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Abstract 27 

The genetic control of gene expression is a core component of human physiology. For the past 28 

several years, transcriptome-wide association studies have leveraged large datasets of linked 29 

genotype and RNA sequencing information to create a powerful gene-based test of association 30 

that has been used in dozens of studies. While numerous discoveries have been made, the 31 

populations in the training data are overwhelmingly of European descent, and little is known 32 

about the generalizability of these models to other populations. Here, we test for cross-33 

population generalizability of gene expression prediction models using a dataset of African 34 

American individuals with RNA-Seq data in whole blood. We find that the default models trained 35 

in large datasets such as GTEx and DGN fare poorly in African Americans, with a notable reduction 36 

in prediction accuracy when compared to European Americans. We replicate these limitations in 37 

cross-population generalizability using the five populations in the GEUVADIS dataset. Via realistic 38 

simulations of both populations and gene expression, we show that accurate cross-population 39 

generalizability of transcriptome prediction only arises when eQTL architecture is substantially 40 

shared across populations. In contrast, models with non-identical eQTLs showed patterns similar 41 

to real-world data. Therefore, generating RNA-Seq data in diverse populations is a critical step 42 

towards multi-ethnic utility of gene expression prediction.  43 
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Author summary 47 

Advances in RNA sequencing technology have reduced the cost of measuring gene expression at 48 

a genome-wide level. However, sequencing enough human RNA samples for adequately-49 

powered disease association studies remains prohibitively costly. To this end, modern 50 

transcriptome-wide association analysis tools leverage existing paired genotype-expression 51 

datasets by creating models to predict gene expression using genotypes. These predictive models 52 

enable researchers to perform cost-effective association tests with gene expression in 53 

independently genotyped samples. However, most of these models use European reference 54 

data, and the extent to which gene expression prediction models work across populations is not 55 

fully resolved. We observe that these models predict gene expression worse than expected in a 56 

dataset of African-Americans when derived from European-descent individuals. Using 57 

simulations, we show that gene expression predictive model performance depends on both the 58 

amount of shared genotype predictors as well as the genetic relatedness between populations. 59 

Our findings suggest a need to carefully select reference populations for prediction and point to 60 

a pressing need for more genetically diverse genotype-expression datasets. 61 
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Introduction 62 

In the last decade, large-scale genome-wide genotyping projects have enabled a revolution in our 63 

understanding of complex traits.[1–4] This explosion of genome sequencing data has spurred the 64 

development of new methods that integrate large genotype sets with additional molecular 65 

measurements such as gene expression. A recently popular integrative approach to genetic 66 

association analyses, known as a transcriptome-wide association study (TWAS)[5,6], leverages 67 

reference datasets such as the Genotype-Tissue Expression (GTEx) repository[7] or the 68 

Depression and Genes Network (DGN)[8] to link associated genetic variants with a molecular trait 69 

like gene expression. The general TWAS framework requires previously estimated cis-eQTLs for 70 

all genes in a dataset with both genotype and gene expression measurements. The resulting eQTL 71 

effect sizes build a predictive model that can impute gene expression in an independently 72 

genotyped population. A TWAS is similar in spirit to the widely-known genome-wide association 73 

study (GWAS) but suffers less of a multiple testing burden and can potentially detect more 74 

associations as a result.[5,6] 75 

 76 

Unlike a normal GWAS, where phenotypes are regressed onto genotypes, in TWAS the phenotype 77 

is regressed onto the imputed gene expression values, thus constituting a new gene-based 78 

association test. TWAS can also link phenotypes to variation in gene expression and provide 79 

researchers with additional biological and functional insights over those afforded by GWAS alone. 80 

While these models are imperfect predictors, predicted gene expression allows researchers to 81 

test phenotype associations to expression levels in existing GWAS datasets without measuring 82 

gene expression directly. In particular, these methods enable analysis of predicted gene 83 
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expression in very large cohorts (~104 – 106 individuals) rather than typical gene expression 84 

studies that measure expression directly (~102 – 103 individuals). Several methods have been 85 

recently developed to perform TWAS in existing genotyped datasets. PrediXcan[6] uses eQTLs 86 

precomputed from paired genotype-expression data, such as those in GTEx, in conjunction with 87 

a new genotype set to predict gene expression. These gene expression prediction models are 88 

freely available online (PredictDB), creating resources for external researchers. Related TWAS 89 

approaches, such as FUSION[5], MetaXcan[9], or SMR[10], leverage eQTL information with GWAS 90 

summary statistics instead, thus circumventing the need for raw individual-level genotype data. 91 

 92 

As evidenced by application to numerous disease domains, the TWAS framework is capable of 93 

uncovering new genic associations.[11–17]  However, the power of TWAS is inherently limited by 94 

the data used for eQTL discovery. For example, since gene expression varies by tissue type, 95 

researchers must ensure that the prediction weights are estimated using RNA from a tissue 96 

related to their phenotype, whether that be the direct tissue of interest or one with sufficiently 97 

correlated gene expression.[18] Furthermore, the ability of predictive models to impute gene 98 

expression from genotypes is limited by the heritability in the cis region around the gene.[6] 99 

Consequently, genes with little or no measurable genetically regulated effect on their expression 100 

in the discovery data are poor candidates for TWAS. 101 

 102 

A subtler but more troubling issue arises from the lack of genetic diversity present in the datasets 103 

used for predictive model training: most paired genotype-expression datasets consist almost 104 

entirely of data from European-descent individuals.[8,18] The European overrepresentation in 105 
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genetic studies is well documented[19–21] and has severe negative consequences for equity as 106 

well as for gene discovery[22], fine mapping[23–25], and applications in personalized 107 

medicine.[26–34]  Genetic architecture, linkage disequilibrium, and genotype frequencies can 108 

vary across populations, which presents a potential problem for the application of predictive 109 

models with genotype predictors across multiple populations.  110 

 111 

The training data for most models in the models derived from PrediXcan weights in PredictDB 112 

(predictdb.org) are highly biased toward European ancestry: GTEx version v6p subjects are over 113 

85% European, while the GTEx v7 and DGN subjects are entirely of European descent. The lack 114 

of suitable genotype-expression datasets in non-European individuals leads to scenarios in which 115 

PredictDB models trained in Europeans are used to predict into non-European or admixed 116 

populations. As shown previously in the context of polygenic risk scores[35], multi-SNP prediction 117 

models trained in one population can suffer from unpredictable bias and poor prediction 118 

accuracy that impair their cross-population generalizability. Recent analyses of genotype-119 

expression data from the Multi-Ethnic Study of Atherosclerosis (MESA)[36–38], which includes 120 

non-European individuals, explore cross-population transcriptome prediction and conclude that 121 

predictive accuracy is highest when training and testing populations match in ancestry. These 122 

results are consistent with our experience analyzing admixed populations, but offer little insight 123 

into the mechanisms underlying the cross-population generalizability of transcriptome prediction 124 

models, particularly when eQTL architecture is known. 125 

 126 
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Here we investigate the cross-population generalizability of gene expression models using paired 127 

genotype and gene expression data and using simulations derived from real genotypic data and 128 

realistic models of gene expression. We analyze prediction quality from currently available 129 

PrediXcan prediction weights using a pilot subset of paired genotype and whole blood 130 

transcriptome data from the Study of African Americans, Asthma, Genes, and Environment 131 

(SAGE).[39–42] SAGE is a pediatric cohort study of childhood-onset asthma and pulmonary 132 

phenotypes in African American subjects of 8 to 21 years of age. To tease apart cross-population 133 

prediction quality, we turn to GEUVADIS and the 1000 Genomes Project datasets.[4,43,44] The 134 

