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ABSTRACT2

White matter hyperintensities (WMH) appear as regions of abnormally high signal intensity3
on T2-weighted magnetic resonance image (MRI) sequences. In particular, WMH have been4
noteworthy in age-related neuroscience for being a crucial biomarker for all types of dementia5
and brain aging processes. The automatic WMH segmentation is challenging because of their6
variable intensity range, size and shape. U-Net tackles this problem through the dense prediction7
and has shown competitive performances not only on WMH segmentation/detection but also8
on varied image segmentation tasks. However, its network architecture is highly complex. In9
this study, we propose the use of Saliency U-Net and irregularity age map (IAM) to decrease10
the U-Net architectural complexity without performance loss. We trained Saliency U-Net using11
both: a T2-FLAIR MRI sequence and its correspondent IAM. Since IAM guides locating image12
intensity irregularities, in which WMH are possibly included, in the MRI slice, Saliency U-Net13
performs better than the original U-Net trained only using T2-FLAIR. The best performance was14
achieved with fewer parameters and shorter training time. Moreover, the application of dilated15
convolution enhanced Saliency U-Net by recognising the shape of large WMH more accurately16
through multi-scale context learning. This network named Dilated Saliency U-Net improved Dice17
coefficient score to 0.5588 which was the best score among our experimental models, and18
recorded a relatively good sensitivity of 0.4747 with the shortest training time and the least19
number of parameters. In conclusion, based on our experimental results, incorporating IAM20
through Dilated Saliency U-Net resulted an appropriate approach for WMH segmentation.21

Keywords: White matter hyperintensities, Irregularity age map, Saliency U-Net, MRI, Segmentation, generative adversarial networks,22
deep learning23

1 INTRODUCTION

White matter hyperintensities (WMH) are commonly identified as signal abnormalities with intensities24
higher than other normal regions on the T2-FLAIR magnetic resonance imaging (MRI) sequence. WMH25
have clinical importance in the study and monitoring of Alzheimer’s disease (AD) and dementia progression26
(Gootjes et al., 2004). Higher volume of WMH has been found in brains of AD patients compared to age-27
matched controls, and the degree of WMH has been reported more severe for senile onset AD patients than28
presenile onset AD patients (Scheltens et al., 1992). Furthermore, WMH volume generally increases with29
the advance of age (Raz et al., 2012; Jagust et al., 2008). Due to their clinical importance, various machine30
learning approaches have been implemented for the automatic WMH segmentation (Admiraal-Behloul31
et al., 2005; Bowles et al., 2017).32

Limited One-Time Sampling Irregularity Map (LOTS-IM) is an unsupervised algorithm for detecting33
tissue irregularities, that successfully has been applied for segmenting WMH on brain T2-FLAIR images34
(Rachmadi et al., 2019). Without any ground-truth segmentation, this algorithm produces a map which35
describes how much each voxel is irregular compared with an overall area. This map is usually called36
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“irregularity map” (IM) or “irregularity age map” (IAM). The concept of this map was firstly suggested in37
the field of computer graphics to calculate pixel-wise “age” values indicating how weathered/damaged38
each pixel is compared to the overall texture pattern of an image (Bellini et al., 2016). Rachmadi et al. then39
proposed a similar approach to calculate the irregularity level of WMH with respect to the “normal” tissue40
in T2-FLAIR brain MRI (Rachmadi et al., 2017, 2018b). As WMH highlight irregular intensities on T2-41
FLAIR MRI slices, IAM can be also used for WMH segmentation. Although performing better than some42
conventional machine learning algorithms, LOTS-IM still underperforms compared to state-of-the-art deep43
neural networks. This is mainly because IAM essentially indicates irregular regions, including artefacts,44
other pathological features and some grey matter regions, in addition to WMH. However, considering IAM45
depicts irregularities quite accurately and can be generated without a training process, we propose to use46
IAM as an auxiliary guidance map of WMH location for WMH segmentation.47

Recently, the introduction of deep neural networks, the state-of-art machine learning approach, has48
remarkably increased performances of image segmentation and object detection tasks. Deep neural networks49
outperform conventional machine learning approaches in bio-medical imaging tasks as well as general50
image processing. For example, Ciresan et al. built a pixel-wise classification scheme that uses deep neural51
networks to identify neuronal membranes on electron microscope (EM) images (Ciresan et al., 2012).52
In another study, Ronneberger et al. proposed a new deep neural network architecture called U-Net for53
segmenting neuronal structures on EM images (Ronneberger et al., 2015).54

In medical images’ segmentation tasks, U-Net architecture and its modified versions have been massively55
popular due to the end-to-end segmentation architecture and high performance. For instance, a U-Net-based56
fully convolutional network was proposed to automatically detect and segment brain tumors using multi-57
modal MRI data (Dong et al., 2017). A 3D U-Net for segmenting the kidney structure in volumetric images58
produced good quality 3D segmentation results (Çiçek et al., 2016). UResNet, which is a combination59
of U-Net and a residual network, was proposed to differentiate WMH from stroke lesions (Guerrero60
et al., 2018). Zhang et al. trained a randomly initialised U-Net for WMH segmentation and improved the61
segmentation accuracy by post-processing the network’s results (Zhang et al., 2018b).62

