10

11

12

13

14

15

16

17

18

19

20

21

bioRxiv preprint doi: https://doi.org/10.1101/552042; this version posted November 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

Title

On the cross-population generalizability of gene expression prediction models

Authors
Kevin L. Keys>?>", Angel C.Y. Mak?, Marquitta J. White', Walter L. Eckalbar®, Andrew W. Dahl?, Joel

Mefford?, Anna V. Mikhaylova®, Maria G. Contreras'®, Jennifer R. Elhawary?!, Celeste Eng?,
Donglei Hu?, Scott Huntsman?, Sam S. Oh?, Sandra Salazar!, Michael A. Lenoir>, Jimmie C. Ye®?,

Timothy A. Thornton3, Noah Zaitlen8, Esteban G. Burchard®” 1, and Christopher R. Gignoux®1 ",

! Department of Medicine, University of California, San Francisco, CA, USA

2 Berkeley Institute for Data Science, University of California, Berkeley, California, USA

3 Department of Biostatistics, University of Washington, Seattle, WA, USA

4 San Francisco State University, San Francisco, CA, USA

> Bay Area Pediatrics, Oakland, CA, USA

6 Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
’ Department of Bioengineering and Therapeutic Biosciences, University of California, San
Francisco, CA, USA

8 Department of Neurology, University of California, Los Angeles, CA, USA

9 Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus,
Aurora, CO, USA

10 Department of Biostatistics and Informatics, School of Public Health, University of Colorado

Anschutz Medical Campus, Aurora, CO, USA


https://doi.org/10.1101/552042
http://creativecommons.org/licenses/by-nc-nd/4.0/

22

23

24

25

26

27
28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

bioRxiv preprint doi: https://doi.org/10.1101/552042; this version posted November 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

* Corresponding authors

Email: klkeys@g.ucla.edu (KLK) and chris.gignoux@ucdenver.edu (CRG)

T These authors share senior authorship.

Abstract

The genetic control of gene expression is a core component of human physiology. For the past
several years, transcriptome-wide association studies have leveraged large datasets of linked
genotype and RNA sequencing information to create a powerful gene-based test of association
that has been used in dozens of studies. While numerous discoveries have been made, the
populations in the training data are overwhelmingly of European descent, and little is known
about the generalizability of these models to other populations. Here, we test for cross-
population generalizability of gene expression prediction models using a dataset of African
American individuals with RNA-Seq data in whole blood. We find that the default models trained
in large datasets such as GTEx and DGN fare poorly in African Americans, with a notable reduction
in prediction accuracy when compared to European Americans. We replicate these limitations in
cross-population generalizability using the five populations in the GEUVADIS dataset. Via realistic
simulations of both populations and gene expression, we show that accurate cross-population
generalizability of transcriptome prediction only arises when eQTL architecture is substantially
shared across populations. In contrast, models with non-identical eQTLs showed patterns similar
to real-world data. Therefore, generating RNA-Seq data in diverse populations is a critical step

towards multi-ethnic utility of gene expression prediction.
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Author summary

Advances in RNA sequencing technology have reduced the cost of measuring gene expression at
a genome-wide level. However, sequencing enough human RNA samples for adequately-
powered disease association studies remains prohibitively costly. To this end, modern
transcriptome-wide association analysis tools leverage existing paired genotype-expression
datasets by creating models to predict gene expression using genotypes. These predictive models
enable researchers to perform cost-effective association tests with gene expression in
independently genotyped samples. However, most of these models use European reference
data, and the extent to which gene expression prediction models work across populations is not
fully resolved. We observe that these models predict gene expression worse than expected in a
dataset of African-Americans when derived from European-descent individuals. Using
simulations, we show that gene expression predictive model performance depends on both the
amount of shared genotype predictors as well as the genetic relatedness between populations.
Our findings suggest a need to carefully select reference populations for prediction and point to

a pressing need for more genetically diverse genotype-expression datasets.
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Introduction

In the last decade, large-scale genome-wide genotyping projects have enabled a revolution in our
understanding of complex traits.[1-4] This explosion of genome sequencing data has spurred the
development of new methods that integrate large genotype sets with additional molecular
measurements such as gene expression. A recently popular integrative approach to genetic
association analyses, known as a transcriptome-wide association study (TWAS)[5,6], leverages
reference datasets such as the Genotype-Tissue Expression (GTEx) repository[7] or the
Depression and Genes Network (DGN)[8] to link associated genetic variants with a molecular trait
like gene expression. The general TWAS framework requires previously estimated cis-eQTLs for
all genesin a dataset with both genotype and gene expression measurements. The resulting eQTL
effect sizes build a predictive model that can impute gene expression in an independently
genotyped population. A TWAS is similar in spirit to the widely-known genome-wide association
study (GWAS) but suffers less of a multiple testing burden and can potentially detect more

associations as a result.[5,6]

Unlike a normal GWAS, where phenotypes are regressed onto genotypes, in TWAS the phenotype
is regressed onto the imputed gene expression values, thus constituting a new gene-based
association test. TWAS can also link phenotypes to variation in gene expression and provide
researchers with additional biological and functional insights over those afforded by GWAS alone.
While these models are imperfect predictors, predicted gene expression allows researchers to
test phenotype associations to expression levels in existing GWAS datasets without measuring

gene expression directly. In particular, these methods enable analysis of predicted gene
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84  expression in very large cohorts (¥10* — 10° individuals) rather than typical gene expression
85  studies that measure expression directly (~10%2 — 10° individuals). Several methods have been
86  recently developed to perform TWAS in existing genotyped datasets. PrediXcan[6] uses eQTLs
87  precomputed from paired genotype-expression data, such as those in GTEx, in conjunction with
88 a new genotype set to predict gene expression. These gene expression prediction models are
89 freely available online (PredictDB), creating resources for external researchers. Related TWAS
90 approaches, such as FUSION[5], MetaXcan[9], or SMR[10], leverage eQTL information with GWAS
91 summary statistics instead, thus circumventing the need for raw individual-level genotype data.
92
93  As evidenced by application to numerous disease domains, the TWAS framework is capable of
94  uncovering new genic associations.[11-17] However, the power of TWAS is inherently limited by
95 the data used for eQTL discovery. For example, since gene expression varies by tissue type,
96 researchers must ensure that the prediction weights are estimated using RNA from a tissue
97 related to their phenotype, whether that be the direct tissue of interest or one with sufficiently
98 correlated gene expression.[18] Furthermore, the ability of predictive models to impute gene
99  expression from genotypes is limited by the heritability in the cis region around the gene.[6]

100  Consequently, genes with little or no measurable genetically regulated effect on their expression

101  inthe discovery data are poor candidates for TWAS.

102

103 Asubtler but more troubling issue arises from the lack of genetic diversity present in the datasets

104  used for predictive model training: most paired genotype-expression datasets consist almost

105 entirely of data from European-descent individuals.[8,18] The European overrepresentation in
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106  genetic studies is well documented[19-21] and has severe negative consequences for equity as
107  well as for gene discovery[22], fine mapping[23-25], and applications in personalized
108  medicine.[26-34] Genetic architecture, linkage disequilibrium, and genotype frequencies can
109  vary across populations, which presents a potential problem for the application of predictive
110  models with genotype predictors across multiple populations.

111

112 The training data for most models in the models derived from PrediXcan weights in PredictDB
113 (predictdb.org) are highly biased toward European ancestry: GTEx version v6p subjects are over
114  85% European, while the GTEx v7 and DGN subjects are entirely of European descent. The lack
115  of suitable genotype-expression datasets in non-European individuals leads to scenarios in which
116  PredictDB models trained in Europeans are used to predict into non-European or admixed
117  populations. As shown previously in the context of polygenic risk scores[35], multi-SNP prediction
118 models trained in one population can suffer from unpredictable bias and poor prediction
119  accuracy that impair their cross-population generalizability. Recent analyses of genotype-
120  expression data from the Multi-Ethnic Study of Atherosclerosis (MESA)[36—38], which includes
121  non-European individuals, explore cross-population transcriptome prediction and conclude that
122 predictive accuracy is highest when training and testing populations match in ancestry. These
123 results are consistent with our experience analyzing admixed populations, but offer little insight
124 intothe mechanisms underlying the cross-population generalizability of transcriptome prediction
125  models, particularly when eQTL architecture is known.