GEUVADIS dataset has been used extensively to validate PrediXcan models.[6,38] However, 135 

recent analyses suggest that GTEx and DGN PrediXcan models behave differently on the 136 

constituent populations in GEUVADIS.[45] To our knowledge, nobody has investigated cross-137 

population generalizability of new prediction models generated within GEUVADIS. GEUVADIS 138 

provides us an opportunity to investigate predictive models with an experimentally 139 

homogeneous dataset: the GEUVADIS RNA-Seq data were produced in the same environment 140 

under the same protocol, from lymphoblastoid cell lines (LCLs) that, despite some variation in 141 

when cells were collected[46], are derived from similar sampling efforts and treatments, thereby 142 

providing a high degree of technical harmonization. We train, test, and validate predictive models 143 

wholly within GEUVADIS with a nested cross-validation scheme. Finally, to understand the 144 

consequences of eQTL architecture on TWAS, we use existing 1000 Genomes data to simulate 145 

two ancestral populations and an admixed population and then apply the same “train-test-146 

validate” scheme with various simulated eQTL models to study cross-population prediction 147 

efficacy when a gold standard is known. 148 
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Results 149 

Concordance of measured gene expression and PrediXcan predictions is lower than expected 150 
We compared transcriptome prediction accuracy in SAGE whole blood RNA using three PredictDB 151 

prediction weight sets for whole blood RNA: GTEx v6p, GTEx v7, and DGN. We also evaluated 152 

expression prediction with all four MESA monocyte weight sets: MESA_ALL (populations 153 

combined), MESA_AFA (African Americans), MESA_AFHI (combined African Americans and 154 

Hispanic Americans), and MESA_CAU (Caucasians). For each gene where both measured RNA-155 

Seq gene expression and predictions are available in SAGE, we compute both the coefficient of 156 

determination (R2) and Spearman correlation to analyze the direction of prediction. As we are 157 

primarily interested in describing the relationship between predicted outcome and real outcome, 158 

we prefer Spearman’s ρ to describe correlations, while for determining prediction accuracy, we 159 

use the standard regression R2, corresponding to the squared Pearson correlation, to facilitate 160 

comparisons to prior work. We then benchmark these against the out-of-sample R2 and 161 

correlations from GTEx v7 and MESA as found in PredictDB. Prediction results in SAGE were 162 

available for 11,545 genes with a predictive model from at least one weight set. Not all sets 163 

derived models at the same genes: since the estimation of these prediction models requires both 164 

high quality expression data and inferred eQTLs, each weight set may have a different number of 165 

gene models. Therefore, intersecting seven different weight sets reduces the overall number of 166 

models available for comparison. After applying the recommended filters, the prediction results 167 

across all seven weight sets overlapped at 273 genes, of which 39 genes had predictions with 168 

positive correlation to measurements. This small number of genes in common is largely driven 169 

by MESA_AFA, the repository with the smallest number of predictive models. However 170 
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MESA_AFA contains the models that should best reflect the genetic ancestry of African 171 

Americans in SAGE (Supplementary Table 1). We note that MESA_AFA also has the smallest 172 

training sample size among our weight sets (N = 233)[38],  so the small number of predicted 173 

genes from MESA_AFA probably results from the small training sample size and not from any 174 

feature of the underlying MESA_AFA training data. 175 

 176 

Here, we highlight the union of genes across model sets for investigation. The concordance 177 

between predicted and measured gene expression over the union of 11,545 from all seven 178 

weight sets, with corresponding training metrics from PredictDB as benchmarks, shows worse 179 

performance than expected for R2 ( 180 

Figure 1) and correlations (Figure 2). The highest mean R2 of 0.0298 was observed in MESA_AFA. 181 

We note the intersection of all prediction models is limited, but reflects a similar pattern: results 182 

for the 273 common genes (Supplementary Figure 1) and the 39 genes with positive correlations 183 

(Supplementary Figure 2) showed little difference in the R2 shown in  184 

Figure 1. Because SAGE is an independent validation set for the training populations, we would 185 

expect to observe some deterioration in prediction R2 due to out-of-sample estimation. However,  186 

Figure 1 shows a marked difference in model performance. 187 

 188 

More noteworthy is the substantial proportion of predictions in SAGE with negative correlations 189 

to the real data. All seven weight sets produced gene expression predictions with negative 190 

correlations, but average performance across genes varied. The least negative mean correlation 191 

(0.00707) was observed with MESA_AFHI (MESA African Americans and Hispanics), while the 192 
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most negative mean correlation (-0.00415) was observed with MESA_AFA (MESA African 193 

Americans, Supplementary Table 1). The observation that correlations to SAGE measurements 194 

are sometimes negative on average suggests that some large R2 values seen in  195 

Figure 1 may result from gene models with incorrect direction of prediction, thereby limiting 196 

interpretability of results. While there are some fluctuations in prediction accuracy, no prediction 197 

weight set produces practically meaningfully better correlations to data than the others (-198 

0.00415 to 0.00707). In contrast, the published models for these genes show positive correlations 199 

to their training data, ranging from 0.308 in GTEx_v7 to 0.379 in MESA_AFA, indicating no obvious 200 

incapacity for accurate prediction, even with out-of-sample data. However, available predictions 201 

into SAGE from otherwise valid prediction models are uniformly limited in power to capture true 202 

genotype-expression relationships. 203 

 204 

To analyze genes with high prediction R2 in the original experiment, we focus on genes in GTEx 205 

v7 with cross-validated R2 > 0.2 in the reference population. Figure 3 compares PredictDB testing 206 

R2 against the empirical R2 from regressing predictions onto observations in SAGE. In this case, 207 

even the better-imputed gene models derived from PredictDB have limited ability to capture 208 

gene expression accurately in SAGE (mean R2 0.031, IQR [0.0027, 0.037]). 209 

Cross-population prediction quality declines with increasing genetic distance 210 
Real-world comparisons of RNA-Seq datasets can be subject to numerous sources of 211 

heterogeneity besides differential ancestry. Possible confounders include technical differences 212 

in sequencing protocols, differences in the age of participants[47] or cell lines[46], and the 213 

postmortem interval to tissue collection (for GTEx).[48–50] To investigate cross-population 214 
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generalizability in an experimentally homogeneous context, we turn to GEUVADIS.[43] The 215 

GEUVADIS data include two continental population groups from the 1000 Genomes Project: the 216 

Europeans (EUR373), composed of 373 unrelated individuals from four subpopulations (Utahns 217 

(CEU), Finns (FIN), British (GBR), Toscani (TSI)), and the Africans (AFR) composed of 89 unrelated 218 

Yoruba (YRI) individuals. In light of the known bottleneck in Finnish population history[51], we 219 

analyze EUR373 both as one population and as two independent subgroups: the 95 Finnish 220 

individuals (FIN) and the 278 non-Finnish Europeans (EUR278). We used expression data, 221 

generated and harmonized together by the GEUVADIS Consortium, with matched whole-genome 222 

genotype data in the resulting four populations (EUR373, EUR278, FIN, and AFR) to train 223 

predictive models for gene expression in a nested cross-validation scheme[6] and perform cross-224 

population tests of prediction accuracy. 225 

 226 

Table 1 shows R2 from three training sets (EUR373, EUR278 and AFR) into the four testing 227 

populations (EUR373, EUR278, FIN, and AFR) for genes with positive correlation between 228 

prediction and measurement. While the number of genes with applicable models including 229 

genetic data varies in each train-test scenario (see Supplementary Table 3), we note that not all 230 

predictive models are trained on equal sample sizes, so the resulting R2 only provide a general 231 

idea of how well one population imputes into another.  Analyses within a population use out-of-232 

sample prediction R2 to avoid overfitting across train-test scenarios. Predicting from a population 233 

into itself yields R2 ranging from 0.079 – 0.098 (Table 1) consistent with the smaller sample sizes 234 

in GEUVADIS versus GTEx and DGN. In contrast, predicting across populations yields more 235 

variable predictions, with R2 ranging from 0.029 – 0.087. At the lower range of R2 (0.029 – 0.039) 236 
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are predictions from AFR into European testing groups (EUR373, EUR278, and FIN). Alternatively, 237 

when predicting from European training groups into AFR, the R2 are noticeably higher (0.051 – 238 

