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Abstract 

Background: Allele-specific copy number alteration (CNA) analysis is essential to study the functional                         

impact of single nucleotide variants (SNV) and the process of tumorigenesis. Most commonly used tools                             

in the field rely on high quality genome-wide data with matched normal profiles, limiting their applicability                               

in clinical settings.  

Methods: We propose a workflow, based on the open-source PureCN R/Bioconductor package in                         

conjunction with widely used variant-calling and copy number segmentation algorithms, for                     

allele-specific CNA analysis from whole exome sequencing (WES) without matched normals. We use The                           

Cancer Genome Atlas (TCGA) ovarian carcinoma (OV) and lung adenocarcinoma (LUAD) datasets to                         

benchmark its performance against gold standard SNP6 microarray and WES datasets with matched                         

normal samples. Our workflow further classifies SNVs by somatic status and then uses this information                             

to infer somatic mutational signatures and tumor mutational burden (TMB). 

Results: Application of our workflow to tumor-only WES data produces tumor purity and ploidy                           

estimates that are highly concordant with estimates from SNP6 microarray data and matched-normal                         

WES data. The presence of cancer type-specific somatic mutational signatures was inferred with high                           

accuracy. We also demonstrate high concordance of TMB between our tumor-only workflow and                         

matched normal pipelines. 

Conclusion: The proposed workflow provides, to our knowledge, the only open-source option for                         

comprehensive allele-specific CNA analysis and SNV classification of tumor-only WES with                     

demonstrated high accuracy.   
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Introduction 

Copy number alterations (CNAs) are typically measured by the ratio of tumor to normal DNA                             

abundance. However, tumor purity and ploidy affect this ratio and must be incorporated to                           

infer absolute copy numbers ​(Carter et al., 2012; Van Loo et al., 2010)​. Information from                             

heterozygous germline single nucleotide polymorphisms (SNPs) further allows deconvolution of                   

absolute copy number into the two parental copy numbers. This parental or allele-specific copy                           

number provides a direct readout of LOH (when either the maternal or paternal copy is lost),                               

which can indicate the complete loss of wild-type function when a somatic mutation in a                             

putative tumor suppressor is identified ​(Knudson, 1971)​. Inferring allele-specific copy number is                       

further crucial to understanding mutagenesis, allowing determination of clonality and timing of                       

copy number changes at the same locus ​(Carter et al., 2012; McGranahan et al., 2015;                             

Nik-Zainal et al., 2012)​.  

 

Whole exome sequencing (WES) and targeted panel sequencing become routine applications                     

in the clinic, providing comprehensive data while saving cost and scarce tumor tissue by                           

eliminating the need for multiple ​single analyte assays​. Such comprehensive tests may                     

therefore ​aid treatment decision-making by ​increasing the detection of actionable alterations,                 

which includes point mutations and amplifications of oncogenes in targeted therapies,                     

microsatellite instability (MSI), and tumor mutational burden (TMB) in immunotherapy                   

(Chalmers et al., 2017; Zehir et al., 2017)​. 

 

Sequencing both tumor and matched normal specimens currently provides certain benefits                     

over tumor-only sequencing, even in diagnostic settings where alterations of uncertain                     

significance are usually ignored. For example, high depth sequencing of blood samples can                         

more reliably identify hotspot mutations that arose in heme rather than in tumor cells ​(Coombs                             

et al., 2017; Steensma et al., 2015)​. Matched normal samples are also commonly required for                             

existing algorithms to detect complex biomarkers such as MSI, TMB, or LOH. Obtaining                         

comprehensive information from clinical tumor-only sequencing data could reduce time and                     

cost, while enabling analyses of the large number of archived specimens for which blood                           

samples are unavailable. However, the reliability of tumor-only sequencing is not well assessed                         

(Jones et al., 2015; Shi et al., 2018)​. 
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Without matched normal samples, it is necessary to distinguish algorithmically between                     

somatic mutations and germline variants. Existing approaches commonly involve machine                   

learning using public germline and somatic databases, ​in silico predictions of the functional                         

impact of mutations, as well as allelic fractions (the ratios of non-reference to total sequencing                             

reads) of mutations and their neighboring SNPs ​(Kalatskaya et al., 2017; Smith et al., 2016)​.                             