126
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127  Here we investigate the cross-population generalizability of gene expression models using paired
128  genotype and gene expression data and using simulations derived from real genotypic data and
129  realistic models of gene expression. We analyze prediction quality from currently available
130  PrediXcan prediction weights using a pilot subset of paired genotype and whole blood
131  transcriptome data from the Study of African Americans, Asthma, Genes, and Environment
132 (SAGE).[39-42] SAGE is a pediatric cohort study of childhood-onset asthma and pulmonary
133 phenotypes in African American subjects of 8 to 21 years of age. To tease apart cross-population
134 prediction quality, we turn to GEUVADIS and the 1000 Genomes Project datasets.[4,43,44] The
135  GEUVADIS dataset has been used extensively to validate PrediXcan models.[6,38] However,
136  recent analyses suggest that GTEx and DGN PrediXcan models behave differently on the
137  constituent populations in GEUVADIS.[45] To our knowledge, nobody has investigated cross-
138  population generalizability of new prediction models generated within GEUVADIS. GEUVADIS
139  provides us an opportunity to investigate predictive models with an experimentally
140  homogeneous dataset: the GEUVADIS RNA-Seq data were produced in the same environment
141  under the same protocol, from lymphoblastoid cell lines (LCLs) that, despite some variation in
142 when cells were collected[46], are derived from similar sampling efforts and treatments, thereby
143 providing a high degree of technical harmonization. We train, test, and validate predictive models
144  wholly within GEUVADIS with a nested cross-validation scheme. Finally, to understand the
145  consequences of eQTL architecture on TWAS, we use existing 1000 Genomes data to simulate
146  two ancestral populations and an admixed population and then apply the same “train-test-
147  validate” scheme with various simulated eQTL models to study cross-population prediction

148  efficacy when a gold standard is known.
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149 Results

150  Concordance of measured gene expression and PrediXcan predictions is lower than expected

151 We compared transcriptome prediction accuracy in SAGE whole blood RNA using three PredictDB
152  prediction weight sets for whole blood RNA: GTEx v6p, GTEx v7, and DGN. We also evaluated
153  expression prediction with all four MESA monocyte weight sets: MESA_ALL (populations
154  combined), MESA_AFA (African Americans), MESA_AFHI (combined African Americans and
155  Hispanic Americans), and MESA_CAU (Caucasians). For each gene where both measured RNA-
156  Seq gene expression and predictions are available in SAGE, we compute both the coefficient of
157  determination (R?) and Spearman correlation to analyze the direction of prediction. As we are
158  primarily interested in describing the relationship between predicted outcome and real outcome,
159  we prefer Spearman’s p to describe correlations, while for determining prediction accuracy, we
160  use the standard regression R?, corresponding to the squared Pearson correlation, to facilitate
161  comparisons to prior work. We then benchmark these against the out-of-sample R? and
162  correlations from GTEx v7 and MESA as found in PredictDB. Prediction results in SAGE were
163  available for 11,545 genes with a predictive model from at least one weight set. Not all sets
164  derived models at the same genes: since the estimation of these prediction models requires both
165  high quality expression data and inferred eQTLs, each weight set may have a different number of
166  gene models. Therefore, intersecting seven different weight sets reduces the overall number of
167  models available for comparison. After applying the recommended filters, the prediction results
168  across all seven weight sets overlapped at 273 genes, of which 39 genes had predictions with
169  positive correlation to measurements. This small number of genes in common is largely driven

170 by MESA_AFA, the repository with the smallest number of predictive models. However
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171  MESA_AFA contains the models that should best reflect the genetic ancestry of African
172 Americans in SAGE (Supplementary Table 1). We note that MESA_AFA also has the smallest
173 training sample size among our weight sets (N = 233)[38], so the small number of predicted
174  genes from MESA_AFA probably results from the small training sample size and not from any
175  feature of the underlying MESA_AFA training data.

176

177  Here, we highlight the union of genes across model sets for investigation. The concordance
178  between predicted and measured gene expression over the union of 11,545 from all seven
179  weight sets, with corresponding training metrics from PredictDB as benchmarks, shows worse
180  performance than expected for R? (

181  Figure 1) and correlations (Figure 2). The highest mean R? of 0.0298 was observed in MESA_AFA.
182  We note the intersection of all prediction models is limited, but reflects a similar pattern: results
183  forthe 273 common genes (Supplementary Figure 1) and the 39 genes with positive correlations
184  (Supplementary Figure 2) showed little difference in the RZ shown in

185  Figure 1. Because SAGE is an independent validation set for the training populations, we would
186  expectto observe some deterioration in prediction R?due to out-of-sample estimation. However,
187  Figure 1 shows a marked difference in model performance.

188

189  More noteworthy is the substantial proportion of predictions in SAGE with negative correlations
190 to the real data. All seven weight sets produced gene expression predictions with negative
191  correlations, but average performance across genes varied. The least negative mean correlation

192  (0.00707) was observed with MESA_AFHI (MESA African Americans and Hispanics), while the
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193  most negative mean correlation (-0.00415) was observed with MESA_AFA (MESA African
194  Americans, Supplementary Table 1). The observation that correlations to SAGE measurements
195  are sometimes negative on average suggests that some large R? values seen in

196  Figure 1 may result from gene models with incorrect direction of prediction, thereby limiting
197  interpretability of results. While there are some fluctuations in prediction accuracy, no prediction
198  weight set produces practically meaningfully better correlations to data than the others (-
199  0.00415to 0.00707). In contrast, the published models for these genes show positive correlations
200  totheirtraining data, ranging from 0.308 in GTEx_v7 to 0.379in MESA_AFA, indicating no obvious
201  incapacity for accurate prediction, even with out-of-sample data. However, available predictions
202  into SAGE from otherwise valid prediction models are uniformly limited in power to capture true
203  genotype-expression relationships.

204

205 To analyze genes with high prediction R? in the original experiment, we focus on genes in GTEx
206  v7 with cross-validated R? > 0.2 in the reference population. Figure 3 compares PredictDB testing
207  R? against the empirical R? from regressing predictions onto observations in SAGE. In this case,
208 even the better-imputed gene models derived from PredictDB have limited ability to capture

209  gene expression accurately in SAGE (mean R? 0.031, IQR [0.0027, 0.037]).

210  Cross-population prediction quality declines with increasing genetic distance

211  Real-world comparisons of RNA-Seq datasets can be subject to numerous sources of
212 heterogeneity besides differential ancestry. Possible confounders include technical differences
213  in sequencing protocols, differences in the age of participants[47] or cell lines[46], and the

214  postmortem interval to tissue collection (for GTEx).[48-50] To investigate cross-population
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215  generalizability in an experimentally homogeneous context, we turn to GEUVADIS.[43] The
216  GEUVADIS data include two continental population groups from the 1000 Genomes Project: the
217  Europeans (EUR373), composed of 373 unrelated individuals from four subpopulations (Utahns
218  (CEU), Finns (FIN), British (GBR), Toscani (TSI)), and the Africans (AFR) composed of 89 unrelated
219  Yoruba (YRI) individuals. In light of the known bottleneck in Finnish population history[51], we
220  analyze EUR373 both as one population and as two independent subgroups: the 95 Finnish
221  individuals (FIN) and the 278 non-Finnish Europeans (EUR278). We used expression data,
222 generated and harmonized together by the GEUVADIS Consortium, with matched whole-genome
223  genotype data in the resulting four populations (EUR373, EUR278, FIN, and AFR) to train
224  predictive models for gene expression in a nested cross-validation scheme[6] and perform cross-
225  population tests of prediction accuracy.