0.054). Prediction from EUR278 into FIN (R2 = 0.087) is better than prediction from EUR278 into 239 

AFR (R2 = 0.051), suggesting that prediction R2 may deteriorate with increased genetic distance. 240 

A comparison of the 564 genes in common across all train-test scenarios (Table 2) yields a subset 241 

of genes with potentially more consistent gene expression levels.  In this case involving better-242 

predicted genes, we see that prediction quality between the European groups improves 243 

noticeably (p-value ~ 0, Dunn test) with R2 ranging between 0.183 to 0.216, while R2 between 244 

Europeans and Africans ranges from 0.095 to 0.147, a significant improvement (p-value < 7.07 x 245 

10-22, Dunn test) that nonetheless highlights a continental gap in prediction performance.  In 246 

general, populations seem to predict better into themselves, and less well into other populations.  247 

 248 

Combining all European subpopulations obscures population structure and can complicate 249 

analysis of cross-population prediction performance. To that end, we divide the GEUVADIS data 250 

into its five constituent populations and randomly subsample each of them to the smallest 251 

population size (n = 89). We then estimate models from each subpopulation and predict into all 252 

five subpopulations. Table 3 shows average prediction R2 from each population into itself and 253 

others. The populations consistently predict well into themselves, with prediction R2 ranging 254 

from 0.104 – 0.136. We observe that prediction quality using models trained in CEU shows a 255 

miniscule decline relative to other EUR subpopulations. This observation is potentially due to the 256 

older age of CEU LCLs[45,52,53], but did not appreciably change our results. In contrast, a more 257 

notable difference exists between the EUR subpopulations and YRI. The cross-population R2 258 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2019. ; https://doi.org/10.1101/552042doi: bioRxiv preprint 

https://doi.org/10.1101/552042
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

between CEU, TSI, GBR, and FIN ranges from 0.103 to 0.137, while cross-population R2 from these 259 

populations into YRI ranges from 0.062 to 0.084. Prediction between YRI and the EUR populations 260 

taken together is consistently lower than within the EUR populations (Supplementary Figure 3) 261 

and statistically significant (p-value < 1.36 x 10-4, Dunn test; see Supplementary Table 6). The 262 

cross-population differences remain for the 142 genes with positive correlation in all train-test 263 

scenarios (Table 4), where R2 for prediction into YRI ranges from 0.166 to 0.244, while R2 within 264 

EUR populations ranges from 0.239 to 0.331. These results clearly suggest problems for 265 

prediction models that predict gene expression across populations, in similar regimes to those 266 

tested with linear predictive models and datasets of size consistent with current references. In 267 

addition, since AFR is genetically more distant from the EUR subpopulations than they are to each 268 

other, we interpret these results to imply that structure in populations can potentially exacerbate 269 

cross-population prediction quality (Supplementary Figure 4). 270 

Admixture influences cross-population gene expression prediction quality under known eQTL 271 
architecture 272 
The unresolved question is the extent to which these results hold with oracle knowledge of eQTL 273 

architecture, something impossible to investigate in real data when the causal links between 274 

eQTLs and gene expression can only be estimated. To investigate genomic architectures giving 275 

rise to gene expression, and in particular to investigate behavior in admixed populations, we 276 

simulate haplotypes from HapMap3[54] CEU and YRI using HAPGEN2[55] and then sample 277 

haplotypes in proportions consistent with realistic admixture proportions (80% YRI, 20% CEU)[56] 278 

to construct a simulated African-American (AA) admixed population. We simulate eQTL 279 

architectures under an additive model of size k causal alleles (k = 1, 10, 20, and 40) and an 280 
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expression phenotype with cis-heritability h2 = 0.15 (recapitulating average h2 in GTEx) using the 281 

genomic background of genic regions on chromosome 22, thus testing various model sizes and 282 

LD patterns. To tease apart the effect of shared eQTL architecture, we allow the two ancestral 283 

populations CEU and YRI to share eQTLs with fixed effects in various proportions (0%, 10%, 20%, 284 

…, 100%) to test a range of eQTL architectures. The admixed population AA always inherited all 285 

eQTLs from the two ancestral populations, which yielded different numbers of eQTLs per gene 286 

depending on how many eQTLs were shared by CEU and YRI. For example, for eQTL model size k 287 

= 10, when CEU and YRI shared all 10 eQTLs, then all three populations had the exact same 10 288 

eQTLs. When CEU and YRI shared half of their eQTLs with each other, then each one had 5 289 

population-specific eQTLs, and AA inherited 15 total eQTLs (5 unique to CEU, 5 unique to YRI, and 290 

5 shared). If CEU and YRI shared no eQTLs, then all eQTLs were population-specific, and AA 291 

inherited 20 eQTLs (10 from CEU and 10 from YRI; see Supplementary Figure 5 for an illustration).  292 

With these simulations providing known architectures for comparison, we then apply the train-293 

test-validate scheme as before. 294 

 295 

Figure 4 shows the cross-population Spearman correlations between predicted and simulated 296 

phenotypes in our simulated AA, CEU, and YRI, partitioned by proportion of shared eQTLs, for k 297 

= 10 causal eQTLs. Scenarios with k = 20 and k = 40 causal eQTLs show similar trends 298 

(Supplementary Figure 6 and Supplementary Figure 7). Prediction within a population produced 299 

similar correlations in all cases, ranging from 0.310 to 0.338 (Supplementary Table 4). The case 300 

of models with 100% shared eQTL architecture – where eQTL positions and effects are exactly 301 

the same between the ancestral populations – yields predictions with no loss in cross-population 302 
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generalizability, with correlations ranging from 0.299 to 0.336 even when predicting across 303 

populations (Supplementary Table 5). This case suggests that eQTLs that are causal in all 304 

populations can impute gene expression reliably regardless of the population in which they were 305 

ascertained, provided that the eQTLs can be correctly mapped and genotyped in all populations, 306 

that the eQTL effects are identical across populations, and that a linear model of eQTLs is 307 

assumed. For cases where eQTL architecture is not fully shared across populations, we see that 308 

prediction from each population into the other improves as the proportion of shared eQTLs 309 

increases (Figure 4). The cross-population correlation between predicted gene expression versus 310 

measurement is highest from YRI to AA (0.238 to 0.338), intermediate from CEU to AA (0.218 to 311 

0.310), and lowest between CEU and YRI (0.0020 to 0.326). Prediction quality from AA to CEU 312 

and YRI interpolates that of YRI to AA and CEU to AA, with correlations ranging from 0.223 to 313 

0.338. Prediction quality from AA to CEU or YRI shows a slight upward trend as more eQTLs are 314 

shared, an artifact of eQTL inheritance in our simulations; as described previously, AA eQTL 315 

models are largest (20 eQTLs) when CEU and YRI share no eQTLs and smallest (10 eQTLs) when 316 

CEU and YRI share all eQTLs. Consequently, when predicting between two populations, the choice 317 

of which population is used to train predictive models can produce differences in prediction 318 

quality. Prediction quality between AA to CEU and AA to YRI is not significantly different (p-value 319 

~ 1, Dunn test). All other train/test scenarios are significantly different from each other 320 

(Supplementary Table 7). The results for k = 10, 20, and 40 eQTLs show a consistent trend of 321 

prediction quality driven primarily by different in eQTL architecture, with additional minor 322 

influence from ancestral similarity between populations (k = 10, Figure 4, similar plots in 323 

Supplementary Figure 6 and Supplementary Figure 7). Although less realistic for most 324 
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genes[5,6,18], we also analyzed models with a single causal eQTL. Trends for single-eQTL models 325 

are more difficult to analyze due the limitations of binary inference as to whether the causal SNP 326 

is identified or not. Nevertheless, when the causal eQTL is identified and shared across 327 

populations, prediction quality is high in call cases. If the causal eQTL differs across populations, 328 

then cross-population prediction between AA and YRI or CEU is noticeably better than prediction 329 

between CEU and YRI (Supplementary Figure 8), in line with results for other values of k that 330 

suggest that eQTL sharing is the primary driver of gene expression prediction quality.  331 