While there have been many studies showing that U-Net performs well in image segmentation, it has one63
shortcoming that is long training time due to its high complexity (Briot et al., 2018; Zhang et al., 2018a). To64
ameliorate this problem, Karargyros et al. suggested the application of regional maps as an additional input,65
for segmenting anomalies on CT images, and named their architecture Saliency U-Net (Karargyros and66
Syeda-Mahmood, 2018). They pointed out that extraction of relevant features from images unnecessarily67
demands very complex deep neural network architectures. Thus, despite neural networks architecture68
with large number of layers being able to extract more appropriate features from raw image data, it often69
accompanies a long training time and causes overfitting. Saliency U-Net has regional maps and raw images70
as inputs, and separately learns features from each data. The additional features from regional maps add71
spatial information to the Saliency U-Net, which successfully delineates anomalies better than the original72
U-Net with less number of parameters (Karargyros and Syeda-Mahmood, 2018).73

Another way to improve the segmentation performance of deep neural networks is through the74
recognition of the multi-scale context image information. Multi-scale learning is important particularly75
for detection/segmentation of objects with variable sizes and shapes. A dilated convolution layer was76
proposed to make deep neural networks learn multi-scale context better (Yu et al., 2017). Using dilated77
convolution layers, an architecture can learn larger receptive fields without significant increase in the78
number of parameters. Previous studies have reported improvements using dilated convolution layers in79
medical image processing tasks (Lopez and Ventura, 2017; Moeskops et al., 2017).80

In this paper, we propose to use IAM as an additional input data to train a U-Net neural network81
architecture for WMH segmentation, owed to the fact that LOTS-IM can easily produce IAM without the82
need for training using manually marked WMH ground-truth data. U-Net architecture is selected as a base83
model for our experiments as it has shown the best learning performance using IAM (Rachmadi et al.,84
2018a). To address the incorporation of IAM to U-Net for WMH segmentation, we propose feed-forwarding85
IAM as regional map to a Saliency U-Net architecture. We also propose combining Saliency U-Net with86
dilated convolution to learn multi-scale context from both T2-FLAIR MRI and IAM data, in a scheme we87
name Dilated Saliency U-Net. We compare the original U-Net’s performance with the performances of88
Saliency U-Net and Dilated Saliency U-Net on WMH segmentation.89

Consequently, the contributions of our work can be summarised as follows:90
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• Proposing the use of IAM as an auxiliary input for WMH segmentation. T2-FLAIR MRI and IAM91
complement each other when they both are used as input to the neural network, addressing challenging92
cases especially those with few small WMH.93

• Integration of Saliency U-Net and dilated convolution for WMH segmentation; which showed more94
detailed boundary delineation of large WMH. It also attained the best Dice coefficient score compared95
to our other experimental models.96

2 MATERIALS AND METHODS

2.1 Dataset97

MRI can produce different types of images to display normal tissues and different types of clinical98
abnormalities. It is desirable to choose suitable image types considering the properties of biomarkers or99
diseases targeted in the segmentation task. T2-weighted is one of the MRI sequences that emphasises fluids100
as bright intensities. The bright intensity of fluids makes WMH difficult to identify in this MRI modality101
because WMH are also bright on T2-weighted. T2-fluid attenuated inversion recovery (T2-FLAIR) removes102
cerebrospinal fluid (CSF) signal from the T2-weighted sequence, increasing the contrast between WMH103
and other brain tissues. Therefore, we have chosen T2-FLAIR MRI as the main source of image data for104
our experiments.105

We obtained T2-FLAIR MRI sequences from the public dataset the Alzheimer’s Disease Neuroimaging106
Initiative (ADNI)1 which was initially launched by Mueller et al. (Mueller et al., 2005). This study has107
mainly aimed to examine combinations of biomarkers, MRI sequences, positron emission tomography108
(PET) and clinical-neuropsychological assessments in order to diagnose the progression of mild cognitive109
impairment (MCI) and early AD. From the whole ADNI database, we randomly selected 60 MRI scans110
collected for three consecutive years from 20 subjects with different degrees of cognitive impairment in111
order to evaluate the applicability of our proposed scheme not only for cross-sectional studies but also for112
longitudinal analyses of WMH. Each MRI scan has dimensions of 256 × 256 × 35. We describe how train113
and test dataset are composed in Section 2.8.114

Ground truth masks were semi-automatically produced by an experienced image analyst using a115
thresholding algorithm combined with region-growing in the Object Extractor tool of AnalyzeTM software.116
This semi-automatic WMH segmentation used the T2-FLAIR images. Intracranial volume (ICV) and CSF117
masks were generated automatically using optiBET (Lutkenhoff et al., 2014), and a multispectral algorithm118
developed in-house (Hernández et al., 2015) respectively. Full details and binary WMH reference masks119
can be downloaded from the University of Edinburgh DataShare repository2.120

2.2 Irregularity Age Map (IAM)121

As described in Section 1, the concept of IAM was proposed with the development of the LOTS-IM122
algorithm and its application to the task of WMH segmentation (Rachmadi et al., 2017, 2018b, 2019). This123
algorithm was inspired by the concept of “age map” proposed by Bellini and colleagues while calculating124
the level of weathering or damage of pixels compared to the overall texture pattern on natural images125
(Bellini et al., 2016). Rachmadi et al. adopted this principle to compute the degree of irregularity in brain126
tissue from T2-FLAIR MRI.127

In this study, the GPU-powered LOTS-IM algorithm (Rachmadi et al., 2019)3 was used to generate IAM128
from all scans. The steps of the LOTS-IM algorithm are as follows. Source and target patches are extracted129
from the MRI slices with four different sizes (i.e., 1 × 1, 2 × 2, 4 × 4 and 8 × 8) to capture different130
details in the brain tissues (Rachmadi et al., 2017). All grid fragments consisting of n× n sized patches are131
regarded as source patches. On the other hand, target patches are picked at random locations within the132
brain. Thus, non-brain target patches, located within the CSF mask or outside the ICV mask, are excluded133
from computation. Then, the difference between each source patch and one target patch on the same slice134