Recently developed tools for high coverage sequencing additionally use allele-specific copy                     

number, allowing the calculation of accurate posterior probabilities for all possible somatic and                         

germline genotypes ​(Halperin et al., 2017; Riester et al., 2016; Sun et al., 2018)​. However,                             

complete and thoroughly benchmarked workflows are lacking. 

 

We present a complete workflow for tumor-only hybrid-capture data, benchmark it against two                         

gold standard datasets of matched normal WES sequencing and Affymetrix SNP6 microarrays,                       

and compare it to alternative methods ​(Shen and Seshan, 2016)​. Using the ovarian carcinoma                           

(OV) and lung adenocarcinoma (LUAD) datasets of The Cancer Genome Atlas (TCGA), which                         

represent opposing extremes with respect to tumor purity, copy number heterogeneity and                       

TMB, we demonstrate high reliability of tumor-only analyses for inference of allele-specific                       

copy number, identification of functional mutations, LOH, mutational signatures, and TMB. 

 

Results 

Reliable analysis of clinical tumor-only sequencing data involves multiple non-trivial steps that                       

are distinct from the analysis of matched tumor and normal sequencing. Below we describe                           

and benchmark a detailed workflow for hybrid-capture tumor-only sequencing data including                     

variant calling, coverage normalization for copy number calling, purity and ploidy inference, and                         

classification of variants by somatic status (Supplementary Fig. 1).   

Tumor purity and ploidy inference 

We selected ovarian carcinoma (OV) and lung adenocarcinoma (LUAD) WES data from TCGA                         

as complementary, representative datasets for our benchmarking study ​(Cancer Genome Atlas                     

Research Network, 2011, 2014)​. Among the TCGA datasets, OV shows the highest tumor                         

purity due to the availability of large surgical specimens. High purity complicates somatic vs.                           
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germline classification due to the overlapping distributions of expected allelic fractions. The                       

LUAD dataset, obtained by core needle biopsies, in contrast ranks among lowest in tumor                           

purity, presenting a different challenge for copy number calling because of the dilution of signal                             

(Riester et al., 2016; Sun et al., 2018)​. LUAD is additionally challenging because of increased                             

copy number heterogeneity ​(Carter et al., 2012; Zack et al., 2013)​. Sub-clonal copy number                           

changes increase the number of copy states, making ploidy inference often ambiguous ​(Carter                         

et al., 2012; Ha et al., 2014)​.  

 

We first compared maximum likelihood purity and ploidy estimates from our workflow using                         

tumor WES with those from manually curated ABSOLUTE SNP6 microarray calls (Fig. 1A-D,                         

Supplementary Table 1). We analyzed 233 OV and 442 LUAD samples, and found a high                             

correlation of microarray and WES results for tumor purity (Pearson correlation of 0.75 and                           

0.84 for OV and LUAD, respectively) and tumor ploidy for OV (Pearson correlation of 0.73).                             

Ploidy estimates for LUAD also showed a high concordance for the majority of samples                           

(Pearson correlation of 0.57). Additionally, we applied FACETS, a widely used allele-specific                       

CNA analysis tool for tumor and matched normal sequencing ​(Shen and Seshan, 2016)​, to both                             

OV and LUAD paired WES data (Supplementary Fig. 2). For 68.9% of all samples, all 3 tools                                 

generated concordant purity and ploidy calls (Supplementary Fig. 3). For OV, PureCN showed                         

a higher ploidy concordance with ABSOLUTE than FACETS (87.1% vs. 73.8%) whereas for                         

LUAD, its concordance was slightly lower (77.1% vs. 79.6%). 

