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Summary statement

Detailed quantitative analysis of light responses in the medicinal leech Hirudo verbana

unequivocally demonstrates the existence of parallel visual pathways processing visual

and UV stimuli. Responses to spatially complex stimuli indicate relatively sophisticated

information processing.

Abstract

Among animals with complex visual processing mechanisms, the leech Hirudo verbana is a

rare example in which all neurons can be identified. However, little is known about its visual

system, which is composed of several pigmented head eyes and photosensitive non-pigmented

sensilla that are distributed across its entire body. Although several interneurons are known

to respond to visual stimuli, their response properties are poorly understood. Among these,
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the S cell system is especially intriguing: It is multimodal, spans the entire body of the leech,

and is thought to be involved in complex sensory integration. To improve our understanding

of the role of this system, we tested its spectral sensitivity, spatial integration, and adaptation

properties. The response of the S cell system to visual stimuli was found to be strongly depen-

dent on the size of the area stimulated, and adaptation was local. Furthermore, a “bleaching

experiment” demonstrated that at least two color channels contributed to the response, and

that their contribution was dependent on the adaptation to the background. The existence of

at least two color channels was further supported by transcriptomic evidence, which indicated

the existence of at least two distinct groups of putative opsins for leeches. Taken together, our

results show that the S cell system has highly sophisticated response properties, and could be

involved in the processing of complex visual stimuli. We propose the leech as a novel system

to understand visual processing mechanisms with many practical advantages.

Introduction

Vision requires complex integration mechanisms. In most model species, investigating

those at the level of individual neurons is complicated by the large number of neurons in-

volved and the challenge of identifying specific neurons. Among animals with complex

visual processing, the leech Hirudo verbana is a rare example in which all neurons can

be readily identified. However, little is known about the neuronal mechanisms of visual

processing in the leech. At the input level, the leech’s visual system consists of several

pigmented cylindrical eye cups within the head region, and a grid of nonpigmented pho-

tosensitive sensilla distributed across the entire body (Kretz et al., 1976). Several interneu-

rons have been found to respond to visual stimuli (Kretz et al., 1976), but their response

properties remain poorly understood. Among these, the S cell interneuron is especially

intriguing. The S cell is an interneuron that is activated by salient stimuli of multiple

modalities, including mechanical as well as visual stimuli (Magni and Pellegrino, 1978;

Laverack, 1969; Bagnoli et al., 1973; Kretz et al., 1976), suggesting that it may be involved

in multimodal sensory integration (Harley et al., 2011, 2013). A single (not bilateral) S cell

is present in each of the 21 segments of the leech. Synaptic pathways between the S cell
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and both sensory and motor neurons have been reported within the segmental ganglia

(Sahley et al., 1994). Importantly, S cells in adjacent ganglia are strongly coupled by elec-

trical synapses (Frank et al., 1975). The electrical coupling between S cells is so strong

that the whole S cell system can be considered as a single syncytium that acts as a fast

conducting pathway connecting the segmental ganglia (Peterson, 1984). Although direct

proof is lacking (see Sahley et al., 1994), the general consensus in the field is that the S cell

system plays a key role in synchronizing general arousal throughout the nervous system

of the leech.

Despite the S cell’s purported central role in sensory processing, the neuronal path-

ways leading from photoreceptor cells to the S cell are not known. In addition, other basic

questions regarding the S cell system, including its role in light adaptation, its temporal

and spatial integration properties, and its overall role in vision remain to be addressed.

It has long been known that Hirudo has the ability to visually detect the direction of

water waves, and that—in combination with mechanical cues—it uses this information

for prey localization (Dickinson and Lent, 1984; Carlton and McVean, 1993; Harley et al.,

2011). This demonstrates that its visual system has the ability to process spatiotemporal

patterned visual stimuli, despite the lack of image-forming eyes. S cells respond when

the leech is presented with flashes of light as well as to complex stimuli associated with

water waves (Lehmkuhl et al., 2018). Their multimodal response properties, along with

the fact that the S cell system spans the entire body, makes them an intriguing candidate

for further investigations.

Not much is known about temporal properties of S cell responses. However, an early

study (Laverack, 1969) found that the S cell response fairly quickly ceases when the leech

is stimulated continuously either visually or mechanically, but that the S cell remains sen-

sitive to tactile stimuli when visually desensitized. This finding is consistent with findings

in other animals. For instance, the human central nervous system is well known to fairly

quickly adapt to constant or repetitive stimuli, while remaining sensitive to different stim-

uli of the same or a different modality. This phenomenon is generally believed to enhance

an animal’s ability to detect ethologically relevant changes in its environment (Desimone

and Duncan, 1995), though much about the underlying mechanisms remains to be fully
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understood.

Another early study of leech vision (Kretz et al., 1976) indicated that a single class of

photoreceptors is involved in responding to light. Those photoreceptors, putatively found

in both the head eyes and the sensilla, respond most strongly to light in the green range

of the visual spectrum. Unexpectedly, however, recent behavioral and electrophysiologi-

cal experiments demonstrated that under certain specific circumstances, the S cell system

responded more strongly to UV than to green light. This phenomenon was observed espe-

cially when UV light was directed at the ventral side of the body wall, suggesting that the

S cell system may play a role in detecting and correcting the animal’s orientation relative

to the sun (Jellies, 2014a,b).

These results appear to require the presence of a second class of photoreceptors, which

have not been directly identified. There is, however, precedence for the existence of mul-

tiple photoreceptor classes in other leeches: molecular investigations in Helobdella robusta

have found at least four distinct opsins (Döring et al., 2013). Unfortunately, the spectral

properties of these opsins remain unknown due to a lack of physiological and molecular

data.

In this paper we present electrophysiological and transcriptomic evidence indicating

the presence of at least two distinct photoreceptor classes in Hirudo. Furthermore, we

show that the S cells are involved in spatial integration and the implementation of dif-

ferential adaptation to background light illumination, unveiling new roles for the S cell

system in vision and sensory integration.

Materials and methods

Animals and animal preparation

Adult leeches (Hirudo verbana) were obtained from Niagara Leeches (Niagara Falls, NY,

USA) and maintained under standard conditions (Harley et al., 2011). At the time of ex-

periments, leeches had fasted for at least two months and weighed 1–1.5 grams. Leeches

were anesthetized with ice cold leech saline (Tomina and Wagenaar, 2018) and immobi-
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lized ventral-side up on dark silicone (Sylgard 170, Dow Corning, Midland, MI, USA)

using insect pins stuck in annuli without sensilla. The body wall was opened from mid-

body segments from M8 to M11 (or from M7 to M10 in experiments on spectral sensitivity

under full dark adaptation). The lateral roots of ganglia M9 and M10 (or M8 and M9) were

transected, and the ganglia and connectives were gently separated from the body tissue

without severing any other nerves. The wall of the ventral blood sinus (“stocking”) was

removed between the exposed ganglia. A thin strip of silicone (Sylgard 184) was slipped

between the nerve cord and the body wall and pinned down on each side of the leech.