1 http://adni.loni.usc.edu/
2 https://datashare.is.ed.ac.uk/handle/10283/2214
3 https://github.com/febrianrachmadi/lots-iam-gpu
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Figure 1. Flow chart illustrating the LOTS-IM algorithm proposed by Rachmadi and colleagues (Rachmadi
et al., 2019) applied to WMH segmentation. This study uses the final map generated by this algorithm, and
refers to it as “IAM data”.

is calculated by Eq 1;135

difference = θ · |max(s− t)|+ (1− θ) · |mean(s− t)| (1)

where s and t mean source patch and target patch respectively, also θ was set to 0.5 (Rachmadi et al.,136
2018b). After difference values between a source patch and all target patches are calculated, the 100 largest137
difference values are averaged to become the age value of the corresponding source patch (Rachmadi et al.,138
2017). The rationale is that the average of the 100 largest difference values produced by an “irregular”139
source patch is still comparably higher than the one produced by a “normal” source patch (Rachmadi et al.,140
2017, 2018b). Furthermore, the age value is computed only for source patches within the brain to reduce141
the computational complexity. All age maps from four different patch sizes are, then, normalised to have142
normalised age values between 0 and 1; and each of them is up-sampled into its original image size and143
smoothed by a Gaussian filter. The final age map is produced by blending these four age maps using the Eq144
2;145

Final age map = α · AM1 + β · AM2 + γ · AM4 + δ · AM8 (2)

where AMx means the age map of x× x sized patches and α + β + γ + δ = 1. In this study, α = 0.65,146
β = 0.2, γ = 0.1 and δ = 0.05 (Rachmadi et al., 2019). Finally, the final age map is penalised by147
multiplying the original T2-FLAIR image slice to reflect only the high intensities of WMH, and globally148
normalised from 0 to 1 over all brain slices. The overall steps are schematically illustrated in Figure 1.149

Though regarded as WMH segmentation map in the original studies, IAM essentially calculates the150
probability of each voxel to constitute an irregularity of the “normal” tissue. This irregular pattern includes151
not only WMH but more features such as artefacts, T2-FLAIR hyperintensities of other nature, as well152
as sections of the cortex that could be hyperintense. To compensate these flaws and take advantage of its153
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Figure 2. Examples of dilated convolution filter with 3× 3 size. (a) Dilation factor = 1, (b) Dilation factor
= 2 and (c) Dilation factor = 3.

usefulness, we developed a new scheme that uses IAM as an auxiliary guidance map for training deep154
neural networks rather than using it for producing the final WMH segmentation.155

2.3 U-Net156

Since U-Net architecture was firstly presented (Ronneberger et al., 2015), various image segmentation157
studies have used this architecture due to its competitive performance regardless of the targeted object types.158
Different to the natural image segmentation, bio-medical image segmentation involves a more challenging159
circumstance as lack of data for the training process is a common problem. U-Net deals with this challenge160
with dense prediction of the input image using up-sampling layers that produce equal-sized input and161
output. This approach was drew by fully convolutional networks (Long et al., 2015).162

U-Net is comprised of two parts, the encoding part where feature maps are down-sampled by max-pooling163
layers and the decoding part where the reduced size of feature maps are up-sampled to the original size. It164
retains the localisation accuracy with the contracting path, which concatenates the feature maps stored in165
the encoding part with the decoding part. These kept high resolution features help to restore the details of166
localisation removed by max-pooling layer, when the feature maps are up-sampled in the decoding part.167
The architecture is depicted in Figure 3 (a).168

A drawback of U-Net is its large number of parameters. To restore the high resolution localisation, the169
network should increase the number of feature channels in the decoding part. Training time and memory170
usage are proportional to the number of parameters. So training a U-Net architecture is constrained by its171
high consumption of time and memory. Moreover, the complexity of the (neural) network often induces the172
problem of overfitting.173

2.4 Saliency U-Net174

Saliency U-Net was first introduced to detect anomalies in medical images using a combination of raw175
(medical) images and simple regional maps (Karargyros and Syeda-Mahmood, 2018). Saliency U-Net176
performed better than U-Net while using less number of parameters. An architecture with less number of177
parameters is preferable as it is easier and faster to be trained. Karargyros and Syeda-Mahmood showed178
that convolution layers are not needed to extract more relevant features from raw images if auxiliary179
information from regional map is given as input. The Saliency U-Net architecture has two branches of180
layers in the encoding part (Figure 3 (b)). Each branch extracts features from raw image and regional map181
independently, and the extracted features are fused before the decoding part.182

Segmentation results from Saliency U-Net in the original study (Karargyros and Syeda-Mahmood, 2018)183
showed more precise localisation and better performance than the original U-Net, which contained a larger184
number of convolutional layers. Therefore, for WMH segmentation, we propose to use Saliency U-Net185
taking T2-FLAIR as raw input image and IAM as regional map.186

2.5 Dilated Convolution187

One common issue for image segmentation via deep neural networks is caused by the reduced size of188
the feature maps in the pooling layer introduced to capture global contextual information. While pooling189
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layers are useful to get rid of some redundancies in feature maps, the lower size of feature maps after the190
last pooling layer also causes loses of some of its original details/information, decreasing the segmentation191
performance where the targeted regions are not spatially prevalent(Hamaguchi et al., 2018; Yu et al., 2017).192

