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Abstract Microbial cells need to adapt to changing environmental conditions
to survive. There is an evolutionary advantage to grow fast; this requires high
metabolic rates, and an efficient allocation of enzymatic resources. Here we
study a general control theory called qORAC, developed previously, which
allows cells to adaptively control their enzyme allocations to achieve maximal
steady state flux. The control is robust to perturbations in the environment,
but those perturbations themselves do not feature in the control. In this pa-
per we focus on the archetypical pathway, the linear chain with reversible
Michaelis-Menten kinetics, together with qORAC control. First we assume
that the metabolic pathway is in quasi-steady state with respect to enzyme
synthesis. Then we show that the map between steady state metabolite and
enzyme concentrations is a smooth bijection. Using this information, we finally
show that the unique (and hence flux-maximising) steady state of this system
is locally stable. We provide further evidence that it may in fact be globally
stable.

Mathematics Subject Classification (2010) 34H15 · 37N25 · 93D21 ·
93D25 · 92C42

1 Introduction

Microbes live in ever-changing environments to which they need to adapt in
order to survive. If conditions are favourable, cells grow as fast as resources
allow them to (Schaechter et al. 2006). Depending on the environmental con-
ditions, cells use different metabolic networks to synthesise the components
they are made of, using different sets of enzymes to catalyse the individual
reactions in these networks. But even when the identity of the enzymes does
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not change, different resource availabilities, such as high or low concentrations
of a food source, force cells to adapt the levels of the relevant enzymes. It is
becoming increasingly clear that cells are indeed able to meet this challenge.
They use enzyme resources economically (Basan et al. 2015, Bosdriesz et al.
2015, Li et al. 2014, Scott et al. 2014, You et al. 2013), and tune enzyme levels
to maximise their growth rate (Dekel and Alon 2005, Jensen et al. 1995, Keren
et al. 2016).

This adaptation to different environments is particularly surprising because
many microbes do not have proteins in their membranes that would allow them
to infer directly changes in resource concentrations outside the cell. Indeed, for
microbes such as Escherichia coli and Salmonella that are able to grow on a
multitude of carbon sources, having different membrane proteins to sense the
presence of each resource would severely reduce the membrane area available
for transport proteins. Instead, these microbes must rely on internal informa-
tion about external changes. With changing external resource concentrations,
internal metabolite concentrations must be used as proxies for those changes,
for instance through metabolite-binding transcription factors influencing gene
expression (Kochanowski et al. 2013, Kotte et al. 2010).

We have recently developed a general dynamical systems theory called
qORAC, or specific flux (q) Optimisation by Robust Adaptive Control that
offers an implementation of this control problem (Planqué et al. 2018). It is
formed by adding to a given metabolic pathway with prescribed enzyme kinetic
rate laws a set of differential equations for enzyme synthesis. The details of the
implementation are postponed to Section 2. The rates of enzyme production
are constructed such that the only steady state of the combined metabolite-
enzyme dynamical system is one in which the flux per unit expended enzyme,
or “specific flux”, through the pathway is maximal. The optimal steady state
flux attained depends on the resource concentration, but this concentration is
not known in the enzyme synthesis control. Instead, the control uses an internal
metabolite concentration as ‘sensor’. Some well-known example metabolites
that act in this sensor role are Fructose-1,6-biphosphate (Kotte et al. 2014),
allolactose (Gilbert and Müller-Hill 1966), and intracellular galactose (Sellick
et al. 2008).

qORAC-control may be added to any metabolic pathway with the prop-
erty that it cannot be simplified. More precisely, this means that deleting any
one reaction from the pathway would halt the flux through the pathway. Such
metabolic networks are called Elementary Flux Modes (Schuster and Hilgetag
1994). The control is derived straight from the kinetic rate laws of the en-
zymatic reactions, and is designed to have the right steady state property of
maximal steady state flux. There is no guarantee that solutions of the coupled
dynamical system actually converge to this optimal state.

For each choice of external resource concentration the qORAC-controlled
linear chain has a unique steady state: the one in which steady state flux
through the pathway is optimal (Planqué et al. 2018). Here we show, under
a quasi-steady state (QSS) assumption that metabolic rates are much higher
than enzyme synthesis rates, that this unique steady state is also locally stable,
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and provide additional insight that it might in fact be globally stable. Proving
local stability requires us to first make an in-depth characterisation of the
quasi-steady state, before focusing on the coupling with enzyme dynamics.

The structure of this paper is follows. First we review the qORAC frame-
work for general pathways—a detailed exposition may be found in (Planqué
et al. 2018). Then we introduce the linear chain with reversible Michaelis-
Menten reactions as the focal example. We proceed by assuming that meta-
bolism is in quasi-steady state and study how metabolite concentrations in this
QSS depend on the enzyme concentrations. Then we turn to the remaining
slow enzyme dynamics and prove local stability. We finish with a discussion
on global stability by considering a number of reasonable candidate Lyapunov
functions, one of which is conjectured to be an actual Lyapunov function.

