

1 Identification of CP77 as the third orthopoxvirus SAMD9L inhibitor

2 with a unique specificity for a rodent SAMD9L

3

4

5

6

7 Fushun Zhang⁺¹, Xiangzhi Meng⁺¹, Michael B Townsend², Panayampalli Subbian

8 Satheshkumar² and Yan Xiang^{1*}

9 ¹Department of Microbiology, Immunology and Molecular Genetics, University of Texas
10 Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229,
11 USA

12 ²Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology,
13 Centers for Disease Control and Prevention, Atlanta, Georgia, USA

14 + Contribute equally

15

16 Running title: Poxvirus antagonists of host restriction factors

17

18 *To whom correspondence should be addressed: Yan Xiang, xiangy@uthscsa.edu

19

20

21

22

22

24

ABSTRACT

25

26 Orthopoxviruses (OPXVs) have a broad host range in mammalian cells, but
27 Chinese hamster ovary (CHO) cells are non-permissive for vaccinia virus (VACV). Here,
28 we revealed a species-specific difference in host restriction factor SAMD9L as the cause
29 for the restriction and identified orthopoxvirus CP77 as a unique inhibitor capable of
30 antagonizing Chinese hamster SAMD9L (chSAMD9L). Two known VACV inhibitors of
31 SAMD9 and SAMD9L (SAMD9&L), K1 and C7, can bind human and mouse
32 SAMD9&L, but neither can bind chSAMD9L. CRISPR-Cas9 knockout of chSAMD9L
33 from CHO cells removed the restriction for VACV, while ectopic expression of
34 chSAMD9L imposed the restriction for VACV in a human cell line, demonstrating that
35 chSAMD9L is a potent restriction factor for VACV. Contrary to K1 and C7, cowpox
36 virus CP77 can bind chSAMD9L and rescue VACV replication in cells expressing
37 chSAMD9L, indicating that CP77 is yet another SAMD9L inhibitor but has a unique
38 specificity for chSAMD9L. Binding studies showed that the N-terminal 382 amino acids
39 of CP77 were sufficient for binding chSAMD9L and that both K1 and CP77 target a
40 common internal region of SAMD9L. Growth studies with nearly all OPXV species
41 showed that the ability of OPXVs in antagonizing chSAMD9L correlates with CP77 gene
42 status and that a functional CP77 ortholog was maintained in many OPXVs, including
43 monkeypox virus. Our data suggest that species-specific difference in rodent SAMD9L
44 poses a barrier for cross-species OPXV infection and that OPXVs have evolved three
45 SAMD9L inhibitors with different specificities to overcome this barrier.

46

47 **IMPORTANCE:**

48 Several OPXV species, including monkeypox virus and cowpox virus, cause
49 zoonotic infection in humans. They are believed to use wild rodents as the reservoir or
50 intermediate hosts, but the host or viral factors that are important for OPXV host range in
51 rodents are unknown. Here, we showed that the abortive replication of several OPXV
52 species in a Chinese hamster cell line was caused by a species-specific difference in the
53 host antiviral factor SAMD9L, indicating that SAMD9L divergence in different rodent
54 species poses a barrier for cross-species OPXV infection. While the Chinese hamster
55 SAMD9L could not be inhibited by two previously identified OPXV inhibitors of human
56 and mouse SAMD9L, it can be inhibited by cowpox virus CP77, indicating that OPXVs
57 encode three SAMD9L inhibitors with different specificity. Our data suggest that OPXV
58 host range in broad rodent species depends on three SAMD9L inhibitors with different
59 specificities.

60

61 **INTRODUCTION**

62

63 The orthopoxvirus (OPXV) genus of the poxvirus family consists of more than
64 ten closely-related species, including the infamous human pathogen variola virus (VARV,
65 causative agent for smallpox), the smallpox vaccine vaccinia virus (VACV), and
66 emerging zoonotic agents monkeypox virus (MPXV) and cowpox virus (CPXV) (1).
67 These viruses as well as ectromelia virus (ECTV), camelpox virus (CMLV) and teterapox
68 virus (TATV) are known as the Old World OPXVs for originating from the Eurasian
69 continent, while raccoonpox virus (RNCV), skunkpox virus (SKPV) and volepox virus

70 (VPXV) are recognized as the North American OPXVs for being endemic in North
71 America (2). VARV has been eradicated from nature, but the cessation of smallpox
72 vaccination and the waning of anti-OPXV herd immunity have increased the risk of
73 zoonotic OPXV infections. MPXV is highly virulent in humans (3), and the recent
74 increase in human monkeypox cases across a wide geographic area is a concern for
75 global health security (4). CPXV and VACV are responsible for zoonoses in Europe,
76 Asia and South America (5, 6). Novel OPXV species have also been discovered in recent
77 human cases (7, 8), including Akhmeta virus (AKMV) isolated from the town of
78 Akhmeta, Georgia (country).

79 OPXVs vary greatly in their animal host range (2), with some, such as VARV,
80 CMLV and TATV, only known to infect a single mammalian species, while others, such
81 as MPXV, CPXV and VACV, capable of infecting a wide variety of mammalian hosts.
82 OPXVs are often named after the host in which they were first isolated, while their
83 reservoir hosts in nature are unknown. However, OPXV infections are often associated
84 with contact with rodents. CPXV is carried and believed to be transmitted to humans and
85 domestic animals by bank voles and striped field mice in Western Europe (9, 10). MPXV
86 is likely carried by rope squirrels in Africa (11). The spread of VACV in Brazil involves
87 wild rodents as the reservoir or intermediate hosts (12). Contrary to their varied host
88 range in nature, OPXV host range in tissue culture cells are almost universally broad (13).
89 It was thus noteworthy that the Chinese hamster ovary (CHO) cells were found to be
90 nonpermissive for VACV, owing to a rapid shutoff of protein synthesis that resulted in a
91 block of viral intermediate mRNA translation (14, 15). A CPXV gene from the Brighton
92 Red (BR) strain, CP77, could rescue VACV replication in CHO cells (16). CPXV BR

93 CP77 encodes a 668 amino acid (aa), 77-kDa protein with nine predicted ankyrin repeats
94 and a C-terminal F-box domain (17). CP77 is conserved in all CPXV strains, having
95 greater than 91% aa sequence identity amongst different strains. A CP77 ortholog with
96 approximately 90% aa identity is also present in many MPXV strains. In contrast, the
97 CP77 ortholog is either deleted or fragmented in all sequenced VACV strains, while a
98 large deletion occurs in VARV CP77 ortholog that results in a protein of at most 452 aa.

99 Although the specific host pathway that restricts VACV replication in CHO cells
100 and the mechanism by which CP77 overcomes the restriction are unknown, CP77 is long
101 recognized as a host-range gene that provides a similar function as the VACV host-range
102 genes K1L and C7L (18, 19). K1L encodes a 284 aa protein consisted entirely of ankyrin
103 repeats (20), while C7L encodes a 150 aa protein forming a single β-sandwich (21).
104 VACV with deletions in both K1L and C7L (vK1⁻C7⁻) replicate abortively in many
105 mammalian cell lines (19); the replication defect in human cells could be rescued by K1L,
106 C7L or CP77. K1L and CP77 are specific to OPXVs, whereas functional C7L homologs
107 are present in nearly all mammalian poxviruses (22). Recent studies revealed that K1 and
108 C7 provide an equivalent function for viral growth in human and mouse cells by
109 inhibiting a common set of host restriction factors, SAMD9 (23, 24) and SAMD9L (25).
110 We thus investigated in this study whether CP77 functions similarly to K1 and C7 by
111 directly targeting SAMD9 or SAMD9L. Our results not only identified CP77 as yet
112 another OPXV inhibitor of SAMD9L but also revealed a species-specific difference in
113 SAMD9L that explains the specific requirement of CP77 for OPXV tropism in some
114 rodent cells.

115

116

MATERIALS AND METHODS

117

118 **Cells and viruses.** VERO (ATCC CCL-81), BSC40 (ATCC CRL-2761), BT20 (ATCC
119 HTB-19), and CHO-K1 (ATCC CCL-61) were originally from ATCC. HEK 293FT was
120 from Thermo Fisher Scientific (cat. no. R70007). WT VACV WR strain, K1L and C7L
121 deletion VACV (vK1⁻C7⁻) and a panel of vK1⁻C7⁻-derived recombinant viruses
122 expressing VACV-K1 (vVACV-K1L) or a C7 homolog from different poxviruses
123 (vVACV-C7L, vYLDV-67R, vMYXV-M62R, vMYXV-M63R, vMYXV-M64R,
124 vSPPV-063 and vSWPV-064) were described before (22, 26, 27). Other OPXVs (28),
125 ECTV (Moscow), CMLV (CMS), MPXV (West African clade), AKMV (29), SKPV
126 (USA1978-WA), VPXV (USA1985-CA), TATV (Dahomey1968) and RNCV
127 (MD1964_85A) were from CDC and cultured in BSC-40 cells.

