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Abstract  

Wireless recordings in macaque neocortex and hippocampus showed stronger theta 

oscillations during early-stage sleep than during alert volitional movement including walking. In 

contrast, hippocampal beta and gamma oscillations were prominent during walking and other 

active behaviors. These relations between hippocampal rhythms and behavioral states in the 

primate differ markedly from those observed in rodents. Primate neocortex showed similar 

changes in spectral content across behavioral state as the hippocampus.  

Main 

In studies of human and non-human primates, the predominance of computer tasks and 

other stationary experiments has limited our understanding of neural changes across behavioral 

states, particularly for volitional, self-movement-related behaviors. By contrast, in rats, free 

behavior has been the predominant model approach, revealing well-established brain-behavior 

state dichotomies. For example, within rat hippocampus, theta-band oscillations appear 

consistently during locomotion, but also during other active voluntary movements and in REM 

sleep (‘Type II behaviors’). This activity appears in opposition to ripple-containing Large 
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Irregular Activity (‘LIA’), which is seen during consummatory behaviors, self-grooming and in 

non-REM sleep (‘Type I behaviors’) 1,2. Rat hippocampal spectral tuning with behavioral state 

differs from the pattern observed in the neocortex, with the latter typically showing a prevalence 

of beta- and gamma-frequency activity during the greatest levels of vigilance and activity 3–5. 

These spectral shifts with behavior, however, may not be conserved across species 3,6–8. In 

macaques and humans engaged in stationary tasks, hippocampal theta can surprisingly be 

weaker during the ‘active’ states, with beta- and gamma-band power more closely coupled to 

active performance, similar to neocortical tuning 9–16. Results from ambulating humans suggest 

this may have been due to stationarity 17,18, raising the issue of how hippocampal and 

neocortical oscillations change across sleep and waking vigilance states in freely-moving 

primates. 

To address this, we recorded a total of 210 hours of behaviors (supplementary Table 1) from 

three macaques who had chronically-implanted intracortical multichannel electrode arrays in the 

hippocampus (n=3 animals, Fig 1a), medial prefrontal and retrosplenial/posterior cingulate 

regions (n=2 animals). Behaviors were divided into 4 groups of increasing levels of 

activity/arousal (see Online Methods): (i) sleep; (ii) inactive (‘Type I’) states such as eating, 

drinking and being groomed; (iii) active (‘Type II’) including orienting responses, grooming 

another monkey, foraging, and (iv) walking (see supplementary video, Fig 1b). In both primate 

hippocampus and neocortex, we observed characteristic rhythms: A theta rhythm peaking 

around 7 Hz, a beta rhythm peaking around 12 Hz during sleep and around 12-18 Hz during 

waking depending on the region, and a hippocampal high-beta/low-gamma rhythm peaking 

broadly around 30 Hz and a cingulate gamma peaking more sharply at 46 Hz. Whereas activity 

in neocortex was generally consistent with that described in the rat  3–5, activity in hippocampus 

clearly showed different associations to behavioral states. For example, in the early stages of 

sleep, all sites showed prominent enhancements in theta-band (5–10 Hz) power compared to 
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that of waking behaviors (Fig. 1c, p<0.01 ranksum test on 1–10 Hz bands). Theta-band peaks 

were greater during sleep compared to waking, as measured relative to the 1/f component of 

the whole-session power spectrum (Fig 1c, left column). In contrast, hippocampal power in the 

beta and gamma bands was greater during activity than sleep (Fig. 1c, left column, p<0.01 

ranksum test on 20–50 Hz bands). Power in all tested frequency bands between 10 and 80 Hz 

did not differ between inactive (‘Type I’) states and active Type II behaviors including walking 

(p>0.05, ranksum test). 

By detecting band-limited bursts of spectral power, we could estimate the prevalence of 

oscillations across behavioral states. No single band of oscillations occurred more than 12% of 

the time the animal spent in any waking behavioral state. The greatest rates observed during 

waking were for the 30–60 Hz gamma band in the hippocampus. In contrast, hippocampal theta 

oscillations were rare during walking (~2%); they occurred roughly four times more often in 

sleep as in waking behavior (Fig. 1c, right column, t-test, p<0.01; normalized by the amount of 

time spent in each behavioral state). Hippocampal theta oscillations contained a greater 

proportion of long theta bouts during sleep compared to walking (p<0.001, KS-test, Fig. 2a,c). In 

contrast, long bouts of gamma (>30 Hz) were more common in hippocampus during active 

behavior compared with sleep (p<0.01, KS-test). Taken together, these results indicate the 

prevalence, magnitude, and duration of oscillations for a given set of behaviors, but not the 

inverse i.e. the likelihood of a behavioral state given the appearance of an oscillation. 