Dilated convolution solved this problem by calculating a convolution over a larger region without reducing193
the resolution (Yu and Koltun, 2015). The dilated convolution layer enlarges a receptive field including k194
skips between each input pixel. k is called dilation factor. In numerical form, a dilated convolution layer195
with a dilation factor k and a n× n filter is formulated as follows:196

F (r, c) =
i=n∑
i=−n

j=n∑
j=−n

W (i, j)I(r + ki, c+ kj) (3)

Figure 2 (a)-(c) show examples of dilated convolution filters with dilation factors 1 to 3.197

The additional advantage of dilated convolution is to widen the receptive field without increasing the198
number of parameters. Large receptive fields learn the global context by covering a wider area over the199
input feature map, but bring a memory leak and time consumption out for a growing number of parameters.200
Dilation can expand the receptive field of the convolution layer as much as skipped pixels without extra201
parameters. For instance, as shown in Figure 2 (a) and (c), the filter with dilation factor 3 has 7× 7 sized202
receptive field, while the filter with dilation factor 1 has 3× 3 sized receptive field.203

In this study, we propose the incorporation of dilated convolution to Saliency U-Net for WMH204
segmentation. Since the size of WMH is variable, it is necessary to recognise different sizes of spatial205
contexts for more accurate delineation of WMH. We believe that dilated convolutions can manage the206
variable size of WMH from different sizes of receptive field.207

2.6 Our Experimental Models208

We examined three different U-Net models for which its original architecture was trained using input209
data with different modalities: T2-FLAIR (model 1), IAM (model 2) and both (model 3). To feed both210
T2-FLAIR and IAM together, we integrated T2-FLAIR and IAM as a two-channel input. As mentioned in211
Section 2.3, U-Net architecture has encoding and decoding parts. In the encoding part, input images or212
feature maps are down-sampled by max-pooling layers to obtain relevant features for WMH segmentation.213
Then, in the decoding part, reduced feature maps are up-sampled again by up-sampling layers to acquire214
the original size in the final segmentation map. Max-pooling and Up-sampling layers are followed by two215
CONV blocks (yellow blocks in Figure 3). The CONV block contains a convolution layer, an activation216
layer and a batch normalisation layer. Batch normalisation allows to train neural networks with less careful217
initialisation and higher learning rate by performing normalisation at every batch (Ioffe and Szegedy, 2015).218
All activation layers except the last one are ReLU (Nair and Hinton, 2010), but the last activation layer219
calculates the categorical cross-entropy to yield a probability map for each label.220

In addition, we trained Saliency U-Net and Dilated Saliency U-Net by feed forwarding both T2-FLAIR221
and IAM separately. In this way, we assume that IAM works as a simple regional map which provides222
localisation information of WMH rather than just being a different image channel. While the U-Net223
architecture has one branch of the encoding part, Saliency U-Net encoding part consists of two branches224
that learn raw images and regional maps individually. Furthermore, we applied dilation factors of 1, 2, 4225
and 2 to the first four convolutional layers of Saliency U-Net to form the Dilated Saliency U-Net. The226
architectures of U-Net, Saliency U-Net and Dilated Saliency U-Net can be seen in Figure 3.227

Performance of these models are compared to each other in Section 3. We additionally conducted228
experiments on the original U-Net models trained only with T2-FLAIR and only with IAM in order to see229
how using both T2-FLAIR and IAM as inputs affects learning WMH segmentation. Our five experimental230
models are listed in Table 1.231

2.7 Preprocessing232

In machine learning, data preprocessing is needed to standardise the data into a comparable range. It is233
especially important when we deal with MRI data whose intensity is not in a fixed range. Differences in234
the intensity range are caused by differences in MRI acquisition protocols, scanner models, calibration235
settings, etc. (Shah et al., 2011).236
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Figure 3. Architecture of three different networks used in this study. (a) the original U-Net, (b) Saliency U-
Net and (c) Dilated Saliency U-Net. Three numbers of CONV block (yellow block) represents filter size×
filter size× filter channels. For the Dilated Saliency U-Net model, red numbers mean a dilation factor
for the convolution layer in each CONV block.

Figure 4. (a) Raw T2-FLAIR image, (b) T2-FLAIR input after preprocessing and normalisation, (c)
Ground truth data with three labels. Blue region is non-brain area, green region is non-WMH brain tissues
and red region is WMH.
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For this reason, we normalised the intensity of the brain tissue voxels in our train and test data. The237
image intensity of the majority of non-brain tissue voxels of an MRI slice is zero or near-zero, although238
few non-brain voxels can have peak intensity values above the intensity range of the brain tissue. Thus239
normalising intensities from all voxels together can bias the intensity values towards zero and reduce the240
effect of WMH on brain tissue voxels. Brain tissue voxels were filtered using CSF and the intracranial241
volume (ICV) masks as follows:242

Brain T issue Region = MRI scan ∩ ( ¬ CSF ∩ ICV ) (4)

We normalised the brain tissue voxels on each slice into a distribution with zero-mean and unit variance by243
subtracting the mean value from each voxel value and dividing the result by the standard deviation.244

Although WMH segmentation can be regarded as the binary classification of voxels, we re-labelled the245
ground-truth data assigning voxels one of the three following labels: non-brain, non-WMH brain tissue and246
WMH. However, when evaluating the segmentation results, we considered both non-brain and non-WMH247
brain tissue labels as non-WMH labels to calculate sensitivity and Dice similarity coefficient which are248
metrics for the binary classification. Figure 4 shows the example of a T2-FLAIR slice, the same slice after249
preprocessing and normalisation, and the ground-truth slice.250