128

VACVs expressing WT or mutated CPXV CP77 were constructed as follows. An
129 intermediate virus named vK1⁻C7⁻CP77⁻ was first constructed by deleting the CP77 gene
130 fragments from vK1⁻C7⁻ (22) with the transient dominant selection method, as described
131 previously (30). The deletion of the CP77 gene fragment in the recombinant virus was
132 confirmed by PCR amplification of the CP77 region of the virus. Viruses expressing V5-
133 tagged CP77 were derived from vK1⁻C7⁻CP77⁻ through homologous recombination with
134 a transfer plasmid. The transfer plasmid contains (i) 500 bp of downstream flanking
135 region of CP77, (ii) a GFP under the control of VACV late promoter P11, (iii) CPXV BR
136 CP77 with a C-terminal V5 tag, and (iv) ~500 bp of upstream flanking region of CP77
137 including the CP77 promoter. Specific mutations of CP77 were introduced into the
138 plasmid through recombinant PCR as described previously (26). All constructs were
139 confirmed by DNA sequencing. The recombinant virus construction was done according

140 to standard protocols (31). In brief, the transfer plasmids were transfected into VERO
141 cells that were infected with vK1⁻C7⁻CP77⁻. Recombinant viruses expressing GFP were
142 picked under the fluorescence microscope and purified through four rounds of plaque
143 isolation on VERO cells.

144

145 **SAMD9 and SAMD9L expression constructs.** chSAMD9 ORF was PCR-amplified
146 with the primer pair (5'-
147 GGATGACGATGACAAGGCAGAGAAACTCAACCTTCCAGAGA-3' and 5'-
148 GGCTCCGCGGTTAGACAATTAAATGTCATAAGCA-3') from cDNA synthesized
149 from CHO cellular mRNAs. A 3xFlag tag sequence was then appended to the 5' end of
150 the ORF by PCR, and the final PCR product was cloned between KpnI and SacII sites of
151 the pcDNA3.1/V5-His-topo vector (Thermo Fisher Scientific). The chSAMD9 cDNA
152 was completely sequenced and found to be identical to the Chinese hamster SAMD9
153 reference sequence in GenBank (XM_016963772.1). chSAMD9L ORF was cloned
154 similarly but with the primer pair (5'-
155 TGACGATGACAAGAATGAACAAGTAAC TGACACCTAAATTGG-3' and 5'-
156 GGCTCCGCGGTTAGATTACTTTATGCCATATGCCAGAGG-3'). The chSAMD9L
157 cDNA was found to be identical to the Chinese hamster SAMD9L sequence
158 XM_027389843.1 except for a difference at codon 618 (T to C substitution) that did not
159 result in an amino acid change. Plasmids for expressing NTPase-TPR domains of
160 SAMD9&L were constructed similarly but with PCR primers that only amplify the
161 specific region of SAMD9&L.

162

163 **Generation of CHO cells with gene knockouts.** The plasmids used for the gene
164 knockout were constructed from lentiCRISPRv2 (Addgene plasmid #52961) according to
165 the published protocol (32). In brief, lentiCRISPRv2 was digested with BsmBI and
166 ligated with a pair of oligonucleotides with the specific guide sequence. For each target
167 gene, two guide sequences were designed with the web tool CRISPOR (33). They were
168 as follows: 5'-AGTCATTGTATTCTCTGGA-3' (chSAMD9 #1), 5'-
169 CAAAAGAGGATGTGAATCTG-3' (chSAMD9 #2), 5'-
170 CAATGAAGAAGTGACAGGGA-3' (chSAMD9L #1), 5'-
171 ATCAGAAAGTGGCTGGACCCCG-3' (chSAMD9L #2). The lentiCRISPRv2-derived
172 plasmids and the packaging plasmids (pMD2.G and psPAX2) were transfected into HEK
173 293FT cells to produce lentiviruses, which were transduced into CHO cell as described
174 (25). The transduced cells were subjected to puromycin (15 µg/ml) selection for 7 days.
175 SAMD9 or SAMD9L genotype of the cells was identified by sequencing as described
176 previously (25). The cellular genomic DNA was extracted using the QIAamp DNA blood
177 mini kit (Qiagen). ~500 bp of DNA flanking the target site was PCR-amplified, cloned to
178 pGEM-T vector (Promega), and the sequence of 10-20 clones determined by Sanger
179 sequencing. The primer pairs for chSAMD9 and chSAMD9L are (5'-
180 AAGAGAGCTGGGGATAATGC-3' and 5'- GATTCTGCAGTTCCCTTGAA -3') and
181 (5'-AAGTAATCATATGACTACATGTAA-3' and 5'-
182 GTGTTCTTTATTGAGAGCT-3').

183

184 **Generation of a cell line that expresses chSAMD9L under an inducible promoter.**

185 chSAMD9L was cloned into pCW57.1 (Addgene #41393), an “all-in-one” doxycycline
186 inducible lentiviral vector with rtTA-VP16-2A-puro. In an effort to increase the
187 expression level of the inducible gene, the lentiviral vector was modified by introducing
188 F67S and R171K substitution into rtTA (34) and by replacing the minimal promoter
189 downstream of the Tet Response Element with EF1 alpha promoter. The plasmid was
190 used in making lentiviruses for transduction of BT20 cells as described above.
191 Transduced cells were selected with puromycin at 3 µg/ml.

192

193 **Luciferase assay.** Cells were infected with VACV WR that expressed a luciferase
194 reporter under the control of either late p11 promoter (35) or the synthetic early/late (S
195 E/L) promoter (36), in the presence or absence of cytosine arabinoside (AraC). Cells
196 were lysed with buffer and luciferase activity measured at 8 or 24 hour post infection (hpi)
197 according to the manufacturer’s instructions (Promega).

198

199 **Viral growth analysis.** Cells in 12-well plates were incubated with 1 PFU per cell of
200 different viruses for 2 h at room temperature. Following adsorption, the cells were
201 washed twice with phosphate-buffered saline (PBS). One set of the cells was harvested
202 immediately as the 0 hpi sample, while others were moved to an 37°C incubator to
203 initiate viral entry and harvested at different times post infection. The viral titers in the
204 cell lysates were determined by plaque assays on VERO cells.

205

206 **Immunoprecipitation and Western blot analysis.** The binding of SAMD9&L with
207 viral proteins was determined by co-immunoprecipitation as described before (25). In

208 brief, 293FT cells were transfected with the SAMD9 or SAMD9L expression plasmid
209 and then infected with different VACVs. The cells were lysed on ice with a lysis buffer
210 (0.1% (w/v) NP-40, 50 mM Tris, pH 7.4, 150 mM NaCl), and the cleared cell lysates
211 were mixed with V5-agarose beads (Sigma-Aldrich) for 30 min at 4°C. After washing
212 with lysis buffer, the beads were resuspended in SDS sample buffer, the eluted proteins
213 were resolved by SDS-PAGE and detected with Western blot as described previously
214 (26). The detection antibodies were mouse monoclonal antibodies (mAb) against V5
215 (Sigma-Aldrich; clone V5-10) and Flag tag (Sigma-Aldrich).

216

217 RESULTS

218

219 **Chinese hamster SAMD9 and SAMD9L have unique binding specificity for**
220 **poxvirus proteins.**

221 All known poxvirus antagonists of SAMD9&L were able to bind their targets in
222 mammalian cells (25, 37). To assess whether they could also inhibit SAMD9&L from
223 Chinese hamster, we first set out to study their binding to Chinese hamster SAMD9&L.
224 Chinese hamster SAMD9 (chSAMD9) and SAMD9L (chSAMD9L) were cloned from
225 CHO cells into a mammalian expression vector and transiently expressed in HEK 293FT
226 cells. The cells were then infected with a panel of vK1⁺C7⁻ derived VACV expressing
227 different V5-tagged viral proteins, including one that expressed CPXV CP77 (vCPXV-
228 CP77). The ability of the V5-tagged viral protein to bind the Flag-tagged SAMD9 or
229 SAMD9L was assessed by immunoprecipitation (IP) with anti-V5 antibody followed by
230 Western blot. All known poxvirus SAMD9&L antagonists, including K1, C7 and C7

231 homologs from diverse mammalian poxviruses, failed to precipitate chSAMD9L (Fig.
232 1A), in contrast to the binding of SAMD9&L from human and mouse by nearly all these
233 viral proteins (25, 37). Interestingly, CP77 was able to precipitate chSAMD9L,
234 suggesting that it is also a SAMD9L inhibitor and has a unique specificity for
235 chSAMD9L. All the tested viral proteins except for K1 failed to precipitate chSAMD9
236 (Fig, 1B). Altogether, SAMD9&L from Chinese hamster stand out among the
237 SAMD9&L that have been characterized so far for their resistance to binding by many of
238 the known poxvirus SAMD9&L inhibitors.