2 Maximising specific flux and the qORAC framework

We start with the following model for the dynamics of metabolite concentra-
tions. Let the vector x indicate all internal metabolite concentrations, xE the
vector of constant external metabolite concentrations, let v denote the vector
of rates or fluxes of reactions in which metabolites are interconverted by cata-
lyzing enzymes e, and let the stoichiometric matrix be denoted by N . Then
we consider as metabolic pathway the ODE system

ẋ = Nv(e,x;xE). (1)

The functions v(e,x;xE) are assumed to be known and we make the assump-
tion that each enzyme catalyzes exactly one reaction; in particular, we assume
that vj = ejfj(x;xE). Such a linear dependence on enzyme concentration
follows generally using QSSA-type analyses for enzyme-catalyzed reactions
(Cornish-Bowden 2004).

Consider a choice of enzyme concentrations e with total enzyme concentra-
tion eT =

∑
j ej such that it allows a steady state flux through the pathway.

Then, by scaling all enzyme concentrations by the same constant, a new steady
state with the same metabolite concentrations may be constructed, with a flux
exactly scaling with the same factor. In other words, the flux per unit of total
enzyme concentration, or specific flux, remains constant. The linear depend-
ence of reaction rates on enzyme concentrations also implies that maximising
the steady state flux for a given total enzyme concentration is equivalent to
minimising the total enzyme concentration necessary to attain one unit of
steady state flux. (To clarify, the analogy in which trying to buy the maximal
number of apples for 10 EUR is equivalent to trying to buy the cheapest apples
is here an exact analogy.) For the purposes of this paper, it turns out that it
is more fruitful to consider the question of maximal flux per unit total enzyme
than it is to minimize enzyme levels for one unit of flux.

It has recently been shown (Müller et al. 2014, Wortel et al. 2014) that
maximal steady state specific flux is attained in special type of pathway, called
an Elementary Flux Mode (EFM). An EFM is a pathway that has a minimal
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number of enzymes involved: it allows for a balanced flow of metabolism, but
this possibility is void if any one of its enzymes is removed from the pathway.
As a result, if the pathway is in steady state and one flux is known, then all
fluxes are determined. An EFM may hence be denoted by a fixed vectors C,
in which one flux value, for instance the target flux that is to be maximised, is
set to 1. Any other steady state flux through the EFM may be characterised
by v = cC, with c the target flux. A more in-depth description of EFMs may
be found in (Papin et al. 2004, Schuster and Hilgetag 1994, Schuster et al.
2002).

A given EFM, however, still allows many steady states: any choice of pos-
itive enzyme concentrations that take part in the EFM generally gives rise to
a corresponding vector of steady state metabolite concentrations, and the res-
ulting steady state flux is not maximal unless the enzyme allocation is chosen
exactly right.

Consider an EFM with n reactions, each with steady state rate vi = cCi =
eifi(x;xE). Then

ei =
Cic

fi(x;xE)
, (2)

where i = 1, . . . , n indexes the n enzymes, and

eT :=
n∑

i=1

ei = c
n∑

i=1

Ci

fi(x)
. (3)

So for a fixed eT , the steady state flux c is a function of only the metabolite
concentrations

c =
eT∑n

i=1
Ci

fi(x;xE)

.

Thus finding the maximum c can be reformulated as finding the vector x,
given the external conditions xE , that minimises the objective function

O(x,xE) :=

n∑
i=1

Ci

fi
. (4)

It was recently shown that for fixed external concentrations xE , the objective
function (4) has a unique minimum xo for a large class of rate laws (Noor
et al. 2016, Planqué et al. 2018).

Any minimiser xo of O(x;xE) is also the unique critical point of this
objective function, and hence solves the optimum equations

∂O

∂xk
(xo;xE) = 0. (5)

Rather than prescribing xE in (5) and calculating the remaining variables xo,
one might also prescribe some internal variables, termed sensors, xS , and solve
for all other variables (including the external concentrations). The resulting
object is called the optimum as predicted by the sensors, or predicted optimum
in short. The Implicit Function Theorem gives the requirements which internal
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metabolites may be used for this procedure. Locally, the sensors should allow
a parametrisation of the family of optima that was initially parametrised by
xE . In particular, xE and xS must have the same number of elements. The
optimum predicted by xS is denoted by ξ(xS). Clearly, if xS = xo

S , then
ξ(xo

S) = xo.
The estimated optimal enzyme distribution ε can then be computed from

ξ through the steady state equations of metabolism (2). Denoting the kinetic
functions fj as

φ =

φ1

...
φn


if they use ξ as argument rather than x, then

εj = c
1

φj
,

where c is such that the total amount of enzyme (3) is eT . Without loss of
generality, we assume eT = 1, by setting

c =
1

n∑
k=1

1
φk

.

