independent families. Including parents, this study used whole
genome sequencing from 3,893 samples. After calling DNMs, we removed a total of 12 outlier
samples from any follow-up analysis: six were extreme outliers, and were determined to derive
from pedigree errors (i.e. incorrect parentage within our meta data), while the other six were
outliers beyond five standard deviations, which likely resulted from issues with sequence quality.

This left us with 1,453 samples for follow-up analysis. Repeated analyses restricting to one
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randomly chosen offspring per family used 1,205 samples after the removal of outliers. We also
had a variety of meta data for the majority of samples, including fathers age at offspring’s
conception, mothers age at offspring’s conception, sex, birth age, DNA age, and sequencing

center.

Filter approach for calling DNMs

In order to identify candidate de novo mutations with a low false positive rate, we implemented a
conservative heuristic approach that relied on stringent filtering. We applied this approach to all
trios (two parents and one offspring) from six TOPMED cohorts (Amish, BAGS, CFS_EUR,
CFS_AFR, CRA, FHS) for whom we had genotype information for each trio individual. Since
these cohorts were selected on the basis of their enrichment for family data, we had data for
multiple children in numerous families. For these families, each offspring plus parent trio was
considered independently, and we repeated all analyses with only one randomly chosen offspring
per family in order to ensure that our conclusions are robust to family structure. Beginning with
variant call format (VCF) files containing genotypes called by the TOPMed consortium data
processing team for all 18,526 individuals in freeze 4, we assessed all variants in all trio
individuals from 1465 trios. After excluding all variants that did not pass best practices quality
control (represented by the lack of a “PASS” in the VCF file filter column), we further evaluated
all variants that were heterozygous in the offspring and homozygous reference in each parent.
Remaining variants were excluded if they had total allele depth less than ten reads (AD < 10),
genotype quality less than thirty (GQ < 30), a heterozygous to homozygous reference genotype
likelihood ratio less than 1x10!°, a ratio of reference allele read count to alternative allele read
count less than 0.3 or greater than 0.7 (reference reads/alternative reads < 0.3 or reference reads/
alternative reads > (.7), total paternal allele depth less than 10 reads, total maternal allele depth
less than 10 reads, paternal genotype quality less than 30, maternal genotype quality less than 30,
or greater than or equal to 1 alternative allele read in either parent (paternal alt reads > 0 or
maternal alt reads > 0). After the exclusion of 12 samples, 6 of whom involved pedigree errors

due to incorrect parentage, and 6 of whom were outliers beyond 5 standard deviations, this
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filtering-based heuristic resulted in the identification of 86,865 de novo mutations (DNM) across

1453 samples.

Alternative DNM calls using Triodenovo software

To provide further support for the accuracy of our SNV DNM call set (i.e. that it has a very low
false positive rate), we used the Bayesian de novo mutation caller called TrioDeNovo** to call
SNV DNMs across 5 autosomes (chromosomes 18-22, representing ~10% of the human genome)
in all 1,465 samples. All SNV DNMs identified across these autosomes in all samples by our
filtering approach were identified in the TrioDeNovo call set, which provides additional support
for the veracity of our filtering approach call set. Interestingly, TrioDeNovo also identified ~2.5
times as many SNV DNMs per individual as our filtering approach, which further supports the
usage of our strict filtering for the elimination of the false positives that other approaches tend to

identify.

Mutation rate Estimation

Given 0.9916 as the proportion of the genome covered by a read depth of 10+ across freeze 4 of
the TOPMed sequencing project, and 0.9875 as the mapping proportion, we calculate 3.0 x 10° *
0.9916 * 0.9875 = 2.938 x10% as the number of accessible bases for this dataset. Using
86865/1453 = 59.78 as the estimated number of DNMs per individual, we then calculate a
mutation rate estimate of as 59.78 DNMs / (2.938 x10°*2 accessible bases per diploid genome) =
1.017 x 108,

Analyzing single base and 3-mer mutation types

For each of the 86,865 single nucleotide DNMs in our call set (excluding outlier samples), single

base type was determined by the base change for each DNM, with mutation types related by
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reverse complementarity totaled together (e.g. T—G mutations represent T-G + A—C). Across
this entire call set, proportion of each type was calculated as single-base mutation type count
divided by total SNV DNMs in the call set. Associations with parental ages at offspring’s
conception were determined using a generalized linear model with Poisson outcomes described

by the following equation:

C=Bo+ BrXr+ PMXm+ PcXc + ¢ (1)

where C represents the total count for each single base mutation across the entire SNV DNM call
set, XF is the paternal age at offspring’s conception, and Xw is the maternal age at offspring’s
conception. The distribution of single base mutation types across the genome was generated by
calculating the proportion for each possible single base mutation across one megabase (Mb)
windows genome-wide. When visualizing these distributions, we excluded the final segment
from each chromosome, which was typically shorter than one Mb, as well as windows with
fewer than 5 DNMs or a recombination rate estimate of zero (as this was highly correlated with
the presence of centromeres). 3-mer DNMs were annotated by evaluating the reference base
preceding and following each DNM, and counts for each of 96 possible 3-mers (after collapsing
complimentary 3-mers together) were totaled across the entire SNV DNM call set. We also
calculated the frequency of each 3-mer in the GCRh37 reference genome, and then normalized
each SNV DNM 3-mer count by its frequency in the reference genome. Single base mutations
and 3-mers were also totaled per sample, and linear models (Poisson and normal) were run with
father’s and mother’s ages at conception of the offspring as covariates in order to test the
relationship between global ancestry (European, African, Native American) and single base or 3-

mer mutation count.

Correlations with recombination and rare variation

To estimate the relationship between mutation rate and population-level rare variation, and

between mutation rate and recombination, we calculated local SNV DNM rates, local
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recombination rates, and rare variation levels for one Mb windows across the autosomes. SNV
DNM rates were estimated using the number of SNV DNMs from our 86,865 DNM call set that
overlapped each 1 Mb window, and were scaled as the local mutation rate per person per base

according to the following equation:

Moxv = DNMs; / (1453 * 2 * 1x10) 2)

where Mpnw is the local mutation rate, DNMs; is the DNM count in window i, 1453 represents
the number of samples from which our SNV DNM call set is derived, and 1x10° scales per base
pair. To calculate local recombination estimates across each 1Mb window, we used genetic map
data from HapMap (cite), and used GrCh37 or GRCh38 annotations depending on the analyses
(see below). Local recombination rate was estimated as the first genetic position estimate in a
window minus the last, divided by the total number of bases separating these estimates, and
scaled to 1 million. The result of this calculation was in units centimorgans per megabase (cM/
Mb), and was used as the recombination rate estimate for the 1 Mb window. Using WGS data
from ~41k diverse and unrelated samples from freeze5 of the TOPMed consortium?’, we
calculate the total number of variants with allele frequencies < 0.005 in each 1Mb window,
normalize these counts as Z-scores, and use these Z-scores as measures of the levels of recent
variation existing in the human population across the genome. Given that most variation is rare,
and that rare and common variation are highly correlated?’, these rare variant based estimates
also reflect how overall genomic variation varies across the genome. To control for the potential
effects of coding variation on rare variant totals, as well as for the potential effects that regions
with mappability concerns may have on both rare variation and DNM calling (in ways that could
potentially be confounded), we used linear regression to adjusted TOPMed rare variation levels
by the proportion of bases that are coding and the proportion of bases that were identified in
TOPMed as having mappability concerns. The residuals from these regression analyses were
used as adjusted levels of rare variation in a repeat analysis of the relationship between DNM

rate, rare variation, and recombination rate. Given that this TOPMed data is annotated using the
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GRCh38 version of the human reference genome, all data included in analyses using these
TOPMed rare variation measures were annotated using the GRCh38 human reference.
Specifically, when appropriate, we used genetic map data from GRC38 to calculate local
recombination rates, and we converted the positions of our SNV DNMs from GRCh37 to
GRCh38 with UCSC’s liftOver tool® before estimating local mutation rates. Otherwise, analyses
including local recombination and DNM rates used data based on GRCh37 annotations. To
assess the relationship between TOPMed variation levels, recombination, and mutation, we used
linear regression. By using both local recombination rate and local SNV DNM rate as
independent variables, and TOPMed rare variation transformed into Z-scores as our dependent
variable, we estimate how much variation in population level genomic variation is explained by
both recombination and mutation. To see how much of this variation is explained by mutation
after accounting for recombination, we first regressed TOPMed variation onto recombination and

then regressed the residuals of this model onto mutation.

For comparisons of mutation proportions across windows, single base SNV DNM totals were
calculated and converted to proportions by dividing by the total number of DNMs per 1Mb
window. High variation, high DNM, high recombination 1Mb regions, as seen in Table S2, are
defined as having rare variant Z-scores in the top 10% of values, and DNM and recombination
rates in the top 20%. High recombination regions are those with recombination rate values in the
top 20%, and low recombination regions are those with Z-scores = -2, DNM rates in the top
80% of values, and recombination rates in the bottom 20% of values. To test the relationship
between recombination and mutations, we regressed local recombination rate onto local SNV
DNM rate, and repeated similar analyses independently per chromosome to see how the

relationship between recombination and mutations varies across the autosomes.