Loss of heterozygosity 

We demonstrated the accuracy of allele-specific copy number analysis by examining loss of                         

heterozygosity (LOH) at two loci of main clinical interest, HLA-A/B/C and TP53. HLA and TP53                             

loci were investigated in 143 and 223 OV cases, respectively, where both tumor-only WES and                             

SNP6 array made LOH calls (Supplementary Table 2). For LUAD, the same comparison was                           

done in 298 and 332 samples for HLA and TP53 loci, respectively. In OV, the mean agreement                                 

in LOH status between tumor-only WES and SNP6 microarray was 94.2% for HLA and 99.6%                             

for TP53 (Fig. 1E). In LUAD, it was 91.0% for HLA and 95.5% for TP53 (Fig. 1F), with the                                     

discordant samples showing low purity (average of 30.9% vs. 43.3%, Mann–Whitney p-value <                         

0.0005). 
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Classification of variants by somatic status 

We next evaluated the somatic status predictions of variants not found in public germline                           

databases. We first compared predictions against a simple model that utilizes only allelic                         

fractions. This essentially compared the performance of commonly used ​ad hoc allelic fraction                         

filters such as 0.4 against our model that adjusts allelic fractions for allele-specific copy                           

number. We observed a significant improvement over this simple model in tumors with purity                           

over 30% (Fig. 2A-B, Supplementary Table 3). Below 30% tumor purity, inclusion of copy                           

number does not provide a benefit for classification due to the large difference in expected                             

allelic fractions of germline and somatic variants.  

 

We then examined how many variants can be classified with reasonable certainty                       

(Supplementary Table 4). As expected, this call rate was largely a function of tumor purity (Fig.                               

2C-D). Increasing sequencing coverage also increased these rates (Supplementary Fig. 4A-B).                     

Somatic variants were classified with higher median accuracy than germline variants (96.1% vs                         

88.1%, respectively in OV; and 97.2% vs 96.6%, respectively in LUAD, Fig. 2E-F). This is also                               

expected, since the somatic group includes sub-clonal mutations, which are usually easier to                         

classify than mono-clonal mutations due to their lower allelic fractions and therefore higher                         

allelic fraction difference compared to germline. We observed a similar median somatic and                         

germline accuracy using SGZ (94.0% and 88.9% in OV; and 98.4% and 97.3% in LUAD; Fig.                               

2G-H; ​(Sun et al., 2018)​), but with lower median call rates (39.5% and 59.5% for OV and LUAC,                                   

respectively for SGZ vs. 64.4%​ ​and 82.2% for PureCN). 

Tumor mutational burden 

We next sought to investigate the accuracy of the variant classification for determining tumor                           

mutational burden (TMB). From the comparison of tumor-only and paired analysis modes, we                         

found a high concordance (Pearson correlation 0.98) and good calibration of somatic mutation                         

rates per megabase, in both OV and LUAD (Fig. 3A).   

Mutational signatures 

To further evaluate the clinical utility of our workflow, we assessed the accuracy of mutational                             

signature identification ​(Alexandrov et al., 2013) from tumor WES data with or without                         

matched-normal profile. Among 30 validated mutational signatures, we investigated the two                     
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OV-associated mutational signatures with known aetiology in detail (Fig. 3B). Signature 1,                       

generated by spontaneous deamination of 5-methylcytosine, has been found in all cancer                       

types and is linked to aging. Signature 3 is associated with homologous repair deficiency, a                             

potential biomarker for PARP inhibition in ovarian cancer ​(Moore et al., 2018)​. We obtained a                             

high agreement for mutational signature calls from tumor-only and paired analyses (77.5% for                         

Signature 1 and 88.1% for Signature 3), confirming that our workflow can reliably detect                           

mutational signatures without matched normal profile even in high purity samples.  

 

In LUAD data we again reproduced previously associated signatures of known aetiology. In                         

addition to the aging Signature 1, we found a significant fraction of samples dominated by the                               

signatures APOBEC (Signature 2 and Signature 13), tobacco (Signature 4), and DNA mismatch                         

repair deficiency (Signature 6) signatures (Fig. 3C, Supplementary Table 5). We observed high                         

agreement between tumor-only with matched normal data for all these signatures (79.3%,                       

94.8%, 95.7%, and 75.5% for Signatures 1, combined 2+13, 4 and 6, respectively). 