226

227  Table 1 shows R? from three training sets (EUR373, EUR278 and AFR) into the four testing
228  populations (EUR373, EUR278, FIN, and AFR) for genes with positive correlation between
229  prediction and measurement. While the number of genes with applicable models including
230  genetic data varies in each train-test scenario (see Supplementary Table 3), we note that not all
231  predictive models are trained on equal sample sizes, so the resulting R? only provide a general
232 idea of how well one population imputes into another. Analyses within a population use out-of-
233 sample prediction R? to avoid overfitting across train-test scenarios. Predicting from a population
234  into itself yields R% ranging from 0.079 — 0.098 (Table 1) consistent with the smaller sample sizes
235 in GEUVADIS versus GTEx and DGN. In contrast, predicting across populations yields more

236  variable predictions, with R? ranging from 0.029 — 0.087. At the lower range of R? (0.029 — 0.039)
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237  are predictions from AFR into European testing groups (EUR373, EUR278, and FIN). Alternatively,
238  when predicting from European training groups into AFR, the R? are noticeably higher (0.051 —
239  0.054). Prediction from EUR278 into FIN (R? = 0.087) is better than prediction from EUR278 into
240  AFR (R? = 0.051), suggesting that prediction R?> may deteriorate with increased genetic distance.
241 A comparison of the 564 genes in common across all train-test scenarios (Table 2) yields a subset
242  of genes with potentially more consistent gene expression levels. In this case involving better-
243  predicted genes, we see that prediction quality between the European groups improves
244  noticeably (p-value ~ 0, Dunn test) with R? ranging between 0.183 to 0.216, while R? between
245  Europeans and Africans ranges from 0.095 to 0.147, a significant improvement (p-value < 7.07 x
246  10%, Dunn test) that nonetheless highlights a continental gap in prediction performance. In
247  general, populations seem to predict better into themselves, and less well into other populations.
248

249  Combining all European subpopulations obscures population structure and can complicate
250  analysis of cross-population prediction performance. To that end, we divide the GEUVADIS data
251 into its five constituent populations and randomly subsample each of them to the smallest
252  population size (n = 89). We then estimate models from each subpopulation and predict into all
253  five subpopulations. Table 3 shows average prediction R? from each population into itself and
254  others. The populations consistently predict well into themselves, with prediction R? ranging
255 from 0.104 — 0.136. We observe that prediction quality using models trained in CEU shows a
256  miniscule decline relative to other EUR subpopulations. This observation is potentially due to the
257  older age of CEU LCLs[45,52,53], but did not appreciably change our results. In contrast, a more

258 notable difference exists between the EUR subpopulations and YRI. The cross-population R?
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259  between CEU, TSI, GBR, and FIN ranges from 0.103 to 0.137, while cross-population R? from these
260  populationsinto YRI ranges from 0.062 to 0.084. Prediction between YRI and the EUR populations
261  taken together is consistently lower than within the EUR populations (Supplementary Figure 3)
262  and statistically significant (p-value < 1.36 x 104, Dunn test; see Supplementary Table 6). The
263  cross-population differences remain for the 142 genes with positive correlation in all train-test
264  scenarios (Table 4), where R? for prediction into YRI ranges from 0.166 to 0.244, while R? within
265 EUR populations ranges from 0.239 to 0.331. These results clearly suggest problems for
266  prediction models that predict gene expression across populations, in similar regimes to those
267  tested with linear predictive models and datasets of size consistent with current references. In
268  addition, since AFR is genetically more distant from the EUR subpopulations than they are to each
269  other, weinterpret these results to imply that structure in populations can potentially exacerbate

270  cross-population prediction quality (Supplementary Figure 4).

271  Admixture influences cross-population gene expression prediction quality under known eQTL
272  architecture

273  The unresolved question is the extent to which these results hold with oracle knowledge of eQTL
274  architecture, something impossible to investigate in real data when the causal links between
275 eQTLs and gene expression can only be estimated. To investigate genomic architectures giving
276  rise to gene expression, and in particular to investigate behavior in admixed populations, we
277  simulate haplotypes from HapMap3[54] CEU and YRI using HAPGEN2[55] and then sample
278  haplotypesin proportions consistent with realistic admixture proportions (80% YRI, 20% CEU)[56]
279  to construct a simulated African-American (AA) admixed population. We simulate eQTL

280  architectures under an additive model of size k causal alleles (k = 1, 10, 20, and 40) and an
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281  expression phenotype with cis-heritability h> = 0.15 (recapitulating average h? in GTEx) using the
282  genomic background of genic regions on chromosome 22, thus testing various model sizes and
283 LD patterns. To tease apart the effect of shared eQTL architecture, we allow the two ancestral
284  populations CEU and YRI to share eQTLs with fixed effects in various proportions (0%, 10%, 20%,
285 .., 100%) to test a range of eQTL architectures. The admixed population AA always inherited all
286  eQTLs from the two ancestral populations, which yielded different numbers of eQTLs per gene
287  depending on how many eQTLs were shared by CEU and YRI. For example, for eQTL model size k
288 =10, when CEU and YRI shared all 10 eQTLs, then all three populations had the exact same 10
289  eQTLs. When CEU and YRI shared half of their eQTLs with each other, then each one had 5
290  population-specific eQTLs, and AA inherited 15 total eQTLs (5 unique to CEU, 5 unique to YRI, and
291 5 shared). If CEU and YRI shared no eQTLs, then all eQTLs were population-specific, and AA
292  inherited 20 eQTLs (10 from CEU and 10 from YRI; see Supplementary Figure 5 for an illustration).
293  With these simulations providing known architectures for comparison, we then apply the train-
294  test-validate scheme as before.

295

296  Figure 4 shows the cross-population Spearman correlations between predicted and simulated
297  phenotypes in our simulated AA, CEU, and YRI, partitioned by proportion of shared eQTLs, for k
298 = 10 causal eQTLs. Scenarios with k = 20 and k = 40 causal eQTLs show similar trends
299  (Supplementary Figure 6 and Supplementary Figure 7). Prediction within a population produced
300 similar correlations in all cases, ranging from 0.310 to 0.338 (Supplementary Table 4). The case
301 of models with 100% shared eQTL architecture — where eQTL positions and effects are exactly

302 the same between the ancestral populations —yields predictions with no loss in cross-population


https://doi.org/10.1101/552042
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/552042; this version posted November 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

303  generalizability, with correlations ranging from 0.299 to 0.336 even when predicting across
304 populations (Supplementary Table 5). This case suggests that eQTLs that are causal in all
305 populations can impute gene expression reliably regardless of the population in which they were
306 ascertained, provided that the eQTLs can be correctly mapped and genotyped in all populations,
307 that the eQTL effects are identical across populations, and that a linear model of eQTLs is
308 assumed. For cases where eQTL architecture is not fully shared across populations, we see that
309 prediction from each population into the other improves as the proportion of shared eQTLs
310 increases (Figure 4). The cross-population correlation between predicted gene expression versus
311 measurement is highest from YRI to AA (0.238 to 0.338), intermediate from CEU to AA (0.218 to
312 0.310), and lowest between CEU and YRI (0.0020 to 0.326). Prediction quality from AA to CEU
313 and YRl interpolates that of YRI to AA and CEU to AA, with correlations ranging from 0.223 to
314  0.338. Prediction quality from AA to CEU or YRI shows a slight upward trend as more eQTLs are
315 shared, an artifact of eQTL inheritance in our simulations; as described previously, AA eQTL
316 models are largest (20 eQTLs) when CEU and YRI share no eQTLs and smallest (10 eQTLs) when
317 CEUandYRIshare all eQTLs. Consequently, when predicting between two populations, the choice
318  of which population is used to train predictive models can produce differences in prediction
319  quality. Prediction quality between AA to CEU and AA to YRI is not significantly different (p-value
320 ~ 1, Dunn test). All other train/test scenarios are significantly different from each other
321  (Supplementary Table 7). The results for k = 10, 20, and 40 eQTLs show a consistent trend of
322  prediction quality driven primarily by different in eQTL architecture, with additional minor
323  influence from ancestral similarity between populations (k = 10, Figure 4, similar plots in

324  Supplementary Figure 6 and Supplementary Figure 7). Although less realistic for most
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325 genes|5,6,18], we also analyzed models with a single causal eQTL. Trends for single-eQTL models
326 are more difficult to analyze due the limitations of binary inference as to whether the causal SNP
327 is identified or not. Nevertheless, when the causal eQTL is identified and shared across
328 populations, prediction quality is high in call cases. If the causal eQTL differs across populations,
329  then cross-population prediction between AA and YRI or CEU is noticeably better than prediction
330  between CEU and YRI (Supplementary Figure 8), in line with results for other values of k that

331  suggest that eQTL sharing is the primary driver of gene expression prediction quality.