Correlations with Heterozygosity

To test whether more heterozygous genomes have a higher DNM rate, we calculated genome-

wide heterozygosity scores for each of the 1,453 samples included in our analysis. These were
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compared with the total SNV DNM count per individual using linear regression, and for
comparison within only a particular ancestry, samples were subset down accordingly. To account
for the effects of parental age on DNM count, we regressed out paternal and maternal age at
conception, and then reran regression models between this adjusted DNM value and

heterozygosity.

Local ancestry analysis

We phased the data using the Eagle2 algorithm as implemented in the Eagle software®’. For this
phasing, we used binary input files, GRCh37 genetic map files, 4 threads, and the --
maxMissingPerIndiv 0.6 argument. Next, we combined whole genome sequencing (WGS) data
from the 1000 genomes with high coverage WGS data from the Peruvian Genome Project®® to
assemble genotype data from 1,752 samples of European (499), African (640), East Asian (498),
and Peruvian (115) ancestry. This genotype data was used as reference input to the RFMIX
software®®, which we used to estimate local ancestry across all 1,465 of our samples for which
we called DNMs. Using these local ancestry calls, we went through the genomes of each sample
(1453 after removing outliers, see TOPMed cohorts and samples) and binned contiguous regions
by their ancestral origins. In other words, a region was called European-European if our local
ancestry calls estimated both chromosomal copies of that region as having European ancestral
origin. Once every region in the genome had been annotated in this manner with diploid
categorization, the DNMs in each region were tallied for each individual. Finally, to calculate
local estimates of de novo mutation rate across these ancestrally distinct diplotypic segments, the
DNM counts and base totals for each diploid region within each individual were summed, and
the resulting DNM count totals were divided by the total number of bases, per diploid region.
Within each diploid comparison (i.e. European-European vs European-African), we excluded
individuals who did not have at least 80 megabases of each diploid category (minimum 2
expected DNMs) in order to avoid the noise that arises from working with exceedingly small

numbers. The resulting distributions were compared using an analysis of variance.
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Mutation Spectrum analysis

Using the single base changes we previously determined, we counted the number of each
mutation type per individual for each of the 1,453 samples included in our overall analyses. After
using regressing to adjust for both paternal and maternal age at conception, we used logistic

regression to test for a relationship between mutation type count and population label.
Heritability analysis

We treated the number of SNV de novo mutations per individual as a quantitative phenotype, and
estimated its heritability with the MMAP software*?, which estimates narrow-sense heritability
(h?) using a linear mixed model. The following equation represents our base model, which we
adjust for subsequent analytic iterations, as described below:

Y = Bo+ PrXr+ PuXm+ PcXc+ g +¢ (3)

where X is the paternal age at offspring’s conception, Xwm is the maternal age at offspring’s
conception, Xc is a categorical variable indicating study, and g is the random effects, where
Var(g) = X%, * A, and A is the genetic relationship matrix (GRM). We used this base model to
estimate h? across a total of eight separate analyses, with all six cohorts together serving as a
sample set, each separate cohort serving as a sample set, and the Amish and FHS cohorts serving
as a single pooled sample set. In all of these association analyses, we remove samples (n=3) with
SNV DNM values > 130 in order to more stringently remove outliers and reduce the likelihood

of spurious associations. For the all cohort analysis, cohort membership was included as a
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covariate. In order to evaluate whether the portion of variation in SNV DNM accumulation
attributable to parental age was itself heritable, we repeated the above models without adjusting
for parental ages as covariates. These base models are run in MMAP with the following sample

command and parameters (which change depending on covariates etc):

mmap --ped $ped --read_binary covariance _file $grm --phenotype_filename $pheno
--phenotype_id PROBAND _ID --num_mkl_threads 4 --model add --trait $trait

--file_suffix $suff --single _pedigree --covariates $covariates

where "$ped" is a pedigree file containing family IDs, parent IDs, and sex, "$grm" is a genetic
relationship matrix, “$pheno" is a phenotype file containing DNM values and relevant
covariates,"--phenotype id" specifies which column contains the subject ID in the phenotype
file, "S$trait" specifies the column name of the phenotypic trait to utilize in the model, "--model
add" specifies the use of an additive model,"$suff" specifies a file suffix to prevent

overwriting, "-num_mkl threads" specifies the number of threads used, “--single-pedigree”
indicates that the family ID in the pedigree file will be ignored, and "$covariates" specifies the
column names of the covariates to be included in the model from the phenotype file. When
ignoring the family ID and specifying a GRM, the family structure is determined via the GRM
rather than the pedigree file. Heritability calculations in MMAP use the GRM alone as its
genotypic informational input. Overall, this command enables the estimation of heritability (h?),
specifies a GRM, and fits an additive linear mixed model. Heritability analyses that adjusted for
parental age effects produced qualitatively similar results when repeated with one randomly

chosen offspring per nuclear family.
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Table 1