Power to detect associations declines with decreasing shared ancestry  332 
Simulation of gene expression demonstrates that gene expression prediction quality is 333 

modulated by both shared eQTL architecture and shared genetic ancestry. These results suggest 334 

possible effects of cross-population generalizability on the power to detect associations between 335 

a phenotype and gene expression measures in a TWAS. For each of our three populations (AA, 336 

CEU, and YRI), we used the simulated gene expression measures to simulate a continuous 337 

phenotype whose variation depends on expression of a single causal gene. For simplicity, the 338 

phenotypes shared the same causal gene, the same effect size, and the same environmental 339 

noise model. We tested various effect sizes from 1 x 10-5 to 1 and drew the environmental noise 340 

from a zero-mean normal distribution with variance 0.01. The effect sizes produced a continuous 341 

spectrum of genetic heritability values h2 spanning the full range of heritability for gene 342 

expression. We then regressed the phenotype onto predicted gene expression measures, 343 

resulting in nine association tests, one for each train-test scenario. For simplicity, we focused on 344 

the prediction scenario with k = 10 causal eQTLs per gene. To see how shared eQTL architecture 345 
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affects power, we used predicted expression measures with 0%, 50%, and 100% shared eQTLs 346 

per gene. 347 

 348 

Figure 5 shows power curves for the association tests for the nine prediction scenarios for all 349 

three tested eQTL architectures. Unsurprisingly, power improves as populations share more 350 

causal eQTLs. For example, with 100% shared eQTLs and phenotypic heritability 0.205, cross-351 

population power ranges between 0.69 – 0.86. In contrast, average power under a 0% shared 352 

eQTL model ranges more broadly, from 0.02 (CEU to YRI, YRI to CEU) to 0.38 (AA to YRI, AA to 353 

CEU) to 0.82 (CEU to AA) and 0.88 (YRI to AA), indicating some ability to predict gene expression 354 

at genetically controlled genes, even without shared eQTLs. Power also improves with shorter 355 

genetic distance between populations. Figure 6, which is a cross-section of Figure 5, shows power 356 

for each train-test scenario across various shared eQTL architectures for β = 0.05, corresponding 357 

to a phenotype heritability of h2 = 0.205, indicating moderate genetic control. TWAS in this case 358 

using gene expression imputed from matched populations has higher power across all eQTL 359 

architectures, from 0.33-0.85, compared to cross-population TWAS, where power varies 360 

substantially. For an architecture with no shared eQTLs, power between CEU and YRI is 0, while 361 

power is higher for CEU to AA (0.25) and YRI to AA (0.30). TWAS power for expression imputed 362 

from AA to CEU (0.05) or YRI (0.06) is much lower due to the aforementioned structure of eQTL 363 

inheritance. As the proportion of shared eQTLs jumps from 0% to 50% and 100%, power increases 364 

across all cross-population scenarios, reaching up to 0.31 (YRI to AA, 100% shared eQTLs). When 365 

eQTLs are fully shared, power from YRI to AA (0.31) is higher than from CEU to AA (0.25), 366 

indicating an effect of genetic distance on prediction quality. Indeed, when controlling for eQTL 367 
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architecture, increasing genetic similarity between reference and target populations yields more 368 

significant median association test t-statistics (Supplementary Figure 9). 369 

Admixture proportion interpolates power in two-way admixture 370 

The results in Figure 6 show how genetic distance affects power in TWAS association tests for 371 

one particular admixture proportion, but offer limited insight about how power changes across 372 

the admixture spectrum. To understand how admixture proportion affects TWAS power in a 373 

general admixed population with two ancestral populations, we simulated multiple admixed 374 

populations from CEU and YRI with admixture proportions varying at 10% increments. When the 375 

admixed population has 0% YRI admixture, it is fully drawn from haplotypes from CEU, whereas 376 

a population with 100% YRI admixture is drawn exclusively from haplotypes from YRI. It is 377 

important to note that in neither case does the admixed population exactly match the reference 378 

CEU or YRI since the genotypes for the admixed population are formed from an independent 379 

shuffling of the CEU or YRI haplotypes. For each admixed population, we estimated prediction 380 

models of gene expression as done in our previous analyses. For computational efficiency, we 381 

investigated the scenario of 50% shared eQTLs across reference populations and the number of 382 

eQTLs per gene to 10. Populations still shared the same causal gene, effect size, and 383 

environmental noise model. 384 

 385 

Figure 7 shows power across admixture proportions for all cross-population scenarios. The 386 

phenotypes were simulated at effect sizes β = 0.005, 0.01, and 0.025, and environmental 387 

variance σ2 = 0.01, corresponding to heritability h2 = 0.06, 0.20, and 0.58, respectively. To avoid 388 
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confusion with previous references to AA, which had a fixed admixture proportion, here we 389 

denote the admixed population for all proportions as AD. As expected, statistical power 390 

increases with the genetic heritability of the phenotype for all prediction scenarios. However, 391 

the different admixture proportions yield directional changes in power when gene expression is 392 

predicted to or from AD. For example, when h2 = 0.20 and gene expression is predicted from AD 393 

to CEU, power at 0% YRI admixture is 0.56 (95% CI: 0.462 – 0.658) and declines linearly with 394 

increasing YRI admixture; at 100% YRI, statistical power for AD to CEU is 0.46 (95% CI: 0.362 – 395 

0.558). For AD to YRI, power at 0% YRI admixture starts at 0.42 (95% CI: 0.323 – 0.512) and 396 

increases linearly to 0.53 (95% CI: 0.431 – 0.628) at 100% YRI. We observe similar changes in 397 

power for CEU to AD (decreasing power as YRI proportion increases) and YRI to AD (increasing 398 

power as YRI proportion increases). The four directional trends also hold for h2 = 0.06 and h2 = 399 

0.58, though power for cross-population scenarios involving AD is much lower in the former 400 

case and almost universally high in the latter case. In essence, the varying admixture 401 

proportions in this two-way admixed population yield a continuous linear trend of statistical 402 

power between the two ancestral populations: when AD is genetically closer to CEU, power for 403 

gene expression predicted these populations is highest, and declines as AD becomes genetically 404 

closer to YRI. Similarly, when predicting from AD to YRI or vice versa, power is lowest when the 405 

two populations are genetically distinct, intermediate as the two populations become more 406 

genetically similar, and maximized when they are most alike. 407 

Discussion 408 

Our goal with this study was to understand the extent to which gene expression prediction 409 

models estimated in one population can accurately predict the genetic component of gene 410 
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expression in a different population. Cross-population generalizability of gene expression 411 

prediction models is an important but understudied issue for TWAS analyses. Among TWAS 412 

resources, we focused on PrediXcan as a test case with openly distributed prediction models 413 

available for multiple populations.[6,38] Using 39 subjects from the SAGE study[39–42] we 414 

compared predicted expression values from PrediXcan models to measured gene expression on 415 

the same subjects and found that predictions matched poorly to measurements. Our 416 

investigation with the GEUVADIS dataset[43] offered us a more homogenous environment in 417 

which to train and test gene expression prediction models. Prediction quality in GEUVADIS using 418 

both continental and constituent subpopulations provided stronger evidence of cross-population 419 

generalizability issues with transcriptome prediction, but could not control for eQTL predictors 420 

that vary between populations. To that end, our simulation of an admixed population from 1000 421 

Genomes CEU and YRI haplotypes[4,44] allowed us to finely control eQTL positions and effects 422 

as well as the causal genes in a TWAS. The simulation results show that both gene expression 423 

prediction accuracy and statistical power decrease as population eQTL models begin to diverge 424 

and genetic distance increases between populations for varying admixture proportions. 425 

 426 

Our results highlight two points: firstly, since prediction within populations is better than 427 

prediction between populations, our results reaffirm prior investigations[38] that population 428 

matching matters for optimally predicting gene expression. This is consistent with our results of 429 

impaired transcriptome prediction performance in SAGE with currently available resources. 430 

