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Abstract 

Genetic studies of schizophrenia (SCZ) have now implicated numerous genomic loci that 

contribute to risk including several copy number variants (CNV) of large effect and hundreds of 

associated loci of small effect. However, in only a few cases has a specific gene been clearly 

identified. Rare CNV that affect only a single gene offer a potential avenue to discovering 

specific SCZ risk genes. Here, we use CNV generated from exome-sequencing of 4,913 SCZ 

cases and 6,188 controls in a homogenous Swedish cohort to assess the contribution of single-

gene deletions and duplications to SCZ risk. As previously seen, we found an excess of rare 

deletions (p = 0.0004) and duplications (p = 0.0006) in SCZ cases compared to controls. When 

limiting to only single-gene CNV we identified nominally significant excess of deletions (p = 

0.04) and duplications (p = 0.03). In an effort to increase the number of single-gene CNV, we 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2019. ; https://doi.org/10.1101/550863doi: bioRxiv preprint 

https://doi.org/10.1101/550863
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2

reduced strict filtering criteria but required support from two independent CNV calling methods 

to create an expanded set that showed a significant burden of deletions in 11 out of 22 gene sets 

previously implicated in SCZ and in the combined set of genes across those sets (p = 0.008). 

Finally, for the significantly enriched set of voltage-gated calcium channels, we performed an 

extensive validation of all deletions generated from exome-sequencing as well as any deletion 

with evidence from previously analyzed genotyping arrays. In total, 4 exonic, single-gene 

deletions validated in cases and none in controls (p = 0.039), of which all were identified by 

exome-sequencing. Broadly, these results point to the potential contribution of single-gene CNV 

to SCZ and the added value of a deeper dive into CNV calls from exome-sequencing.  

 

Introduction 

Schizophrenia (SCZ) is a highly heritable psychiatric disorder that causes substantial morbidity, 

mortality, and personal and societal costs(1–4). In order to increase our understanding of the 

biological basis of SCZ, it is important to identify genetic variation that influences risk. Copy 

number variants (CNV) are appealing as they directly alter gene dosage or structure and thus 

provide an interpretable effect on gene function. SCZ cases have been repeatedly shown to carry 

a greater burden of large/rare CNV (>100 kb and <1%), particularly deletions affecting brain-

expressed genes. Multiple rare recurrent CNV with substantial effects on risk for SCZ (genotypic 

relative risks 4-20) have been identified (e.g., 16p11.2 and 22q11.21)(5–10). Most of these 

known CNV risk loci are megabase-sized and affect the dosages of many genes, but if specific 

genes contributing to risk could be identified it would aid our understanding of the neurobiology 

of the disorder. Thus far, only a few specific genes from genetic studies of CNV and SNV have 

been implicated in SCZ: NRXN1(11), TOP3B(12), RBM12(13) and SETD1A(14), all of which 
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provided novel insights into SCZ pathophysiology. Therefore, gene-focused CNV evaluation in 

large samples with high resolution capture is needed.  

 

The majority of CNV have a small genomic footprint(15–18) and, due to either technological 

limitations or cost associated with identifying them, their contribution to SCZ remains 

unknown(19). Commercial microarrays are limited by probe density and are largely incapable of 

detecting CNV below 10 kb while also having low specificity for CNV between 10 and 100 

kb(20). CNV detection from whole genome sequencing represents a substantial improvement, 

but remains expensive and is presently infeasible for large samples. Whole exome sequencing 

(WES) data can be used to identify CNV impacting exons(21). These data, while noisy from 

dependence solely on read depth and lacking exact breakpoints from the discrete nature of exons, 

can be used to increase power to identify smaller CNV affecting single genes that may be more 

interpretable in their contribution to SCZ risk.  