Ganglia M9 and M10 (or M8 and M9) were pinned very close together onto the silicone

strip and the connective between them was sucked into a suction electrode. The general

setup is shown in Fig. S1A. The temperature of the leech was kept at 15–19 ◦C throughout

all experiments.

General Electrophysiological Setup

The electrophysiological setup consisted of a differential amplifier (Model 1700, A-M Sys-

tems, Sequim, WA, USA), an oscilloscope (TBAS 1046, Tektronix, Beaverton, OR, USA),

and an A/D converter (Model 118, iWorks Systems, Dover, NH, USA). Recordings were

performed inside a Faraday cage on a vibration isolation table (TMC 66-501, Technical

Manufacturing Corporation, Peabody, MA, USA). Data was stored on a PC using Lab-

Scribe software (iWorks), and analyzed using custom-written code in Octave (Eaton et al.,

2017). To tightly control background illumination, the entire recording area was enclosed

in black-out fabric (BK5, Thorlabs, Newton, NJ, USA). In addition, the room light was

kept off during experiments, so that the only light sources in the room where indicator

lights on electronic equipment and a computer screen. The light seal of the recording area

was tested by means of a sudden substantial increase in ambient room light after the leech

was fully dark adapted and verifying that this did not elicit a response.
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Measuring Light Intensities

Measurements were taken with a spectrometer (USB2000+ with a QP600-025-SR optical

fiber and a CC3-UV-T cosine corrector; Ocean Optics, Dunedin, FL, USA) which was

calibrated against a calibrated light source (DH-2000, Ocean Optics). All reported light

intensities are absolute numbers from radiometric irradiance measurements, in units of

photons/cm2/s. To obtain controlled light intensities below the minimum intensity that

the spectrometer could directly measure, we used calibrated neutral density filters placed

in front of a brighter light source. Calibration of neutral density filters was performed

independently for each relevant wavelength. All measurements were made with the co-

sine corrector of the spectrometer probe at the same distance and orientation relative to

the light source as the leech would be in our actual experiments. Although we took great

care to measure light intensities as accurately as possible, it should be noted that measur-

ing absolute light intensities accurately is notoriously challenging: according to Johnsen

(2012), measurement errors up to 10% (0.1 log units) are to be expected even in the best

of scenarios. We believe our measurements to be accurate to about that level. Further-

more, since all of our key results rely on relative light intensities, minor errors in absolute

intensity values do not affect the interpretation of our results.

Spectral sensitivity measurements

Monochromatic light was generated by coupling a 150W Xenon arc lamp (Apex 70525

Monochromator Illuminator, Oriel Instruments, Stratford, CT, USA) to a monochromator

(Cornerstone 130 1/8m 74000, Oriel). In previous experiments using this system, we had

observed a small secondary peak at approximately 300 nm below the primary peak wave-

length. To eliminate this secondary peak, we used a long-pass filter (ET542LP, Chroma,

Bellows Falls, Vermont, USA) for all primary wavelengths of 590 nm and above. The

light intensity was controlled with a variable neutral density filter (50Q00AV.2, Newport

Corporation, Irvine, CA, USA) mounted on a motorized rotator stage (NSR-12 controlled

by a NewStep NSC200 controller, both Newport). Three additional neutral density filters

(FRQ-ND1 and FRQ-ND2, Newport; NDUV30A, Thorlabs) that were mounted onto a
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manual filter wheel (FW1A, Thorlabs) were used to achieve light attenuation beyond the

range of the motorized filter wheel. The duration of the stimulus was controlled with a

shutter (VCM-D1, Uniblitz, Rochester, NY, USA). The light path also contained two lenses

(LJ4395-UV and LA4306-UV, Thorlabs) that focused the light onto an optical fiber placed

directly behind the shutter. (Lenses and fiber were chosen to transmit both UV and visible

light.) At the end of the optical fiber was a lens that collimated the light so that a light spot

with a diameter of 2.8–3.5 cm was projected onto the leech from a distance of 10–13 cm.

The light source was positioned above the leech and illuminated the entire posterior ven-

tral side ranging from the body wall opening at M10 to the rear sucker at an angle of no

greater than 30◦ from normal.

Leeches were dark adapted for at least 30 minutes before starting a recording, and

recordings were performed without background illumination. (We could not quantify

stray background light, but estimate it to be below 108 photons/cm2/s, or approximately

0.0002 lux, similar to the darkness under an overcast sky on a moonless night). We recorded

responses to 500-ms stimuli with the following peak wavelengths (in nm): 320, 350, 400,

455, 530, 590, and 655. The order of wavelengths that we tested was randomized. To gen-

erate response–log(intensity) curves, we used light intensities in a range of approximately

3 log units in steps of approximately 1
3 log units, always working in order of increasing

light intensity, separately for each wavelength. Preliminary data (not shown) showed that

it was critical to leave prolonged recovery times between stimuli especially after a strong

response to relatively high light intensity. To optimize for quality of obtained data, we al-

lowed at least 1 minute and up to 5 minutes between stimuli, depending on the stimulus

light intensity and responses.

Adaptation to green and UV

For these experiments, we used LEDs in combination with neutral density filters to achieve

higher light intensities and a wider range of intensities than what was possible with the

monochromator. The LEDs were controlled by a custom driver that provided a precisely

regulated DC current to the LED; the neutral density filters served to extend the intensity

range beyond the range of the driver. We specifically did not use pulse width modula-
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tion (i.e., control of the duty cycle of flicker) to avoid assumptions about the frequency

response of the visual system. Schematics are available on request.

For UV, we used LEDs with a dominant wavelength of 365 nm (LED Engin LZ1-

10UV00, Mouser) and the same ND filters as before. For green light, we used 523-nm

LEDs and OD-2 and OD-4 filters (NE20B-A and NE40B-A, Thorlabs). In this way, we

achieved a green background light intensity range of 6 log units and a green and UV

stimulus light intensity range of approximately 7.5 log units. The UV stimulus light (but

not the UV background) was fitted with a filter (357/25x, Chroma AT) that eliminated a

small secondary peak within the visual wavelength range. Since UV illumination elicited

a strong fluorescence of the exposed intestinal tissue at the body wall opening, we re-

moved this tissue as best as possible, and closed the body wall opening up as much as

possible for the recording.