Secondly, despite decreased prediction accuracy when predicting between different populations, 431 

the populations that are more closely genetically related demonstrate somewhat better cross-432 
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population prediction and power to detect associations in TWAS. Our simulations of prediction 433 

between ancestral populations and an admixed one under varying admixture proportions neatly 434 

summarize this relationship: the admixture proportion from each ancestral population 435 

interpolates the power available from each ancestral population, and power is maximized when 436 

the admixed population is most closely related to one or the other ancestral population. 437 

However, while the differences in power under varying admixture are statistically meaningful, 438 

they are smaller than differences attributable to different eQTL architectures or to different 439 

levels of genetic heritability of a phenotype. 440 

 441 

Prediction results from GTEx, DGN, and MESA into SAGE suggest that current predictive models, 442 

even for genes with greater heritability, perform worse than expected despite matching tissue 443 

types. Our investigation into cross-population prediction accuracy with GEUVADIS data replicates 444 

this lack of cross-population generalizability as observed with current predictive models from 445 

PredictDB, demonstrating that heterogeneity in RNA-Seq protocols does not fully explain our 446 

observations. Since transcriptome prediction models use multivariate genotype predictors 447 

trained on a specific outcome, the impaired cross-population application can be viewed as an 448 

analogous observation to that seen previously in polygenic scores.[35]  449 

 450 

Our simulations control for many technical issues that are otherwise difficult to overcome with 451 

real data, such as oracular knowledge of positions and effect sizes of causal eQTLs. Nevertheless, 452 

in our simulations we see issues with cross-population prediction that we first observed when 453 

applying existing PrediXcan models to SAGE genotype data. Certainly, SAGE differs in important 454 
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ways from GTEx, DGN, and MESA: SAGE is a pediatric asthma case-control cohort study in African-455 

American children, so we cannot rule out technical heterogeneity introduced by differences in 456 

age, study design, and ethnicity. Furthermore, our SAGE sample includes RNA-Seq data for n = 39 457 

subjects, a dataset leveraged previously to validate genetic associations, but is nevertheless 458 

somewhat small by contemporary standards.[39] However, technical heterogeneity between 459 

SAGE and existing PrediXcan models cannot solely explain the poor prediction performance. Our 460 

simulation results strongly suggest that problematic cross-population prediction performance 461 

between PrediXcan models and SAGE is deeper than differences in expression data. 462 

 463 

Our investigations into the architecture of gene expression indicate that the power to detect 464 

associations is primarily determined by the degree of shared eQTLs across populations. In our 465 

simulations, this can be approximated as a (quasi-)linear interpolation of the prediction in the 466 

ancestral or reference populations into the admixed populations. However, the same is not true 467 

of overall levels of power in the admixed population: under 100% shared eQTL scenarios, cross-468 

population generalizability is high, so the choice of training population matters less. In practical 469 

terms, this result bodes well for prediction of genes with eQTLs that do not vary by population. 470 

It is curious that in high-heritability genes, even models that share no eQTLs still retain power to 471 

detect scenarios: for genetically distant populations (CEU and YRI), power ranges from 0.10-0.14. 472 

Without shared eQTLs, this implies that local linkage disequilibrium between population-specific 473 

eQTLs, combined with high heritability, enables some degree of cross-population prediction. 474 

When cross-population statistical power is driven by LD and h2 instead of expression signals, then 475 
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subsequent interpretation of association hits, such as direction and strength of effect, becomes 476 

difficult to link to actual biological relationships between phenotype and gene expression.  477 

 478 

It is important to note that our observations do not reflect shortcomings of either the initial 479 

PrediXcan or TWAS frameworks. Nor do our findings affect the positive discoveries made using 480 

these frameworks over the past several years. These methods fully rely on the data used as input 481 

for training, and the most commonly used datasets for model training are overwhelmingly of 482 

European descent. Here we note that the current models fail to capture the complexity of the 483 

cross-population genomic architecture of gene expression for populations of non-European 484 

descent. Failing to account for this could lead researchers to draw incorrect conclusions from 485 

their genetic data, particularly as these models would lead to false negatives. 486 

 487 

To this end, our simulations strongly suggest that predicting gene expression in a target 488 

population is improved by using predictive models constructed in a genetically similar training 489 

population. Maximizing prediction quality crucially depends on both genetic architecture and 490 

eQTL architecture. If populations share the exact same eQTL architecture, then they are 491 

essentially interchangeable for the purposes of gene expression prediction so long as eQTLs are 492 

genotyped and accurately estimated, which remains a technological and statistical challenge. As 493 

the proportion of shared eQTL architecture decreases between two populations, both cross-494 

population prediction quality and TWAS power decrease as well. In both SAGE and GEUVADIS, 495 

we observe cross-population patterns consistent with an imperfect overlap of eQTLs across 496 

populations. Ensuring representative eQTL architecture for all populations in genotype-497 
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expression repositories will require a solid understanding of true cross-population and 498 

population-specific eQTLs. However, expanding the amount of global genetic architecture 499 

represented in genotype-expression repositories, which can be accomplished by sampling more 500 

populations, provides the most desirable course for improving gene expression prediction 501 

models. Additionally, this presents an opportunity for future research in methods that could 502 

improve cross-population generalizability, particularly when one population is over-represented 503 

in reference data. Tools from transfer learning could facilitate porting TWAS eQTL models from 504 

reference populations to target populations using little or no RNA-Seq data.  505 

 506 

In light of the surging interest in gene expression prediction and TWAS, we see a pressing need 507 

for freely distributed predictive models of gene expression estimated from coupled 508 

transcriptome-genome data sampled in a variety of populations and tissues. The recently 509 

published predictive models with multi-ethnic MESA data constitute a crucial first step in this 510 

direction for researchers working with admixed populations.[38] However, the clinical and 511 

biomedical research communities must push for more diverse genotype-expression resources to 512 

ensure that the fruits of genomic studies benefit all populations.   513 
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Online Resources 514 

PredictDB: http://predictdb.org/ 515 

GTEx: http://gtexportal.org/ 516 

DGN: http://dags.stanford.edu/dgn/ 517 

GEUVADIS: https://www.ebi.ac.uk/Tools/geuvadis-das/ 518 

Source code: https://github.com/asthmacollaboratory/sage-geuvadis-predixcan 519 

Results and simulation data: https://ucsf.box.com/v/sage-geuvadis-predixcan 520 

521 
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Methods 522 

Genotype and RNA-Seq data 523 
RNA-Seq (RNA sequencing) data generation and cleaning protocols for 39 SAGE subjects analyzed 524 

here were initially described in (Mak, White, Eckalbar, et al. 2018).[39] Genotypes were 525 

generated on the Affymetrix Axiom array as described previously.[57] Genotypes were then 526 

imputed on the Michigan Imputation Server[58] with EAGLE v2.3[59] and the 1000 Genomes 527 

panel phase 3 v5[44] and then subjected to the following filters: <5% missing sample, <5% missing 528 

genotypes, >1% MAF, >1e-4 HWE, and >0.3 imputation R2. The choice of the 1000 Genomes panel 529 

follows GTEx protocol, though GTEx used the smaller 1000 Genomes phase 1 panel.[4] Gene 530 

expression counts were processed through the GTEx v6p eQTL quality control pipeline and as 531 

described previously.[18]  This filtering process kept 20,985 genes with Ensembl identifiers for 532 

analysis, of which 20,268 were autosomal genes. We then quantile normalized the remaining 533 

gene expression values across samples as our gene expression measurements. 534 

 535 

GEUVADIS genotype VCF files and normalized gene expression data (filename 536 

GD462.GeneQuantRPKM.50FN.samplename.resk10.txt.gz) were downloaded directly from 537 

the EMBL-EBI GEUVADIS Data Browser. Genotypes were filtered similarly to SAGE subjects. No 538 

manipulation was performed on expression data. This process yielded 23,722 genes for analysis. 539 