Number of

Average paternal

Average

Offspring
Study TOPMed Project (single age at. Maternal Age al Populations
Name offspring per Conception Conception
family) (years +- SD) (years +- SD)
Genetics of Old Order Amish
Amish Cardiometabolic 115 (59) 29.24 +- 5.10 27.03 =-5.24 large extended
Health in the Amish pedigrees
Barbados Asthma African Ancestry
BAGS Genetics Study 210 (125) 31.71 +-7.15 27.13 +- 5.88 (from Barbados)
CFS_EUR C'eve'satﬁ‘;;am”y 100 (52) | 30.03 +-5.02 | 28.07 +-5.00 |European American
CFS_AFR C'eve'gtﬁ;am”y 31 (22) 28.27 +-6.93 | 24.96 +-4.76 | African American
The Genetic Costa Rican
CRA Epidemiology of 316 (278) 29.73+- 6.56 26.78 +- 6.05 (Hispanic)
Asthma in Costa Rica P
FHS Framingham Heart 693 (678) 29.50 +- 5.27 27.38 +- 4.76 | European American

Study
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Table 2

Variable
Mean DNMs
SD
Min
Max
Kurtosis
DNMs >3 SD
DNMs <3 SD
Sample Size
Number of Covariates
h2
h2 P-value
h2 P-value Standard Error

Proportion Variance Explained By
Covariates

Adjusted Proportion Variance
Explained By Covariates

In Likelihood
Likelihood Method
Intercept
Intercent Standard Error
Intercept P-value
Bpaternal_age

Value
59.57
13.38
11.00
124.00
0.74
6.00
1.00
1388
8.00
0.00
0.00
0.03

0.51

0.51

-3843.13
MLE
13.00
1.76
2.46E-13
1.24

Variable

Bpaternal_age Standard Error

Bpaternal_age P-value
Bmaternal_age

Bmaternal_age Standard Error

Bmaternal_age P-Value
BAmish
BAmish Standard Error
BAmish P-value
BBAGS
BBAGS Standard Error
BBAGS P-value
BCFS_AFR

BCFS_AFR Standard Error

BCFS_AFR P-value

BCRA
BCRA Standard Error
BCRA P-value
BFHS
BFHS Standard Error
BFHS P-value

Value
0.07
4.61E-65
0.43
0.08
2.14E-08
-5.18
1.33
1.09E-04
-0.90
1.27
0.48
0.63

2.15

0.77

-1.37
1.13
0.22
-2.56
1.05
0.01
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Figure S1 | Correlations between SNV DNM totals and various meta data. (A) As expected
based on previous findings, SNV DNMSs are significantly positively correlated with parental age
at conception. (B-D) DNMs are not significantly correlated with sex, birthyear of the individual
for whom we call DNMs, or DNAage of this individual. These comparisons were to confirm that
there was no unexpected confounding, and these results are in accordance with predictions.
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Figure S2 | Distribution of 1mer DMNs across the genome. The
distribution across the genome for the frequency of each of 6 single
base mutation types is shown. These frequencies are estimated for
each mutation across each of 2676 1MB windows, and are displayed
per window after sorting based on window end position, per autosome.
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Figure S3 | Distribution of 3-mer
mutations after normalization by
background frequency. Count
levels are shown as each 3mer
DNM count divided by the total
count (i.e. frequency) of the 3-mer
across the reference genome,
which represents a normalization
of the count by background
frequency. CpG to TpG transitions
are much more frequent than the
expectation based on 3-mer
genome frequency (green, top left).
Mutations starting with AT or AC
seem to have high frequencies
than expected, GCG—GAG are
more common than expected
based on their center base
mutation (i.e. C—A), and
TCT—-TTT isles frequency than
expected based on it center base.
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Figure S4 | Correlation between SNV DNMs and
Recombination Rate. A) Local SNV DNM rates,
which were calculated for 2,695 1MB windows
across the autosomes, are significantly positively
correlated with local recombination rate estimates.
B) These correlations vary across the autosomes,
with some chromosomes showing strongly
significant positive correlations (e.g. chromosomes
7, 8,9, 16, 19) others showing no correlation (e.g.
chromosomes 6, 11, 12, 13, 22), and chromosome
15 showing a significant negative correlation.
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Figure S5 | Association of recombination rate and single bas mutation type. C-2Gand C—T
mutation proportions are significantly positively correlated with Recombination rate, while T=A, T—C,
and T—G are significantly negatively correlated with recombination.
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Figure S6 | Normalized city plot of rare
variation, recombination rate, and DNM rate
across the genome. The relationship between
DNM rate (blue to red color range) , rare
variation (Y-axis, ranging from -3.66 to 12.15 Z-
scores), and recombination rate (Z-axis,
ranging from 0 to 7.77 cM/Mb Y cM/MB) is
qualitatively similar across the genome (x-axis,
dotted vertical lines divide autosomes 1-22)
after adjusting rare variation totals for coding
proportion and mappability concerns (see
methods). In going from low to high rare
variation levels, a blue to red gradient can be
seen, as in the unadjusted analysis. This
reflects the significant correlation between
DNM rate and population-level rare variation.
Furthermore, regions with high DNM rates and
high variation levels generally have taller bars,
which reflects the positive relationship between
DNM rate, variation level, and recombination (a
few exceptions to this can be seen at the
bottom corner of the plot as tall blue bars).
Regions with the highest variation levels in the
genome, such as those on chromosomes 8
and 16, have the highest DNM rates. DNM