 

Discussion 

We present an easy-to-implement workflow for reliable analysis of clinical tumor-only whole                       

exome sequencing data without matched normal samples. This workflow is validated on OV                         

and LUAD data from TCGA and benchmarked against a gold-standard, manually-curated                     

analysis of SNP6 microarray data with matched normals. Our workflow estimates tumor purity,                         

ploidy, LOH, TMB and mutational signatures with a high concordance to established workflows                         

for SNP6 and whole-exome sequencing data with paired tumor and normal samples. 

 

To our knowledge, this is the first thoroughly validated open source tumor-only TMB pipeline.                           

TMB is an emerging biomarker for response to immunotherapy ​(Goodman et al., 2017; Rizvi et                             

al., 2015; Rosenberg et al., 2016; Snyder et al., 2014)​, but the current lack of standards                               

significantly challenges implementing TMB testing in the clinic ​(Büttner et al., 2019)​. We believe                           

this open source reference implementation will help establish standards for TMB calling.  

 

While high tumor purity challenges somatic status classification (Fig. 2C-D), the proposed                       

approach to determining clinically relevant biomarkers such as TMB and somatic signatures is                         

surprisingly robust to varying tumor purity (Fig. 3). Notably, signatures of clear aetiology such                           
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as homologous repair deficiency, APOBEC, or smoking had a significantly higher concordance                       

with matched analyses than broader and less certain signatures, for example those associated                         

with aging. In contrast, we also note that high tumor purity is beneficial for LOH and copy                                 

number calling. Still, all parts of the workflow achieved high accuracy in tumors of 40-60%                             

purity, the range in which most clinical tissue specimens fall. 

 

This study has several limitations. First, we focused on benchmarking our tumor-only workflow                         

where it differs from standard matched tumor and normal analyses. A systematic evaluation of                           

accuracy for the variant calling steps upstream of this workflow is beyond the scope of this                               

study ​(Krøigård et al., 2016; Xu, 2018)​. Second, our workflow is currently not designed for                             

whole-genome sequencing (WGS) data. In contrast to gold-standard WGS tools, PureCN was                       

designed for high coverage data (>100X) and currently does not use information largely                         

unavailable in hybrid-capture data such as split reads or SNP phasing. These would be                           

straightforward additions once high coverage diagnostic WGS becomes common in oncology.                     

Third, as with allele-specific CNA calling in matched tumor and normal data, purity and ploidy                             

inference can be ambiguous in a minority of cases of low purity or of high heterogeneity. Our                                 

pipeline therefore provides tools that allow manual correction of results by trained curators,                         

described in the documentation of the PureCN package. Importantly, the accuracy of TMB                         

calling was robust even to inaccuracies in ploidy, partly because different ploidy solution can                           

be equivalent for variant classification ​(Sun et al., 2018)​. Lastly, reliable labelling of clonal                           

hematopoiesis from tumor-only or low coverage matched normal sequencing remains a                     

shortcoming, but is an area of research we are currently pursuing. 

 

Due to the high concordance with matched tumor and normal sequencing, the proposed                         

workflow supports the clinical application of tumor-only sequencing, especially in diagnostic                     

settings.  
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Methods 

Installation 

PureCN can be obtained and installed under the Artistic 2.0 license from Bioconductor                         

(​https://doi.org/doi:10.18129/B9.bioc.PureCN ​), Bioconda   

(​https://bioconda.github.io/recipes/bioconductor-purecn/README.html ​) or GitHub     

(​https://github.com/lima1/PureCN ​). Unless otherwise specified, .R scripts referred to below are part of                       

the PureCN package. 

 

Dependencies 

Genome reference FASTA files were downloaded from NCBI               

(​ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignm

ent_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz​), dbSNP version 135       

was downloaded from https://software.broadinstitute.org/gatk/download/bundle and COSMIC version             

77 from  https://cancer.sanger.ac.uk/cosmic. 

 

The workflow described in this paper assumes that germline SNPs and somatic mutations were                           

identified by MuTect 1.1.7 ​(Cibulskis et al., 2013)​, which requires Java 1.7. Other commonly used variant                               

callers with tumor-only mode can be used instead, but the resulting VCFs need to be filtered for                                 

common artifacts before subjecting them to this workflow. 