In conclusion, based on the sensor concentration xS , the estimated optimal
enzyme distribution is

εj =

1
φj(ξ(xS))

n∑
k=1

1
φk(ξ(xS))

. (6)

We can now supply to the dynamical system for the metabolic pathway
(1) a set of differential equations for enzyme concentrations involved in the
pathway. The general structure of such equations is assumed to be

ėi = µ(εi − ei), (7)

where µεi describes the enzyme synthesis rate of enzyme i, and the degradation
term involves dilution by growth in a cell population growing at rate µ. (This
last term could have been present in (1) as well, but is neglected because
µ≪ vj in biological systems.)

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 15, 2019. ; https://doi.org/10.1101/550343doi: bioRxiv preprint 

https://doi.org/10.1101/550343
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 Gosse B. Overal, Josephus Hulshof and Robert Planqué

To summarise, the complete dynamical system for a qORAC-controlled
pathway is given by

ẋk =
∑
k

Nkieifi(x;xE),

ėi = µ (εi − ei) ,

εi =

1
φi(ξ)

n∑
k=1

φ−1
k (ξ)

(8)

and ξ is defined by
∂O

∂ξk
(ξ) = 0,

ξS(t) = xS(t).

The construction ensures that if this system converges to a steady state, it is
necessarily one with maximal steady state flux (Planqué et al. 2018). Since
the enzyme synthesis rates do not depend on xE , this pathway is robust to
changes in xE . The reason is essentially that the complete dynamical system
can only be in steady state if the sensor has the right concentration, and
therefore predicts the right optimal enzyme concentration.

It is of course far from clear that this dynamical system in fact does con-
verge to steady state. In this paper we show local stability of the steady state
for the most important and also simplest EFM, the linear chain of reversible
reactions, under the additional assumption that metabolism is at quasi-steady
state.

2.1 qORAC for the linear chain

The analysis of this paper is confined to the study of the archetypical EFM,
the linear chain with n enzymatic reactions,

e1 e2 e3 en−1 en
x0 ⇌ x1 ⇌ x2 ⇌ . . . ⇌ xn−1 ⇌ xn,

(9)

where external nutrient x0 is converted into the the external waste xn. The
stoichiometric matrix is given by

N =


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 −1

 ,

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 15, 2019. ; https://doi.org/10.1101/550343doi: bioRxiv preprint 

https://doi.org/10.1101/550343
http://creativecommons.org/licenses/by-nc-nd/4.0/


Stability of an adaptively controlled pathway maximising specific flux 7

which has a one-dimensional null space spanned by the vector

C =


1
1
...
1

 .

The rate functions are assumed to be given by standard Michaelis-Menten
kinetics, in which we choose kinetic constants as follows,

fj =
xj−1 − kjxj

ajxj−1 + bjxj + cj
, (10)

where for f1 and fn we have x0 = x0 and xn = xn.
For the remainder of this paper we assume that xn is a fixed parameter

and that the external nutrient concentration x0 may vary.

Definition 1 The nutrient concentration x0 and waste concentration xn are
positively oriented if a positive steady state flux through the linear chain is
possible, which follows exactly if

x0 >

(
n∏

i=1

ki

)
xn. (11)

Every positively oriented x0 yields a unique minimum x of O(x;x0, xn).
We denote the set of all minima for all positively oriented x0 as

Ω =
{
(x0,x) ⊂ Rn : O(x;x0, xn) is minimal

}
. (12)

We now show that in principle, any internal metabolite could be used as
a sensor in the qORAC-control. In other words, for the linear chain Ω can be
parametrised by any internal metabolite.

Lemma 2 Let xs be positively oriented with respect to xn for some 1 ≤ s ≤
n− 1. Then there is a unique

ξ =


ξ0
ξ1
...

ξn−1

 ∈ Ω

such that ξs = xs.

Proof Since xs is positively oriented, xs >
(∏n

i=s+1 ki
)
xn. Metabolite concen-

trations xs and xn are the positively oriented endpoints of a linear (sub)chain
with enzymes es+1, . . . , en, and therefore the function

Õ(ξ) =
n∑

i=s+1

1

fi(ξi−1, ξi)
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has a unique minimum for fi > 0. This minimum has ξs = xs and is the unique
solution to

∂Õ

∂ξi
= 0, s+ 1 ≤ i ≤ n− 1,

where fi > 0. For Ω, the defining equations are
∂O

∂ξi
= 0, 1 ≤ i ≤ n− 1,

where fi > 0. The first s functions f1, . . . , fs depend only on x1, . . . , xs, so the
minumum of Õ is the unique solution to the subset of defining equations for
Ω,

∂O

∂ξi
=

∂Õ

∂ξi
= 0, s+ 1 ≤ i ≤ n− 1.

Hence, any solution ξ ∈ Ω with ξs = xs has these values for ξs, . . . , ξn−1.
Note that

∂

∂ξs
O(ξ) = 0

is an equation in ξs−1, ξs and ξs+1 only, with ξs and ξs+1 already known.
With the prescribed kinetics (10), the resulting equation for ξs−1 is a quadratic
polynomial. It has two solutions, exactly one of which has fs(ξs−1, ξs) > 0.