Running PrediXcan models 540 
We ran PrediXcan on SAGE subjects using PredictDB prediction weights from three paired 541 

genotype-expression datasets from PredictDB: GTEx, DGN, and MESA.[6,9,38,60] For GTEx, we 542 

used both GTEx v6p and GTEx v7 weights. For MESA, we used all weight sets from the freeze 543 
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dated 2018-05-30: African Americans (MESA_AFA), African Americans and Hispanics 544 

(MESA_AFHI), Caucasians (MESA_CAU), and all MESA samples (MESA_ALL). Overall, the analysis 545 

included 10,161 genes, of which only 273 had both normalized RNA-Seq measures and 546 

predictions from all weight sets. Of these, 126 had positive correlation between prediction and 547 

measurement. We assessed prediction quality by comparing PrediXcan predictions to normalized 548 

gene expression from SAGE using linear regression and correlation tests. 549 

Estimation of prediction models 550 
We trained prediction models in GEUVADIS on genotypes in a 500Kb window around each of 551 

23,723 genes with measured and normalized gene expression. GEUVADIS subjects were 552 

partitioned into various groups: the Europeans (EUR373), the non-Finnish Europeans (EUR278), 553 

the Yoruba (AFR), and the constituent 1000 Genomes populations (CEU, GBR, TSI, FIN, and YRI). 554 

For each training set, we performed nested cross-validation. The external cross-validation for all 555 

populations used leave-one-out cross-validation (LOOCV). The internal cross-validation used 10-556 

fold cross-validation for EUR373 and EUR278 and LOOCV for the five constituent GEUVADIS 557 

populations in order to fully utilize the smaller sample size (n = 89) compared to EUR278 (n = 278) 558 

and EUR373 (n = 373). Internal cross-validation used elastic net regression with mixing parameter 559 

! = 0.5 as implemented in the glmnet package in R. The nonzero weights for each SNP from each 560 

LOOCV were compiled and averaged for each gene, yielding a single set of prediction weights for 561 

each gene. Predictions were computed by parsing genotype dosages from the target population 562 

corresponding to the nonzero SNP predictors, and then multiplying dosages against the 563 

prediction weights.  The resulting predictions were compared to normalized gene expression 564 

measurements downloaded from the GEUVADIS data portal. The comparison of predictive 565 
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models cannot easily differentiate predictions of 0 (no gene expression) and NA (missing 566 

expression). We addressed this with two additional filters. Firstly, we removed genes that did not 567 

have any eQTLs in their predictive models. Secondly, genes where fewer than half of the 568 

individuals had nonmissing predictions were removed from further analysis. Coefficients of 569 

determination (R2) were computed with the lm function in R. Spearman correlations were 570 

computed with the cor.test function in R.  571 

Simulation of gene expression 572 
We downloaded a sample of 20,085 HapMap 3 SNPs[54] from each of CEU and YRI on 573 

chromosome 22 as provided by HAPGEN2.[55] The data include 234 phased haplotypes for CEU 574 

and 230 phased haplotypes for YRI. We forward-simulated from these haplotypes to obtain two 575 

populations of n = 1000 individuals each. We then sampled haplotypes in proportions of 80% YRI 576 

and 20% CEU to obtain a mixture of CEU and YRI where the ancestry patterns roughly mimic 577 

those of African Americans. For computational simplicity, and in keeping with the high ancestry 578 

LD present in African Americans[61,62], for each gene we assumed local ancestry was constant 579 

for each haplotype. For each of the three simulated populations, we applied the same train-test-580 

validate scheme used for cross-population analysis in GEUVADIS. Genetic data for model 581 

simulation were downloaded from Ensembl 89 and included the largest 100 genes from 582 

chromosome 22. We defined each gene as the start and end positions corresponding to the 583 

canonical transcript, plus 1 megabase in each direction. Two genes, PPP6R2 and MOV10L1, 584 

spanned no polymorphic markers in our simulated data, resulting in 98 gene models used for 585 

analysis. To simulate predictive eQTL models, we tested multiple parameter configurations for 586 

each gene: we varied the number of causal eQTL (k = 1, 10, 20, and 40) and the proportion of 587 
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shared eQTL positions (p = 0.0, 0.1, 0.2, …, 0.9, 1) between ancestral populations. The admixed 588 

population always inherited all eQTLs from the ancestral populations. Each model included a 589 

simulated gene expression phenotype with cis-heritability set to 0.15. For each parameter 590 

configuration, we ran 100 different random instantiations of the model simulations. 591 

Simulation of TWAS 592 
Using the simulated gene expression measures with k = 10 eQTLs per gene, we simulated a 593 

continuous phenotype with a known genetic architecture that depended on 1 causal gene. We 594 

tested prediction scenarios with 0, 5, and 10 eQTLs shared across populations. For each eQTL 595 

architecture, the three populations AA, CEU, and YRI shared the same causal gene G, the same 596 

causal effect size β, and the same environmental noise ε. G was chosen randomly. Effect sizes 597 

were fixed, and we tested various effect magnitudes β = 1 x 10-5, 5 x 10-5, 1 x 10-4, …, 1 x 10-1, 5 x 598 

10-1, 1. The environmental noise ε was drawn from an N(0,0.12) distribution. Consequently, 599 

phenotypes therefore only varied with the expression measures from G. For a given population 600 

c, the phenotype yc was then simulated as 601 

"# = %& + (. 602 

For each combination of shared eQTL architecture, G, and β, this procedure yielded one yc per 603 

individual in a population. We then performed a TWAS with yc onto the predicted gene expression 604 

values, yielding three TWAS per yc, one for each reference prediction population. We then 605 

queried the resulting association p-value at G and tabulated whether it was declared significant 606 

(yes) or not (no) against a Bonferroni-corrected threshold of 0.05 / 98, accounting for all 98 genes 607 

in the TWAS. We ran this procedure for 100 random instantiations of (G, ε) and computed 608 

association test power with a logistic interpolation of the yes/no results. 609 
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Analysis tools 610 
Analyses used GNU parallel[63]. The R packages used for analysis include argparser, 611 

assertthat, data.table, doParallel, dunn.test, knitr, optparse, peer, the 612 

Bioconductor packages annotate, biomaRt, and preprocessCore, and the tidyverse 613 

bundle.[64–75] All plots were generated with ggplot2.[76]  614 
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Figures and Tables 868 

 869 

 870 
 871 
Figure 1: A comparison of R2 between prediction and measurement in SAGE, with PredictDB test metrics as benchmarks, for 11,545 872 
genes total. The prediction weights used here are, from left to right: GTEx v6p, GTEx v7, DGN, MESA African Americans, MESA African 873 
Americans and Hispanics, MESA Caucasians, and all MESA subjects. Test R2 from model training in GTEx 7 and MESA (“test_R2_avg” 874 
in PredictDB) appear on the right and provide a performance baseline. The number of genes per weight set varies; see Supplementary 875 
Table 1. 876 
 877 
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 878 
Figure 2: Spearman correlations of measured gene expression versus predicted expression from PrediXcan. The order of the weight 879 
sets matches  880 

Figure 1. Test correlations for GTEx v7 and MESA correspond to “rho_avg” from PredictDB. 881 

 882 
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 883 

 884 
Figure 3: A comparison of R2 from SAGE and GTEx v7 training diagnostics. The SAGE R2 are 885 
computed from regressing PrediXcan predictions onto gene expression measurements. The GTEx 886 
v7 R2 are taken from PredictDB (“test_R2_avg”). The red dotted line marks where R2 between 887 
the two groups match, while the blue line denotes the best linear fit.  888 
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 889 

R2 
Train Pop 

EUR373 EUR278 AFR 

Test Pop 

EUR373 0.098 n/a 0.029 
EUR278 n/a 0.096 0.030 

FIN n/a 0.087 0.039 
AFR 0.054 0.051 0.079 

Table 1: Prediction R2 between populations in GEUVADIS for genes with positive correlation 890 
between predictions and measurements. Scenarios where the training sample is contained in 891 
the testing sample cannot be accurately tested and are marked with “n/a”. EUR373 includes all 892 
Europeans, EUR278 includes only non-Finnish Europeans, FIN includes only the Finnish, and AFR 893 
includes only the Yoruba. 894 