 

This workflow further requires a read mappability file for the reference FASTA file. The mappability score                               

m​i is defined as 1/(# alignments) for a k-mer starting at position ​i ​in the reference genome. For hg19,                                     

these scores can be downloaded as precomputed for various k-mer sizes from the UCSC genome                             

browser  

(​http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/​). For other     

reference genomes, we require the GEM library ​(Derrien et al., 2012)​ version 1.315. 

 

Finally, GATK3 ​CallableLoci was used to collect callable regions with sufficient coverage, mappability,                         

and sequence quality. VCF were combined into a single multi-sample VCF with GATK3 ​CombineVariants​. 
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Data download 

Tumor and normal BAM files were downloaded through the GDC Data Transfer Tool using manifest files                               

built by the ​GenomicDataCommons R/Bioconductor package ​(Morgan and Davis, 2017)​. The ​TCGAutils                       

R/Bioconductor package ​(Ramos et al., 2018) was used to annotate the manifest file:                         

TCGAutils::UUIDtoBarcode for transferring Universally Unique Identifiers (UUID) to TCGA barcodes and                     

TCGAutils::TCGAbiospec for extracting biospecimen data from TCGA barcodes. Capture kit information                     

related to each BAM file was obtained via the GDC API using Curl​. BAM files mapping to multiple                                   

capture kits were excluded. BED files containing the locations of baits based on hg19 were lifted over to                                   

GRCh38 using ​hg19ToHg38 ​liftover chain file downloaded from the UCSC Genome Browser                       

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/liftOver/hg19ToHg38.over.chain.gz). 

 

ABSOLUTE analysis of TCGA SNP6 microarray data has been described previously ​(Carter et al., 2012;                             

Taylor et al., 2018; Zack et al., 2013)​. The manually curated ABSOLUTE output was obtained from                               

Synapse (​https://www.synapse.org/#!Synapse:syn7416143​) and lifted over to GRCh38 ​. 

 

None of the data analyzed in this study were used to develop or tune the algorithm or parameters and                                     

thus represent true validation sets. 

 

Variant calling 

MuTect was run separately on both tumor and normal BAM files (Supplementary Fig. 1, purple and blue                                 

lines, respectively) using arguments ​--dbSNP ​Homo_sapiens_assembly38.dbsnp.vcf and ​--cosmic               

CosmicCodingMuts.vcf. ​For benchmarking purposes, ​MuTect was also run in matched normal mode by                         

providing both tumor and normal BAM files and otherwise identical parameters (Supplementary Fig. 1,                           

purple dashed line). Capture kit intervals were not provided to include all SNPs with sufficient coverage                               

in the flanking regions of baits. Normal samples were run in artifact detection mode                           

(-- ​artifact_detection_mode argument) and then combined into a single multi-sample VCF (referred as                       

normal.panel.vcf.file ​in the following ​) ​using GATK3 CombineVariants with argument ​--minimumN 5​.                     

The latter specifies the minimum number of normal VCF files containing the variant call to be included in                                   

the normal database. This was set to a high value to ensure that all individual-specific germline variants                                 

were ignored, which would otherwise indirectly provide matched normal information for some tumors.  
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Reference files generation 

The first step of the workflow (Supplementary Fig. 1) is the generation of reference files for each capture                                   

kit.  

 

To exclude regions of low read mappability, bigWig files were generated from the GRCh38 reference                             

genome assembly without ALT contigs using the GEM library ​(Derrien et al., 2012) and the UCSC                               

wigToBigWig tool. The k-mer size in ​gem-mappability was set to the read lengths of the studies and the                                   

maximum number of mismatches and edit distances was set to 2 (​-m and ​-e ​arguments, respectively),                               

matching the settings used by ENCODE.  