 

Here, we have performed a comprehensive analysis of WES data from the Swedish 

Schizophrenia Study, which included 4,978 schizophrenia cases and 6,256 controls(22). Our 

goals were to evaluate the overall impact of single-gene CNV on SCZ risk, and to discover risk 

loci resulting from changes in copy number in specific genes that could lead to improved 

mechanistic understanding of SCZ. The Swedish sample is well suited for this study given its 

national sampling framework and relative homogeneity. All samples were also genotyped with 

GWAS genotyping arrays and Illumina exome arrays(23,24) providing additional data to follow 

up and validate CNV calls.  
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Methods 

Sample description 

We obtained DNA extracted from venous blood samples from 11,234 Swedish participants 

(mean age at time of sample collection, 55 years). This cohort included 6,256 controls and 4,978 

SCZ cases. An additional 1,172 Swedish samples were included in generating and cleaning 

exome-sequencing CNV calls to improve estimates of copy number and frequency but were 

removed before analyses (total N: 12,384). All procedures were approved by ethical committees 

in Sweden and the US, and all subjects provided written informed consent. Genomic 

investigation of each subject was done using independent technologies including GWAS array 

genotyping(23), exome array genotyping(19), and exome sequencing(22,25). All genotyping and 

sequencing was conducted at the Broad Institute. Rare CNV data from GWAS genotyping array 

and exon genotyping arrays had been previously generated(19,24), and is briefly described in the 

supplementary material. Exome-sequencing based CNV were generated for this analysis and 

have not previously been reported on. Individuals already known to be carrying large CNV were 

included in all analyses. All genomic locations are given in NCBI build 37/UCSC hg19 

coordinates. 

 

CNV calling and QC using XHMM 

We ran XHMM (eXome-Hidden Markov Model) as previously described(21,26), including 

calculating mean per-base coverage across 189,894 targets (sequences designed for capture, 

predominantly exons) using GATK DepthOfCoverage. A total of 14,555 targets were excluded 

before CNV calling due to: mean sequencing depth <10x, low complexity sequence (as defined 

by RepeatMasker) in >25% of its span, GC content <10% or >90%, and spanning <10 bp or >10 
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kb. The resulting sample-by-target read depth matrix was scaled by mean-centering the targets, 

after which principal component analysis (PCA) of the matrix was performed. To normalize the 

data, the top 109 principal components (those with variance >70% of the mean variance across 

all components) were removed from the data to account for systematic biases at the target- or 

sample-level, such as GC content or sequencing batch effects. Additional targets (n=37) were 

removed if variance in read depth remained high after normalization (standard deviation >50). 

CNV were called using the Viterbi hidden Markov model (HMM) algorithm with default 

XHMM parameters, and XHMM CNV quality scores (SQ) were calculated using the forward-

backward HMM algorithm. For any CNV detected in at least one individual we statistically 

genotyped all samples using the same XHMM quality scores and output as a single VCF file. 

Twenty-two samples failed CNV calling from XHMM due to low overall read depth, A total of 

175,303 targets were used to call CNV across 12,384 samples after all filtering.  CNV from sex 

chromosomes would be inaccurately called since males and females were run together and so 

were removed from analyses. 

There were 494,403 autosomal CNV called by XHMM before any further filtering. We 

removed 115 individuals with > 3 standard deviations from the mean in total number of CNV 

(71.5) or total genomic content affected by CNV (6,529 kb). After sample outlier removal, 

484,940 CNV (SQ > 0) were used to develop a frequency filter, and we retained only CNV seen 

in less than 1% of individuals (<0.5% minor allele frequency) across the entire sample as used in 

previous work on rare CNV. To account for the discrete nature of exons, each target was 

numbered sequentially regardless of genomic coordinates and frequency filtering was done using 

the sequential target information before mapping targets to genomic positions. After frequency 

filtering there were 51,812 CNV total with a mean of 4.3 per individual ranging from 1-107. 
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After performing the recommended filter (SQ ≥ 60), 14,243 CNV remained (we refer to this 

dataset going forward as the “exome QC” dataset). 