By determining the subsequent coordinates in sequence, each time taking
the larger of the two solutions of the polynomial we need to solve, we construct
a solution to the equations

∂O

∂ξi
= 0, 1 ≤ i ≤ n− 1,

where fi > 0 ensures that there is always but one choice. Therefore this solu-
tion is unique. ⊓⊔

The implementation of (8) for the linear chain is given by,

ẋi = eifi − ei+1fi+1, for i = 1, 2, . . . , n− 1,

ėj = µ(εj − ej) for j = 1, 2, . . . , n,

fj =
xj−1 − kjxj

ajxi−1 + bjxj + cj
for j = 1, 2, . . . , n, x0 = x0 and xn = xn,

εj =

1
φj

n∑
k=1

φ−1
k

for j = 1, 2, . . . , n, (13)

φj =
ξj−1 − kjξj

ajξj−1 + bjξj + cj
for j = 1, 2, . . . , n, ξn = xn.

The sensor concentration xs(t) defines the estimated optimal steady state
metabolic concentrations ξ(t) as the unique element ξ ∈ Ω that satisfies
ξs = xs(t). Note that this includes the external nutrient x0 that is sensed
for, estimated as ξ0.
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To aid the reader, all relevant vectors are explicitly given below,

x =


x1

x2

...
xn−1

 f =


f1
f2
...
fn

 e =


e1
e2
...
en



ξ =


ξ0
ξ1
ξ2
...

ξn−1

 φ =


φ1

φ2

...
φn

 ε =


ε1
ε2
...
εn



3 Results

3.1 Timescale separation

We assume that the metabolism rates are much higher than the enzyme pro-
duction and dilution by growth rates, i.e., µ is a small parameter. Hence we
separate the timescales.

3.1.1 Fast timescale

For the fast timescale we set µ = 0 and thus consider the enzyme concentra-
tions ei to be static while the metabolism flows. The differential equations are
then given by

ẋi = eifi − ei+1fi+1,

ė = 0.

From (Smillie 1984) we know that the linear chain without enzyme dy-
namics has a unique steady state that is globally stable. Since this older result
was not known to us at the start of our investigation, we first gave a different
proof of global stability ourselves, which is supplied in the Appendix.

Thus in this timescale, the metabolite concentrations x will converge to a
unique solution, x̄(e).

3.1.2 Slow timescale

The slow timescale follows from substituting τ = µt in the original system.
Then the time derivative changes as

d

dt
= µ

d

dτ
.
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The differential equation system changes to,

µx′
i = eifi − ei+1fi+1,

µe′j = µ (εj(xs)− ej) .

Dividing out µ, we have

µx′
i = eifi − ei+1fi+1,

e′j = εj(xs)− ej .

Setting µ = 0, we get the differential algebraic system that defines the dynam-
ics of the slow timescale for the quasi equilibrium x̄(e) and the time-dependent
enzyme concentrations. They are

0 = eifi(x̄(e))− ei+1fi+1(x̄(e)), (14)
e′j = εj(x̄s)− ej (15)

for i = 1, . . . , n− 1.

3.1.3 Explicit dependence of the metabolic Quasi Steady State on enzyme
concentrations

We rewrite these equations to a form more amenable to analysis, by adding
the steady state flux as an extra variable c as follows. For any e, the solution
x̄ yields that

e1f1 = e2f2 = . . . = enfn = c̄(e),

where the extra equation enfn = c adds a dependent variable c, from which
we can rewrite all the other steady state equations to

Fi(xi−1, xi, ei, c) = 0, i = 1, . . . , n, (16)

where
Fi := eifi − c.

Now we have n equations in n variables (x and c). For any e, the functions
x̄(e) and c̄(e) are such that equations (16) are equivalent to (14) and solve

F (e, x̄, c̄) = 0. (17)

These alternative equations yield a clearer picture of how x̄ depends on e,
which we will deduce step by step. To be more precise, we will first introduce
a partial solution x∗(e, c) based on n− 1 equations (F2 = 0, . . . , Fn = 0) and
derive explicitly its partial derivatives to e and c (Lemma 3). Then we solve
the last equation (F1 = 0) for c, yielding c̄. We find explicit derivatives of c̄
to e (Lemma 4). Combining this with the results for x∗, we calculate partial
derivatives of x̄ to e.
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For convenience, we introduce some notation for the partial derivatives of
the flux functions to their substrate and product concentrations,

fi,1 :=
∂fi

∂xi−1
fi,2 := − ∂fi

∂xi
, (18)

where i = 1, . . . , n. Note that fi,1 > 0 and fi,2 > 0, but that f1,1 and fn,2
should be disregarded, because x0 and xn are not dynamic variables. Anywhere
where we do write f1,1, it will be both in the numerator and denominator of a
fraction rendering it irrelevant; this is done only to make the notation uniform.