 895 

R2 
Train Pop 

EUR373 EUR278 AFR 

Test Pop 

EUR373 0.201 n/a 0.096 
EUR278 n/a 0.183 0.095 

FIN n/a 0.216 0.111 
AFR 0.147 0.141 0.130 

Table 2: Prediction R2 between populations in GEUVADIS for 564 gene models that show positive 896 
correlation between prediction and measurement in all 9 train-test scenarios that were 897 
analyzed. Scenarios that were not tested are marked with “n/a”. As before, EUR373 includes all 898 
Europeans, EUR278 includes only non-Finnish Europeans, FIN includes only the Finnish, and AFR 899 
includes only the Yoruba.  900 
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R2 Mean (Std Err) 
Training population 

CEU TSI GBR FIN YRI 

Testing Pop 

CEU 
0.115 0.106 0.107 0.103 0.069 

(0.139) (0.139) (0.134) (0.133) (0.116) 

TSI 
0.124 0.121 0.124 0.118 0.083 

(0.158) (0.151) (0.149) (0.145) (0.13) 

GBR 
0.132 0.137 0.136 0.133 0.087 
(0.16) (0.155) (0.156) (0.155) (0.132) 

FIN 
0.128 0.130 0.130 0.130 0.084 

(0.158) (0.155) (0.153) (0.152) (0.134) 

YRI 
0.065 0.069 0.063 0.062 0.104 

(0.108) (0.112) (0.1) (0.102) (0.138) 
Table 3: Cross-population prediction performance across all five constituent GEUVADIS 901 
populations over genes with positive correlation between predictions and measurements. All 902 
populations were subsampled to N = 89 individuals. The number of genes represented varies by 903 
training sample (CEU: N = 1029, FIN: N = 1320, GBR: 1436, TSI: 1250, YRI: 914). 904 
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R2 Mean (Std Err) 
Training population 

CEU TSI GBR FIN YRI 

Testing Pop 

CEU 
0.239 0.269 0.291 0.297 0.201 
(0.18) (0.177) (0.166) (0.168) (0.164) 

TSI 
0.307 0.294 0.331 0.322 0.227 

(0.188) (0.21) (0.182) (0.185) (0.185) 

GBR 
0.320 0.326 0.318 0.350 0.235 

(0.175) (0.181) (0.191) (0.178) (0.183) 

FIN 
0.318 0.320 0.343 0.323 0.244 

(0.191) (0.198) (0.182) (0.201) (0.192) 

YRI 
0.166 0.205 0.195 0.189 0.213 

(0.164) (0.163) (0.157) (0.156) (0.177) 
Table 4: Cross-population prediction performance across all five subsampled GEUVADIS 906 
populations over the 142 genes with positive correlation between prediction and measurement 907 
in all 25 train-test scenarios. 908 
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 909 
Figure 4: Correlations between predictions and simulated gene expression measurements from simulated populations across various 910 
proportions of shared eQTL architecture with 10 causal cis-eQTLs. Here YRI is simulated from the 1000 Genomes Yoruba, CEU is 911 
simulated from the Utahns, and AA is constructed from YRI and CEU. The black line represents the upper bound of correlation 0.387 912 
dictated by our choice h2 = 0.15 for the genetic heritability of expression. Each trend line represents an interpolation of correlation 913 
versus shared eQTL proportion. Gray areas denote 95% confidence regions of LOESS-smoothed mean correlations conditional on the 914 
proportion of shared eQTLs. 915 
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 917 

 918 
Figure 5: Curves depicting power to detect association under various TWAS scenarios. The x-axis represents the proportion of 919 
phenotypic variance explained by gene expression. As in Figure 4, AA reflects simulated African-Americans constructed from YRI and 920 
CEU. The curves represent logistic interpolations of whether or not the causal gene was declared significant in an association test of a 921 
phenotype from the testing population with gene expression predicted from a training population into the testing population. Gray 922 
areas denote 95% confidence regions of mean power conditional on the effect size. A dotted red line at h2 = 0.95 marks the power 923 
values shown in  924 
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 926 

Figure 6: Power for phenotype-expression association tests with cross-population imputed gene expression for heritability h2 = 0.205. 927 
The cross-population scenarios are ordered left to right from least shared ancestry (CEU to YRI, 0.0 shared ancestry) to most shared 928 
ancestry (YRI to AA, 0.8 shared ancestry). Power increases on two axes: (1) as the proportion of shared eQTL architecture increases, 929 
and, to a lesser extent, (2) as genetic distance decreases between reference and target populations. Power is consistently high when 930 
training and testing populations match. 931 
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 933 

 934 

Figure 7: Power for various cross-population train-test scenarios with varying YRI admixture for three phenotypic heritability levels h2 935 
= 0.06, 0.20, and 0.58, corresponding to effect sizes 0.005, 0.01, and 0.025, respectively. Power increases as heritability increases, but 936 
also as populations become more genetically similar.  937 
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Supplementary Figures and Tables 938 

Weight set 
Gene 

models 
Genes predicted 

in SAGE 
Genes both predicted and 

measured 
Genes with positively correlated 
predictions and measurements 

Mean Correlation 
(273 common genes) 

GTEx v6p 6588 5773 5348 2730 -0.0044 
GTEx v7 6297 2742 2570 1319 -0.0113 
DGN 13171 4033 3678 1819 -0.0124 
MESA_AFA 3551 995 982 497 -0.0204 
MESA_AFHI 5556 1889 1862 969 -0.0049 
MESA_CAU 4674 1654 1633 837 -0.0082 
MESA_ALL 6217 2443 2408 1201 -0.0107 

 939 
 940 

Pop 
Measured 

genes 
Predictive 

Models 
With >50% 

samples predicted 
Analyzed prediction 

v. measurement 
Positive 

correlation 
EUR373 23723 20418 11917 11914 5586 
EUR278 23723 20182 11043 11043 4817 

YRI89 23723 20699 11180 11179 4867 
941 

Supplementary Table 1: Summary statistics for analyzing gene expression prediction in SAGE for all seven weight sets in PredictDB. 
SAGE has measurements for 20,985 genes, of which 20,268 are autosomal. The intersection of genes with both predictions and 
measurements in SAGE across all seven weight sets is 273, of which 39 produce predictions positively correlated to data in all 
comparisons. 

Supplementary Table 2: Summary statistics for each filtering step in the analysis of gene expression models from GEUVADIS for the 3 
training populations EUR373, EUR278, and AFR. The analysis of prediction vs. measurement contains 5038 genes in common 
between all three populations. Of these genes, 1476 genes demonstrate positive correlation between predictions and measurements. 
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Training 
Pop Testing Pop R2 Correlation Transcripts 

AFR AFR 0.079 0.2329 2562 
AFR EUR278 0.030 0.1122 2996 
AFR EUR373 0.029 0.1072 3043 
AFR FIN 0.039 0.1377 2908 

EUR278 AFR 0.051 0.1632 3079 
EUR278 EUR278 0.096 0.2291 2857 
EUR278 FIN 0.087 0.2171 3994 
EUR373 AFR 0.054 0.1683 3105 
EUR373 EUR373 0.098 0.2325 3132 

Supplementary Table 3: Summary statistics from training and testing results with continental 942 
GEUVADIS populations for gene models with positive correlations. The R2 correspond to Table 1. 943 
The column “Correlation” lists the Spearman correlations for each scenario, while “Transcripts” 944 
gives the number of gene models used to compute the R2 and correlation summaries. 945 
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 947 
Training 

Pop 
Testing 

Pop 
Shared eQTL 
Proportion 

Correlation 
(Mean) 

Correlation 
(StdErr) 