 

Expanded single-gene CNV dataset integrating XHMM and ExomeDepth 

In analyzing XHMM data, we observed that filtering on increasing quality scores (SQ) 

disproportionately removed shorter CNV. In an effort to quantify the proportion of shorter CNV 

with lower quality scores that were likely to be real we used exome-sequencing data from a set 

of 624 trios(27) and calculated transmission as a function of quality score and minimum number 

of targets required per CNV. These data were processed using the same software (XHMM) and 

QC as described above. We focused on rare CNV (< 0.1%) to avoid counting transmissions 

arbitrarily. At the recommended filtering thresholds (SQ ≥ 60, minimum 3 exons) we calculated 

a transmission rate of 0.42 (64 maternal CNV, 26 transmitted; 71 paternal CNV, 30 transmitted). 

When we looked at only those CNV having a single supporting exon and no minimum SQ (i.e. 

all called CNV) we saw a significant increase in CNV but an expected reduction in transmission 

rate of 0.114 (449 maternal CNV, 55 transmitted; 575 paternal transmitted, 62 transmitted). 

However, this transmission rate still suggests that potentially 20+% of these “low quality” events 

may be real. As an effort retain the true shorter events while removing as many of the false 

positive CNV calls as possible we required additional support from an independent approach 

ExomeDepth(28). Briefly, ExomeDepth selects a small set of individuals to be used as the 

reference group for CNV inference. These individuals are selected for having similar sequencing 

properties as the individual being called and this selection process is independently performed 

for each individual. We therefore called CNV within experimental plates of 96 individuals that 

were processed and sequenced at the same time. We generated CNV calls for all individuals 
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using ExomeDepth. In total, we called CNV for 12,313 samples totaling 1,915,300 CNV with a 

mean of 155.5 per individual and ranging from 1-811. We retained any XHMM call with SQ ≥ 

60 and any CNV called by both ExomeDepth and XHMM regardless of quality score (we refer 

to this set going forward as the “expanded exome” dataset). For comparison, 92% of the high-

quality calls from the exome QC dataset were also called by ExomeDepth whereas only 20% of 

CNV affecting a single exon and low SQ (< 30) were called across both methods. In total, the 

expanded exome dataset had 24,843 CNV compared to 14,243 in the exome QC dataset. Using 

the union of the two approaches allows us to expand our set of shorter CNV while retaining only 

those with the most support. 

 

CNV burden and association analyses 

We performed several burden and association analyses using Plink(29). For burden analyses, we 

performed empirical permutation (n=10,000) of case/control label where permutation was 

performed within sequencing batch to account for any batch effects. For gene-based tests, we 

performed the same empirical permutation procedure defined above for burden tests. CNV were 

considered to affect a gene if there was any overlap of the genomic coordinates of the CNV and 

the gene. For gene-set tests, we used a regression framework built into Plink(30) that tests 

whether cases carry more CNV in the set of genes compared to all genes after covarying for 

number and amount of CNV.  

 

Incorporating CNV from previously run genotyping arrays of the same individuals 

To maximize the sensitivity to detect gene/exon level CNV, we constructed a union CNV call set 

by combining the CNV data from GWAS array, exon array, and our expanded exome CNV 
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dataset. We first created a database of all non-redundant CNV, where, for each CNV record, we 

indicated (1) how many platform(s) had identified the CNV; (2) which specific platform(s) had 

identified the CNV; (3) the coordinates of CNV from each platform. We considered two CNV 

redundant if they have the same direction of the copy number change and they overlapped more 

than 50% of their lengths. Details for this “exome plus array” dataset are described in 

supplemental materials (Tables S3-S4, Figures S1-S2).  

 

Validation of CNV 

We attempted validation on 55 deletions from the genotyping and exome CNV dataset that 

affected any calcium channel gene (N = 26 genes) using a combination of both quantitative PCR 

(qPCR) and NanoString nCounter technology. First, qPCR was used to verify CNV detected in 

calcium channel genes CACNA2D3, CACNA1B, CACNA2D4 and CACNG2 (Table S5). Several 

predesigned TaqMan Copy Number Assays were run in quadruplicate along with the internal 

RNase P Copy Number Reference Assay according to manufacturer’s instructions (Applied 

Biosystems, Foster City, CA). Briefly, 20 µl reactions containing 1 µl DNA (5 ng), 10 µl of 2X 

Taqman Genotyping Master Mix, 1 µl of one target CNV assay and 1 µl of RNase P reference 

assay were mixed. All qPCR reactions were run on a Life Technologies StepOnePlus machine 

with the following thermal cycling conditions: 95°C for 10 min, followed by 40 cycles of 95°C 

for 15 s and 60°C for 1 min. Samples included all suspected CNV carriers for each gene, 

regardless of case or control status, as well as four presumed two-copy controls per gene.  