239

240 **chSAMD9L is required for restricting VACV replication in CHO cells; CP77 is a**
241 **SAMD9L inhibitor with a unique specificity for chSAMD9L.**

242 The lack of binding to chSAMD9 or chSAMD9L by K1 and C7 suggest that a
243 failure of VACV in antagonizing chSAMD9 or/and chSAMD9L could be the reason why
244 VACV replicates abortively in CHO cells. To test this idea, we knocked out either
245 chSAMD9 or chSAMD9L from CHO cells with CRISPR-Cas9. For each gene knockout
246 (KO), two independent KOs with different guide sequences (named as #1 and #2) were
247 performed, and the pooled KO cells were tested for permissiveness for the panel of vK1⁻
248 C7⁻-derived VACVs. Similar to the parental CHO cells, the two chSAMD9 KO CHO
249 cells (named Δ SAMD9) were nonpermissive for all recombinant VACVs except for
250 vCPXV-CP77, which grew more than 100-fold in titer after 24 h of infection (Fig.
251 2A&B). In contrast, the two chSAMD9L KO cells (named Δ SAMD9L) were permissive
252 for vK1⁻C7⁻ as well as all its derivatives (Fig. 2C&D). Several cell clones were also
253 isolated and found to be similar to the pooled cells in permissiveness for VACV (Fig. 2E).

254 The specific KO of either chSAMD9 or chSAMD9L in the cell clones were confirmed by
255 sequencing the region targeted by CRISPR-Cas9 guide. Indels that result in frameshift
256 were found (Fig. 2F). These data show that chSAMD9L but not chSAMD9 is required for
257 restricting VACV replication in CHO cells and that CP77 has a unique capability of
258 antagonizing chSAMD9L. The well-characterized Δ SAMD9L clone 2F was used in all
259 subsequent experiments.

260 It was previously shown that VACV replication in CHO cells was blocked at
261 translation of post-replicative mRNA (18). To assess the effect of SAMD9L KO on viral
262 early and post-replicative protein synthesis, we infected the parental and Δ SAMD9L
263 CHO cells with VACVs that expressed luciferase gene under the control of either the
264 synthetic early/late promoter or the late p11 promoter. In some infections, viral DNA
265 replication was blocked to allow only early protein synthesis. The early luciferase
266 expression measured at 8 hpi was at a comparable level in BSC40 cells and Δ SAMD9L
267 CHO cells but was reduced by 10-fold in the parental CHO cells (Fig. 3A). A similar
268 reduction on early luciferase expression was also observed at 24 hpi (Fig. 3B). However,
269 the greatest difference between the parental and Δ SAMD9L CHO cells was observed on
270 post-replicative, late luciferase expression, which was reduced by ~10,000-fold in the
271 parental CHO cells (Fig. 3B). Altogether, the data indicates that chSAMD9L KO
272 alleviated the block on viral protein synthesis, particularly the late protein synthesis.

273
274 **Expression of chSAMD9L in human cells is sufficient for recapitulating poxvirus**
275 **restriction property of CHO cells.**

276 While many mammalian cell lines were nonpermissive for vK1⁺C7⁻, we found
277 some human cell lines, including the breast cancer BT20 cells, expressed a low level of
278 human SAMD9 and were thus permissive for vK1⁺C7⁻. We made a stable BT20 cell line
279 that expressed chSAMD9L by transduction with a lentivirus encoding chSAMD9L
280 controlled by the tetracycline-dependent promoter. The cell line (named i-chSAMD9L)
281 expressed chSAMD9L only when induced with doxycycline, in a dose-dependent manner
282 (Fig. 4A). When not induced to express chSAMD9L, i-chSAMD9L cells were fully
283 permissive for vK1⁺C7⁻ (or its derivatives), which grew by ~1000-fold in titer after 24 h
284 of infection (Fig. 4B). When induced to express chSAMD9L, the cell line became
285 nonpermissive for vK1⁺C7⁻ and its derivatives that either expressed K1 (vVACV-K1) or
286 C7 (vVACV-C7) (Fig. 4B), recapitulating CHO cells in terms of the restriction of
287 poxvirus. Moreover, vCPXV-CP77 was able to grow ~100-fold in titer after 24 h of
288 infection, again demonstrating that CP77 can antagonize chSAMD9L.

289

290 **K1 and CP77 target the same region of SAMD9&L.**

291 A computational analysis predicated SAMD9&L having the following domains
292 from the N- to the C-terminus (38): SAM, AlbA, SIR2, P-loop NTPase, TPR, and OB
293 (Fig. 5A). The N-terminal 385 aa of human SAMD9 (hSAMD9), which contains the
294 predicted SAM and AlbA domains, was reported to be sufficient for binding to a
295 poxvirus C7 homolog (39). To find out which region of hSAMD9 is targeted by K1, we
296 constructed hSAMD9 mutants with deletions in different domains and tested the binding
297 of the mutants to K1. We found aa 607-1172 of hSAMD9, which contains the putative
298 NTPase and TPR domains, was sufficient for binding to K1 but not C7 (Fig. 5B). This

299 binding was disrupted by two specific K1 substitution mutations (S2C#2 or S1-mut6) that
300 were previously shown to disrupt K1 host-range function in human cells (20).
301 Furthermore, both K1 and CP77, but not C7, can bind to the similar region of mouse
302 SAMD9L (aa 598-1172), but only CP77 can bind to this region of chSAMD9L (aa 594-
303 1172) (Fig. 5B). Thus, the binding to NTPase-TPR domain by K1 and CP77 displays the
304 same species-specificity as to the full-length protein. Altogether, the data demonstrate
305 that K1 and CP77 target the same NTPase-TPR region of SAMD9&L, differing from the
306 region that is targeted by C7.

307

308 **The N-terminal 382 aa of CP77 is sufficient for binding to chSAMD9L.**

309 The full-length CP77 of 668 aa was predicted to contain 9 ankyrin repeats with a
310 C-terminal F-box domain (Fig. 6A). Only the N-terminal 352 aa was reported to be
311 necessary for the function of CP77 in CHO cells, and the deletion of ankyrin repeat 5
312 could disrupt CP77 function (40). To determine whether chSAMD9L binding has a
313 similar requirement for CP77 residues, we constructed recombinant VACV from vK1⁻C7⁻
314 by inserting truncated CP77 into the viral genome. The recombinant virus expressing the
315 N-terminal 382 aa of CP77 (ΔC, maintaining the N-terminal seven ankyrin repeats) can
316 grow in CHO cells, although with ~10-fold reduction in yield compared to the virus
317 expressing the full-length CP77 (Fig. 6B). In contrast, the virus expressing a CP77 with a
318 deletion in aa 235-266 (the predicted ankyrin repeat 5, Δ5) failed to grow in CHO cells.
319 Correspondingly, CP77-ΔC can precipitate both the full-length and the NTPase-TPR
320 region of chSAMD9L, whereas CP77-Δ5 cannot precipitate either (Fig. 6C). A reduced
321 amount of full-length chSAMD9L was precipitated by CP77-Δc than by full-length CP77,

322 correlating with the reduced growth in CHO cells by the CP77-Δc-expressing VACV.
323 Compared to the full-length CP77, CP77-ΔC was also detected at a reduced level in the
324 infected cells (Fig. 6C).

325

326 **The ability of OPXV in antagonizing chSAMD9L corresponds to their CP77 gene**
327 **status.**

328 CP77 gene is variably maintained and diversified in different OPXV species
329 (Table 1). To assess the ability of chSAMD9L in restricting different OPXV species, we
330 compared the growth of all available OPXV species in the parental and ΔSAMD9L CHO
331 cells (Fig. 7). ECTV and CMLV are similar to VACV for growing in ΔSAMD9L CHO
332 cells but failing to grow in the parental CHO cells, indicating that chSAMD9L is also a
333 restriction factor for ECTV and CMLV. The CMLV CP77 ortholog is largely deleted
334 with only ~155 nucleotides left, while the ECTV CP77 ortholog has a large deletion at
335 the 5' end that results in an early frameshift. On the other hand, MPXV, TATV, AKMV,
336 SKPV, and VPXV grew in both the parental and ΔSAMD9L CHO cells with nearly the
337 same efficiency, indicating that chSAMD9L did not pose significant restriction for their
338 replication. These OPXV species all encode a full-length CP77 ortholog, with the two
339 North American OPXVs (SKPV and VPXV) having the most divergent ortholog of
340 ~70% aa identity to CPXV CP77. RCVN, another North American OPXV, also grew in
341 both the parental and ΔSAMD9L CHO cells, but the yield was more than 10-fold less in
342 the parental cells at both 24 and 48 h post infection (Fig. 7), indicating that chSAMD9L
343 reduced but did not block RCVN growth in CHO cells. Interestingly, a gene fusion event
344 in RCVN genome resulted in an ORF with the N-terminal 406 aa of the CP77 ortholog

345 and the 246 aa chemokine binding protein. Altogether, the data show that the ability of
346 OPXV species to antagonize chSAMD9L and grow in CHO cells correlates with their
347 coding of a CP77 ortholog with at least the N-terminal 406 aa.