332  Power to detect associations declines with decreasing shared ancestry

333  Simulation of gene expression demonstrates that gene expression prediction quality is
334  modulated by both shared eQTL architecture and shared genetic ancestry. These results suggest
335  possible effects of cross-population generalizability on the power to detect associations between
336 a phenotype and gene expression measures in a TWAS. For each of our three populations (AA,
337 CEU, and YRI), we used the simulated gene expression measures to simulate a continuous
338 phenotype whose variation depends on expression of a single causal gene. For simplicity, the
339  phenotypes shared the same causal gene, the same effect size, and the same environmental
340  noise model. We tested various effect sizes from 1 x 10 to 1 and drew the environmental noise
341  from a zero-mean normal distribution with variance 0.01. The effect sizes produced a continuous
342  spectrum of genetic heritability values h? spanning the full range of heritability for gene
343  expression. We then regressed the phenotype onto predicted gene expression measures,
344  resulting in nine association tests, one for each train-test scenario. For simplicity, we focused on

345  the prediction scenario with k = 10 causal eQTLs per gene. To see how shared eQTL architecture
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346  affects power, we used predicted expression measures with 0%, 50%, and 100% shared eQTLs
347  pergene.

348

349  Figure 5 shows power curves for the association tests for the nine prediction scenarios for all
350 three tested eQTL architectures. Unsurprisingly, power improves as populations share more
351 causal eQTLs. For example, with 100% shared eQTLs and phenotypic heritability 0.205, cross-
352  population power ranges between 0.69 — 0.86. In contrast, average power under a 0% shared
353  eQTL model ranges more broadly, from 0.02 (CEU to YRI, YRI to CEU) to 0.38 (AA to YRI, AA to
354  CEU)to 0.82 (CEU to AA) and 0.88 (YRI to AA), indicating some ability to predict gene expression
355 at genetically controlled genes, even without shared eQTLs. Power also improves with shorter
356 geneticdistance between populations. Figure 6, which is a cross-section of Figure 5, shows power
357  for each train-test scenario across various shared eQTL architectures for = 0.05, corresponding
358  to a phenotype heritability of h? = 0.205, indicating moderate genetic control. TWAS in this case
359  using gene expression imputed from matched populations has higher power across all eQTL
360 architectures, from 0.33-0.85, compared to cross-population TWAS, where power varies
361  substantially. For an architecture with no shared eQTLs, power between CEU and YRl is 0, while
362  power is higher for CEU to AA (0.25) and YRI to AA (0.30). TWAS power for expression imputed
363  from AA to CEU (0.05) or YRI (0.06) is much lower due to the aforementioned structure of eQTL
364 inheritance. As the proportion of shared eQTLs jumps from 0% to 50% and 100%, power increases
365  across all cross-population scenarios, reaching up to 0.31 (YRI to AA, 100% shared eQTLs). When
366 eQTls are fully shared, power from YRI to AA (0.31) is higher than from CEU to AA (0.25),

367 indicating an effect of genetic distance on prediction quality. Indeed, when controlling for eQTL
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368 architecture, increasing genetic similarity between reference and target populations yields more

369 significant median association test t-statistics (Supplementary Figure 9).

370  Admixture proportion interpolates power in two-way admixture

371  The results in Figure 6 show how genetic distance affects power in TWAS association tests for
372  one particular admixture proportion, but offer limited insight about how power changes across
373  the admixture spectrum. To understand how admixture proportion affects TWAS power in a
374  general admixed population with two ancestral populations, we simulated multiple admixed
375  populations from CEU and YRI with admixture proportions varying at 10% increments. When the
376 admixed population has 0% YRI admixture, it is fully drawn from haplotypes from CEU, whereas
377 a population with 100% YRI admixture is drawn exclusively from haplotypes from YRI. It is
378 important to note that in neither case does the admixed population exactly match the reference
379  CEU or YRI since the genotypes for the admixed population are formed from an independent
380 shuffling of the CEU or YRI haplotypes. For each admixed population, we estimated prediction
381 models of gene expression as done in our previous analyses. For computational efficiency, we
382 investigated the scenario of 50% shared eQTLs across reference populations and the number of
383 eQTls per gene to 10. Populations still shared the same causal gene, effect size, and
384  environmental noise model.

385

386  Figure 7 shows power across admixture proportions for all cross-population scenarios. The

387 phenotypes were simulated at effect sizes = 0.005, 0.01, and 0.025, and environmental

388  variance 02 = 0.01, corresponding to heritability h?> = 0.06, 0.20, and 0.58, respectively. To avoid
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389  confusion with previous references to AA, which had a fixed admixture proportion, here we
390 denote the admixed population for all proportions as AD. As expected, statistical power

391 increases with the genetic heritability of the phenotype for all prediction scenarios. However,
392  the different admixture proportions yield directional changes in power when gene expression is
393  predicted to or from AD. For example, when h? = 0.20 and gene expression is predicted from AD
394  to CEU, power at 0% YRI admixture is 0.56 (95% Cl: 0.462 — 0.658) and declines linearly with
395 increasing YRI admixture; at 100% YRI, statistical power for AD to CEU is 0.46 (95% Cl: 0.362 —
396 0.558). For AD to YRI, power at 0% YRI admixture starts at 0.42 (95% Cl: 0.323 — 0.512) and

397  increases linearly to 0.53 (95% Cl: 0.431 — 0.628) at 100% YRI. We observe similar changes in
398 power for CEU to AD (decreasing power as YRI proportion increases) and YRI to AD (increasing
399  power as YRI proportion increases). The four directional trends also hold for h? = 0.06 and h? =
400 0.58, though power for cross-population scenarios involving AD is much lower in the former
401  case and almost universally high in the latter case. In essence, the varying admixture

402  proportions in this two-way admixed population yield a continuous linear trend of statistical
403 power between the two ancestral populations: when AD is genetically closer to CEU, power for
404  gene expression predicted these populations is highest, and declines as AD becomes genetically
405 closer to YRI. Similarly, when predicting from AD to YRI or vice versa, power is lowest when the
406  two populations are genetically distinct, intermediate as the two populations become more

407  genetically similar, and maximized when they are most alike.

408 Discussion

409  Our goal with this study was to understand the extent to which gene expression prediction

410  models estimated in one population can accurately predict the genetic component of gene
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411  expression in a different population. Cross-population generalizability of gene expression
412  prediction models is an important but understudied issue for TWAS analyses. Among TWAS
413  resources, we focused on PrediXcan as a test case with openly distributed prediction models
414  available for multiple populations.[6,38] Using 39 subjects from the SAGE study[39-42] we
415 compared predicted expression values from PrediXcan models to measured gene expression on
416 the same subjects and found that predictions matched poorly to measurements. Our
417  investigation with the GEUVADIS dataset[43] offered us a more homogenous environment in
418  which to train and test gene expression prediction models. Prediction quality in GEUVADIS using
419  both continental and constituent subpopulations provided stronger evidence of cross-population
420  generalizability issues with transcriptome prediction, but could not control for eQTL predictors
421  that vary between populations. To that end, our simulation of an admixed population from 1000
422  Genomes CEU and YRI haplotypes[4,44] allowed us to finely control eQTL positions and effects
423  as well as the causal genes in a TWAS. The simulation results show that both gene expression
424  prediction accuracy and statistical power decrease as population eQTL models begin to diverge
425 and genetic distance increases between populations for varying admixture proportions.