Second, for a larger scale validation of deletions in 48 additional samples, we used 

Nanostring nCounter technology. For each CNV, two probes were designed and analyses were 

performed according to manufacturer instructions. In brief, a spike-in plasmid of known amount 
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was used to control for variability in DNA quantity across all samples and additional controls 

ensured optimal hybridization and purification efficiency. After hybridization and removal of 

excess probes, the probe/target complexes were aligned and immobilized in the nCounter 

Cartridge, and imaged in the nCounter Digital Analyzer for detection of CNV. In a previous 

study, we examined nCounter’s CNV calling accuracy by testing 37 known CNV in 384 samples 

and found 97% concordance in CNV calls. 

 

Results 

 

Exome-sequencing CNV demonstrate high concordance with genotyping array based CNV 

while contributing substantial numbers of novel variants  

We generated CNV calls using XHMM for 4,913 SCZ cases and 6,188 controls resulting in a 

total of 14,243 rare (present in less than 1% of individuals) and high quality (SQ ≥ 60) CNV 

(“exome QC dataset”). In a comparison to previously published work on this sample where CNV 

were generated from genotyping arrays(24) (see Supplementary Methods) we identified 78% of 

the array-based CNV in the exome QC dataset. More interestingly, 75% of the exome QC calls 

were not seen in the array-based call set at all. Individuals carried, on average, 2.2 times more 

CNV in the exome QC dataset than in the array-based call set (1.28 versus 0.59 CNV). This 

comparison is described in more detail(21). Specific to this work, 53% of exome QC CNV 

overlapped a single protein coding gene and, of those, only 12.6% were included in the previous 

work on this sample leaving 87.4% or 6,622 single-gene CNV to be analyzed for the first time 

here. 
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Significant burden of exome-sequencing based CNV in SCZ including among single-gene 

CNV 

We first assessed the burden of all CNV in the exome QC dataset to SCZ. Utilizing empirical 

permutation of case/control label (see Methods) we identified a significant increase in the 

numbers of deletions (case rate: 0.56, control rate: 0.51, p = 0.0004) and duplications (case rate: 

0.78, control rate: 0.72, p = 0.0006) in SCZ cases compared to controls as seen previously in this 

sample(24). To identify the contribution of the novel CNV in our exome QC dataset, we 

performed the same burden test using only CNV new to this analysis and not previously called 

by arrays in previous work. Here, we again saw significant burden in cases for both deletions 

(case rate: 0.48, control rate: 0.45, p = 0.0114) and duplications (case rate: 0.56, control rate: 

0.51, p = 0.0003). The exome QC CNV are substantially shorter and therefore more likely to 

affect only a single gene. We tested whether burden of CNV was primarily driven by larger 

events affecting multiple genes or if single-gene CNV were contributing. We identified a 

significant but modest burden specific to single-gene deletions (case rate: 0.36, control rate: 0.34, 

p = 0.0395) and duplications (case rate: 0.34, control rate: 0.32, p = 0.0332) in SCZ cases 

compared to controls which was not as significant as the larger events (Figure 1, Table 1).   

 

Expanding the set of potential single-gene CNV and testing for excess in specific genes 

We next sought to test whether CNV could implicate specific genes using both the exome QC 

dataset as well as an expanded exome dataset created to increase the proportion of shorter CNV 

which our QC filters were disproportionately removing (see Methods). Briefly, we created this 

dataset by integrating CNV calls from both XHMM and ExomeDepth(28) retaining CNV if 

detected by both methods regardless of XHMM quality scores or if detected only by XHMM at 
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our previous filtering threshold (SQ ≥ 60). In total, our “expanded exome dataset” includes an 

additional 10,600 CNV (total: 24,843) substantially increasing the proportion of shorter events. 