 

Next, the script ​IntervalFile.R was used with default arguments to annotate the regions defined by the                               

baits BED file with mean GC-content, mean mappability, and gene symbols. ​IntervalFile.R further                         

splits on- and off-target regions into bins of maximum 400 bp and 200 kbp, respectively (Supplementary                               

Fig. 1, black line), as previously described ​(Talevich et al., 2016)​. 

 

Only capture kits that were used for more than 100 samples were considered and separate normal                               

databases were built for each kit (Supplementary Fig. 1, blue lines). With these criteria, 233 OV tumors                                 

and their matched normal samples were processed from two different capture kits (‘​Custom V2 Exome                             

Bait, 48 RXN X 16 tubes’ and ​‘​SureSelect Human All Exon 38 Mb v2’). For LUAD, 442 tumors and                                     

matched normal samples were processed (​‘​Custom V2 Exome Bait, 48 RXN X 16 tubes’ kit). 

 

Coverage files were generated for all normal samples using ​Coverage.R (Supplementary Fig. 1, blue lines)                             

with default arguments. This script normalizes on- and off-target coverages independently for                       

GC-content.  

 

The normal coverage databases for the LUAD and the two OV capture kits (output file ​normalDB.rds​)                               

were then generated with the ​NormalDB.R ​script with default arguments. In brief, outlier normal samples                             

with very high or very low coverage were excluded (> 4x or < 0.25x coverage median, respectively).                                 

Furthermore, intervals with no read count in more than 3% of samples and average coverage lower than                                 

25% of the chromosome median were removed. In total, 157 and 176 process-matched normals from                             

two OV capture kits, and 250 from LUAD were used to build the three normal databases.  
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For each interval, ​NormalDB.R then calculates the inverse of the log2-copy number ratio standard                           

deviation across all normal samples and creates the ​interval_weights.txt output file, later used by the                             

segmentation function to downweight intervals with high variance in normal controls.  

 

Reads harboring non-reference alleles have a lower chance of passing filters, thus resulting in average                             

allelic fractions of heterozygous SNPs below the expected 0.5. Therefore ​NormalDB.R next computes a                           

position-specific non-reference mapping bias (output file ​mapping_bias.rds​) for all variants in the                       

normal.panel.vcf.file, ​provided through the ​--normal_panel ​argument. Mapping bias is defined as                     

the ratio of the sum of all alt reads over all samples vs. the total number of reads of heterozygous SNPs                                         

(allelic fraction > 0.05 and < 0.9). This procedure further uses an empirical Bayes approach that adds the                                   

average number of non-reference and total reads per SNP across all samples to this ratio, thus forcing                                 

the mapping bias of rare or low coverage SNPs closer to the average mapping bias.   

 

Whole exome copy number calling 

Tumor coverages were calculated and GC-normalized using the ​Coverage.R ​script with default                       

arguments, analogous to the normal coverages (Supplementary Fig. 1, red line).  

 

The ​PureCN.R script was then used for the main copy number calling step that includes tumor purity and                                   

ploidy inference as well as classification of somatic status and clonality for all variants ​(Riester et al.,                                 

2016)​. The --postoptimize ​flag as well as all previously mentioned reference files were provided.                           

Variants in the UCSC simple repeat track were excluded ( ​--snpblacklist argument). Otherwise default                           

parameters were used.  

 

In brief, tumor vs. normal log2-copy number ratio was first calculated and denoised using tangent                             

normalization ​(Beroukhim et al., 2010)​, again independently for on- and off-target regions. Mapping bias                           

of variants not found in the normal database was imputed by averaging the mapping bias of the 5                                   

neighbors on both sides, weighting each of the 10 SNPs by corresponding number of samples in the                                 

database. Then DNAcopy ​(Venkatraman and Olshen, 2007) was used for the segmentation of merged                           

on- and off-target log2-ratios. Reliable germline SNPs present in the normal database without major                           

mapping bias were used to improve the segmentation by Ward clustering and identification of                           

copy-neutral LOH. Candidate purity and ploidy combinations for the segmented log2-ratios were                       

identified in a 2D-grid search, and subsequently optimized using Simulated Annealing. Allelic variants                         

were finally fitted to all local optima, calculating somatic posterior probabilities for all variants.  
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The likelihood model of PureCN has been described previously ​(Riester et al., 2016)​. PureCN versions >                               