426

427  Our results highlight two points: firstly, since prediction within populations is better than
428  prediction between populations, our results reaffirm prior investigations[38] that population
429  matching matters for optimally predicting gene expression. This is consistent with our results of
430  impaired transcriptome prediction performance in SAGE with currently available resources.
431  Secondly, despite decreased prediction accuracy when predicting between different populations,

432  the populations that are more closely genetically related demonstrate somewhat better cross-
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433  population prediction and power to detect associations in TWAS. Our simulations of prediction
434  between ancestral populations and an admixed one under varying admixture proportions neatly
435 summarize this relationship: the admixture proportion from each ancestral population
436 interpolates the power available from each ancestral population, and power is maximized when
437  the admixed population is most closely related to one or the other ancestral population.
438  However, while the differences in power under varying admixture are statistically meaningful,
439  they are smaller than differences attributable to different eQTL architectures or to different
440 levels of genetic heritability of a phenotype.

441

442  Prediction results from GTEx, DGN, and MESA into SAGE suggest that current predictive models,
443  even for genes with greater heritability, perform worse than expected despite matching tissue
444  types. Ourinvestigation into cross-population prediction accuracy with GEUVADIS data replicates
445  this lack of cross-population generalizability as observed with current predictive models from
446  PredictDB, demonstrating that heterogeneity in RNA-Seq protocols does not fully explain our
447  observations. Since transcriptome prediction models use multivariate genotype predictors
448  trained on a specific outcome, the impaired cross-population application can be viewed as an
449  analogous observation to that seen previously in polygenic scores.[35]

450

451  Our simulations control for many technical issues that are otherwise difficult to overcome with
452  real data, such as oracular knowledge of positions and effect sizes of causal eQTLs. Nevertheless,
453  in our simulations we see issues with cross-population prediction that we first observed when

454  applying existing PrediXcan models to SAGE genotype data. Certainly, SAGE differs in important
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455  ways from GTEx, DGN, and MESA: SAGE is a pediatric asthma case-control cohort study in African-
456  American children, so we cannot rule out technical heterogeneity introduced by differences in
457  age, study design, and ethnicity. Furthermore, our SAGE sample includes RNA-Seq data for n = 39
458  subjects, a dataset leveraged previously to validate genetic associations, but is nevertheless
459  somewhat small by contemporary standards.[39] However, technical heterogeneity between
460  SAGE and existing PrediXcan models cannot solely explain the poor prediction performance. Our
461  simulation results strongly suggest that problematic cross-population prediction performance
462  between PrediXcan models and SAGE is deeper than differences in expression data.

463

464  Our investigations into the architecture of gene expression indicate that the power to detect
465  associations is primarily determined by the degree of shared eQTLs across populations. In our
466  simulations, this can be approximated as a (quasi-)linear interpolation of the prediction in the
467  ancestral or reference populations into the admixed populations. However, the same is not true
468  of overall levels of power in the admixed population: under 100% shared eQTL scenarios, cross-
469  population generalizability is high, so the choice of training population matters less. In practical
470  terms, this result bodes well for prediction of genes with eQTLs that do not vary by population.
471  Itis curious that in high-heritability genes, even models that share no eQTLs still retain power to
472  detect scenarios: for genetically distant populations (CEU and YRI), power ranges from 0.10-0.14.
473  Without shared eQTLs, this implies that local linkage disequilibrium between population-specific
474  eQTLs, combined with high heritability, enables some degree of cross-population prediction.

475  When cross-population statistical power is driven by LD and h? instead of expression signals, then
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476  subsequent interpretation of association hits, such as direction and strength of effect, becomes
477  difficult to link to actual biological relationships between phenotype and gene expression.

478

479 It is important to note that our observations do not reflect shortcomings of either the initial
480  PrediXcan or TWAS frameworks. Nor do our findings affect the positive discoveries made using
481  these frameworks over the past several years. These methods fully rely on the data used as input
482  for training, and the most commonly used datasets for model training are overwhelmingly of
483  European descent. Here we note that the current models fail to capture the complexity of the
484  cross-population genomic architecture of gene expression for populations of non-European
485  descent. Failing to account for this could lead researchers to draw incorrect conclusions from
486  their genetic data, particularly as these models would lead to false negatives.

487

488  To this end, our simulations strongly suggest that predicting gene expression in a target
489  population is improved by using predictive models constructed in a genetically similar training
490  population. Maximizing prediction quality crucially depends on both genetic architecture and
491  eQTL architecture. If populations share the exact same eQTL architecture, then they are
492  essentially interchangeable for the purposes of gene expression prediction so long as eQTLs are
493  genotyped and accurately estimated, which remains a technological and statistical challenge. As
494  the proportion of shared eQTL architecture decreases between two populations, both cross-
495  population prediction quality and TWAS power decrease as well. In both SAGE and GEUVADIS,
496  we observe cross-population patterns consistent with an imperfect overlap of eQTLs across

497  populations. Ensuring representative eQTL architecture for all populations in genotype-
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498  expression repositories will require a solid understanding of true cross-population and
499  population-specific eQTLs. However, expanding the amount of global genetic architecture
500 represented in genotype-expression repositories, which can be accomplished by sampling more
501 populations, provides the most desirable course for improving gene expression prediction
502  models. Additionally, this presents an opportunity for future research in methods that could
503  improve cross-population generalizability, particularly when one population is over-represented
504  in reference data. Tools from transfer learning could facilitate porting TWAS eQTL models from
505 reference populations to target populations using little or no RNA-Seq data.

506

507 In light of the surging interest in gene expression prediction and TWAS, we see a pressing need
508 for freely distributed predictive models of gene expression estimated from coupled
509 transcriptome-genome data sampled in a variety of populations and tissues. The recently
510 published predictive models with multi-ethnic MESA data constitute a crucial first step in this
511 direction for researchers working with admixed populations.[38] However, the clinical and
512  biomedical research communities must push for more diverse genotype-expression resources to

513  ensure that the fruits of genomic studies benefit all populations.
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514  Online Resources

515  PredictDB: http://predictdb.org/

516  GTEx: http://gtexportal.org/

517 DGN: http://dags.stanford.edu/dgn/

518  GEUVADIS: https://www.ebi.ac.uk/Tools/geuvadis-das/

519  Source code: https://github.com/asthmacollaboratory/sage-geuvadis-predixcan

520  Results and simulation data: https://ucsf.box.com/v/sage-geuvadis-predixcan

521
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522  Methods

523  Genotype and RNA-Seq data
524  RNA-Seq (RNA sequencing) data generation and cleaning protocols for 39 SAGE subjects analyzed

525  here were initially described in (Mak, White, Eckalbar, et al. 2018).[39] Genotypes were
526  generated on the Affymetrix Axiom array as described previously.[57] Genotypes were then
527  imputed on the Michigan Imputation Server[58] with EAGLE v2.3[59] and the 1000 Genomes
528  panel phase 3v5[44] and then subjected to the following filters: <5% missing sample, <5% missing
529  genotypes, >1% MAF, >1e-4 HWE, and >0.3 imputation R%. The choice of the 1000 Genomes panel
530 follows GTEx protocol, though GTEx used the smaller 1000 Genomes phase 1 panel.[4] Gene
531  expression counts were processed through the GTEx v6p eQTL quality control pipeline and as
532  described previously.[18] This filtering process kept 20,985 genes with Ensembl identifiers for
533  analysis, of which 20,268 were autosomal genes. We then quantile normalized the remaining
534  gene expression values across samples as our gene expression measurements.