Each LED was mounted behind a condenser lens (ACL2520, f = 20 mm, Thorlabs).

The background and stimulus LED assemblies were mounted directly above the leech

such that the angle between them was no more than 15◦. The background illuminated the

leech from a distance of 19 cm; the stimulus from a distance of 11 cm. The illuminated area

had a diameter of 9.5–10.5 cm. The leech was pinned out to a length of no more than 6 cm,

so that the entire ventral side of the leech was illuminated by both the background and

the stimulus (Fig. S1B). The green and UV background LEDs were mounted at fixed po-

sitions immediately adjacent to one another on a slider that allowed their positions to be

switched. This ensured that the stimulus location and orientation was identical regardless

of wavelength.

To quantify the adaptation to green background light, we tested six background inten-

sities ranging from 3.4×1010 to 3.4×1015 photons/cm2/s in steps of one log unit. Because

the need to keep our experimental animals healthy throughout the experiment imposed

time constraints on the duration of experiments, each leech (N = 11) was tested with only

three or four of the six background light intensities. (Specifically, we tested the lowest

light level on 11 leeches, the second level on 6 leeches, the third on 4, fourth on 3, fifth on

5, and highest on 10.)

As before, leeches were dark adapted for 30 minutes before recording, and addition-
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ally background adapted for 10 minutes every time we changed the background illumina-

tion or had to open the light seal to exchange neutral density filters. To generate response–

log(intensity) curves for each background light intensity and stimulus wavelength (green

and UV), we applied 2-second stimuli with intensities spanning 3 log units in steps of

approximately 1
4 log units, in order of increasing light intensity. To prevent adaptation to

the stimulus intensity, 3 minutes of only background illumination was provided between

stimuli.

Local versus non-local adaptation

Two green through-hole LEDs (941-C505BGANCC0D0781, Mouser) provided differential

background illumination to the anterior and posterior halves of the leech. A third such

LED delivered flash stimuli to the posterior half of the leech. All LEDs were mounted at

a distance of 9 cm from the leech; the stimulus LED was mounted immediately adjacent

to the LED that provided background illumination to the posterior half of the animal. A

light barrier consisting of blackout fabric was placed between the anterior and posterior

halves of the leech to ensure controlled differential stimulation of the two halves (Fig.

S1C). As before, we used neutral density filters to reduce light intensity beyond the range

of the LEDs. These were mounted onto a slider so that they could be exchanged from the

outside without opening the light seal of the recording area.

Two levels of background light intensity were used in these experiments: 3.9×1012

photons/cm2/s (“dark”) and 4.4×1013 photons/cm2/s (“light”). All combinations of light

and dark background conditions were tested, always in the following order: 1. Both

halves dark; 2. Both halves light; 3. Posterior light, anterior dark; 4. Posterior dark, ante-

rior light; 5. Both halves dark (as a control to test if we could recover the initial response).

For constructing response curves, the same range, step size, order of stimulation, and

stimulus duration was used as for the previous experiment.
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Spatial integration

Background illumination intensity was 4.5×1011 photons/cm2/s. The setup was other-

wise the same as for the local versus non-local adaptation experiment, except that an

additional stimulus LED was used to provide flashes to the anterior region. Order of stim-

ulation was: 1. Anterior only; 2. Anterior and posterior together; 3. Anterior only again

to test if we could recover the initial responses. After that we cut the cord posterior to

the recording site, which disconnected the posterior half of the body from our recording

site, and tested for the influence of stray light by stimulating: 4. Posterior only (which

potentially could affect the anterior side through stray light); 5. Anterior only, to test if

initial responses could be recovered. Stimulus duration, intensity range, step size, order

of stimulation and time between stimuli were as before.

Data analysis

Action potentials from the S cell were identified as the largest spiking units in extra-

cellular recordings from the nerve cord (Frank et al., 1975). Electrophysiological data

were analysed using custom programs in Octave. As a measure of response strength, we

counted S cell spikes that occured within a certain time window, starting when the stimu-

lus was turned on. This time window was either as long as the stimulus duration (spatial

integration and local versus non-local adaptation experiment), or slightly longer (spectral

sensitivity experiment: 1.5 s; adaptation to background experiments: 2.5 s). Response–

log(intensity) curves are standard logistics:

y = Y0

(
1
2
+

1
2

tanh[α(x − x50)]

)
,

where y is spike count, x is log intensity, Y0 is the maximal spike count (plateau response),

α is the slope of the curve, and x50 = log(I50) is the light intensity (in log units) that

elicits half maximal response. For quantifying the light intensity for 50% response (I50,

Figure 1), the plateau spike count (Y0) was determined once per leech and then used

for all wavelengths. Likewise in Figure 2, the plateau spike count was determined once

per leech (for green stimuli) and used for all background levels and both UV and green
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stimuli. The same principle was used subsequent figures, except that in Figure 3 we used

35% of maximum as the critical value, because UV-on-UV stimuli often did not elicit 50%

of maximum green-on-green response even at the highest intensities. To find the delay

of the response (Figure 2), we measured the time that elapsed from the beginning of the

stimulus to the occurence of the 3rd spike of the response.

Transcriptome analyses to identify opsins

Transcriptomic databases were generated from two separate tissue types: a single head

containing the eyes, and 100 isolated sensilla collected from the body. Tissues were dis-

sected in ice-cold RNAse free Gibco PBS (Thermo Fisher Scientific, Waltham, MA, USA).

Tissues were briefly frozen in liquid nitrogen and ground using a mortar and pestle. RNA

isolation was conducted using the RNeasy Lipid Tissue Kit (Qiagen, Valencia, CA, USA).

To assess the quality of RNA, extractions were subjected to spectrophotometric analy-

sis utilizing a NanoDrop 1000 Spectrometer (Thermo Fisher Scientific, MA, USA) where

the A260/280 absorbance ratio yielded measurements around 2.0 for RNA extracts, indi-

cating that all RNA measurements were relatively pure. RNA-seq utilized the Illumina

HiSeq 2500 (75 bp) with Ribo-zero preparation at Cincinnati Children’s Hospital Core

Sequencing Facility (Cincinnati, OH, USA). The raw read FASTQ files were assembled

through the utilization of Trinity Grabherr et al. (2011), CLC Genomics, and Oases (Schulz

et al., 2012) according to previously described methods (Rosendale et al., 2016). Expres-

sion was assessed by mapping reads based on parameters described in Rosendale et al.