1.8.0 differ in two minor details. First, the uncertainty of copy number log2-ratio standard deviation is                               

now included in the optimization. This is an advantage in high quality samples where shifts in log2-ratio                                 

across chromosomes can sometimes exceed the average noise within segments. Second, the observed                         

sample ploidy can differ from the true ploidy, especially in smaller gene panels that cover only small                                 

fractions of the genome. Previously described PureCN versions modeled this potential deviation as a                           

function of the sample noise, but this was changed to a function of tumor purity.  

 

FACETS version 0.5.6 was used ​(Shen and Seshan, 2016)​. Tumor and normal bam file pairs were                               

processed by ​snp-pileup with the parameters ​-g -q15 -Q20 -P100 -r25,0​, and the outputs from which                               

were imported using ​readSnpMatrix and further processed by ​preProcSample​, ​procSample with ​cval =                         

150​, and ​emcncf​. 

 

Classification of variants by somatic status 

Variants with a somatic posterior probability ≥ 0.8 were classified as somatic, ≤ 0.2 as germline. While                                 

this cutoff may seem arbitrary and liberal, the assumption is that such a classification of specific variants                                 

is mostly of interest when additional information strongly suggests functional significance, such as                         

determined by ​in silico functional prediction tools or due to location in hotspot domains of relevant                               

genes. All variants found in germline databases with small prior probability of being somatic were                             

excluded from benchmarking. 

 

SGZ ​(Sun et al., 2018) in version 1.0.0 was applied to all WES data. SGZ is methodologically similar to                                     

PureCN, but does not include the uncertainty of allele-specific copy number in the posterior probability                             

calculation and is not correcting allelic fractions for non-reference mapping bias. Since SGZ does not                             

ship with a copy number tool, allele-specific copy number data as generated by the PureCN ​callLOH                               

function was provided. Variants flagged by PureCN for recurrent presence in the pool of normals or for                                 

high imputed mapping bias were excluded. The same set of variants was thus used for both tools.                                 

Variants labeled “germline”, “probable germline”, “somatic”, “probable somatic” or “somatic subclonal”                     

by SGZ were considered called, and all others uncalled. Parameters of both tools including classification                             

cutoffs were specified before data analysis. 
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Tumor mutational burden 

To call TMB, defined as the number of somatic mutations per megabase, ​Dx.R was run with the                                 

--callable and ​--snpblacklist flags and otherwise default ​arguments, confining the regions of interest                         

to bases reliably callable by MuTect and excluding simple repeats. Callable regions were obtained by                             

GATK3 ​CallableLoci with a minimum read depth of 30 (​--minDepth argument) and otherwise default                           

parameters. Non-coding regions were excluded from the ​CallableLoci output using                   

FilterCallableLoci.R​. Mutations with a posterior probability above 0.5 for being somatic, which were                         

also not included in germline databases and not flagged by PureCN, were included in the TMB                               

calculation. In the matched tumor and normal TMB pipeline, somatic variants were assigned a prior                             

somatic probability of 0.999 and germline SNPs a prior of 0.0001; otherwise identical parameters were                             

used. 

 

Mutational signatures 

To identify the 30 mutational signatures ​(Alexandrov et al., 2015) curated by the Wellcome Trust Sanger                               

Institute (http://cancer.sanger.ac.uk/cosmic/signatures), ​Dx.R was run with the ​--signature argument                 

(Rosenthal et al., 2016)​. Somatic variant filtering was identical to the TMB step, with the exception that                                 

non-coding regions were kept to increase the number of mutations. Samples with less than or equal to                                 

50 somatic mutations were excluded as recommended in ​(Rosenthal et al., 2016)​, leaving 160 OV and                               

368 LUAD samples for analysis. 

 

Statement of Reproducible Research 

Analyses presented in this manuscript are reproducible using the code available through                       

https://github.com/shbrief/CNVWorkflow_Code. 
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Figures 

 