535

536 GEUVADIS genotype VCF files and normalized gene expression data (filename
537  GD462.GeneQuantRPKM.50FN.samplename.reskl10.txt.gz) were downloaded directly from
538 the EMBL-EBI GEUVADIS Data Browser. Genotypes were filtered similarly to SAGE subjects. No

539  manipulation was performed on expression data. This process yielded 23,722 genes for analysis.

540  Running PrediXcan models
541 We ran PrediXcan on SAGE subjects using PredictDB prediction weights from three paired

542  genotype-expression datasets from PredictDB: GTEx, DGN, and MESA.[6,9,38,60] For GTEx, we

543  used both GTEx v6p and GTEx v7 weights. For MESA, we used all weight sets from the freeze
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544  dated 2018-05-30: African Americans (MESA_AFA), African Americans and Hispanics
545  (MESA_AFHI), Caucasians (MESA_CAU), and all MESA samples (MESA_ALL). Overall, the analysis
546  included 10,161 genes, of which only 273 had both normalized RNA-Seq measures and
547  predictions from all weight sets. Of these, 126 had positive correlation between prediction and
548 measurement. We assessed prediction quality by comparing PrediXcan predictions to normalized

549  gene expression from SAGE using linear regression and correlation tests.

550  Estimation of prediction models

551 We trained prediction models in GEUVADIS on genotypes in a 500Kb window around each of
552 23,723 genes with measured and normalized gene expression. GEUVADIS subjects were
553  partitioned into various groups: the Europeans (EUR373), the non-Finnish Europeans (EUR278),
554  the Yoruba (AFR), and the constituent 1000 Genomes populations (CEU, GBR, TSI, FIN, and YRI).
555  For each training set, we performed nested cross-validation. The external cross-validation for all
556  populations used leave-one-out cross-validation (LOOCV). The internal cross-validation used 10-
557  fold cross-validation for EUR373 and EUR278 and LOOCV for the five constituent GEUVADIS
558  populationsin order to fully utilize the smaller sample size (n = 89) compared to EUR278 (n =278)
559  and EUR373 (n=373). Internal cross-validation used elastic net regression with mixing parameter
560 a=0.5asimplementedin the glmnet package in R. The nonzero weights for each SNP from each
561 LOOCV were compiled and averaged for each gene, yielding a single set of prediction weights for
562  each gene. Predictions were computed by parsing genotype dosages from the target population
563  corresponding to the nonzero SNP predictors, and then multiplying dosages against the
564  prediction weights. The resulting predictions were compared to normalized gene expression

565 measurements downloaded from the GEUVADIS data portal. The comparison of predictive
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566 models cannot easily differentiate predictions of 0 (no gene expression) and NA (missing
567  expression). We addressed this with two additional filters. Firstly, we removed genes that did not
568 have any eQTLs in their predictive models. Secondly, genes where fewer than half of the
569 individuals had nonmissing predictions were removed from further analysis. Coefficients of
570  determination (R?) were computed with the lm function in R. Spearman correlations were

571  computed with the cor.test functionin R.

572  Simulation of gene expression
573 We downloaded a sample of 20,085 HapMap 3 SNPs[54] from each of CEU and YRI on

574  chromosome 22 as provided by HAPGEN2.[55] The data include 234 phased haplotypes for CEU
575 and 230 phased haplotypes for YRI. We forward-simulated from these haplotypes to obtain two
576  populations of n = 1000 individuals each. We then sampled haplotypes in proportions of 80% YRI
577 and 20% CEU to obtain a mixture of CEU and YRI where the ancestry patterns roughly mimic
578  those of African Americans. For computational simplicity, and in keeping with the high ancestry
579 LD present in African Americans[61,62], for each gene we assumed local ancestry was constant
580  for each haplotype. For each of the three simulated populations, we applied the same train-test-
581 validate scheme used for cross-population analysis in GEUVADIS. Genetic data for model
582  simulation were downloaded from Ensembl 89 and included the largest 100 genes from
583 chromosome 22. We defined each gene as the start and end positions corresponding to the
584  canonical transcript, plus 1 megabase in each direction. Two genes, PPP6R2 and MOV10L1,
585  spanned no polymorphic markers in our simulated data, resulting in 98 gene models used for
586  analysis. To simulate predictive eQTL models, we tested multiple parameter configurations for

587  each gene: we varied the number of causal eQTL (k = 1, 10, 20, and 40) and the proportion of
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588  shared eQTL positions (p = 0.0, 0.1, 0.2, ..., 0.9, 1) between ancestral populations. The admixed
589  population always inherited all eQTLs from the ancestral populations. Each model included a
590 simulated gene expression phenotype with cis-heritability set to 0.15. For each parameter

591  configuration, we ran 100 different random instantiations of the model simulations.

592  Simulation of TWAS

593  Using the simulated gene expression measures with k = 10 eQTLs per gene, we simulated a
594  continuous phenotype with a known genetic architecture that depended on 1 causal gene. We
595  tested prediction scenarios with 0, 5, and 10 eQTLs shared across populations. For each eQTL
596 architecture, the three populations AA, CEU, and YRI shared the same causal gene G, the same
597  causal effect size B, and the same environmental noise €. G was chosen randomly. Effect sizes
598  were fixed, and we tested various effect magnitudes =1 x10°,5x 10>, 1 x 104, ..., 1x 10, 5x
599 107, 1. The environmental noise € was drawn from an N(0,0.1%) distribution. Consequently,
600 phenotypes therefore only varied with the expression measures from G. For a given population
601 ¢, the phenotype y. was then simulated as

602 V. =GpF + ¢.

603  For each combination of shared eQTL architecture, G, and B, this procedure yielded one y. per
604 individual in a population. We then performed a TWAS with y. onto the predicted gene expression
605 values, yielding three TWAS per y., one for each reference prediction population. We then
606 queried the resulting association p-value at G and tabulated whether it was declared significant
607  (yes)or not (no) against a Bonferroni-corrected threshold of 0.05 / 98, accounting for all 98 genes
608 in the TWAS. We ran this procedure for 100 random instantiations of (G, €) and computed

609  association test power with a logistic interpolation of the yes/no results.
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610  Analysis tools
611  Analyses used GNU parallel[63]. The R packages used for analysis include argparser,

612 assertthat, data.table, doParallel, dunn.test, knitr, optparse, peer, the
613  Bioconductor packages annotate, biomaRt, and preprocessCore, and the tidyverse

614  bundle.[64-75] All plots were generated with ggplot2.[76]
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Distribution of R? across different prediction weight sets over 11545 genes
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Figure 1: A comparison of R?> between prediction and measurement in SAGE, with PredictDB test metrics as benchmarks, for 11,545
genes total. The prediction weights used here are, from left to right: GTEx vbp, GTEx vZ7, DGN, MESA African Americans, MESA African
Americans and Hispanics, MESA Caucasians, and all MESA subjects. Test R?> from model training in GTEx 7 and MESA (“test R2_avg”
in PredictDB) appear on the right and provide a performance baseline. The number of genes per weight set varies; see Supplementary
Table 1.
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Figure 2: Spearman correlations of measured gene expression versus predicted expression from PrediXcan. The order of the weight

sets matches

Figure 1. Test correlations for GTEx v7 and MESA correspond to “rho_avg” from PredictDB.
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PredictDB performance in SAGE with GTEx v7 weights
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885  Figure 3: A comparison of R?> from SAGE and GTEx v7 training diagnostics. The SAGE R? are

886  computed from regressing PrediXcan predictions onto gene expression measurements. The GTEx
887  v7R?are taken from PredictDB (“test_ R2_avg”). The red dotted line marks where R’ between
888  the two groups match, while the blue line denotes the best linear fit.
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889
R? Train Pop
EUR373 EUR278 AFR
EUR373 | 0098 | n/a | 0.029
EUR278 | n/a | 0.09 | 0.030
Test Pop FIN n/a | 0.087 |0.039
AFR 0.054 | 0051 |0.079

890  Table 1: Prediction R? between populations in GEUVADIS for genes with positive correlation

891  between predictions and measurements. Scenarios where the training sample is contained in
892  the testing sample cannot be accurately tested and are marked with “n/a”. EUR373 includes all
893  Europeans, EUR278 includes only non-Finnish Europeans, FIN includes only the Finnish, and AFR
894  includes only the Yoruba.