2.8 Training and Testing Setup251

For training, 30 MRI scans of the ADNI dataset described in Section 2.1 were randomly selected. These252
30 MRI scans were collected from 10 subjects for three consecutive years. We trained our networks with253
image patches generated from these MRI scans, not slices, to increase the amount of training data. If we254
train our models using slice images, the amount of training data is only 35× 30 = 1050 slices, which is255
not ideal for training a deep neural network architecture. Instead, by extracting 64× 64 sized patches from256
each image slice, we could have 30,000 patches for training data.257

For testing, we used the rest 30 scans of the ADNI sample, which are not used during training. These258
scans were also obtained from another 10 subjects for three consecutive years. The testing dataset was259
comprised of image slices without patch extraction. Slice image data is necessary to analyse the results260
from our models according to the distributions or volumes of WMH. Our testing dataset holds 1050 of261
256× 256 image slices in total as each scan contains 35 slices.262

All experimental models were trained using the same network configuration. We set learning rate to 1e−5263
and batch size to 16. As an optimisation method, we selected the Adam optimisation algorithm (Kingma264
and Ba, 2014), although the original U-Net scheme used the stochastic gradient descent (SGD) optimiser.265
This is because the Adam optimiser can handle sparse gradients. It is highly possible that our training data266
produce sparse gradients as non-brain voxels, which are the majority, have zero intensity. We applied the267
Adam optimiser accordingly, considering this data property.268

3 RESULTS

In this section, we present how experiments were conducted, and analyse and compare the experimental269
results.270

3.1 Evaluation Metrics271

We use sensitivity, positive predictive value (PPV) and Dice similarity coefficient (DSC) to evaluate the272
models. Sensitivity measures the rate of true positives as below:273

Sensitivity =
TP

TP + FN
(5)

where TP means true positive, and FN means false negative. PPV also measures the rate of true positives274
but from the total of positive calls like below:275

PPV =
TP

TP + FP
(6)

where FP refers to false positive. DSC is a statistic method to compare the similarity between two samples276
of discrete values (Dice, 1945). It is one of the most common evaluation metrics in image segmentation.277
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The formula is as follow:278

DSC =
2TP

2TP + FP + FN
(7)

where TP and FN are as per Equation 5 and FP means false positive. DSC is interpreted as the overlapping279
ratio to the whole area of prediction and target objects, while sensitivity measures the correctly predicted280
region of the target object. If the prediction includes not only true positives but also wrong segmentation281
results (false positives), the DSC score can be low despite the high sensitivity.282

3.2 The Effects of IAM as an Auxiliary Input Data283

Table 1 shows overall performances of our five experimental models. The adoption of IAM as an auxiliary284
input data for U-Net (i.e., U-Net(F+I)) improved sensitivity to 0.4902 but had lower DSC score than the285
model that used only the T2-FLAIR image as input. On the other hand, Saliency U-Net(F+I) improved the286
DSC scores achieved by U-Net to 0.5535 while Dilated Saliency U-Net(F+I) achieved the best DSC score287
of 0.5588. Dilated Saliency U-Net(F+I) yielded the second best sensitivity rate after U-Net trained with288
T2-FLAIR and IAM (i.e., U-Net(F+I)). U-Net(IAM) achieved the best PPV value of our five models and289
Dilated Saliency U-Net(F+I) achieved the second highest value of PPV. From these results, we can see that290
the three models trained with T2-FLAIR and IAM particularly increased the sensitivity performance of the291
network architectures.292

Saliency and Dilated Saliency U-Net included considerably less parameters than the three U-Net models.293
As shown in Table 1, Saliency and Dilated Saliency U-Net have more than three times less parameters and294
slightly shorter training time than the original U-Net while having better if not similar performance on295
WMH segmentation.296

With regards to training time, although feeding both T2-FLAIR and IAM together into U-Net involved the297
calculation of more parameters due to the two-channel input, the training time for this model was shorter298
than that of U-Net(FLAIR) and U-Net(IAM). In deep learning studies, visual attention, which gives larger299
weight on the region of interest, speeds up learning by leading the model to concentrate on the relevant300
regions. This has been experimentally demonstrated in previous studies (Najibi et al., 2018; Choi et al.,301
2017). In our case, IAM confers the visual attention effect to the network architecture. Despite having fewer302
parameters, Saliency U-Net took longer time to train than U-Net(F+I). Feed-forward and back-propagation303
proceed separately in each encoding part. Dilated Saliency U-Net significantly decreased the training304
time compared to the other models by skipping voxels that reduce the computational complexity, when305
calculating the convolution.306

Model DSC Sensitivity PPV Training Time # Parameters
U-Net(FLAIR) 0.5440 0.4594 0.6275 1h 52m 55s 7,859,715
U-Net(IAM) 0.5274 0.4179 0.6769 1h 53m 52s 7,859,715
U-Net(F+I) 0.5281 0.4902 0.6268 1h 24m 22s 7,861,315
Saliency U-Net(F+I) 0.5535 0.4730 0.6034 1h 30m 1s 2,756,803
Dilated Saliency U-Net(F+I) 0.5588 0.4747 0.6374 1h 4m 18s 2,623,683

Table 1. Dice Similarity Coefficient (DSC), sensitivity, positive predictive value (PPV), training time and
number of parameters for our five experimental models. Values in bold are the highest scores and in italic
the second highest. In the brackets after the model names, the input data type is specified. “FLAIR” is
equivalent to T2-FLAIR and “F+I” refers to taking both T2-FLAIR and IAM as input.