Figure 1. Accuracy of purity, ploidy and LOH inference. (A-D) Comparison of purity and ploidy                             

estimates from paired SNP6 microarray data (ABSOLUTE, ​(Carter et al., 2012)​) against those from                           

tumor-only WES data (PureCN) in OV and LUAD samples. (E-F) Concordance of loss of heterozygosity                             

(LOH) calls between the two analyses was reviewed on HLA-A/B/C and TP53 loci for the cases with                                 

sufficient power to detect LOH. LOH observed in both microarray and WES analyses (​Both​, red); absent                               

in both analyses (​Neither​, orange); detected only from microarray data (​ABSOLUTE​, dark grey); detected                           

only from WES data (​PureCN ​, light grey).  
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Figure 2. Accuracy of variant classification. ​(A-B) Gain in AUC of the somatic status prediction by                               

PureCN over a model that only utilizes allelic fractions, shown as a function of tumor purity. (C-D)                                 

Correlation of tumor purity and call rates in OV and LUAD for PureCN (red) and SGZ ​(blue, Sun et al.,                                       

2018)​. (E-H) Histograms of accuracy rates for all samples. These are the fractions of variants correctly                               

called as somatic (red) or germline (grey).  

 

 

 

Figure 3. TMB and mutational signatures. ​(A) TMB from OV (red) and LUAD (blue) samples in                               

tumor-only vs. paired modes shown on a log scale. (B-C) Concordance of COSMIC mutational                           

signatures between tumor-only and paired analysis modes. Mutational signatures observed in both                       
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tumor-only and paired modes of analysis (​Both​, red); absent in both analyses (​Neither​, orange); detected                             

only from tumor-only analysis (​Tumor-only​, dark grey); detected only from paired mode of analysis                           

(​Paired​, light grey).  
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Supplementary Figures 

 

Supplementary Figure 1. CNA analysis workflow. ​Raw input data files and the intermediate/processed                         

data files are labeled with blue and white oval shapes, respectively. R scripts provided by ​PureCN are                                 

depicted by orange squares, and third party tools by white squares. Black solid lines indicate how the                                 

target region information is processed. Blue and Red solid lines describe how normal and tumor bam                               

files are processed, respectively. Dashed and solid purple lines are showing how germline SNPs and                             

somatic mutations were prepared with or without matched normal, respectively.  

 

 

 

Supplementary Figure 2. Purity and ploidy estimates using an alternative tool. ​Purity and ploidy                           

estimates from paired WES data were obtained using FACETS. As in Fig. 1, 233 OV and 442 LUAD                                   

samples were analyzed and compared to ABSOLUTE calls. (A) and (B) are purity and ploidy estimates of                                 

OV, respectively. (C) and (D) are purity and ploidy estimates of LUAD, respectively. For panel (C), 436                                 

cases are plotted as FACETS did not return a purity estimate for 6 of the LUAD samples due to                                     

insufficient information. 
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Supplementary Figure 3. Concordance of PureCN and FACETS with ABSOLUTE. ​From 233 OV and                           

436 LUAD cases, concordance was calculated of WES-based estimates from PureCN and FACETS with                           

SNP6 array-based ABSOLUTE calls. Concordance was defined as purity difference < 0.1 and a ploidy                             

difference < 0.5. Estimates agreed by all three methods (​Both​, yellow); agreed by ABSOLUTE and                             

PureCN only (​PureCN​, red); agreed by ABSOLUTE and FACETS only (​FACETS​, blue); neither PureCN                           

nor FACETS agree with ABSOLUTE (​Neither​, light grey).  
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Supplementary Figure 4. Correlation of call rates and median sequencing coverage. ​Median                       

coverage is plotted against call rate for different purity ranges. 
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Supplementary Tables 

Supplementary Table 1. ​Purity and ploidy estimates from ABSOLUTE, PureCN (tumor-only and paired                         

mode), and FACETS. 

Supplementary Table 2. ​LOH of HLA and TP53 loci from ABSOLUTE and PureCN. 

Supplementary Table 3. ​AUC gain of PureCN in 223 OV and 441 LUAD samples. 
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