We can immediately see which terms are positive and negative in the partial
derivatives of Fi = eifi − c:

∂Fi

∂xi−1
= eifi,1,

∂Fi

∂xi
= −eifi,2,

∂Fi

∂ei
= fi,

∂Fi

∂c
= −1. (19)

In the derivations to come we often come across the following terms,

Cu
l :=

∏
l<k<u

fk,2
fk,1

,

where l ≤ u− 2. As we can see that

Cu
l =

fu,1
fu,2

Cu+1
l ,

we can generalise this notation also for when l ≥ u− 1,

Cu
l :=



u−1∏
k=l+1

fk,2

fk,1
l ≤ u− 2,

1 l = u− 1,
l∏

k=u

fk,1

fk,2
l ≥ u.

(20)

This will make the expressions for the explicit partial derivatives of x∗, c̄ and
x̄ more convenient.

Lemma 3 For any e > 0 such that
∑n

j=1 = 1 and c > 0 small enough, there
exist unique solutions x∗

1(e, c), . . . , x
∗
n−1(e, c), that solve F2 = 0, . . . , Fn = 0.

Furthermore their partial derivatives are:

∂x∗
i

∂ej
= 0 j = 1, . . . , i, (21)

∂x∗
i

∂ej
= −Cj

i

fj
ejfj,1

j = i+ 1, . . . , n, (22)

∂x∗
i

∂c
=

n∑
l=i+1

Cl
i

1

elfl,1
, (23)

for i = 1, . . . , n− 1, with Cl
i and Cj

i given by (20).
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12 Gosse B. Overal, Josephus Hulshof and Robert Planqué

Proof A sketch of the argument that this proof is based on can be found in
Figures 1 and 2.

Let 1 ≤ i ≤ n− 1. If i = n− 1, the next metabolite is external, xi+1 = xn.
Otherwise assume that x∗

i+1(e, c) solves Fi+2, such that

∂x∗
i+1

∂ej
= 0 j ≤ i+ 1.

Considering Fi+1, note that if xi is at the boundary of the admissible
domain, xi = ki+1x

∗
i+1, then fi+1 = 0 and Fi+1 = −c. On the other end, xi

is not bounded and fi+1 saturates to some maximum value. If c is smaller
than the maximum vlue of ei+1fi+1, Fi+1 > 0 follows for great enough xi.
Furthermore,

∂Fi+1

∂xi
= ei+1fi+1,1 > 0,

so inbetween these extremes, there is a unique x∗
i that solves Fi+1(x

∗
i , x

∗
i+1, ei+1, c),

by continuity.
We consider the dependency of Fi+1 on its variables,

∂Fi+1

∂xi
= ei+1fi+1,1,

∂Fi+1

∂ej
= 0, j ≤ i

∂Fi+1

∂ej
= fi+1, j = i+ 1

∂Fi+1

∂ej
= −ei+1fi+1,2

∂x∗
i+1

∂ej
, j ≥ i+ 2,

∂Fi+1

∂c
= −1− ei+1,2fi+1,2

∂x∗
i+1

∂c
.

Note the difference with (19) that comes from using the implicit solution x∗
i+1

with the chain rule. Partial differentiation then yields the recursively defined
derivatives by the Implicit Function Theorem, assuming that c is small enough.

∂x∗
i

∂ej
= −

(
∂Fi+1

∂ej

)
(

∂Fi+1

∂xi

) , (24)

∂x∗
i

∂ej
= − fj

ejfj,1
, j = i+ 1 (25)

∂x∗
i

∂ej
=

fi+1,2

fi+1,1

∂x∗
i+1

∂ej
, j ≥ i+ 2, (26)

∂x∗
i

∂c
=

1

ei+1fi+1,1
+

fi+1,2

fi+1,1

∂x∗
i+1

∂c
. (27)
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Stability of an adaptively controlled pathway maximising specific flux 13

For any pair i = 1, . . . , n− 1, j = 1, . . . , n, either ∂x∗
i

∂ej
= 0 or solution (26)

can be iteratively applied, until j = i+ 1 (solution (25)), yielding the explicit
partial derivatives

∂x∗
i

∂ej
=


0 j ≤ i,

− fj
ejfj,1

j = i+ 1,

−

(
j−1∏

k=i+1

fk,2

fk,1

)
fj

ejfj,1
j ≥ i+ 2.

(28)

For any 1 ≤ i ≤ n− 1, solution (27) for the c-dependence of x∗
i can also be

iteratively applied, taking into account that xn is constant, so

∂xn−1

∂c
=

1

enfn,1
, (29)

yielding the explicit partial derivatives

∂xi

∂c
=

1

ei+1fi+1,1
+

n∑
l=i+2

(
l−1∏

k=i+1

fk,2
fk,1

)
1

elfl,1
i ≤ n− 2

∂xi

∂c
=

1

enfn,1
i = n− 1.