Figure 5 presents training and validation losses for our five models. Same colour lines correspond to the307
same model. Solid and dashed lines represent training loss and validation loss each. For all models, both308
training and validation losses properly converged. Thus, our models are not overfitted on the training data.309

We also evaluated whether the median and the distribution of DSC scores throughout the testing set310
differed significantly between the five models evaluated. We conducted two tests: 1) the Wilcoxon ranksum,311
as implemented by the function ranksum in MATLAB, to evaluate whether the medians of the DSC312
scores from each model across the testing dataset were significantly different between each other; and 2)313
the Kruskal-Wallis test, as implemented by the MATLAB function kruskalwallis, to evaluate whether314
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Figure 5. Loss graph of our five models. While solid lines indicate training loss, dashed lines represent
validation loss.

the distributions of these DSC values were statistically significantly different between the models. Neither315
the medians nor the DSC distributions obtained by these five models significantly differed. The result of the316
Kruskal-Wallis test is shown in Table 2. The p-value obtained from the ANalysis Of VAriance (ANOVA)317
of the DSC distributions from the five models across all cases is 0.7786, indicating that the results of these318
five models did not differ significantly from each other in terms of the distribution of DSC across the319
testing set. This emphasises that Dilated Saliency U-Net model can produce similar level of performance320
as the original U-Net models even with less number of parameters and shorter training time. Figure 6 also321
illustrates that the DSC scores obtained from applying our models are similarly distributed to each other.322

Figure 6. Distributions of DSC score by
our five models.

Source SS df MS F-value p-value
Models 3334.7 4 833.68 1.77 0.7786

Table 2. ANOVA table for our five models. SS refers to
the sum of squares. df and MS mean degrees of freedom
and mean squares respectively.

323

Figure 7 visualises the examples of WMH segmentation results by our experimental models. In most324
cases, the use of two data sources (i.e., IAM and T2-FLAIR images) in training the network complements325
each other’s effect detecting tricky WMH regions. Depending on the contrast/size of WMH or the quality326
of IAM, there are some cases in which WMH are distinguishable on IAM but unclear in T2-FLAIR and327
vice versa. For example, if WMH clusters are too small, it is hard to differentiate them on T2-FLAIR,328
but they are better observable on IAM, where WMH and normal brain tissue regions have better contrast.329
On the other hand, in the presence of other irregular patterns such as extremely low intensities of brain330
irregularities around WMH, T2-FLAIR can indicate WMH clearly than IAM. In Figure 7 Row (a), U-331
Net(FLAIR) produced better WMH segmentation result than U-Net(IAM) due to the poor quality of IAM.332
Conversely, U-Net(FLAIR) could not detect WMH well due to unclear intensity contrast on T2-FLAIR333
while U-Net(IAM) could segment these WMH regions as IAM enhanced them as anomalies (Figure 7 Row334
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Figure 7. Examples of WMH segmentation results by our experimental models. Cyan circles indicate
WMH detected only by one of the original U-Net models, i.e. U-Net(FLAIR) or U-Net(IAM). Row (a)
shows a case where WMH is distinguishable exclusively in the T2-FLAIR image, while row (b) shows a
case where IAM highlights WMH clearly. By training networks using T2-FLAIR and IAM, both WMH
regions are detected.

(b)). Furthermore, incorporating both T2-FLAIR and IAM together as input data produced better WMH335
segmentation in general (5th-7th columns from left to right of Figure 7).336

3.3 WMH Volume analysis337

Group Range of WMH volume (mm3) # Scans
Large 10, 000 ≤WMH Vol 6
Medium 4, 000 ≤WMH Vol < 10, 000 10
Small 1 ≤WMH vol < 4, 000 14

Table 3. Criteria sorting MRI scans according to WMH voxel volume. “# Scans” means the number of
included MRI scans. Most of scans are included in Small and Medium groups.

In this experiment, we evaluate our models based on the WMH volumes of the MRI scan (i.e., WMH338
burden) to examine the influence of WMH burden on the performance of WMH segmentation. The WMH339
volume of each MRI scan is calculated by multiplying the number of WMH voxels by the voxel size. We340
grouped MRI scans into three groups according to the range of WMH volume. Table 3 shows the range of341
WMH volume used as criteria for forming the groups, and the number of scans included in each group.342
Figure 8 (a) shows the lack of ambiguity or overlap in the classification of the MRI scans in each group.343

Figure 8 (b) plots the DSC scores yielded by the MRI scans in the different WMH volume groups by344
our five experimental models. Please, note that the DSC scores referred in this section correspond to the345
evaluation of the WMH segmentation results in each MRI scan, not per slice which are used for overall346
performance evaluation in Section 3.2 Table 1. Hence scans of the Large group might have several small347
WMH rather than one large region with confluent WMH.348

All models tested in this study showed high median values of DSC scores in the Medium group, for which349
all models performed better than the other groups. In the Large group, U-Net(FLAIR) and U-Net(F+I)350
models performed similarly well, while U-Net(IAM) performed worst compared with the rest of the models.351
Mean, median and standard deviation (std.) values of DSC score distribution in each group are shown in352
Table 4. Overall, the performance of the models for scans with Small and Medium WMH burden was quite353
similar (see also Figure 8 (b) ). However, large variations in DSC scores were observed among the scans of354
the Small group, especially for the U-Net(FLAIR) model.355
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Figure 8. (a) Distributions of data (MRI scan) grouped together based on WMH volume. (b) DSC
distributions yielded by tested five models based on WMH volume. “x” and bar at the middle of box
indicate mean and median each. Bottom and top of each box mean the first and third quartile.