Individual genes were tested for excess of deletions or duplications using empirical permutation. 

After 10,000 permutations in our exome QC dataset, 21 genes were significantly enriched for 

duplications and 40 genes were significantly enriched for deletions in cases compared to controls 

after multiple test correction. However, all significant genes fell into two regions driven by 

already known large SCZ risk CNV, 16p11.2 (duplications) and 22q11.2 (deletions) leaving no 

novel genes identified (Figure 2). Finally, using our expanded exome dataset we again tested for 

enrichment of deletions and duplications in specific genes. No gene was significant after 

correction for multiple testing with the most significant genes again being driven by the larger 

16p11.2 or 22q11.2 CNV. 

 

Testing contribution of only single-gene CNV to previously implicated SCZ gene sets 

In the absence of any single novel gene being significant we sought to implicate particular 

biological pathways from those CNV affecting only single genes. Here, we again leveraged our 

expanded exome dataset but filtered out any CNV that affected more than one gene. In total, 

there were 14,091 CNV affecting only a single protein-coding gene (7,423 deletions, 6,668 

duplications), all larger CNV including those previously implicated were excluded from these 

analyses. We tested genesets previously implicated in SCZ to address whether single-gene CNV 

are contributing a significant proportion of risk, as opposed to being predominantly driven by 

larger multi-gene CNV. The sets tested included genes previously implicated directly in SCZ 

(GWAS loci(31), de novo variants(32), CNV regions(7)), synaptic function(33) (ARC, mGluR5, 

NMDAR, PSD95), calcium channels(25) (CAV2, Voltage-gated), secondary sets (FMRP 
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targets(22,25), ASD/DD/ID de novo(32), essential genes(34), constrained genes(35), RBFOX 

related genes(22) and antipsychotic targets(36)). All sets combined included 8,970 genes and 

showed significant excess in cases for deletions (p = 0.008) but not duplications (p=0.186). 

Among each gene set tested individually, none surpassed a Bonferroni corrected p-value of 0.001 

for the 44 tests performed. However, we identified nominally significant enrichment of single-

gene deletions in half (11 out of 22) of the sets (Table 2).  

 

Broad scale exploration of CNV in calcium channel genes combining both the expanded 

exome dataset and array-based calls 

Of the most significant gene sets, we selected the voltage-gated calcium channel set for a full-

scale validation since it represented an approachable number of genes to validate all overlapping 

CNV comprehensively and had significant prior supporting literature. Across the 26 genes, we 

identified 6 deletions in cases and 0 in controls from our expanded exome dataset (Figure 3). 

Since validation with an independent technology is considered the gold standard for CNV work, 

we attempted to validate these deletions using quantitative PCR (qPCR). Four of the deletions 

validated, two identical single exon deletions in CACNA2D3 did not validate (these two did not 

surpass filtering thresholds to be included in the exome QC dataset). Since we had additional 

CNV data from genotyping arrays, we wanted to validate a larger set of calcium channel 

deletions to more comprehensively catalog the contribution of deletions in these genes to risk of 

SCZ in this sample. We identified a comprehensive set of deletions across our exome plus array 

dataset (see Methods and Supplementary Methods) overlapping any voltage-gated calcium gene. 

In total, we identified 55 deletion calls in 55 different samples which we validated using 

NanoString nCounter technology (see Methods). Of these, 34 were located over three common, 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2019. ; https://doi.org/10.1101/550863doi: bioRxiv preprint 

https://doi.org/10.1101/550863
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13

intronic copy number polymorphisms (all of which validated). Of the 21-remaining rare-variant 

calls, 6 validated (see Table 3). The low validation rate is representative of our decision to take 

all CNV calls with limited evidence and not filter on confidence. Nearly all of CNV that did not 

validate were low quality calls from the genotyping arrays. Of the 6 validated deletions, 4 were 

single-gene and directly affected exons and all were seen in cases. All 4 were identified in the 

expanded exome dataset. We further validated a non-exonic deletion and a multi-gene deletion in 

controls identified from genotyping arrays. After validation, we were left with 4 single-gene 

deletions in cases and 0 in controls (p = 0.039). 