If we now substitute (20) into the equations, the derivatives are given by (21),
(22) and (23). ⊓⊔

0 xi

ei+1fi+1

c
↑
c

x∗
i
→ x∗

i

Fig. 1: Schematic representation of Fi+1 = 0 and how the solution x∗
i depends

on c. For increased c (the dotted graphs), fi+1 decreases, the equilibrium value
ki+1x

∗
i+1 is increased, thus the solution x∗

i is increased.

Note that the x∗
i do not depend on e1 as it always falls under (21), because

1 ≤ i for all i.
We are ready to solve the last equation F1 = 0 for c, using x∗

1(e, c),

e1f1(x0, x
∗
1(e, c))− c = 0. (30)
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14 Gosse B. Overal, Josephus Hulshof and Robert Planqué

0 xi

c

ei+1fi+1

ei+1fi+1

x∗
i
← x∗

i

Fig. 2: Schematic representation of Fi+1 = 0 and how the solution x∗
i depends

on ej for j ≥ i + 1. For increased ej (the dotted graph), x∗
i+1 decreases,

increasing fi+1 and the solution x∗
i becomes smaller. Note how the dotted

graph is not just above the original graph, but that the chemical equilibrium
value x∗

i+1 where fi+1 = 0 is decreased due to ej changing the base value
ki+1x

∗
i+1. If j = i+1, however, the dotted graph should actually have the same

origin on the horizontal axis, and an increased ei+1 would still put the dotted
graph above the original.

Lemma 4 For any e > 0 such that
∑n

j=1 = 1, there is a unique c̄(e) that
solves (30), such that together with x∗ it represents the slow manifold, x̄(e) =
x∗(e, c̄(e)). Furthermore the partial derivatives of c̄ are given by

∂c̄

∂ej
= S−1 e1f1,2

ejfj,1
Cj

1fj j = 1, . . . , n, (31)

where Cj
1 is given by (20) and S−1 normalises the factors in front of the fj in

the partial derivatives above,

S =
n∑

k=1

e1f1,2
ekfk,1

Ck
1 . (32)

Proof Equation (30) has the following partial derivatives, based on the known
partial derivatives of x∗

1 (21), (22) and (23),

∂F1

∂e1
= f1,

∂F1

∂ej
= −e1f1,2

∂x∗
1

∂ej
j = 2, . . . , n,

= Cj
1

e1f1,2
ejfj,1

fj ,

∂F1

∂c
= −1− e1f1,2

∂x∗
1

∂c
,

= −1−
n∑

l=2

Cl
1

e1f1,2
elfl,1

< 0 (33)
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Stability of an adaptively controlled pathway maximising specific flux 15

If c = 0, the flux functions are at chemical equilibrium, fj(x∗
j−1, x

∗
j ) = 0, so

x∗
j−1 = kjx

∗
j , for j = 2, . . . , n, given that e > 0. Therefore the intermedi-

ate solution is then at equilibrium with the waste concentration x∗
1(e, 0) =∏n

j=2 kjxn and

f1(x0, x
∗
1(e, 0)) =

x0 − (
∏n

i=1 ki)xn

a1 + b1x0 + c1x1
> 0, (34)

because we have assumed our system to be positively oriented (11).
This proves that if c = 0, x∗

1 is such that F1 > 0.
On the other end of the spectrum, x∗

1 is only defined for c small enough
and as c approaches this bound, x∗

1 will become unbounded. In particular for
c close to this bound, we get

x∗
1 >

x0

k1
,

so F1 is negative for c large enough.
Note that F1 is decreasing in c (33) and goes from positive to negative

over the domain of c. Therefore there is a unique solution c̄(e) by continuity.
Substituting c̄ into x∗ yields a unique solution to the steady state equations
that define the slow manifold x̄ (17).

Furthermore from the Implicit Function Theorem, we get the partial de-
rivatives are given through implicit differentiation using the above equations
and Lemma 3,

∂c̄

∂e1
=

f1

1 +
n∑

l=2

Cl
1
e1f1,2
elfl,1

∂c̄

∂ej
=

Cj
1
e1f1,2
ejfj,1

fj

1 +
n∑

l=2

Cl
1
e1f1,2
elfl,1

j = 2, . . . , n.

If we use a mathematical trick to substitute

1 =
e1f1,2
e1f1,1

C1
1 ,

the partial derivatives are given by

∂c̄

∂ej
=

Cj
1
e1f1,2
ejfj,1

fj
n∑

l=1

Cl
1
e1f1,2
elfl,1

,

for j = 1, . . . , n, which is exactly what we wanted to get (31) if we substitute
S (32). This trick is why C1

1 was defined as it was (20) and why f1,1 can still
be disregarded. ⊓⊔
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16 Gosse B. Overal, Josephus Hulshof and Robert Planqué

To get some intuition for the flux c in the equations of the argument above,
consider some intermediate enzyme with concentration ej . It is only involved
in the equation Fj . If we set c = 0 in this equation, we force the flux through
this enzyme to zero, yet if we push c to its maximum value that still has a
solution in Fj , the substrate concentration is pushed up to infinity. This is in
particular beyond its maximal value where it is at chemical equilibrium with
the nutrient concentration x0. That forces all enzymatic fluxes leading up to
ej to be zero, so c is caught inbetween being zero in this equation and pushing
itself to zero in other equations by increasing in this equation. The Lemma
above shows that if ej > 0 for all j, we can push c up from zero in all instances
at once to then push x∗

1 from chemical equilibrium with xn up to x̄1, leading
to the steady state flux c̄.