(2016). Quality of each transcriptome was assessed through evaluation of the Benchmark-

ing Universal Single-Copy Orthologs (BUSCO) gene sets (Simão et al., 2015).

Opsin sequences were identified using the Blastx algorithm (Altschul et al., 1997)

to identify orthologs to the previously annotated opsin sequences of Helobdella robusta

(Döring et al., 2013) along with opsin sets obtained from arthropod and other invertebrate

species from NCBI nr databases. These two different databases were used to identify po-

tential functionality, as many annelid-specific opsin have not been fully characterized.

A reciprocal BLAST against the invertebrate and arthropod databases was used to con-

firm if predicted genes match opsins in other systems. Relationships between the opsin
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sequences and contigs was assessed through the use of MEGA5 Tamura et al. (2011) to

generate a neighbor joining tree after sequence alignment with CLUSTAL Omega (Siev-

ers and Higgins, 2014). Illumina sequencing files have been deposited to the NCBI SRA

(Bioproject: PRJNA504032).

Results

To examine the light dependent responses of the S cells, we investigated their response

strength as a function of the wavelength of the stimulus and adaptation to background

illumination, tested whether the adaptation to background illumination is local or global,

and quantified spatial integration. We focused specifically on the S cell’s response to light

stimulation of the ventral body wall.

General response properties

The S cell system responded reliably and vigorously to stimulation of the ventral body

wall of the leech with flashes of light. The typical response to a flash of green light pre-

sented against a dark background is illustrated in Figure 1A. The response can be sepa-

rated into two phases: a) an initial transient phase characterized by high firing rates and

b) a sustained response that typically lasts beyond the duration of the stimulation with a

substantially lower spike frequency.

Spectral sensitivity of dark-adapted leeches

To test the spectral sensitivity of the S cell system, we applied 500-ms flashes of light of

various wavelengths and intensities to the ventral body wall of dark-adapted leeches and

recorded spike responses from the S cell using suction electrodes. For each wavelength,

we constructed response–log(intensity) curves by fitting logistic functions (Figure 1B). We

then quantified the light intensity required to elicit half the maximum response for each

leech to obtain absolute sensitivity profiles (Figure 1C). In agreement with Kretz et al.

(1976), we found the highest sensitivity in the green wavelength range. We also observed
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a small secondary peak in the UV range (around 350 nm), although the statistics were

inconclusive. Certainly, these dark-adapted leeches failed to show the strong response to

UV light reported by Jellies (2014a).

Physiological evidence for a second photoreceptor

To investigate whether the putative secondary peak corresponded to a second photore-

ceptor type, we performed a series of background adaptation or “bleaching” experiments

designed to unmask subtle secondary responses that otherwise remain hidden by the

strong response of the green-sensitive photoreceptor. We argued that increasingly intense

green background light would increasingly bleach out the green-sensitive photoreceptor,

so that increasingly strong flashes would be needed to activate it, regardless of the color

of those flashes. In contrast, the effect on a possible second photoreceptor that is only

sensitive to UV light would be minimal.

Thus we began by adapting leeches to a variety of background intensities of green

light and measuring response curves to flashes of green light superimposed on those

backgrounds. We found that over a range of nearly 6 log units, the response was approx-

imately contrast invariant, that is, the intensity for half-maximum response, or I50, scaled

almost in direct proportion to the background intensity (Figure 2A): the slopes of the best

fit lines are 0.86 ± 0.04 (mean ± SD, n = 11 animals; Figure 2D).

We also presented these leeches with flashes of UV light against the same green back-

grounds, and found that at low background intensities (up to 1012 photons/cm2/s), the

intensity required to obtain half-maximum response again scaled nearly proportionally

with the background intensity (Figure 2B, left half). The best fit lines had slopes of 0.81

± 0.31 (mean ± SD; n = 9 animals), not significantly different from the “green” slopes

(t-test). This indicates that the responses to UV light were due to the same photoreceptor

that was bleached out by the green background light.

However, this trend did not continue at higher background intensities: At green back-

ground intensities above 1014 photons/cm2/s, the intensity of UV light required to obtain

half-maximum response no longer increased linearly with the background intensity at all

(Figure 2B, right half). In this range, the best fit lines had slopes of 0.24 ± 0.08 (n = 8),
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and at the very highest green background intensities, sensitivity to UV flashes was actu-

ally greater than to green flashes (Figure 2C), suggesting that a second photoreceptor is

activated by high-intensity UV light.

Further evidence for the involvement of two photoreceptors in the S cell response

comes from analyzing response delays: At the lowest background light intensity, the de-

lay of the response to UV stimulation was similar to the delay to green stimulation (on

average 589 ± 124 vs. 666 ± 101 ms, mean ± SD, Figure 2E and G), whereas at the high-

est green background light level, the delay of the response to UV was substantially longer

than the delay of the response to green stimulation (on average 777± 151 vs. 471± 101 ms;

t10 = 8.8, p < 10−5; Figure 2F and G). This difference could easily be explained if the two

photoreceptors have distinct temporal response properties or connect to the S cell via two

pathways that introduce distinct delays. It would be harder to explain if there were only

one photoreceptor type.

We next performed a direct test for the presence of two distinct color channels (viz.,

UV and green) that contribute to the responses in high-intensity background light: We

presented leeches with flashes of green or UV light on top of the highest intensity green

background from the previous experiment, and also with those same flashes presented

against a bright UV background. We purposefully chose the intensitiy of that UV back-

ground light such that green flashes against this background elicited similar responses as

against the green background (Figure 3A, green curves). As expected, this required more

photons of UV than green background light (9.7×1015 UV photons/cm2/s vs 3.4×1015

green photons/cm2/s of green light): this merely confirmed that a substantial contribu-

tion to the response to green flashes came (largely) from a receptor that was more sensitive

to green than to UV light, and hence was also more susceptible to bleaching by green light

than by UV light. Also in agreement with the previous experiment, UV flashes elicited

slightly more spikes at slightly lower stimulus intensities against the green background

than did green flashes (Figure 3A, pink circles and curves). But crucially, UV flashes

elicited far fewer spikes against the UV background (purple cross marks and curve), even

at very high intensities. This phenomenon was robust across animals: the photon flux

required to elicited an equal response using UV flashes against a UV background was

14

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2019. ; https://doi.org/10.1101/552018doi: bioRxiv preprint 

https://doi.org/10.1101/552018
http://creativecommons.org/licenses/by-nc-nd/4.0/


significantly larger than when using UV flashes against a green background or when us-

ing green flashes against either background color (Figure 3B). The most parsimonious

explanation is that the UV background specifically bleached out a (mainly) UV-sensitive

photoreceptor.