895
R? Train Pop
EUR373 EUR278 AFR
EUR373 | 0.201 n/a 0.096
EUR278 n/a 0.183 | 0.095
Test Pop

FIN n/a 0.216 0.111
AFR 0.147 0.141 0.130
896  Table 2: Prediction R? between populations in GEUVADIS for 564 gene models that show positive
897  correlation between prediction and measurement in all 9 train-test scenarios that were

898  analyzed. Scenarios that were not tested are marked with “n/a”. As before, EUR373 includes all
899  Europeans, EUR278 includes only non-Finnish Europeans, FIN includes only the Finnish, and AFR
900 includes only the Yoruba.
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Training population
R2 Mean (Std Err)

CEU TSI GBR FIN YRI
0.115 0.106 0.107 0.103 0.069
CEU (0.139) (0.139) (0.134) (0.133) (0.116)
0.124 0.121 0.124 0.118 0.083
TSl (0.158) (0.151) (0.149) (0.145) (0.13)
) 0.132 0.137 0.136 0.133 0.087
Testing Pop GBR (0.16) (0.155) (0.156) (0.155) (0.132)
0.128 0.130 0.130 0.130 0.084
FIN (0.158) (0.155) (0.153) (0.152) (0.134)
0.065 0.069 0.063 0.062 0.104
YRI (0.108) (0.112) (0.2) (0.102) (0.138)

Table 3: Cross-population prediction performance across all five constituent GEUVADIS

populations over genes with positive correlation between predictions and measurements. All
populations were subsampled to N = 89 individuals. The number of genes represented varies by
training sample (CEU: N = 1029, FIN: N = 1320, GBR: 1436, TSI: 1250, YRI: 914).
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Training population
R2 Mean (Std Err)

CEU TSI GBR FIN YRI
0.239 0.269 0.291 0.297 0.201
CEU (0.18) (0.177) (0.166) (0.168) (0.164)
0.307 0.294 0.331 0.322 0.227
TSl (0.188) (0.21) (0.182) (0.185) (0.185)
) 0.320 0.326 0.318 0.350 0.235
Testing Pop GBR (0.175) (0.181) (0.191) (0.178) (0.183)
0.318 0.320 0.343 0.323 0.244
FIN (0.191) (0.198) (0.182) (0.201) (0.192)
0.166 0.205 0.195 0.189 0.213
YRI (0.164) (0.163) (0.157) (0.156) (0.177)

906 Table 4: Cross-population prediction performance across all five subsampled GEUVADIS
907  populations over the 142 genes with positive correlation between prediction and measurement
908  in all 25 train-test scenarios.
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Crosspopulation correlations of predicted versus simulated gene expression
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Figure 4: Correlations between predictions and simulated gene expression measurements from simulated populations across various
proportions of shared eQTL architecture with 10 causal cis-eQTLs. Here YR is simulated from the 1000 Genomes Yoruba, CEU is
simulated from the Utahns, and AA is constructed from YRI and CEU. The black line represents the upper bound of correlation 0.387
dictated by our choice h? = 0.15 for the genetic heritability of expression. Each trend line represents an interpolation of correlation
versus shared eQTL proportion. Gray areas denote 95% confidence regions of LOESS-smoothed mean correlations conditional on the
proportion of shared eQTLs.
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917

Power of TWAS association tests with cross-population predicted expression
Expression imputed from AA, CEU, and YRI for k =10 eQTL per gene
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919  Figure 5: Curves depicting power to detect association under various TWAS scenarios. The x-axis represents the proportion of

920  phenotypic variance explained by gene expression. As in Figure 4, AA reflects simulated African-Americans constructed from YRI and
921  CEU. The curves represent logistic interpolations of whether or not the causal gene was declared significant in an association test of a
922  phenotype from the testing population with gene expression predicted from a training population into the testing population. Gray
923  areas denote 95% confidence regions of mean power conditional on the effect size. A dotted red line at h?> = 0.95 marks the power
924 values shown in

925
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Power of TWAS association tests in AA, CEU, and YRI
Expression imputed from AA, CEU, and YRI for k = 10 eQTL per gene and heritability h? = 0.205
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Figure 6: Power for phenotype-expression association tests with cross-population imputed gene expression for heritability h? = 0.205.
The cross-population scenarios are ordered left to right from least shared ancestry (CEU to YRI, 0.0 shared ancestry) to most shared
ancestry (YRI to AA, 0.8 shared ancestry). Power increases on two axes: (1) as the proportion of shared eQTL architecture increases,
and, to a lesser extent, (2) as genetic distance decreases between reference and target populations. Power is consistently high when
training and testing populations match.
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Power of TWAS association tests for varying proportions of YRI admixture
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Figure 7: Power for various cross-population train-test scenarios with varying YRI admixture for three phenotypic heritability levels h?
=0.06, 0.20, and 0.58, corresponding to effect sizes 0.005, 0.01, and 0.025, respectively. Power increases as heritability increases, but
also as populations become more genetically similar.
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938 Supplementary Figures and Tables
Gene Genes predicted Genes both predicted and Genes with positively correlated Mean Correlation
Weight set models in SAGE measured predictions and measurements (273 common genes)
GTEx vbp 6588 5773 5348 2730 -0.0044
GTEx v7 6297 2742 2570 1319 -0.0113
DGN 13171 4033 3678 1819 -0.0124
MESA_AFA 3551 995 982 497 -0.0204
MESA_AFHI 5556 1889 1862 969 -0.0049
MESA_CAU 4674 1654 1633 837 -0.0082
MESA_ALL 6217 2443 2408 1201 -0.0107

939
940

941

Supplementary Table 1: Summary statistics for analyzing gene expression prediction in SAGE for all seven weight sets in PredictDB.
SAGE has measurements for 20,985 genes, of which 20,268 are autosomal. The intersection of genes with both predictions and
measurements in SAGE across all seven weight sets is 273, of which 39 produce predictions positively correlated to data in all

comparisons.

Measured | Predictive With >50% | Analyzed prediction Positive

Pop genes Models | samples predicted V. measurement correlation
EUR373 23723 20418 11917 11914 5586
EUR278 23723 20182 11043 11043 4817
YRI89 23723 20699 11180 11179 4867

Supplementary Table 2: Summary statistics for each filtering step in the analysis of gene expression models from GEUVADIS for the 3
training populations EUR373, EUR278, and AFR. The analysis of prediction vs. measurement contains 5038 genes in common
between all three populations. Of these genes, 1476 genes demonstrate positive correlation between predictions and measurements.
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Trla;:;ng Testing Pop R? Correlation Transcripts
AFR AFR 0.079 0.2329 2562
AFR EUR278 0.030 0.1122 2996
AFR EUR373 0.029 0.1072 3043
AFR FIN 0.039 0.1377 2908