348

349 **DISCUSSION**

350

351 Many infectious diseases that result in high morbidity and mortality in humans are
352 zoonoses. VARV, an exclusive human pathogen, is believed to have evolved from an
353 African rodent-borne virus (41), before it spread around the world and became mankind's
354 deadliest killer. For many viruses, divergence in viral entry receptors in different host
355 species poses a major hurdle for cross-species transmission (42). Poxviruses, however,
356 can enter nearly any animal cell (43). Why many poxviruses show strict host species
357 specificity are less clear, but some host antiviral factors such as PKR and SAMD9L have
358 shown some species-specific difference in susceptibility to poxvirus inhibitors (25, 44,
359 45). In this study, we revealed a species-specific difference in SAMD9L as the cause for
360 the restriction of several OPXVs (VACV, ECTV, CMLV) in a rodent cell, suggesting
361 that divergence in SAMD9L (and perhaps SAMD9) in rodent species presents a major
362 barrier for cross-species poxvirus infection. Furthermore, we identified CP77 as the third
363 OPXV SAMD9L inhibitor with a unique species specificity, demonstrating the
364 sophistication brought forth by OPXVs to antagonize SAMD9&L.

365 OPXVs have broad host range in tissue culture cells, but CHO cells, while
366 permissive for CPXV (16), are nonpermissive for VACV (14) and ECTV (46). What
367 host factor causes the restriction of some OPXV species in CHO cells had been enigmatic

368 since the initial discovery more than 50 years ago (14). In this study, we solved this
369 mystery by identifying chSAMD9L as the host restriction factor in CHO cells. We
370 presented two complementary lines of evidence: 1) CRISPR-Cas9 KO of chSAMD9L
371 from CHO cells completely removed the host restriction for VACV, ECTV and CMLV; 2)
372 ectopic expression of chSAMD9L in a human cell line recapitulated the poxvirus
373 restriction property of CHO cells. We also provided a molecular explanation why
374 chSAMD9L could restrict some OPXV species, namely its resistance to binding by both
375 K1 and C7, the two SAMD9&L inhibitors in these OPXV species. Interestingly, while
376 SAMD9 is the constitutive poxvirus restriction factor in many human cells (23-25),
377 chSAMD9 appears not to contribute to poxvirus restriction in CHO cells. KO of
378 chSAMD9L alone is sufficient for abolishing the restriction of a panel of VACVs, most
379 of which did not contain K1, the only protein that was shown to bind chSAMD9.
380 Moreover, KO of chSAMD9 had no effect on poxvirus restriction in CHO cells. CHO
381 cells thus resemble mouse cells more than human cells in that SAMD9L is the
382 constitutive restriction factor (25). It is unclear why chSAMD9 does not restrict
383 poxviruses in CHO cells. We speculate that either chSAMD9 has lost the antiviral
384 function due to some lineage-specific mutations or chSAMD9 expression level in CHO
385 cells is not sufficiently high. The former scenario would be analogous to the fate of
386 mouse SAMD9, which had suffered a mouse lineage-specific gene loss (47). The latter
387 scenario would be similar to human SAMD9L, which has to be induced to a high
388 expression level by IFN to impose restriction on vK1⁺C7⁻ (25). However, our preliminary
389 experiments of treating ΔSAMD9L CHO cells with mouse or universal type-1 IFN did
390 not result in restriction of vK1⁺C7⁻.

391 CPXV BR CP77 was found to rescue VACV replication in CHO cells more than
392 40 years ago (16). Since then, a number of molecular functions have been ascribed to
393 CP77, including the binding to host HMG20A, NF- κ B subunit p65 and the SCF complex
394 (17, 40). However, the molecular mechanism underlying the host range function of CP77
395 remained elusive. We showed in this study that CP77 co-immunoprecipitated
396 chSAMD9L and rescued VACV replication in a human cell line that was induced to
397 express chSAMD9L, demonstrating that CP77 is a SAMD9L inhibitor. Only the N-
398 terminal 382 aa containing the first seven ankyrin repeats was essential for chSAMD9L
399 binding, while deletion of ankyrin repeat 5 abolished the binding. Correspondingly, a
400 CP77 mutant with only the first seven ankyrin repeats but not the one with deletion of
401 ankyrin repeat 5 could rescue VACV replication in CHO cells, indicating that the host
402 range function of CP77 relies on its binding with chSAMD9L. This idea was further
403 supported by comparing the growth of nearly all OPXV species in the parental and
404 Δ SAMD9L CHO cells. OPXV species that encode a full-length CP77 ortholog (MPXV,
405 TATV, AKMV, SKPV and VPXV) can replicate in both the parental and Δ SAMD9L
406 CHO cells, while OPXV species that have lost CP77 gene (VACV, ECTV, and CMLV)
407 can only replicate in Δ SAMD9L CHO cells. Interestingly, RNCV, which encodes a
408 fusion protein that contains only the N-terminal 406 aa of CP77 ortholog (48), can also
409 replicate in CHO cells, albeit with reduced efficiency compared to that in Δ SAMD9L
410 CHO cells. The RNCV genome is closely related to that of the other two North American
411 OPXVs, with the largest difference a 25 kbp deletion in the left terminal region of RNCV
412 that removed 12 complete genes and created an in-frame gene fusion of CP77 ortholog
413 and the chemokine binding protein (48). The difference between the three North

414 American OPXVs in terms of their replication in CHO cells correlates with our
415 observation that the N-terminal seven ankyrin repeats was less effective than the full-
416 length CP77 in inhibiting chSAMD9L. VARV encodes a CP77 ortholog varying from
417 355 to 490 aa in length, so VARV is predicted to be able to partially inhibit chSAMD9L.

418 Recently, we and others have established the importance of SAMD9&L as host
419 restriction factors against poxviruses at the cellular and organismal level (23-25). The
420 identification of CP77 as yet another SAMD9L inhibitor underscores the critical role of
421 SAMD9&L in host defense against poxviruses and the elaborate lengths OPXVs went to
422 evade SAMD9&L. K1 and C7 were previously shown to function equivalently at
423 inhibiting human and mouse SAMD9&L (25). In this study, however, we uncovered
424 differences between K1/C7/CP77 in their targeting mechanism and binding specificity for
425 SAMD9&L. While a C7 ortholog was shown to target the N-terminus of SAMD9 (39),
426 both K1 and CP77 target an internal region containing the predicated NTPase and TPR
427 domains. While any one of K1/C7/CP77 can bind mouse SAMD9L, only K1 can bind
428 chSAMD9, and only CP77 can bind chSAMD9L. SAMD9L from mouse and Chinese
429 hamster shares ~80% aa sequence identity. We speculate that a need for overcoming
430 SAMD9&L sequence divergence in different rodent species may have driven OPXVs in
431 evolving three different inhibitors targeting different regions of SAMD9&L. The loss of
432 K1 or/and CP77 from OPXV species with a narrow host-range (VARV, CMLV) and the
433 maintenance of all three (K1/C7/CP77) in species presumably endemic in wild rodents
434 (CPXV, MPXV and North American OPXV) also suggest that multiple SAMD9&L
435 inhibitors are needed specifically for overcoming diverse SAMD9&L in rodents.

436

437 ACKNOWLEDGMENTS

438 This work was supported by a grant from NIAID to Y. Xiang (AI079217). We thank
439 Nadia Gallardo-Romero for providing the OPXVs.
440 The findings and conclusions in this report are those of the authors and do not necessarily
441 represent the official position of the Centers for Disease Control and Prevention.

442

443 **FIGURE LEGENDS**

444

445 **Figure 1. Only CPXV CP77 can bind Chinese hamster SAMD9L, while only VACV**
446 **K1 can bind Chinese hamster SAMD9.** 293FT cells were transfected with a plasmid
447 expressing Flag-tagged chSAMD9L (**A**) or chSAMD9 (**B**) and infected with a panel of
448 vK1⁻C7⁻-derived VACVs that expressed different V5-tagged viral proteins. VACV-A6, a
449 viral protein involved in viral assembly, was used as a negative control. The cell lysates
450 were immunoprecipitated with anti-V5 antibody. Epitope-tagged proteins in the cell
451 lysate and precipitate were detected with anti-Flag or anti-V5 antibody in Western blot.
452 The heavy and light chains of the precipitated antibody (Ig HC and LC) serve as loading
453 controls. * indicates V5-tagged proteins.