Transcriptomic confirmation of a second photoreceptor

To obtain independent confirmation that the observed responses were indeed due to two

photoreceptors, we searched transcriptomes for putative opsin genes. We obtained these

transcriptomes by performing RNA-seq on a tissue sample from the head (focusing on

the head eyes) and on a tissue sample containing 100 sensilla isolated from the body wall.

The quality of the resulting transcriptome was evaluated using three BUSCO gene sets

(see Methods). BUSCO scores were over 80% for all assemblies and above 95% when the

three sets were combined (Figure 4A). This indicates that our de novo contig library has

the completeness required for subsequent analyses.

Two putative opsins from Hirudo verbana were identified through BLAST analyses

against opins from other invertebrates (Döring et al., 2013), and both had orthologs in

another leech (Figure 4B). Each of these had documented expression in both the head and

the sensilla. Of the two putative opsins found in Hirudo, one (Contig139791, Supplemental

File) had BLAST hits with other invertebrate opsins outside of leeches that are sensitive

to blue and green wavelengths; the other (Contig156444, Supplemental File) showed sim-

ilarities to UV opsins from arthropods. We also performed a direct BLAST comparison

against a previously described UV-sensitive from another annelid, Platynereis dumerilii

(Tsukamoto et al., 2017), and found a close match between it and our putative UV opsin

(Table S1).

Orthologs of both our putative opsins in Helobdella robusta showed similar results:

three were likely blue- and green-sensitive and one has putative UV sensitivity. In all,

these transcriptomes suggest the presence of one blue- or green-sensitive opsin in Hirudo

and one UV-sensitive opsin, supporting our physiological experiments.
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Background adaptation affects only local sensory processing

Our experiments thus far showed that S cell responses adapt to background light inten-

sity. However, they did not show whether adaptation occurs in the sensory periphery, in

the central nervous system, or in both. In addition, if adaptation occurs in the nervous

system, it could be a local phenomenon (limited to the segment or segments targeted by

the light), or it could be a global phenomenon (in which illumination of one or several

segments would trigger adaptation throughout the animal).

To investigate these scenarios, we differentially adapted the anterior and posterior

half of the ventral side of the body wall to two distinct green background light levels and

tested the response to posterior green stimulation (n = 5). As before, for each animal

we established response curves as a function of log intensity (Figure 5A) and calculated

the light intensity that elicited 50% of the plateau response (I50; Figure 5B). As expected,

the I50 for posterior stimulation strongly depended on the background light level on the

posterior body wall (blue vs. black points, or red vs. green points; ANOVA, F1;20 = 55,

p < 10−6). In contrast, the background light level on the posterior body wall had no

effect (green vs. black points, or red vs. blue points). Thus, adaptation appears to be a

local phenomenon.

S cell responses integrate spatial information

The absence of nonlocal adaptation does not rule out the possibility that the S cell sys-

tem performs spatial integration. In fact, the intersegmental connections between S cells

uniquely position the S cell system to integrate information across the whole nervous

system. To investigate that possibility, we stimulated either the whole leech or only the

anterior half of the leech with green light while recording from an S cell located in the

anterior half. We found that stimulating both halves together elicited a stronger response

(Figure 6). This indicates that the S cell system integrates information pertaining to light

stimuli from across the body.

To confirm that this integration occurs in the nervous system and that the responses

are not merely due to stray light from the posterior illumination reaching sensilla in the
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anterior part of the animal, we performed control experiments in which we transected

the nerve cord posterior to the recording site. Transecting the cord had no significant

effect on responses to anterior stimulation, whereas posterior stimulation after transection

was completely ineffective (except at extremely high light levels), confirming that the

integration is indeed internal (Figure 6A, open symbols).

To quantify these observations, we established response–log(intensity) curves as be-

fore. These curves indicated mainly a difference in the plateau (max) response (Figure 6B)

with a significantly stronger response to stimulating the whole leech vs only the anterior

half (t3 = 4.6, p < 0.01, one-sided test, n = 4). The light intensity needed to elicit 50% of

the respective plateau responses tended to be marginally lower when the whole animal

was stimulated (Figure 6C, t3 = 2.2, p = 0.06, one-sided test, n = 4).

In one animal (data not shown) we additionally stimulated the posterior half by itself

before transection, which elicited a strong response.

Discussion

The leech Hirudo verbana is an attractive system to investigate visual processing because

of the animal’s known behavioral responses to complex stimuli. However, while several

interneurons are known to respond to visual stimuli, their response properties are poorly

understood. Among these, the S cell system is especially interesting because of its putative

involvement in multimodal sensory integration (Harley et al., 2011, 2013). To improve our

understanding of the role of the S cell system in visual processing, we here used a nearly

intact leech preparation to quantify its spectral sensitivity under different background

light conditions, to investigate spatial integration, and to test whether light adaptation is

local or global.

We began by quantifying the spectral response properties of the S cell system, estab-

lishing for the first time absolute sensitivities for the leech visual system (Figure 1). We

confirmed earlier reports (Kretz et al., 1976) that the leech can adapt to a wide range

of background light intensities. Under each of the tested background light intensities,

the response range spanned approximately 2–3 log units of stimulus light intensities
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(Figures 1, 3, 5, 6); fairly typical for photoreceptors across the animal kingdom (Kawa-

mura, 1993). When fully dark adapted, leeches responded to green flashes as dim as 108

photons/cm2/s (Figure 1), equivalent to the intensity of light on an overcast moonless

night (Falchi et al., 2016).

Our physiological measurements support the existence of at least two distinct color

channels (green and UV). Interestingly, the contribution of the two color channels to the

response of the S cell system is dependent on the background light level, which could ex-

plain the seemingly contradictory results of previously published studies: We found that

only one photoreceptor channel is active under dark background conditions and with

green background illumination up to about 1013 photons/cm2/s (equivalent to twilight

conditions,1 Figure 2). Under brighter background conditions, our results indicated that a

second channel became active as well (Figures 2 and 3). This channel was predominantly

UV sensitive. Both channels remained active even at the brightest green background il-

lumination that we tested, 1016 photons/cm2/s (equivalent to full daylight). However,

under this background illumination—bright green background with no UV component—

the sensitivity to UV was now stronger than to green light (Figure 3). We thus both con-

firmed the observations of Jellies (2014a,b) and explained the apparent conflict with the

earlier results of Kretz et al. (1976).