Count
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Figure S7 | Global Heterozygosity and SNV DNMs. A) Genome
Heterozygosity total is significantly but modestly correlated with
SNV DNM total, B) and this correlation persists after adjusting

for parental age effects.
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Figure S8 | Heterozygosity does not significantly associate
with DNMs in FHS. Within the FHS cohort, which represents our
largest cohort, there is no correlation between an individual’s total
number of heterozygous sites and their number of DNMs.
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Figure S9 | SNV DNM sub-analyses across
diverse cohorts. A) After using linear regression
to adjust SNV DNM totals for parental age
effects, significant differences across cohort
persist. B) Comparisons of SNV DNM totals
across cohorts sequenced at the same centers
show significant differences between individuals
Amish (blue) and FHS (green), but C) no
significant differences between CFS_EUR,
CFS_AFR, and CRA, which represent European,
African, and Latino ancestry individuals,
respectively. These results persists after
adjusting for parental age effects (D and E).
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Figure S10 | African ancestry proportion does not correlate with
SNV DNMs. After using linear regression to adjust SNV DNM totals for
parental age effects, there is no correlation between African ancestry
proportion (x-axis) and adjusted SNV DNM totals per individual (y-axis).
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Figure S11 | Ancestry proportion does
not correlate with SNV DNMs in
BAGS or CRA. After adjusting for
parental age effects, there are no
significant correlations between SNV
DNM total per individual and A) African
ancestry proportion in BAGS, B) African
ancestry proportion in CRA, or C) Native
American ancestry proportion in CRA.
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TCC—TTC 3-mer mutation count correlates negatively with global European ancestry
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significant after Bonferroni correction for multiple testing).
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Figure S13 | SNV DNMs differ across families. Amongst
families with 2 or more children, A) SNV DNM totals per
individual are significantly different across family, B) which

persist after adjusting for parental age effects (P<0.005).
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Figure S14 | Single
base mutation
differences across
cohort. Significant
differences C—A, T—C,
and T—G mutations can
been seen across
cohort (A and B).
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Figure S15 | Diplotype admixture proportions across cohorts. The
proportion of each diplotype (out of those with appreciable representation
In our dataset) is represented by a different color within a stacked bar plot
for each sample in our DNM analysis (n=1453). Individuals from the
BAGS, CFS_AFR, and CRA cohorts have significant diplotypic admixture,
and contain the sampleswe used for our local ancestry analysis.
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Figure S16 | Intra-individual
comparisons of mutation

rate across ancestry.

Every individual who had a minimum
of 80 Mb of each of at least two
ancestry diplotypes, had
individualized DNM rates calculated
for each of these diplotypes (i.e. a
European/European mutation rate).
These individualized rates were then
subtracted from one another, and for
all pairwise combinations where we
had enough representation in our
samples (x-axis), we built
distributions of these intra-individual
DNM rate differences (y-axis). These
differences centered around zero,
and using paired t-tests, we did not
find any consistent significant
differences across ancestral
background in intra-individual
mutation rates. While the Afr.Afr -
Afr.Eur (orange) difference just
reached significance after multiple
testing (P<6.1x104, black asterisk),
there is no other signal of a higher
mutation rate in African ancestry
versus European ancestry segments.
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