454

455 **Figure 2. The restriction of VACV by CHO cells can be abolished by knocking out**
456 **chSAMD9L. (A-D).** CHO cells were transduced with lentiviral vectors expressing Cas9
457 and a guide sequence targeting either chSAMD9 (A&B) or chSAMD9L (C&D). For each
458 gene, two independent KOs with different guide sequences (named as #1 and #2, shown
459 in graph) were performed, and the pooled KO cells were infected with the panel of vK1⁻

460 C7⁻-derived VACVs at a MOI of 1 PFU/cell. Viral titers at 0 and 24 hour post-infection
461 (hpi) were measured by plaque assay in VERO cells. **(E)**. Several KO cell clones were
462 isolated from the pooled cells. Infection studies were performed on the cell clones and the
463 results were similar to A-D. Representative data with Δ SAMD9-1D clone and
464 Δ SAMD9L-2F clone are shown. **(F)**. The genotype of the cell clones was determined by
465 sequencing. The guide sequence is underlined with the PAM sequence in bold italics.
466 Starting and ending positions of the guide in the ORF and the encoded amino acid
467 sequence are also shown. Shown below the target are the genomic sequences from cell
468 clones. The red line indicates deletion. ^ indicates insertion. The number after the + and -
469 denotes the number of indels, and the number before the “x” denotes the number of times
470 the sequence was detected from a total of 10-20 cloned PCR products.

471

472 **Figure 3. The block in viral protein synthesis in CHO cells can be abolished by**
473 **knocking out chSAMD9L.** BSC40 cells, the parental and Δ SAMD9L (2F clone) CHO
474 cells were infected with VACVs that either expressed a luciferase reporter under the
475 control of either the synthetic early/late (E/L) promoter or the late p11 promoter, in the
476 presence or absence of AraC. The cells were lysed after either 8 or 24 h of infection and
477 luciferase (LUC) activities were measured.

478

479 **Figure 4. Expression of chSAMD9L in human cells is sufficient for recapitulating**
480 **poxvirus restriction property of CHO cells. (A).** A stable human breast cancer BT20
481 cell line with inducible expression of chSAMD9L was established via lentiviral
482 transduction. The cell line (i-chSAMD9L) was cultured with medium containing the

483 indicated concentration of doxycycline (Dox). The level of chSAMD9L and the control
484 HSP70 protein in the cell lysates was determined by Western blot. (B). The i-chSAMD9L
485 cells were either untreated or treated with 1 μ g/ml Dox. The cells were then infected with
486 the panel of vK1⁺C7⁻-derived VACV. Viral titers at 0 and 24 hpi were measured by
487 plaque assay in VERO cells.

488

489 **Figure 5. K1 and CP77 target a common internal region of SAMD9&L. (A).**

490 Schematics of the predicted SAMD9&L domain architecture and the SAMD9&L
491 truncation with only the NTPase-TPR domain. (B&C). 293FT cells were transfected with
492 a plasmid expressing the putative NTPase and TPR domains of SAMD9&L (aa 607-1172
493 for hSAMD9, aa 598-1172 for mSAMD9L, and aa 594-1172 for chSAMD9L) and
494 infected with VACV expressing C7, K1 or CP77. Co-IP and Western blot were
495 performed as described in Fig. 1. The two K1 substitution mutations (S2C#2 or S1-mut6)
496 were previously shown to disrupt K1 host-range function in human cells (20).

497

498 **Figure 6. The N-terminal 382 aa of CP77 is sufficient for binding to chSAMD9L. (A).**

499 Schematics of different CP77 constructs. Ankyrin repeats are shown as boxes and
500 numbered. The C-terminal F-box is indicated with “F”. Δ C: deletion of aa 383-656
501 (maintaining the N-terminal seven ankyrin repeats); Δ 5: deletion of aa 235-266 (ankyrin
502 repeat 5). (B). CHO cells were infected with vK1⁺C7⁻-derived VACV expressing either
503 WT or mutated CP77. Viral growth was determined as described in Fig. 2.
504 (C). Full-length and aa 594-1172 of chSAMD9L were subjected to co-
505 immunoprecipitation with either WT or mutated CP77 as described in Fig. 1.

506

507 **Figure 7. Orthopoxvirus host range in CHO cells corresponds to their CP77 gene**
508 **status.**

509 The parental (CHO-WT) and ΔSAMD9L CHO cells (CHO-ΔSAMD9L) were infected
510 with the indicated orthopoxvirus species. Viral titers at 0, 24 and 48 hpi were measured
511 by plaque assay on VERO cells.

512

513 **REFERENCES**

514

- 515 1. Moss B. 2013. Poxviridae, p 2129-2159. *In* Knipe DM, Howley PM (ed), Fields
516 Virology, 6th ed, vol 2. Lippincott Williams & Wilkins, Philadelphia.
- 517 2. Damon IK. 2013. Poxviruses, p 2160–2184. *In* Knipe DM, Howley PM (ed),
518 Fields Virology, 6th ed, vol 2. Lippincott Williams & Wilkins, Philadelphia.
- 519 3. Parker S, Nuara A, Buller RM, Schultz DA. 2007. Human monkeypox: an
520 emerging zoonotic disease. Future Microbiol 2:17-34.
- 521 4. Durski KN, McCollum AM, Nakazawa Y, Petersen BW, Reynolds MG, Briand S,
522 Djingarey MH, Olson V, Damon IK, Khalakdina A. 2018. Emergence of
523 Monkeypox - West and Central Africa, 1970-2017. MMWR Morb Mortal Wkly
524 Rep 67:306-310.
- 525 5. Megid J, Borges IA, Abrahao JS, Trindade GS, Appolinario CM, Ribeiro MG,
526 Allendorf SD, Antunes JM, Silva-Fernandes AT, Kroon EG. 2012. Vaccinia virus
527 zoonotic infection, Sao Paulo State, Brazil. Emerging infectious diseases 18:189-
528 91.
- 529 6. Rivetti AV, Jr., Guedes MI, Rehfeld IS, Oliveira TM, Matos AC, Abrahao JS,
530 Kroon EG, Lobato ZI. 2013. Bovine vaccinia, a systemic infection: evidence of
531 fecal shedding, viremia and detection in lymphoid organs. Veterinary
532 microbiology 162:103-11.
- 533 7. Springer YP, Hsu CH, Werle ZR, Olson LE, Cooper MP, Castrodale LJ, Fowler
534 N, McCollum AM, Goldsmith CS, Emerson GL, Wilkins K, Doty JB, Burgado J,
535 Gao J, Patel N, Mauldin MR, Reynolds MG, Satheshkumar PS, Davidson W, Li
536 Y, McLaughlin JB. 2017. Novel Orthopoxvirus Infection in an Alaska Resident.
537 Clin Infect Dis 64:1737-1741.
- 538 8. Vora NM, Li Y, Geleishvili M, Emerson GL, Khmaladze E, Maghlakelidze G,
539 Navdarashvili A, Zakhashvili K, Kokhreidze M, Endeladze M, Mokverashvili G,
540 Satheshkumar PS, Gallardo-Romero N, Goldsmith CS, Metcalfe MG, Damon I,
541 Maes EF, Reynolds MG, Morgan J, Carroll DS. 2015. Human infection with a
542 zoonotic orthopoxvirus in the country of Georgia. N Engl J Med 372:1223-30.

543 9. Crouch AC, Baxby D, McCracken CM, Gaskell RM, Bennett M. 1995.
544 Serological evidence for the reservoir hosts of cowpox virus in British wildlife.
545 Epidemiol Infect 115:185-91.

546 10. Bennett M, Crouch AJ, Begon M, Duffy B, Feore S, Gaskell RM, Kelly DF,
547 McCracken CM, Vicary L, Baxby D. 1997. Cowpox in British voles and mice. J
548 Comp Pathol 116:35-44.

549 11. Khodakevich L, Szczeniowski M, Manbu ma D, Jezek Z, Marennikova S, Nakano
550 J, Messinger D. 1987. The role of squirrels in sustaining monkeypox virus
551 transmission. Trop Geogr Med 39:115-22.

552 12. Oliveira JS, Figueiredo PO, Costa GB, Assis FL, Drumond BP, da Fonseca FG,
553 Nogueira ML, Kroon EG, Trindade GS. 2017. Vaccinia Virus Natural Infections
554 in Brazil: The Good, the Bad, and the Ugly. Viruses 9.