The existence of two distinct photoreceptor classes was further supported by our tran-

scriptomic data which indicated the expression of at least two distinct opsins within the

body wall of the leech (Figure 4). Similar opsins had previously been identified in another

leech, Helobdella robusta, and comparison with opsins from other invertebrate species is

compatible with these opsins being the green-sensitive and UV-sensitive receptors that

underlie our physiological results. Future studies will be necessary to confirm the specific

sensitivity of these specific opsins.

Many animals employ multiple photoreceptor classes that become active at different

light levels; for instance in humans, rods contribute to vision most strongly at low light

levels, whereas cones only become active at higher light levels (Fain and Dowling, 1973;

1Wikipedia: https://en.wikipedia.org/wiki/Lux, retrieved January 3, 2019. For green light, 1 lux is

equivalent to 4.5×1011 photons/cm2/s (see Appendix).
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Ingram et al., 2016). That a similar differentiation between photoreceptor classes exists in

leech testifies to the complexity and richness of its sensory system.

Since the S cell system spans the entire length of the leech’s body, it appears well-

positioned to integrate stimuli from different locations. We therefore investigated spatial

aspects of the S cell’s responses to light. In the first series of experiments (Figure 5), we de-

termined that adaptation to background illumination is local, suggesting that adaptation

occurs in the sensory periphery or perhaps in the early stages of sensory processing. In the

second series of experiments (Figure 6), we determined that the S cell system integrates

stimuli from across the entire ventral body wall. We found that the maximum response

of the S cell increases with the size of the illuminated area, but that the light intensity

required to elicit half of that maximum response changed only marginally. This suggests

that the S cell system pools (i.e., sums) responses. The existence of summation mecha-

nisms is consistent with the organization of the S cell system, as the individual S cells are

strongly coupled to each other by electrical synapses across the entire length of the body

of the leech (Frank et al., 1975), so that the whole S cell system can be considered as a sin-

gle syncytium that acts as a fast conducting pathway connecting the segmental ganglia

(Peterson, 1984). The combination of local adaptation with global integration means that

the S cell system can respond to small changes in illumination anywhere on the body,

irrespective of whether that part of the body is exposed to bright background light or

shade.

It has been suggested that the S cell system plays a key role in synchronizing general

arousal throughout the nervous system of the leech (see Sahley et al. 1994). Related func-

tions could potentially include an involvement in the modification or activation of motor

output, and facilitating or enhancing other effects of changes in sensory input.

Taken together, our results show that the response properties of the S cell system to

visual stimuli are very rich and complex, and that this system would be an ideal target

for further investigations into the mechanisms and function of such complex integration.
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Döring C, Gosda J, Tessmar-Raible K, Hausen H, Arendt D, and Purschke G, 2013. Evo-

lution of clitellate phaosomes from rhabdomeric photoreceptor cells of polychaetes—a

study in the leech Helobdella robusta (Annelida, Sedentaria, Clitellata). Front Zool 10 (1):

52. PMID 24007384.

Eaton JW, Bateman D, Hauberg S, and Wehbring R, 2017. The GNU Octave version

4.2.1 manual: a high-level interactive language for numerical computations. URL

http://octave.org/doc/interpreter, retrieved Jan 8, 2019.

Fain GL and Dowling JE, 1973. Intracellular recordings from single rods and cones in the

mudpuppy retina. Science 180 (4091): 1178–1181. PMID 4707063.

Falchi F, Cinzano P, Duriscoe D, Kyba CC, Elvidge CD, Baugh K, Portnov BA, Rybnikova

NA, and Furgoni R, 2016. The new world atlas of artificial night sky brightness. Sci Adv

2 (6): e1600377. PMID 27386582.

Frank E, Jansen JK, and Rinvik E, 1975. A multisomatic axon in the central nervous system

of the leech. J Comp Neurol 159 (1): 1–13. PMID 162801.

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan

L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N,

21

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2019. ; https://doi.org/10.1101/552018doi: bioRxiv preprint 

https://doi.org/10.1101/552018
http://creativecommons.org/licenses/by-nc-nd/4.0/


di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, and Regev A, 2011.

Full-length transcriptome assembly from RNA-Seq data without a reference genome.

Nat Biotechnol 29 (7): 644–652. PMID 21572440.

Harley CM, Cienfuegos J, and Wagenaar DA, 2011. Developmentally regulated multisen-

sory integration for prey localization in the medicinal leech. J Exp Biol 214: 3801–3807.

PMID 22031745.

Harley CM, Rossi M, Cienfuegos J, and Wagenaar DA, 2013. Discontinuous locomotion

and prey sensing in the leech. J Exp Biol 216: 1890–1897. PMID 23785108.

Ingram NT, Sampath AP, and Fain GL, 2016. Why are rods more sensitive than cones? J

Physiol 594 (19): 5415–5426. PMID 27218707.

Jellies J, 2014a. Detection and selective avoidance of near ultraviolet radiation by an

aquatic annelid: the medicinal leech. J Exp Biol 217: 974–985. PMID 24265432.

Jellies J, 2014b. Which way is up? Asymmetric spectral input along the dorsal-ventral

axis influences postural responses in an amphibious annelid. J Comp Physiol A 200 (11):

923–938. PMID 25152938.

Johnsen S, 2012. The optics of life: a biologist’s guide to light in nature. Princeton University

Press, Princeton, NJ.

Kawamura S, 1993. Molecular aspects of photoreceptor adaptation in vertebrate retina.

Int Rev Neurobiol 35: 43–86. PMID 8463064.

Kretz JR, Stent GS, and Kristan WB, 1976. Photosensory input pathways in medicinal

leech. J Comp Physiol 106 (1): 1–37.

Laverack MS, 1969. Mechanoreceptors, photoreceptors and rapid conduction pathways

in the leech, Hirudo medicinalis. J Exp Biol 50 (1): 129–140. PMID 5776582.

Lehmkuhl AM, Muthusamy A, and Wagenaar DA, 2018. Responses to mechanically and

visually cued water waves in the nervous system of the medicinal leech. J Exp Biol 221:

jeb171728. PMID 29472489.

22

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2019. ; https://doi.org/10.1101/552018doi: bioRxiv preprint 

https://doi.org/10.1101/552018
http://creativecommons.org/licenses/by-nc-nd/4.0/


Magni F and Pellegrino M, 1978. Patterns of activity and the effects of activation of the

fast conducting system on the behaviour of unrestrained leeches. J Exp Biol 76: 123–135.

PMID 712325.