Discussion 
 

This study represents an evaluation of smaller CNV in a large SCZ sample. We found that, 

independent of larger events, deletions of single genes may contribute to schizophrenia risk 

through a number of biological pathways previously identified for SCZ.  In particular, we 

identify and validate a small number of deletions in voltage-gated calcium channels that are 

enriched in SCZ cases compared to controls. We also demonstrate the utility of exome-

sequencing to identify shorter, single-gene CNV and the potential to improve the resolution of 

those events through combining multiple methods for further study. 

The majority of contribution of CNV to SCZ to date has been in the form of large 

(>100kb) and rare CNV both in specific loci or across the genome(7). The ability to determine 

the contribution from shorter CNV has been both technologically limited by the use of 

genotyping arrays but also biologically up for debate as few single genes have been implicated in 

SCZ risk and nearly all risk increasing CNV affect many genes. Here, we point to the potential 

contribution of single-gene CNV to risk for SCZ. This contribution can be identified both 

genome-wide but also within genes having been previously implicated from other studies of 
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genetic variation including synaptic genes, genes having de novo mutations in SCZ, DD, ASD or 

ID, conserved genes and gene targets of antipsychotics. This work points to a confluence of 

evidence that these gene sets are relevant for schizophrenia biology. We did not identify any 

specific gene that was significantly associated after correction for multiple testing. Given other 

studies of rare variation in complex diseases with similar sample sizes, this is not surprising(24) 

but does suggest that combining CNV data with SNV data could improve power to implicate 

specific genes and robust approaches to combine these classes of variation are needed. 

Calcium channel genes have been implicated in psychiatric disease risk, including in SCZ 

for many years. Studies to date from the genetics of SCZ have implicated particular loci and the 

geneset as a whole. Here, we show an excess of single-gene CNV in calcium channels that 

remains after qPCR validation. Given the importance of this gene set and the relative size, we 

also performed a larger validation of deletions using a higher throughput method confirming the 

4 qPCR validated single-gene deletions in cases using a different method as well as validating 

several common CNV, one >2Mb deletion in a control and one deletion that did not overlap an 

exon in a control. Our results suggest that deleting a single calcium channel gene may be 

relevant for SCZ risk however substantially more data will be required to confirm this finding. 

We show that exome-sequencing can provide a substantial number of novel CNV that are 

not captured by genotyping arrays and are predominantly affecting only a single gene. Further, 

this work points to the existence of likely many real single-gene CNV that are filtered out by 

default filtering criteria and only by combining multiple currently existing approaches can we 

capture a reasonable set of the true calls without including too much noise. While exome-

sequencing can substantially improve resolution of CNV calling it is not without its weaknesses 

and limitations that become even clearer as CNV get smaller. Whole-genome sequencing will 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2019. ; https://doi.org/10.1101/550863doi: bioRxiv preprint 

https://doi.org/10.1101/550863
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15

offer the best resolution to confidently identify single-gene CNV but is still prohibitively 

expensive for most labs and hundreds of thousands of exome sequences currently exist, and 

many more are being generated, making CNV calling from exome-sequencing still important. 

We believe there are opportunities to improve the ability to call shorter CNV from exome-

sequencing that are more sophisticated than merging call sets from multiple approaches. 

Here, we demonstrate a potential role for single-gene deletions to contribute to SCZ risk through 

similar pathways as previously implicated. We perform a comprehensive validation of deletions 

in voltage-gated calcium channel genes and show an enrichment of these deletions in SCZ cases 

compared to controls. Finally, we demonstrate further utility for CNV generated from exome-

sequencing and the ability to improve resolution of shorter events which could improve our 

ability to identify biological causes of diseases like SCZ. 
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Figures 

 

Figure 1. Burden tests across all high confident exome-seq CNV calls (all), those not previously 

analyzed from genotyped arrays (new), those previously published (published) and only those 

CNV affecting a single protein coding gene (single-gene). Deletions are in red (left) and 

duplications are in blue (right). Significance is represented as p < 0.05 (*), p < 0.001 (**). 
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Figure 2. Gene-based Manhattan plot of duplications in blue (top) and deletions in red (bottom). 