Quantifying this inverse likelihood showed that no behavioral state is strongly or uniquely 

predicted by a given oscillatory band, however, oscillations at low frequencies best predict early-

stage sleep, and oscillations at high frequencies best predict walking and other awake 

behaviors (Fig. 2d). This result is in striking contrast to findings in rodents, where theta 

oscillations are reliably observed in hippocampus during active behaviors such as walking rather 

than as an animal enters non-REM sleep 1,19.   
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In the primate, power spectral changes with behavioral state were generally similar across 

hippocampal and neocortical recordings sites, which could indicate volume conduction. If so, 

there should be temporal overlap of oscillatory bouts across sites, expressed as rate of 

concurrence across sites for a given frequency of oscillation.  We found only around 20-50% 

concurrence between hippocampal contacts and other recording sites (Fig. 2c). That is, ~30% 

of the time hippocampal oscillations co-occurred with other recording sites. Moreover, 

hippocampal multiunit activity was partially phase-locked to the theta rhythm (5–10Hz) 

(p<0.001, Rayleigh test; Fig. 2e) suggesting that the LFPs recorded by hippocampal electrodes 

were effective in modulating local populations. Also, neocortical oscillations were generally 

stronger than those in the hippocampus, and spectral peaks were generally similar but not 

identical. Together, these results suggest that hippocampal activity was not simply volume 

conducted from neocortex.  

Overall, we found that neocortical and hippocampal activity shifts from low-frequency (theta) 

activity in early-stage non-REM sleep to high frequencies (beta and gamma) during increasingly 

active behaviors including walking. In stark contrast to rodent studies, hippocampal theta 

oscillations were uncommon during walking and other active behaviors of monkeys. Theta 

oscillations are thought to be important for active waking processes including the formation of 

episodic memory and navigation not only for rodents 19–23; but also for humans 13,17,24–26. In this 

study, however, we show that theta oscillations in non-human primates (i) were not sustained 

during waking periods, (ii) did not track the durations of waking behaviors, and (iii) predicted 

sleep instead of active states. Beta and gamma frequencies, on the other hand, were better 

predictors for active and walking behaviors, consistent with a role for hippocampal beta/gamma 

in learning and navigation 11–14,27. Many of the spiking and high-frequency events commonly 

associated with  theta oscillations such as phase coding26 , phase precession 20,28, and gamma-

frequency shifts 29 may nevertheless be conserved. These events could still underlie preserved 
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mechanisms during exploration, without the necessity of coupling to a sustained, band-limited 

low frequency oscillation 30. Furthermore, cognitive states such as those responsible for abstract 

comparisons, flexible planning and strategizing may be transient and not time-locked to the 

behavioral classes we measured, including ambulatory movements. Our results suggest that 

however these elaborate cognitive states are supported by hippocampal and neocortical 

populations in primates, they are likely operating in the midst of a distinct set of spectral 

background conditions.  
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Figure captions: 

Fig 1. Spectral content recorded wirelessly across macaque hippocampal and neocortical 

sites, grouped by behavioral state. a) Electrode locations across animals were coregistered and 

marked on a cutaway of a macaque brain for Animal 1 in green, Animal 2 in yellow and Animal 3 

in pink. Animal 2 electrode locations were projected onto the left hemisphere for comparison 

across animals. mPFC and MTL electrodes sites are shown projected onto coronal slices and 

PCC on an axial slice. b) Examples of video frames when Animal 1 was groomed in left and 

walking in right (see Supplementary Video). c) Frequency spectral analysis of mPFC, aMTL, 

aHPC, pHPC, and PCC regions during Sleep, Inactive, Active and Walking states (see online 

Methods). Left) Average FFT for each behavioral state measured relative to the 1/f normalized 
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power over the full recording sessions, with 95% confidence boundaries shaded. Differences 

between sleep and waking power changes are indicated by the horizontal black lines. The 

number of 1-second epochs for each behavior is stated in the legends for each recording site, 

along with the color correspondence for each of the four behaviors. Middle) Percentile changes 

from 1/f normalized power for each frequency band. Right) Percentage of time (occupancy rate) 

of detected band-specific oscillations for each behavioral category. Error bars indicate standard 

deviations. Colormap shown on the far right.  

Fig 2. Oscillation durations and predictability of behavior given oscillations a) Distribution of 

oscillation durations for anterior and posterior hippocampal contacts during Sleep (blue) and 

Walking (red). X-axes are limited to 4 s for theta and beta bands, and to 2 s for gamma, to aid 

visibility of predominant durations. b) Examples for the detection of oscillations at 1–10 Hz (left) 

and 10–30 Hz (right) during 5 seconds of a continuous behavioral state. Broadband filtered 

traces recorded during sleep are shown in blue and during walking are shown in red; 

bandpassed signals are shown on top of each epoch in black, and the reference trace 

immediately below it, with detected oscillations in that frequency band indicated by a bold line. 

Traces from an alternate, simultaneously recorded site are plotted below the other trace. c) The 

temporal overlap of detected oscillations across brain sites, expressed as rate of concurrence. 

d) Likelihood of the behavior from the presence of an oscillation, shown on left plots; 

predictability is shown on the right, as the normalized likelihood of observing the behavior given 

the oscillatory bouts, factoring by the prior probability of the behavior. 90% bootstrapped 

confidence intervals are shown by errorbars. e) Polar histograms of preferred theta (5–10 Hz, 

black) and delta (1–5 Hz, gray) phase of multi-unit activity to local field potentials of 

hippocampal contacts for Animal 2 are shown. The MUA was tuned to local fields of both 

frequency bands but at different phases (p<0.001, Rayleigh test) suggesting that LFPs recorded 

in the hippocampus were not volume conducted. 
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