Peterson EL, 1984. Photoreceptors and visual interneurons in the medicinal leech. J Neu-

robiol 15 (6): 413–428. PMID 6520610.

Rosendale AJ, Romick-Rosendale LE, Watanabe M, Dunlevy ME, and Benoit JB, 2016.

Mechanistic underpinnings of dehydration stress in the American dog tick revealed

through RNA-Seq and metabolomics. J Exp Biol 219: 1808–1819. PMID 27307540.

Sahley CL, Modney BK, Boulis NM, and Muller KJ, 1994. The S-cell—an interneuron

essential for sensitization and full dishabituation of leech shortening. J Neurosci 14 (11):

6715–6721.

Schulz MH, Zerbino DR, Vingron M, and Birney E, 2012. Oases: robust de novo RNA-seq

assembly across the dynamic range of expression levels. Bioinformatics 28 (8): 1086–

1092. PMID 22368243.

Sievers F and Higgins DG, 2014. Clustal Omega, accurate alignment of very large num-

bers of sequences. Methods Mol Biol 1079: 105–116. PMID 24170397.

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, and Zdobnov EM, 2015. BUSCO:

assessing genome assembly and annotation completeness with single-copy orthologs.

Bioinformatics 31 (19): 3210–3212. PMID 26059717.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S, 2011. MEGA5: molec-

ular evolutionary genetics analysis using maximum likelihood, evolutionary distance,

and maximum parsimony methods. Mol Biol Evol 28 (10): 2731–2739. PMID 21546353.

Tomina Y and Wagenaar DA, 2018. Dual-sided voltage-sensitive dye imaging of leech

ganglia. Bio Protoc 8 (5): e2751. PMID 29594188.

Tsukamoto H, Chen IS, Kubo Y, and Furutani Y, 2017. A ciliary opsin in the brain of a

marine annelid zooplankton is ultraviolet-sensitive, and the sensitivity is tuned by a

single amino acid residue. J Biol Chem 292 (31): 12971–12980. PMID 28623234.

23

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2019. ; https://doi.org/10.1101/552018doi: bioRxiv preprint 

https://doi.org/10.1101/552018
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure captions

Figure 1. S cell responses to light stimulation and spectral sensitivity. A. Responses to 2-

s-long flashes of green light (530 nm, 1.5×1011 photons/cm2/s) presented to the posterior

half of the ventral body wall. Top to bottom: representative raw extracellular trace; raster

plots from 20 individual trials on a single leech; firing rate histogram of those trials. Scale

bars: 1 s and 25 spikes/s. B. Response curves to 500-ms-long flashes of light of various

wavelengths (one representative leech). C. Spectral sensitivity of S cell responses. Dots

represent individual animals; black lines mark means and standard errors. Letters mark

groupings from ANOVA/Tukey (at p < 0.05; n = 5).

Figure 2. Adaptation to green background light. A. Intensity of green stimulus light re-

quired to attain 50% of plateau response (I50, see text) as a function of green background

intensity. Symbols indicate animals; lines are linear fits for each animal. B. Intensity of

UV stimulus light required to attain the same response as in (A) as a function of green

background intensity. Lines are linear fits separately for the low-background and high-

background regimes. C. Difference in light intensity required to attain 50% of plateau

response using UV light vs. green light, at the lowest background intensity (left) and at

the highest background intensity (right). ***: p < 10−7, t-test (n = 11). D. Summary of fit re-

sults from (A) and (B): Black dots indicate the slopes of individual fits; bars indicate mean

and standard deviation across animals. ***: p < 10−5, t-test (n = 8). E & F. Delay of the re-

sponse to green and UV light stimulation at lowest background light intensity (E) and at

highest background light intensity (F). The stimulus light intensity is plotted normalized

to I50. Symbols indicate individual leeches, lines are fits for each animal, the broken line

indicates the light intensity that elicited half-maximum response (I50). G. Summary of the

data shown in (E) and (F), showing the delay of the response at I50 for green and UV

stimulation at lowest and highest background light intensity. **: p < 0.005, ***: p < 10−5,

t-test (n = 11).

Figure 3. Adaptation to the spectrum of background light. A. Response to stimuli with

green light (shades of green) and UV light (shades of pink and purple) on a background of
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either green light (disks) or UV light (cross marks). Background intensities were 3.4×1015

photons/cm2/s for the green background, and 9.7×1015 photons/cm2/s for the UV back-

ground (see text for rationale). Closed and open pink markers represent data collected

under the same conditions at the beginning and end of the experiment, to confirm stabil-

ity of responses. Data from one representative animal. B. Stimulus light intensity required

to elicit a response at least 35% as strong as the plateau response for UV stimuli on green

background. ***: p < 0.0001, Tukey test following ANOVA (F3,15 = 32.5, p < 10−6, n = 6

leeches). Colors as in (A).

Figure 4. Transcriptome analysis of putative opsins. A. BUSCO-based quality assess-

ment of contigs from de novo assembly. B. Amino acid phylogeny based on alignment

with CLUSTAL followed by sequence analysis and tree generation through the use of

MEGA5 (Tamura et al., 2011). All nodes have at least 60% support. Colored names indi-

cate leech opsins.

Figure 5. Local and non-local adaptation in the S cell to green background light. A. Re-

sponses to flashes of light presented to the posterior portion of the ventral body wall when

the whole leech was dark-adapted (black circles), when the anterior was light-adapted

(green upward triangles), when the posterior was light-adapted (blue downward triangles),

and when the whole leech was light-adapted (red diamonds). Small black circles represent

a final repeat of the dark-adapted condition at the end of the experiment to confirm sta-

bility of responses. B. Intensity of light required to obtain 50% of the maximum response

to posterior stimulation, under the same series of conditions used in (A). Symbols below

graph serve as mnemonics for light (green) and dark (black) adaptation for anterior (top

symbol) and posterior (bottom symbol). Dots represent individual animals (N = 5); black

lines mark means and standard errors.

Figure 6. Spatial integration in the S cell. A. Response to light flashes presented to the

posterior portion of the ventral body wall (solid blue downward triangles), anterior portion

(green upward triangles), or both simultaneously (black diamonds). The posterior portion

was tested first (dark blue) and again last (pale blue). Open symbols indicate responses after
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transecting the nerve cord immediately anterior to the recording site: posterior area stim-

ulated (red) or anterior area stimulated (blue). Background light level was always 4.5×1011

photons/cm2/s. B. Maximum response (plateau of fitted curve) to light flashes presented

to anterior and posterior portions simultaneously was higher than to flashes presented

only to the anterior portion of the ventral body wall (t3 = 4.6, p < 0.01, one-sided test;

N = 4). C. Light intensity needed to elicit 50% of the respective maximum responses for

stimuli presented to anterior and posterior portions simultaneously tended to be lower

than for stimuli presented to the anterior portion of the ventral body wall only (t3 = 2.2,

p = 0.06, one-sided test; N = 4).