Corollary 5 The implicit function x̄(e) that defines the slow manifold has
the following partial derivatives,

∂x̄i

∂ej
= S−1

n∑
l=i+1

e1f1,2
elfl,1

Cj
1C

l
i

fj
ejfj,1

j ≤ i (35)

= −S−1
i∑

k=1

e1f1,2
ekfk,1

Ck
1C

j
i

fj
ejfj,1

j > i, (36)

where S is given in (32)

Proof The function x̄ follows from x∗ and c̄,

x̄(e) = x∗(e, c̄(e)), (37)

thus for any i = 1, . . . , n− 1 and j = 1 . . . , n it follows that
∂x̄i

∂ej
=

∂x∗
i

∂ej
+

∂x∗
i

∂c

∂c̄

∂ej
. (38)

Taking the expressions from the derivatives given in (23) and (31), we can
immediately see

∂x∗
i

∂c

∂c̄

∂ej
=

(
n∑

l=i+1

Cl
i

1

elfl,1

)(
S−1 e1f1,2

ejfj,1
Cj

1fj

)
,

= S−1
n∑

l=i+1

e1f1,2
elfl,1

Cj
1C

l
i

fj
ejfj,1

, (39)

with S as in (32), in which Cu
l is defined in (20).

From (21) and (22), we recall

∂x∗
i

∂ej
= 0 j ≤ i,

∂x∗
i

∂ej
= −Cj

i

fj
ejfj,1

j ≥ i+ 1.
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Stability of an adaptively controlled pathway maximising specific flux 17

Hence for j ≤ i, ∂x̄i

∂ej
is given by (39).

For j ≥ i+ 1 we have to do some more work, but we recognise in (39) we
can rewrite the following

Cj
1C

l
i = (Cl

1C
j
l−1)C

l
i

= Cl
1C

j
i ,

for l ≤ j. Otherwise the same identity holds,

Cj
1C

l
i = Cj

1(C
j
iC

l
j−1)

= Cl
1C

j
i ,

for l ≥ j + 1, manipulating the factors based on the definition (20).
Combining these expressions in (38) and recalling S from (32) yields

∂x̄i

∂ej
= −Cj

i

fj
ejfj,1

S−1S + S−1
n∑

l=i+1

e1f1,2
elfl,1

Cl
1C

j
i

fj
ejfj,1

,

= S−1

(
−Cj

i

n∑
k=1

e1f1,2
ekfk,1

Ck
1 +

n∑
l=i+1

e1f1,2
elfl,1

Cl
1C

j
i

)
fj

ejfj,1
,

= −S−1
i∑

l=1

e1f1,2
elfl,1

Cl
1C

j
i

fj
ejfj,1

⊓⊔

From the explicit form of the partial derivatives of x̄ to all e, we can see
what is the time-dependency for x̄.

Corollary 6 In the slow timescale, we have

x̄′
i =

e1f1,2
S

i∑
k=1

Ck
1

ekfk,1

n∑
l=i+1

Cl
i

elfl,1
(fkεk − flεl) (40)

Proof The change of an internal metabolite concentration in the slow timescale
completely depends on the change in the enzyme concentration,

x̄′
i =

n∑
j=1

∂x̄i

∂ej
e′j . (41)

The expression for the partial derivative ∂x̄i

∂ej
is qualitatively different for

j ≤ i (35) and j > i (36). Hence we split the sum (41) into these two parts,
j1 ≤ i and j2 > i.

x̄′
i =

e1f1,2
S

 i∑
j1=1

n∑
l=i+1

Cj1
1 Cl

i

elfl,1

fj1
ej1fj1,1

e′j1 −
n∑

j2=i+1

i∑
k=1

Ck
1C

j2
i

ekfk,1

fj2
ej2fj2,1

e′j2

 .
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18 Gosse B. Overal, Josephus Hulshof and Robert Planqué

We can rename the indices j1 = k, j2 = l and see that the two double sums
can be integrated,

x̄′
i =

e1f1,2
S

(
i∑

k=1

n∑
l=i+1

Ck
1C

l
i

elfl,1

fk
ekfk,1

e′k −
n∑

l=i+1

i∑
k=1

Ck
1C

l
i

ekfk,1

fl
elfl,1

e′l

)
,

=
e1f1,2
S

i∑
k=1

Ck
1

ekfk,1

n∑
l=i+1

Cl
i

elfl,1
(fke

′
k − fle

′
l) .