AA AA  0 0.305 0.039 
AA AA  0.1 0.307 0.039 
AA AA  0.2 0.308 0.038 
AA AA  0.3 0.310 0.038 
AA AA  0.4 0.311 0.038 
AA AA  0.5 0.313 0.038 
AA AA  0.6 0.315 0.036 
AA AA  0.7 0.318 0.036 
AA AA  0.8 0.319 0.036 
AA AA  0.9 0.321 0.036 
AA AA  1 0.324 0.035 

CEU  CEU  0 0.329 0.035 
CEU  CEU  0.1 0.329 0.035 
CEU  CEU  0.2 0.329 0.035 
CEU  CEU  0.3 0.328 0.035 
CEU  CEU  0.4 0.329 0.035 
CEU  CEU  0.5 0.328 0.035 
CEU  CEU  0.6 0.329 0.035 
CEU  CEU  0.7 0.329 0.035 
CEU  CEU  0.8 0.329 0.035 
CEU  CEU  0.9 0.328 0.035 
CEU  CEU  1 0.329 0.035 
YRI  YRI  0 0.324 0.035 
YRI  YRI  0.1 0.325 0.035 
YRI  YRI  0.2 0.325 0.035 
YRI  YRI  0.3 0.324 0.035 
YRI  YRI  0.4 0.324 0.035 
YRI  YRI  0.5 0.324 0.035 
YRI  YRI  0.6 0.325 0.035 
YRI  YRI  0.7 0.324 0.035 
YRI  YRI  0.8 0.325 0.035 
YRI  YRI  0.9 0.324 0.035 
YRI  YRI  1 0.324 0.035 

  948 

Supplementary Table 4: Spearman correlations between prediction versus simulated 
measurement from simulated populations to themselves across various shared eQTL 
proportions for k = 10 causal eQTLs. 
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Correlation Mean (Std Err) 
Train-test direction 

AA CEU YRI 

Training Pop 

AA 
0.324 0.309 0.337 

(0.0352) (0.0399) (0.0306) 

CEU 
0.335 0.328 0.325 

(0.0335) (0.0348) (0.0389) 

YRI 
0.337 0.298 0.324 

(0.0302) (0.0459) (0.0347) 
Supplementary Table 5: Prediction performance under fully shared eQTL architecture for k = 10 949 
eQTLs yields reliable cross-population gene expression prediction. Results for other sizes of eQTL 950 
models are similar. 951 

 952 
 953 
 954 
 955 
 956 

R2 AFR to AFR AFR to EUR EUR to AFR 

AFR to EUR 1.222 x 10-12     
EUR to AFR 1.705 x 10-24 6.636 x 10-06   
EUR to EUR 1.357 x 10-04 1.487 x 10-112 1.753 x 10-228 

Supplementary Table 6: A Dunn test shows statistically significant differences when predicting 957 
between AFR and EUR populations versus predicting between EUR populations. 958 

  959 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2019. ; https://doi.org/10.1101/552042doi: bioRxiv preprint 

https://doi.org/10.1101/552042
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Z-score (p-value) 
Train-test direction 

AA to CEU AA to YRI CEU to AA CEU to YRI YRI to AA 

Train-test 
direction 

AA to YRI 
-1.401 N/A N/A N/A N/A 

(p < 1.00E+00) N/A N/A N/A N/A 

CEU to AA 
6.712 8.113 N/A N/A N/A 

(p < 1.44E-10) (p < 3.68E-15) N/A N/A N/A 

CEU to YRI 
28.517 29.919 21.805 N/A N/A 

(p < 5.32E-178) (p < 8.34E-196) (p < 1.55E-104) N/A N/A 

YRI to AA 
-5.391 -3.990 -12.104 -33.909 N/A 

(p < 5.23E-07) (p < 4.95E-04) (p < 7.51E-33) (p < 3.62E-251) N/A 

YRI to CEU 
24.146 25.547 17.433 -4.371 29.538 

(p < 0.00E+00) (p < 0.00E+00) (p < 0.00E+00) (p < 0.00E+00) (p < 0.00E+00) 
Supplementary Table 7: Differences in cross-population prediction performance are statistically significant, with a few notable 960 
exceptions. Prediction from AA to CEU or YRI is essentially the same, but all other scenarios are different, indicating that the direction 961 
of prediction does matter. 962 

 963 
 964 
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 965 
Supplementary Figure 1: R2 of measured gene expression versus predictions from PrediXcan. The prediction weights used here are, 966 
from left to right: GTEx v6p, GTEx v7, DGN, MESA African Americans, MESA African Americans and Hispanics, MESA Caucasians, and 967 
all MESA subjects. Test R2 from model training in GTEx 7 and MESA (“test_R2_avg” in PredictDB) appear on the right and provide a 968 
performance baseline. 969 
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 971 
Supplementary Figure 2: R2 between prediction and measurement in SAGE only using the 39 genes with positive correlation between 972 
prediction and measurement in all weight sets and benchmarks. 973 
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 974 
Supplementary Figure 3: Prediction R2 between AFR (YRI) and EUR (CEU, TSI, GBR, and FIN). Predicting into and from AFR produces 975 
consistently lower R2 than predicting within EUR, suggesting a potential decrease in prediction accuracy when predicting across 976 
continental population groups. 977 
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 978 

 979 
Supplementary Figure 4: Genetic distance versus prediction accuracy over 142 genes with positive correlation across all train-test 980 
scenarios. Here the GEUVADIS populations are arranged into three groups. AFR to AFR includes prediction from YRI into itself; EUR to 981 
AFR includes prediction into YRI from CEU, GBR, TSI, and FIN; and EUR to EUR includes prediction within and between all European 982 
populations in GEUVADIS. Clustering by genetic distance separates prediction between European populations from prediction 983 
between European populations and AFR. FST are taken from the 1000 Genomes Project (Table S11).[77]  984 
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 985 
Supplementary Figure 5: A schematic of three shared eQTL architectures for the case of k = 10 eQTLs per gene. Blue encodes eQTLs 986 
specific to CEU; red encodes eQTLs specific to YRI; and gold encodes eQTLs shared between CEU and YRI. Models for CEU and YRI 987 
always had k eQTLs. AA always inherited all eQTLs from the ancestral populations. Consequently, the number of eQTLs in AA varied 988 
depending on how many eQTLs CEU and YRI shared.  989 
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 991 
 992 
 993 

 994 
Supplementary Figure 6: Correlations between predictions and simulated gene expression measurements from simulated populations 995 
across various proportions of shared eQTL architecture with 20 causal cis-eQTLs.  996 
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 997 
 998 

 999 
Supplementary Figure 7: Correlations between predictions and simulated gene expression measurements from simulated populations 1000 
across various proportions of shared eQTL architecture with 40 causal cis-eQTLs.  1001 
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 1002 

 1003 
Supplementary Figure 8: Mean correlations between predictions and simulated gene expression measurements from simulated 1004 
populations for a single causal cis-eQTL. For this simplified eQTL architecture, the ancestral populations (CEU and YRI) either share 1005 
the causal eQTL (TRUE) or not (FALSE). In the TRUE case, AA has 1 eQTL shared with CEU and YRI; in the FALSE case, it has 2 unique 1006 
eQTLs, one from each of CEU and YRI. Error bars denote 95% confidence intervals.   1007 
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 1008 
Supplementary Figure 9: Distributions of t-statistics across various shared eQTL proportions for all nine train-test scenarios with 1000 1009 
Genomes populations for a fixed TWAS effect size and fixed number of causal eQTLs. The labels are ordered from left to right from 1010 
least shared ancestry (CEU to YRI, shared ancestry proportion 0) to most shared ancestry (YRI to AA, shared ancestry proportion 0.8), 1011 
with train-test scenarios from a population into itself on the right of each panel. Increasing proportions of shared eQTLs yield 1012 
stronger association statistics from cross-population predictions. Fully shared eQTL architectures yield consistently high power across 1013 
populations. Median t-statistics increase as populations share more haplotypes, while association tests with gene expression 1014 
predicted in the same population show consistently high power.  1015 
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