Appendix: Converting units of light intensity

By definition, 1 W is 589 lumens at 530 nm, which is the approximate wavelength of our

green light. From basic physics, 1 photon has an energy of E = hc/λ = 3.74 × 10−19 J.

Thus a photon flux of 108 photons/cm2/s corresponds to an energy flux of 3.74×10−11

J/cm2/s = 3.74×10−11 W/cm2 = 3.74×10−7 W/m2. Given 589 lumens per watt, that is

equivalent to (3.74 × 10−7 × 589) lumens/m2 = 2.2×10−4 lumens/m2 = 2.2×10−4 lux.

26

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2019. ; https://doi.org/10.1101/552018doi: bioRxiv preprint 

https://doi.org/10.1101/552018
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

320	nm
350	nm
400	nm
450	nm
530	nm
590	nm
655	nm

107 108 109 1010 1011 1012 1013 1014

Light	intensity	(photons/cm2/s)

0

10

20

30

S
-c
el
l	r
es

po
ns

e	
(s
pi
ke

s)

B

(b)
(a,b) (b)

(a,b)

(a)
(a,b)

(c)

	320	 	350	 	400	 	450	 	530	 	590	 	655	
Wavelength	(nm)

	109	

	1010	

	1011	

	1012	re
sp

on
se

	(p
ho

to
ns

/c
m

2 /
s)

Li
gh

t	i
nt
en

si
ty
	fo

r	5
0%

C

Figure 1. S cell responses to light stimulation and spectral sensitivity. A. Responses to 2-s-long
flashes of green light (530 nm, 1.5×1011 photons/cm2/s) presented to the posterior half of the ventral
body wall. Top to bottom: representative raw extracellular trace; raster plots from 20 individual trials on
a single leech; firing rate histogram of those trials. Scale bars: 1 s and 25 spikes/s. B. Response curves
to 500-ms-long flashes of light of various wavelengths (one representative leech). C. Spectral sensitivity of
S cell responses. Dots represent individual animals; black lines mark means and standard errors. Letters
mark groupings from ANOVA/Tukey (at p < 0.05; n = 5).
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Figure 2. Adaptation to green background light. A. Intensity of green stimulus light required
to attain 50% of plateau response (I50, see text) as a function of green background intensity. Symbols
indicate animals; lines are linear fits for each animal. B. Intensity of UV stimulus light required to attain
the same response as in (A) as a function of green background intensity. Lines are linear fits separately for
the low-background and high-background regimes. C. Difference in light intensity required to attain 50%
of plateau response using UV light vs. green light, at the lowest background intensity (left) and at the
highest background intensity (right). ***: p < 10−7, t-test (n = 11). D. Summary of fit results from (A)
and (B): Black dots indicate the slopes of individual fits; bars indicate mean and standard deviation across
animals. ***: p < 10−5, t-test (n = 8). E & F. Delay of the response to green and UV light stimulation
at lowest background light intensity (E) and at highest background light intensity (F). The stimulus light
intensity is plotted normalized to I50. Symbols indicate individual leeches, lines are fits for each animal,
the broken line indicates the light intensity that elicited half-maximum response (I50). G. Summary of
the data shown in (E) and (F), showing the delay of the response at I50 for green and UV stimulation at
lowest and highest background light intensity. **: p < 0.005, ***: p < 10−5, t-test (n = 11).
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Figure 3. Adaptation to the spectrum of background light. A. Response to stimuli with green
light (shades of green) and UV light (shades of pink and purple) on a background of either green light
(disks) or UV light (cross marks). Background intensities were 3.4×1015 photons/cm2/s for the green
background, and 9.7×1015 photons/cm2/s for the UV background (see text for rationale). Closed and
open pink markers represent data collected under the same conditions at the beginning and end of the
experiment, to confirm stability of responses. Data from one representative animal. B. Stimulus light
intensity required to elicit a response at least 35% as strong as the plateau response for UV stimuli on
green background. ***: p < 0.0001, Tukey test following ANOVA (F3,15 = 32.5, p < 10−6, n = 6 leeches).
Colors as in (A).
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Figure 4. Transcriptome analysis of putative opsins. A. BUSCO-based quality assessment of
contigs from de novo assembly. B. Amino acid phylogeny based on alignment with CLUSTAL followed by
sequence analysis and tree generation through the use of MEGA5 (Tamura et al., 2011). All nodes have
at least 60% support. Colored names indicate leech opsins.
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Figure 5. Local and non-local adaptation in the S cell to green background light. A. Responses
to flashes of light presented to the posterior portion of the ventral body wall when the whole leech was dark-
adapted (black circles), when the anterior was light-adapted (green upward triangles), when the posterior
was light-adapted (blue downward triangles), and when the whole leech was light-adapted (red diamonds).
Small black circles represent a final repeat of the dark-adapted condition at the end of the experiment
to confirm stability of responses. B. Intensity of light required to obtain 50% of the maximum response
to posterior stimulation, under the same series of conditions used in (A). Symbols below graph serve as
mnemonics for light (green) and dark (black) adaptation for anterior (top symbol) and posterior (bottom
symbol). Dots represent individual animals (N = 5); black lines mark means and standard errors.
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Figure 6. Spatial integration in the S cell. A. Response to light flashes presented to the posterior
portion of the ventral body wall (solid blue downward triangles), anterior portion (green upward triangles),
or both simultaneously (black diamonds). The posterior portion was tested first (dark blue) and again
last (pale blue). Open symbols indicate responses after transecting the nerve cord immediately anterior
to the recording site: posterior area stimulated (red) or anterior area stimulated (blue). Background light
level was always 4.5×1011 photons/cm2/s. B. Maximum response (plateau of fitted curve) to light flashes
presented to anterior and posterior portions simultaneously was higher than to flashes presented only to
the anterior portion of the ventral body wall (t3 = 4.6, p < 0.01, one-sided test; N = 4). C. Light intensity
needed to elicit 50% of the respective maximum responses for stimuli presented to anterior and posterior
portions simultaneously tended to be lower than for stimuli presented to the anterior portion of the ventral
body wall only (t3 = 2.2, p = 0.06, one-sided test; N = 4).
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