EUR278 AFR 0.051 0.1632 3079

EUR278 EUR278 0.096 0.2291 2857

EUR278 FIN 0.087 0.2171 3994

EUR373 AFR 0.054 0.1683 3105

EUR373 EUR373 0.098 0.2325 3132

Supplementary Table 3: Summary statistics from training and testing results with continental
GEUVADIS populations for gene models with positive correlations. The R? correspond to Table 1.
The column “Correlation” lists the Spearman correlations for each scenario, while “Transcripts”
gives the number of gene models used to compute the R? and correlation summaries.
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947
Training Testing Shared eQTL Correlation Correlation
Pop Pop Proportion (Mean) (StdErr)
AA AA 0 0.305 0.039
AA AA 0.1 0.307 0.039
AA AA 0.2 0.308 0.038
AA AA 0.3 0.310 0.038
AA AA 0.4 0.311 0.038
AA AA 0.5 0.313 0.038
AA AA 0.6 0.315 0.036
AA AA 0.7 0.318 0.036
AA AA 0.8 0.319 0.036
AA AA 0.9 0.321 0.036
AA AA 1 0.324 0.035
CEU CEU 0 0.329 0.035
CEU CEU 0.1 0.329 0.035
CEU CEU 0.2 0.329 0.035
CEU CEU 0.3 0.328 0.035
CEU CEU 0.4 0.329 0.035
CEU CEU 0.5 0.328 0.035
CEU CEU 0.6 0.329 0.035
CEU CEU 0.7 0.329 0.035
CEU CEU 0.8 0.329 0.035
CEU CEU 0.9 0.328 0.035
CEU CEU 1 0.329 0.035
YRI YRI 0 0.324 0.035
YRI YRI 0.1 0.325 0.035
YRI YRI 0.2 0.325 0.035
YRI YRI 0.3 0.324 0.035
YRI YRI 0.4 0.324 0.035
YRI YRI 0.5 0.324 0.035
YRI YRI 0.6 0.325 0.035
YRI YRI 0.7 0.324 0.035
YRI YRI 0.8 0.325 0.035
YRI YRI 0.9 0.324 0.035
YRI YRI 1 0.324 0.035

Supplementary Table 4: Spearman correlations between prediction versus simulated
measurement from simulated populations to themselves across various shared eQTL
proportions for k = 10 causal eQTlLs.

948
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950
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959

. Train-test direction
Correlation Mean (Std Err)
AA CEU YRI
AA 0.324 0.309 0.337
(0.0352) (0.0399) (0.0306)
0.335 0.328 0.325
Training Pop CEU
(0.0335) (0.0348) (0.0389)
YRI 0.337 0.298 0.324
(0.0302) (0.0459) (0.0347)

Supplementary Table 5: Prediction performance under fully shared eQTL architecture for k = 10
eQTls yields reliable cross-population gene expression prediction. Results for other sizes of eQTL

models are similar.
R? AFR to AFR
AFR to EUR 1.222 x 1012
EUR to AFR 1.705 x 10°%*
EUR to EUR 1.357 x 10

AFR to EUR

6.636 x 10
1.487 x 107112

EUR to AFR

1.753 x 10228

Supplementary Table 6: A Dunn test shows statistically significant differences when predicting
between AFR and EUR populations versus predicting between EUR populations.
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Train-test direction
Z-score (p-value)
AA to CEU AA to YRI CEU to AA CEU to YRI YRI to AA
-1.401
AA to YRI
(p < 1.00E+00)
6.712 8.113
CEU to AA
(p < 1.44E-10) (p < 3.68E-15)
in- 28.517 29.919 21.805
Train-test | cey to YRI
direction (p <5.32E-178) (p <8.34E-196) (p < 1.55E-104)
-5.391 -3.990 -12.104 -33.909
YRI to AA
(p<5.23E-07) (p<4.95E-04) (p<7.51E-33) (p<3.62E-251)
24.146 25.547 17.433 -4.371 29.538
YRI to CEU
(p < 0.00E+00) (p <0.00E+00) (p<0.00E+00) (p<0.00E+00) (p < 0.00E+00)

960  Supplementary Table 7: Differences in cross-population prediction performance are statistically significant, with a few notable
961  exceptions. Prediction from AA to CEU or YRI is essentially the same, but all other scenarios are different, indicating that the direction
962  of prediction does matter.

963
964
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Distribution of R? across different prediction weight sets over 273 common genes
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966  Supplementary Figure 1: R?> of measured gene expression versus predictions from PrediXcan. The prediction weights used here are,
967  from left to right: GTEx v6p, GTEx v7, DGN, MESA African Americans, MESA African Americans and Hispanics, MESA Caucasians, and
968  all MESA subjects. Test R? from model training in GTEx 7 and MESA (“test_R2_avg” in PredictDB) appear on the right and provide a
969  performance baseline.

970
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Distribution of R? across different prediction weight sets over 39 common genes
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972  Supplementary Figure 2: R? between prediction and measurement in SAGE only using the 39 genes with positive correlation between
973  prediction and measurement in all weight sets and benchmarks.
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Comparison of R? between continental GEUVADIS populations
N = 521 common genes
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974

975  Supplementary Figure 3: Prediction R? between AFR (YRI) and EUR (CEU, TSI, GBR, and FIN). Predicting into and from AFR produces
976  consistently lower R? than predicting within EUR, suggesting a potential decrease in prediction accuracy when predicting across
977  continental population groups.
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Fixation index Fg, versus prediction accuracy R?

0.06 - A

A AA

0.04-

AFR to AFR
o A EURto AFR
EUR to EUR

0.02-

0.00-

O.I20 O.I25 O.ISO 0.53:5
RZ
Supplementary Figure 4: Genetic distance versus prediction accuracy over 142 genes with positive correlation across all train-test
scenarios. Here the GEUVADIS populations are arranged into three groups. AFR to AFR includes prediction from YRl into itself; EUR to
AFR includes prediction into YRI from CEU, GBR, TSI, and FIN; and EUR to EUR includes prediction within and between all European
populations in GEUVADIS. Clustering by genetic distance separates prediction between European populations from prediction
between European populations and AFR. Fsr are taken from the 1000 Genomes Project (Table S11).[77]
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Supplementary Figure 5: A schematic of three shared eQTL architectures for the case of k = 10 eQTLs per gene. Blue encodes eQTLs
specific to CEU; red encodes eQTLs specific to YRI; and gold encodes eQTLs shared between CEU and YRI. Models for CEU and YRI
always had k eQTLs. AA always inherited all eQTLs from the ancestral populations. Consequently, the number of eQTLs in AA varied
depending on how many eQTLs CEU and YRI shared.
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995  Supplementary Figure 6: Correlations between predictions and simulated gene expression measurements from simulated populations
996  across various proportions of shared eQTL architecture with 20 causal cis-eQTLs.
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Crosspopulation correlations of predicted versus simulated gene expression
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Supplementary Figure 7: Correlations between predictions and simulated gene expression measurements from simulated populations
across various proportions of shared eQTL architecture with 40 causal cis-eQTLs.
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Crosspopulation correlations of predicted versus simulated gene expression
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1004  Supplementary Figure 8: Mean correlations between predictions and simulated gene expression measurements from simulated
1005  populations for a single causal cis-eQTL. For this simplified eQTL architecture, the ancestral populations (CEU and YRI) either share
1006  the causal eQTL (TRUE) or not (FALSE). In the TRUE case, AA has 1 eQTL shared with CEU and YRI; in the FALSE case, it has 2 unique
1007  eQTLs, one from each of CEU and YRI. Error bars denote 95% confidence intervals.
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Supplementary Figure 9: Distributions of t-statistics across various shared eQTL proportions for all nine train-test scenarios with 1000
Genomes populations for a fixed TWAS effect size and fixed number of causal eQTLs. The labels are ordered from left to right from
least shared ancestry (CEU to YRI, shared ancestry proportion 0) to most shared ancestry (YRI to AA, shared ancestry proportion 0.8),
with train-test scenarios from a population into itself on the right of each panel. Increasing proportions of shared eQTLs yield
stronger association statistics from cross-population predictions. Fully shared eQTL architectures yield consistently high power across
populations. Median t-statistics increase as populations share more haplotypes, while association tests with gene expression
predicted in the same population show consistently high power.
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