Genes in most significant regions are labeled by known CNV in that region. 
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Figure 3. Gene model plots for each of the 4 genes and 6 deletions identified in voltage-gated 

calcium channel genes. Upper grey bars portray deletion in genomic space, below that is the 

gene model in genomic space. The bottom bars represent the exons as transcribed, red indicates 

exons that were deleted. All deletions replicated except the two shown in panel b. 
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Table 1. CNV burden results stratified by CNV type (deletions, duplications), number of genes 

affected (all, single gene or multiple genes) and whether the CNV was unique to our exome-

sequencing call set or was identified in previous array-based CNV work. Bolded p-values are 

less than 

0.05. 

  

 

 

 

 

 

 

 

 

 

 

N Case rate Control rate P N Case rate Control rate P

All 5900 0.56 0.51 0.0004 8343 0.78 0.73 0.0006

New 5101 0.48 0.45 0.0114 5925 0.56 0.51 0.0003

Previously called by genotyping arrays 799 0.08 0.06 0.0002 2418 0.23 0.21 0.1396

All 3894 0.36 0.34 0.0395 3680 0.34 0.32 0.0332

New 3530 0.33 0.31 0.0543 3092 0.29 0.27 0.0162

Previously called by genotyping arrays 364 0.03 0.03 0.1998 588 0.05 0.05 0.6180

All 1773 0.18 0.14 0.0001 4516 0.42 0.39 0.0030

New 1339 0.13 0.11 0.0174 2695 0.25 0.23 0.0076

Previously called by genotyping arrays 434 0.05 0.03 0.0001 1821 0.17 0.16 0.0756

Multiple genes

DuplicationsDeletions

All

Single gene

Group Set N genes P del P  dup

PGC2 SCZ 108 loci 329 0.4199 0.7021

SCZ de novo LoF 87 0.0296 0.09109

SCZ de novo NS 611 0.2761 0.9024

PGC2 16 CNV 175 0.005499 0.9989

PGC2 16 CNV (deletions) 78 0.2594 0.9289

PGC2 16 CNV (duplications) 111 0.007699 0.579

ARC 28 1 0.3543

mGluR5 39 0.2425 0.8117

NMDAR_network 61 0.0335 0.8099

PSD-95_(core) 65 0.06969 0.8984

CAV2 206 0.0347 0.4065

CAV2 Ion 44 0.1738 0.2395

Voltage-gated_Calcium_Channel_Genes 26 0.008199 0.2792

FMRP-targets 788 0.0205 0.5018

ASD de novo 1080 0.05209 0.4664

DD de novo 1271 0.0161 0.966

ID de novo 350 0.08979 0.5774

Antipsychotic targets 347 0.0268 0.9338

Essential genes 3915 0.06219 0.1975

Rbfox 2737 0.005799 0.2056

LoF intolerant (pLI > 0.9) 3488 0.0163 0.243

SCZ sets

Synaptic Sets

Calcium Channel Sets

Single gene CNV

Secondary Sets
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Table 2. Geneset CNV results for single-gene CNV in expanded dataset. Bold represents 

path

ways 

with 

p-

valu

e < 

0.05. 

 

 

 

 

 

 

Table 3. List of all rare deletions overlapping the 26 voltage-gated calcium channel genes that 

validated including one that did not overlap an exon and one that was not single-gene. Four of 

the 6 single-gene deletions identified in the geneset analyses and in figure 3 validated 

(CACNA2D3 did not). 

 

 

  

Status Chr Start Stop Size (bp) Gene Single-gene? Exonic? 

case 9 140866027 141004005 137978 CACNA1B yes yes 

case 9 140846726 141016451 169725 CACNA1B yes yes 

case 12 1949932 1965357 15425 CACNA2D4 yes yes 

case 22 36960396 36960935 539 CACNG2 yes yes 

control 3 54262746 54316431 53685 CACNA2D3 yes no 

control 7 79818265 82072777 2254512 CACNA2D1 no yes 
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