555 13. McFadden G. 2005. POXVIRUS TROPISM. Nat Rev Micro 3:201-213.

556 14. Drillien R, Spehner D, Kirn A. 1978. Host range restriction of vaccinia virus in
557 Chinese hamster ovary cells: relationship to shutoff of protein synthesis. J Virol
558 28:843-50.

559 15. Ramsey-Ewing A, Moss B. 1995. Restriction of vaccinia virus replication in CHO
560 cells occurs at the stage of viral intermediate protein synthesis. Virology 206:984-
561 93.

562 16. Spehner D, Gillard S, Drillien R, Kirn A. 1988. A cowpox virus gene required for
563 multiplication in Chinese hamster ovary cells. J Virol 62:1297-304.

564 17. Chang SJ, Hsiao JC, Sonnberg S, Chiang CT, Yang MH, Tzou DL, Mercer AA,
565 Chang W. 2009. Poxvirus host range protein CP77 contains an F-box-like domain
566 that is necessary to suppress NF-kappaB activation by tumor necrosis factor alpha
567 but is independent of its host range function. J Virol 83:4140-52.

568 18. Ramsey-Ewing AL, Moss B. 1996. Complementation of a vaccinia virus host-
569 range K1L gene deletion by the nonhomologous CP77 gene. Virology 222:75-86.

570 19. Perkus ME, Goebel SJ, Davis SW, Johnson GP, Limbach K, Norton EK, Paoletti
571 E. 1990. Vaccinia virus host range genes. Virology 179:276-286.

572 20. Li Y, Meng X, Xiang Y, Deng J. 2010. Structure function studies of vaccinia
573 virus host range protein k1 reveal a novel functional surface for ankyrin repeat
574 proteins. J Virol 84:3331-8.

575 21. Meng X, Krumm B, Li Y, Deng J, Xiang Y. 2015. Structural basis for
576 antagonizing a host restriction factor by C7 family of poxvirus host-range proteins.
577 Proc Natl Acad Sci U S A 112:14858-63.

578 22. Meng X, Chao J, Xiang Y. 2008. Identification from diverse mammalian
579 poxviruses of host-range regulatory genes functioning equivalently to vaccinia
580 virus C7L. Virology 372:372-83.

581 23. Liu J, Wennier S, Zhang L, McFadden G. 2011. M062 is a host range factor
582 essential for myxoma virus pathogenesis and functions as an antagonist of host
583 SAMD9 in human cells. J Virol 85:3270-82.

584 24. Sivan G, Ormanoglu P, Buehler EC, Martin SE, Moss B. 2015. Identification of
585 Restriction Factors by Human Genome-Wide RNA Interference Screening of
586 Viral Host Range Mutants Exemplified by Discovery of SAMD9 and WDR6 as
587 Inhibitors of the Vaccinia Virus K1L-C7L- Mutant. MBio 6:e01122.

588 25. Meng X, Zhang F, Yan B, Si C, Honda H, Nagamachi A, Sun LZ, Xiang Y. 2018.
589 A paralogous pair of mammalian host restriction factors form a critical host
590 barrier against poxvirus infection. *PLoS Pathog* 14:e1006884.

591 26. Meng X, Xiang Y. 2006. Vaccinia virus K1L protein supports viral replication in
592 human and rabbit cells through a cell-type-specific set of its ankyrin repeat
593 residues that are distinct from its binding site for ACAP2. *Virology* 353:220-33.

594 27. Meng X, Jiang C, Arsenio J, Dick K, Cao J, Xiang Y. 2009. Vaccinia virus K1L
595 and C7L inhibit antiviral activities induced by type I interferons. *J Virol*
596 83:10627-36.

597 28. Emerson GL, Li Y, Frace MA, Olsen-Rasmussen MA, Khristova ML, Govil D,
598 Sammons SA, Regnery RL, Karem KL, Damon IK, Carroll DS. 2009. The
599 phylogenetics and ecology of the orthopoxviruses endemic to North America.
600 *PLoS One* 4:e7666.

601 29. Gao J, Gigante C, Khmaladze E, Liu P, Tang S, Wilkins K, Zhao K, Davidson W,
602 Nakazawa Y, Maghlakelidze G, Geleishvili M, Kokhreidze M, Carroll DS,
603 Emerson G, Li Y. 2018. Genome Sequences of Akhmeta Virus, an Early
604 Divergent Old World Orthopoxvirus. *Viruses* 10.

605 30. Falkner FG, Moss B. 1990. Transient dominant selection of recombinant vaccinia
606 viruses. *J Virol* 64:3108-11.

607 31. Earl PL, Moss B, Wyatt LS, Carroll MW. 1998. Generation of Recombinant
608 Vaccinia Viruses, p 16.17.1-16.17.19. *In* Ausubel FM, Brent R, Kingston RE,
609 Moore DD, Seidman JG, Smith JA, Struhl K (ed), *Current protocols in molecular*
610 *biology*. John Wiley & Sons, Inc.

611 32. Sanjana NE, Shalem O, Zhang F. 2014. Improved vectors and genome-wide
612 libraries for CRISPR screening. *Nature methods* 11:783-4.

613 33. Concordet JP, Haeussler M. 2018. CRISPOR: intuitive guide selection for
614 CRISPR/Cas9 genome editing experiments and screens. *Nucleic Acids Res*
615 doi:10.1093/nar/gky354.

616 34. Das AT, Tenenbaum L, Berkout B. 2016. Tet-On Systems For Doxycycline-
617 inducible Gene Expression. *Curr Gene Ther* 16:156-67.

618 35. Bengali Z, Satheshkumar PS, Yang Z, Weisberg AS, Paran N, Moss B. 2011.
619 Drosophila S2 cells are non-permissive for vaccinia virus DNA replication
620 following entry via low pH-dependent endocytosis and early transcription. *PLoS*
621 *One* 6:e17248.

622 36. Townsley AC, Weisberg AS, Wagenaar TR, Moss B. 2006. Vaccinia virus entry
623 into cells via a low-pH-dependent endosomal pathway. *J Virol* 80:8899-908.

624 37. Meng X, Krumm B, Li Y, Deng J, Xiang Y. 2015. Structural basis for
625 antagonizing a host restriction factor by C7 family of poxvirus host-range proteins.
626 *Proceedings of the National Academy of Sciences of the United States of America*
627 112:14858-63.

628 38. Mekhedov SL, Makarova KS, Koonin EV. 2017. The complex domain
629 architecture of SAMD9 family proteins, predicted STAND-like NTPases,
630 suggests new links to inflammation and apoptosis. *Biol Direct* 12:13.

631 39. Nounamo B, Li Y, O'Byrne P, Kearney AM, Khan A, Liu J. 2017. An interaction
632 domain in human SAMD9 is essential for myxoma virus host-range determinant
633 M062 antagonism of host anti-viral function. *Virology* 503:94-102.

634 40. Hsiao JC, Chao CC, Young MJ, Chang YT, Cho EC, Chang W. 2006. A poxvirus
635 host range protein, CP77, binds to a cellular protein, HMG20A, and regulates its
636 dissociation from the vaccinia virus genome in CHO-K1 cells. *J Virol* 80:7714-28.
637 41. Li Y, Carroll DS, Gardner SN, Walsh MC, Vitalis EA, Damon IK. 2007. On the
638 origin of smallpox: correlating variola phylogenetics with historical smallpox
639 records. *Proc Natl Acad Sci U S A* 104:15787-92.
640 42. Parrish CR, Holmes EC, Morens DM, Park EC, Burke DS, Calisher CH, Laughlin
641 CA, Saif LJ, Daszak P. 2008. Cross-species virus transmission and the emergence
642 of new epidemic diseases. *Microbiol Mol Biol Rev* 72:457-70.
643 43. Moss B. 2012. Poxvirus cell entry: how many proteins does it take? *Viruses*
644 4:688-707.
645 44. Peng C, Haller SL, Rahman MM, McFadden G, Rothenburg S. 2016. Myxoma
646 virus M156 is a specific inhibitor of rabbit PKR but contains a loss-of-function
647 mutation in Australian virus isolates. *Proc Natl Acad Sci U S A* 113:3855-60.
648 45. Elde NC, Child SJ, Geballe AP, Malik HS. 2009. Protein kinase R reveals an
649 evolutionary model for defeating viral mimicry. *Nature* 457:485-9.
650 46. Chen W, Drillien R, Spehner D, Buller RM. 1992. Restricted replication of
651 ectromelia virus in cell culture correlates with mutations in virus-encoded host
652 range gene. *Virology* 187:433-42.
653 47. Li CF, MacDonald JR, Wei RY, Ray J, Lau K, Kandel C, Koffman R, Bell S,
654 Scherer SW, Alman BA. 2007. Human sterile alpha motif domain 9, a novel gene
655 identified as down-regulated in aggressive fibromatosis, is absent in the mouse.
656 *BMC Genomics* 8:92.
657 48. Smithson C, Tang N, Sammons S, Frace M, Batra D, Li Y, Emerson GL, Carroll
658 DS, Upton C. 2017. The genomes of three North American orthopoxviruses.
659 *Virus Genes* 53:21-34.
660