Model DSC Mean. DSC Median. DSC std.
Large Medium Small Large Medium Small Large Medium Small

U-Net(FLAIR) 0.6184 0.6070 0.4147 0.6987 0.6499 0.4559 0.0524 0.1076 0.1746
U-Net(IAM) 0.5168 0.5817 0.4294 0.5036 0.6080 0.4106 0.0668 0.1111 0.1455
U-Net(F+I) 0.6124 0.6025 0.4580 0.6092 0.6276 0.4400 0.0548 0.0931 0.1460
Saliency U-Net(F+I) 0.5824 0.5812 0.4299 0.5853 0.6023 0.4134 0.0377 0.0956 0.1687
DSU-Net 1224 0.5722 0.5929 0.4003 0.5814 0.6286 0.3876 0.0592 0.0965 0.1733
DSU-Net 4221 0.5711 0.5768 0.4253 0.5776 0.6152 0.4250 0.0574 0.1097 0.1640
DSU-Net 1242 0.5882 0.5852 0.4407 0.5782 0.6320 0.4498 0.0536 0.1069 0.1558

Table 4. Mean, median and standard deviation values of the distributions of DSC scores from our
experimental models per WMH volume groups. Model name DSU-Net abcd refers to Dilated Saliency
U-Net model with dilation factors a, b, c, d in order from the first to the fourth convolution layers, and its
trend of dilation factor pattern is specified in the bracket. These dilation factors are applied on convolution
layers in the encoding part (i.e., before concatenating T2-FLAIR and IAM feature maps) of the CONV
blocks, which consists of convolution, ReLU, and batch normalisation layers. These different Dilated
Saliency U-Net models are described in Section 3.6. DSU-Net 1242 was used for the Dilated Saliency
U-Net model evaluated in Section 3.3.

3.4 Longitudinal Evaluation356

In the longitudinal evaluation test, we addressed the capacity of our five models in predicting WMH in357
subsequent years after being trained only using the first year samples. Hence, the training set was formed358
by the first year samples while the testing set was composed by the second and third year samples. Table 5359
shows the mean DSC score for each sample. In this evaluation, U-Net(IAM) and Saliency U-Net performed360
slightly better than the other three models, partly owed to IAM which could provide information to predict361
WMH occurrence. As expected, all our models predicted better WMH in the second year than in the third362
year.363

3.5 U-Net vs. Saliency U-Net364

In order to evaluate the effectiveness of the Saliency U-Net architecture, we compared the original U-Net365
and Saliency U-Net models trained with T2-FLAIR and IAM. As shown in Table 1, Saliency U-Net yielded366
higher DSC score than U-Net(F+I) despite U-Net(F+I) having higher sensitivity value. Figure 9 shows367
that Saliency U-Net successfully eliminates some of the false positives observed in the segmentation result368
from U-Net(F+I).369
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Model 2nd year 3rd year
U-Net(FLAIR) 0.6136 0.5878
U-Net(IAM) 0.6270 0.6110
U-Net(F+I) 0.6229 0.5823
Saliency U-Net 0.6258 0.6119
Dilated Saliency U-Net 0.6060 0.5881

Table 5. DSC score for longitudinal evaluation of our five models. We evaluated these models using data
from both second and third years. As per Table 1, values in bold are the highest scores and in italics are the
second highest ones.

Figure 9. Comparison of WMH segmentation results from U-Net(F+I), Saliency U-Net and Dilated
Saliency U-Net. Yellow circles indicate false positive results by U-Net(F+I). These false positive results are
eliminated in the results from Saliency and Dilated Saliency U-Net. Green arrows are pointing to locations
where boundaries are segmented in more detail by Dilated Saliency U-Net.

We also investigated the change in Saliency U-Net’s performance in relation to its complexity when370
the number of convolution layers increased/decreased. DSC score, training time and model complexity371
(i.e., the number of parameters) are compared in Figure 10. The rule for changing the Saliency U-Net372
complexity is to connect/disconnect the 2 CONV blocks that are attached/detached at both ends, through373
a “skip” connection. However, since the encoder part is a two-branch architecture, 6 CONV blocks are374
included at once increasing its complexity (i.e., 4 CONV blocks are added to the encoder part and 2 CONV375
block are added to the decoder part). Similar approach is done when decreasing the complexity, where 4376
CONV blocks and 2 CONV blocks are dropped from the encoder and decoder respectively. For clarity, our377
original Saliency U-Net model (i.e., evaluated in Table 1 of Section 3.2) contains 14 CONV blocks and378
each CONV block holds one convolution layer as shown in Figure 3.379

As shown in Figure 10, adding more CONV blocks means increasing both number of parameters and380
training time significantly. Furthermore, using too many CONV blocks (i.e., Saliency U-Net with 26 CONV381
blocks) decreased the DSC score due to overfitting.382

3.6 Exploration of Dilated Saliency U-Net Architecture383

In this experiment, we applied different dilation factors in Dilated Saliency U-Net, which captures384
multi-scale context information on image slices without having to change the number of parameters. As per385
Figure 9, which visually displays the segmentation results from Saliency U-Net, the boundary delineation386
is still poor for large WMH regions. Furthermore, we also can see in the same Figure 9 that dilated387
convolutions help Saliency U-Net to reproduce the shape of WMH regions in more detail. Hence, it is388
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Figure 10. (Right) Trends of DSC score, training time and number of parameters of Saliency U-Net when
more convolution layers are changed. It is also shown Saliency U-Net with 26 CONV blocks performance
in testing (upper Right) and training (Left) decreases due to overfitting.