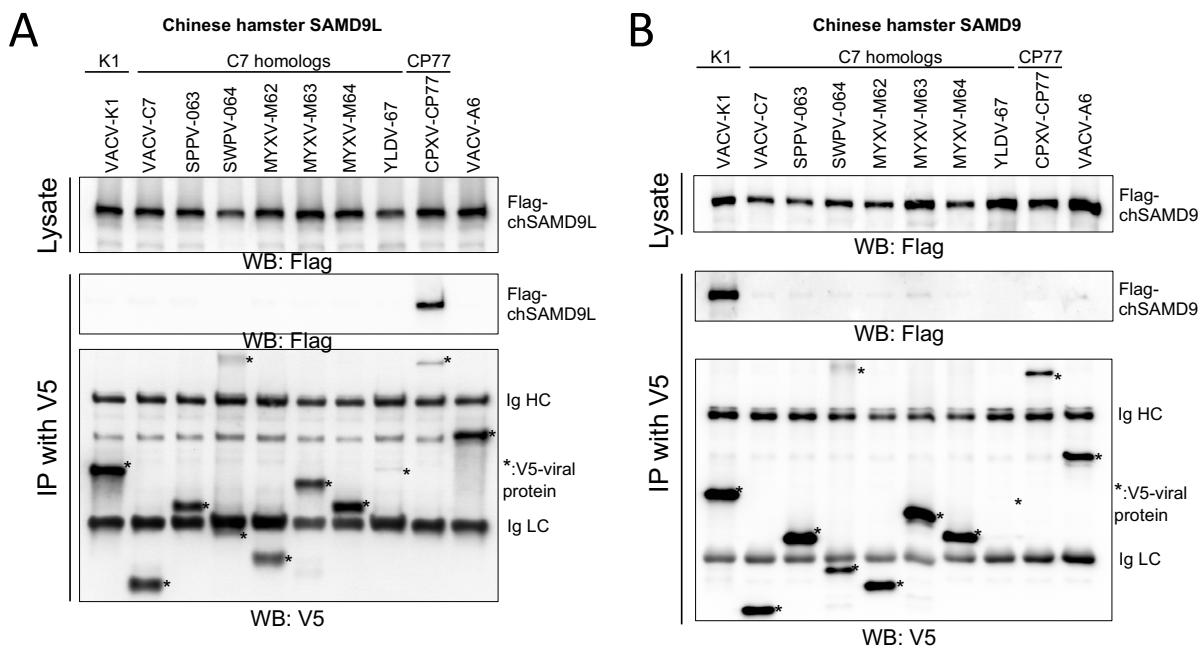


Fig. 1

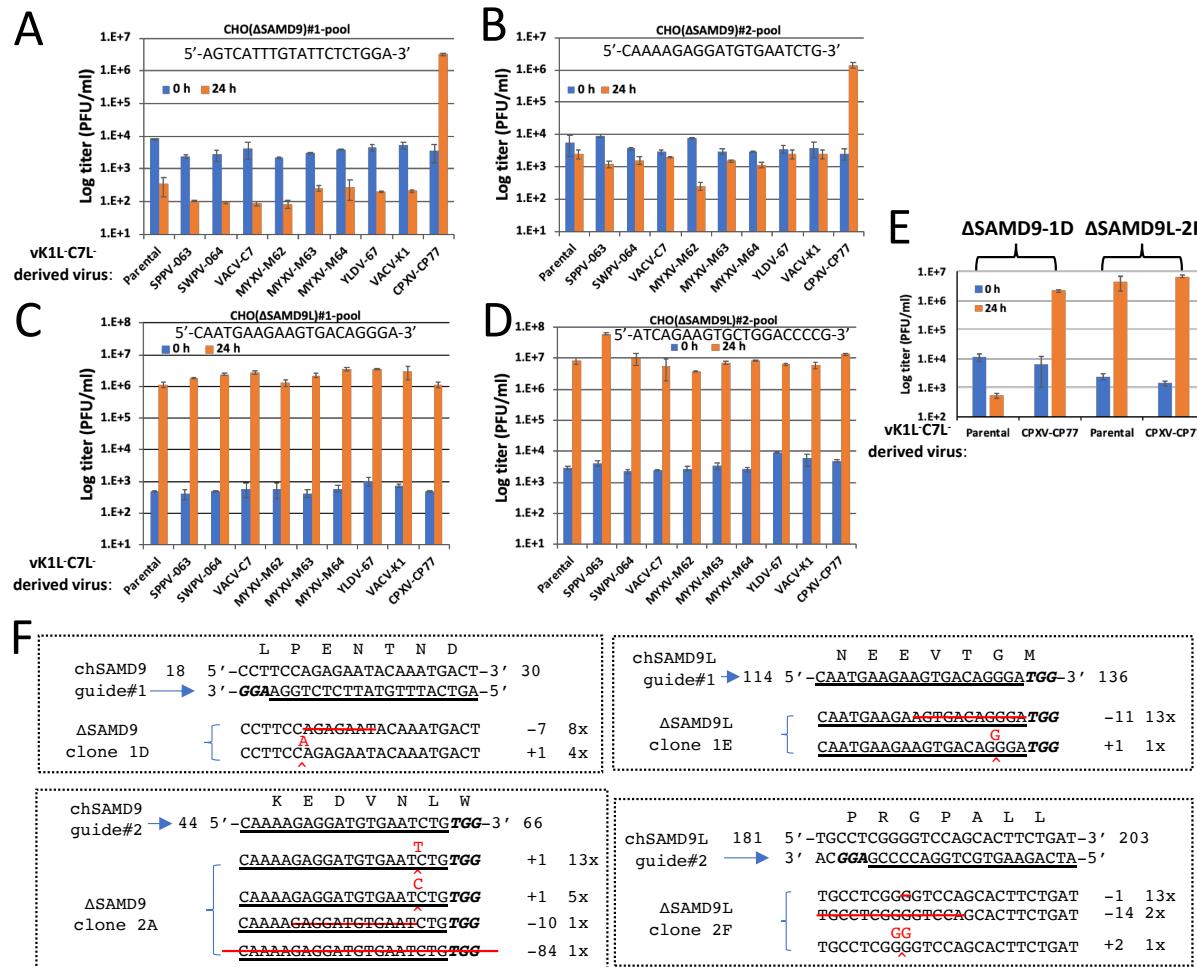


Fig. 2

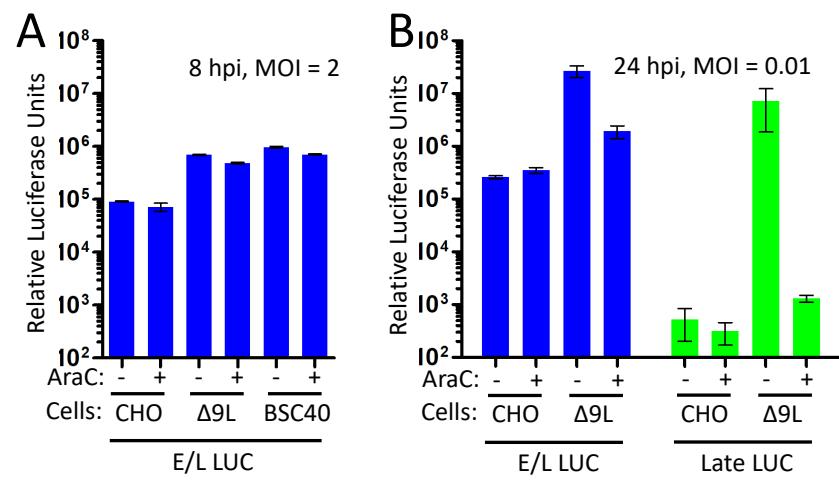


Fig. 3

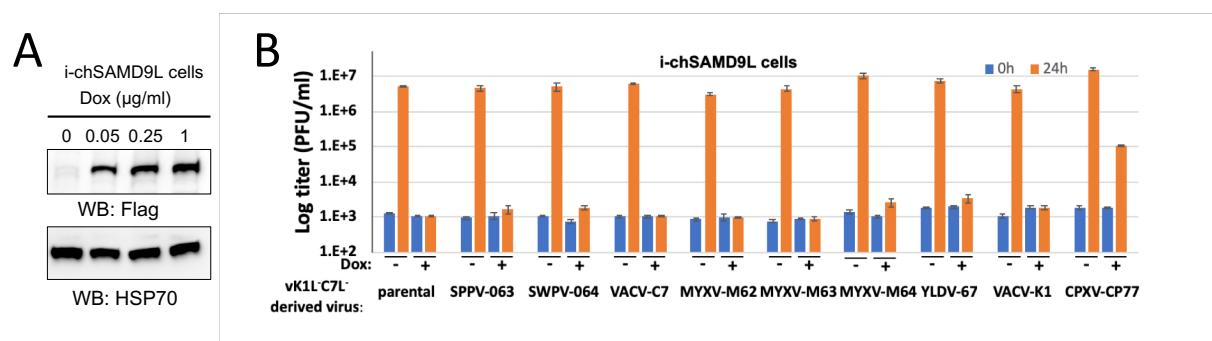


Fig. 4

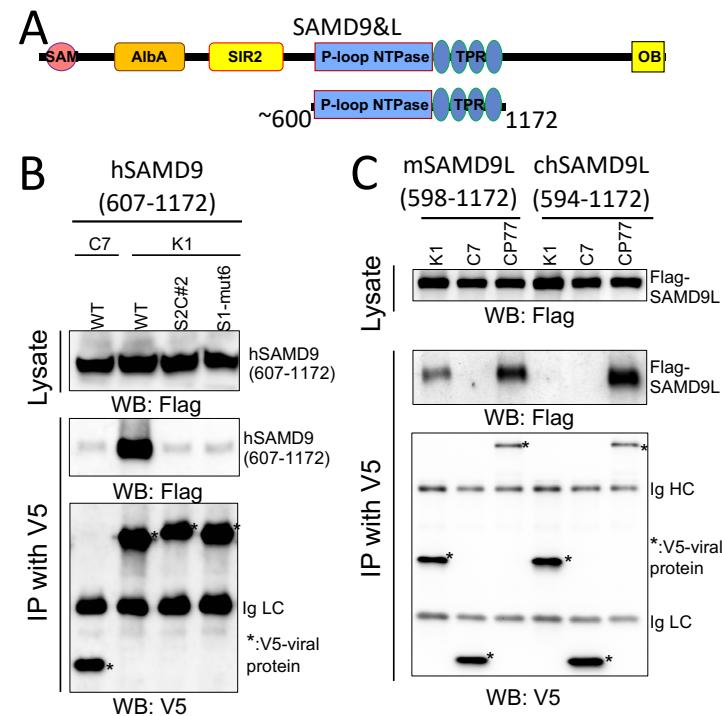


Fig. 5

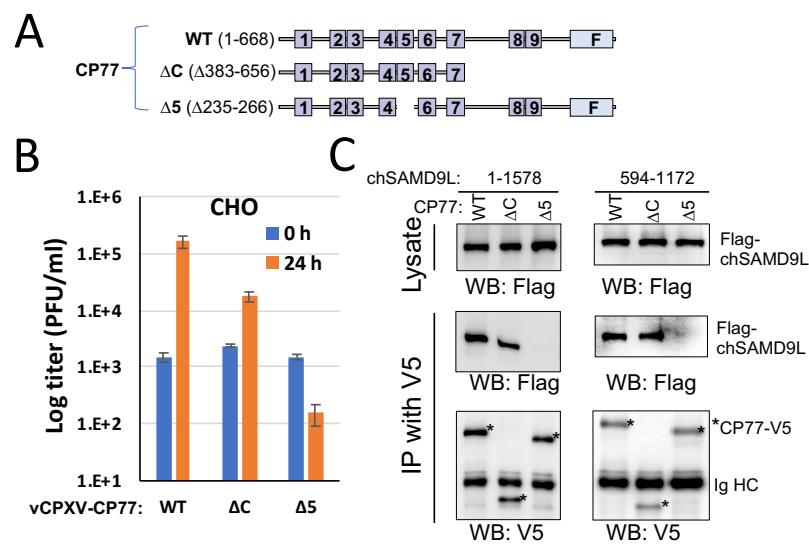


Fig. 6

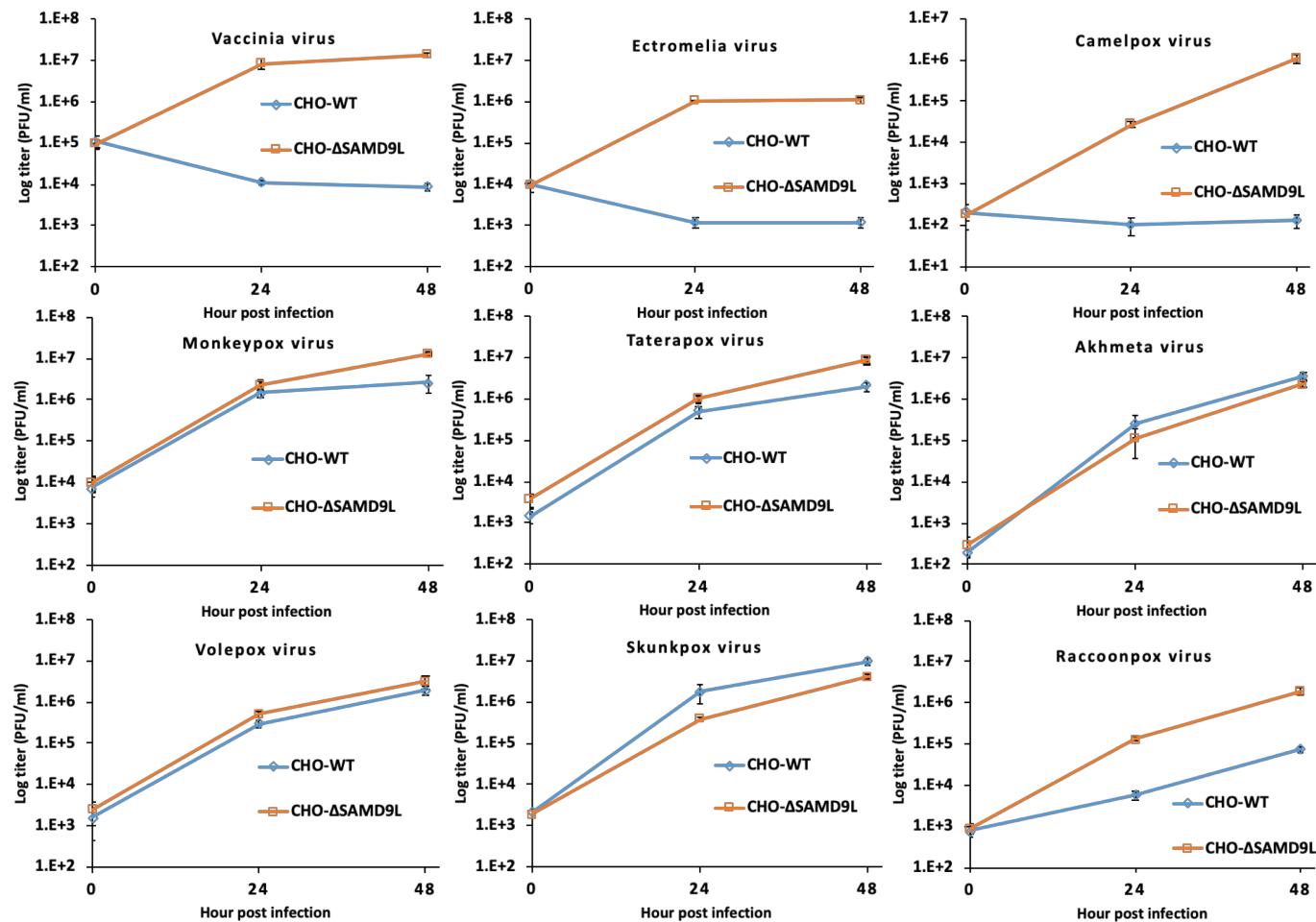


Fig. 7

Table 1. OPXV CP77 orthologs comparison to CPXV BR CP77.

OPXV species	CP77		Antagonize chSAMD9L
	length (aa)	identity (%)	
CPXV	661-674	91-100	Yes
MPXV	659-660	90-91	Yes
VACV	small deletions, early frameshift		No
VARV	>600 nt deletion, 355-490	86-88	ND
ECTV	504 nt deletion, early frameshift		No
CMLV	large deletion (~155 nt remaining)		No
TATV	661	92	Yes
AKMV	672	79	Yes
SKPV	633	69	Yes
VPXV	613	69	Yes
RNCV	gene fusion*, 406	66	partial

*Strain MD1964-85A. 1-406 of CP77 ortholog fused in frame to the N-terminus of the full-length, 246-aa chemokine binding protein. Total protein length is 655-aa.