important to know the influence of different dilated convolution configurations in Dilated Saliency U-Net389
for WMH segmentation.390

Model Encoder DSC Sensitivity

DSU-Net 1224
(Increasing)

CONV 3× 3× 64, d = 1

0.5304 0.4395
CONV 3× 3× 64, d = 2

MaxPooling
CONV 3× 3× 128, d = 2
CONV 3× 3× 128, d = 4

MaxPooling

DSU-Net 4221
(Decreasing)

CONV 3× 3× 64, d = 4

0.5622 0.4381
CONV 3× 3× 64, d = 2

MaxPooling
CONV 3× 3× 128, d = 2
CONV 3× 3× 128, d = 1

MaxPooling

DSU-Net 1242
(Increasing

&
Decreasing)

CONV 3× 3× 64, d = 1

0.5588 0.4747
CONV 3× 3× 64, d = 2

MaxPooling
CONV 3× 3× 128, d = 4
CONV 3× 3× 128, d = 2

MaxPooling

Table 6. Encoder architecture of Dilated Saliency U-Net with different dilation factors and their
performances. Three numbers in the CONV block stans for “filter size × filter size × filter number”
and “d” means a dilation factor.

This is a provisional file, not the final typeset article 14

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 5, 2019. ; https://doi.org/10.1101/550517doi: bioRxiv preprint 

https://doi.org/10.1101/550517
http://creativecommons.org/licenses/by/4.0/


Yunhee Jeong et al. DSUNet WMH segmentation using IAM

In order to find the most appropriate dilation factors, we compared different sequences of dilation factors.391
Figure 3 (c) shows the basic Dilated Saliency U-Net architecture used in this experiment. Only four dilation392
factors in the encoding part were altered while the rest of the parameters for the training schemes stayed the393
same. Yu and Koltun suggested to use a fixed filter size for all dilated convolution layers but exponential394
dilated factors (e.g. 20, 21, 22 ...) (Yu and Koltun, 2015). Therefore, we assessed “increasing”, “decreasing”395
and “increasing & decreasing” dilation factor sequences with factor numbers of 1, 2, 2, 4 and fixed filter396
size of 3×3. Details of these configurations are presented in Table 6. From this table, we can appreciate that397
despite DSU-Net 4221 performed best in DSC score (0.5622), it recorded the lowest sensitivity score. The398
best sensitivity metric was produced by DSU-Net 1242 (0.4747), but it did not outperform DSU-Net 4221399
in DSC score.400

Additionally, we investigated the influence of dilation factors in DSC score performance per WMH401
volume of MRI scans. Evaluation was conducted on the three groups previously described in Table 3.402
Figure 11 shows that DSU-Net 1242 outperformed other models in every group. The report of mean,403
median and standard deviation of DSC score distribution in each group can be seen in Table 4.404

Figure 11. DSC score of three groups based on WMH volume in MRI scans. The group information is
described in Table 3. “x” and bar at the middle of box indicate mean and median each. Bottom and top of
each box means the first and third quartile.

4 DISCUSSION

In this study, we explored the use of IAM as an auxiliary data to train deep neural networks for WMH405
segmentation. IAM produces a probability map of each voxel to be considered a textural irregularity406
compared to other voxels considered “normal” (Rachmadi et al., 2019). While incorporating IAM as an407
auxiliary input data, we compared three deep neural network architectures to find the best architecture for408
the task, namely U-Net, Saliency U-Net and Dilated Saliency U-Net. It has been suggested that Saliency409
U-Net is adequate to learn medical image segmentation task with both a raw image and a pre-segmented410
regional map (Karargyros and Syeda-Mahmood, 2018). The original U-Net did not improve DSC score411
despite using both T2-FLAIR and IAM as input, but the DSC score from Saliency U-Net was superior to412
that from the original U-Net trained only with T2-FLAIR. This is because Saliency U-Net is able to learn413
the joint encoding of two different distributions: i.e. from T2-FLAIR and IAM. Saliency U-Net generated414
better results than U-Net despite having less parameters. We also found that Saliency U-Net had lower415
false positive rate compared to U-Net.416
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Dilated convolution can learn spatially multi-scale context by expanding the receptive field without417
increasing the number of parameters. We added dilation factors to the convolution layers in the encoding418
block of Saliency U-Net to improve WMH segmentation, especially due to the high variability in the WMH419
size. This new model is named “Dilated Saliency U-Net”. Dilated convolution improved both DSC score420
and sensitivity with shorter training time. Dilated Saliency U-Net also yielded more accurate results in the421
presence of large WMH volumes and worked well in Medium and Small WMH volume MRI data groups422
which are more challenging. We identified that dilated convolution is effective when dilation factors are423
increased and decreased sequentially.424

To our knowledge, this is the first attempt of successfully combining dilation, saliency and U-Net. We425
could reduce the complexity of a deep neural network architecture while increasing its performance through426
the integrated techniques and the use of IAM. Due to the trade-off between performance and training time,427
which is proportional to the model complexity, it is crucial to develop less complex convolutional neural428
network (CNN) architectures without decreasing their performance.429

Anomaly detection in the medical imaging field has been broadly studied (Quellec et al., 2016; Schlegl430
et al., 2017). One of its difficulties relies on the inconsistent shape and intensity of these anomalies.431
IAM helped the CNN scheme to overcome this problem by providing the localisation and morphological432
information of irregular regions. We believe it is possible to generate IAM from different modalities of433
medical images. Thus, the application of IAM is highly expandable to detect different imaging bio-markers434
involving abnormal intensity values in other diseases.435
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