The expressions for the time derivatives of the enzyme concentrations (15) can
be substitited and as we are at QSS, the steady state equations hold,

ejfj − c̄ = 0,

for j = 1, . . . , n, therefore we can finish the proof to the desired expression,

e′j =
e1f1,2
S

i∑
k=1

Ck
1

ekfk,1

n∑
l=i+1

Cl
i

elfl,1
(fk(εk − ek)− fl(εl − el)) ,

=
e1f1,2
S

i∑
k=1

Ck
1

ekfk,1

n∑
l=i+1

Cl
i

elfl,1
(fkεk − c̄− flεl + c̄) ,

=
e1f1,2
S

i∑
k=1

Ck
1

ekfk,1

n∑
l=i+1

Cl
i

elfl,1
(fkεk − flεl) .

⊓⊔

From Lemma 4 and Corollary 5, we get derivatives towards the direction
of increasing ej , which does not comply with the notion that the total amount
of enzyme remains constant at eT = 1. To interpret the partial derivatives
inside the space where eT = 1 holds, we would have to make some linear com-
bination of the ej dependent on the other variables and introduce directional
derivatives. A simple way is to take e1 = 1 −

∑n
j=2 ej for instance, such that

increasing any enzyme concentration other than e1 means decreasing e1 by
that much and conserving the total amount.

One key observation is that in the direction

e1,n =


1
0
...
0
−1

 ,

the total amount of enzyme is conserved and the directional derivative is pos-
itive

dxi

de1,n
= S−1

n∑
l=i+1

e1f1,2
elfl,1

C1
1C

l
i

f1
e1f1,1

+ S−1
i∑

k=1

e1f1,2
ekfk,1

Ck
1C

n
i

fn
enfn,1

> 0, (42)
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for all i = 1, . . . , n − 1. This has the consequence that the subspace of
the enzyme distribution space defined by having some fixed xi is a smooth
manifold.

3.2 The Quasi Steady State defines a smooth bijection

So far we have assumed that the enzymes are all present, ej > 0 for all j, which
is not unreasonable, but there is some insight to be gained from considering
the boundary where some enzyme concentrations are zero.

If exactly one enzyme concentration is zero, ej = 0, the function x̄(e) is also
well-defined. Obviously then there is no flux through the system: c = ejfj = 0,
and because all other enzyme concentrations are positive, ek > 0, k ̸= j, the
remaining fluxes must be at chemical equilibrium, fk = 0, k ̸= j. Thus the
first few metabolite concentrations (i ≤ j − 1) are at equilibrium with the
nutrient concentration x0 and the last few metabolite concentrations (i ≥ j)
are at equilibrium with the waste concentration xn. Therefore x̄ is uniquely
defined for these border-points, but it is not an injection, as the exact values
of x are now given, solely based on the information that exactly one enzyme
concentration is zero, ej = 0 < ek, for some j and all k ̸= j.

Let us therefore define clearly the spaces for which we will show that x̄ is
a bijection,

E :=

e ∈ Rn : e > 0,
n∑

j=1

ej = 1

 . (43)

The function x̄, implicitly defined solving equations (17), is a bijection between
E and the space of admissible metabolite concentrations

X :=
{
x ∈ Rn−1 : x > 0,f(x) > 0

}
. (44)

Lemma 7 For the nonzero enzyme concentrations, the steady state metabolite
concentrations are uniquely defined and they uniquely define the enzyme profile.
The implicit function

x̄ : E → X

defined by equations (17) is a smooth bijection.

Proof Note that from Lemma 4, this function is well-defined for all e ∈ E. We
have already shown in (6) that it has a unique inverse, given by

ej =

1
fj

n∑
k=1

1
fk

. (45)

To prove smoothness, note that we have shown that inside E there is always
a direction in which all xi increase (42), hence the Jacobian matrix of x̄(e)
always has full rank. Smoothness follows from the Implicit Function Theorem.

⊓⊔
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3.3 Local stability

In the Appendix we show that it is possible to rewrite the dynamical system
to one for the metabolites only, see Theorems 12 and 13. However, for the con-
sideration of local stability it makes more sense to avoid this ‘simplification’,
because the direction of flow in the space of enzymes is much simpler,

e′ = ε− e,

even though the definition of ε(x̄s(e)) is not simple at all. Nevertheless, as we
will see, detailed knowledge of the quasi-steady states will become informative
in the proof of local stability.

There is a subtle and important difference between the steady state for
(ξ, ε) and for (x̄(e), e). In the case of ξ, the external concentration x0 is
estimated at ξ0(xs), and ξ minimises the objective function O(x; ξ0); in the
case of x̄(e), the nutrient concentration is fixed at its actual value x0, while it
does not necessarily minimise the objective function. As the estimated optimal
enzyme profile ε has sum equal to 1 by definition (13), it follows that ε ∈ E.

One could consider x̄(ε) and compare this to ξ. If ε and ξ0 are known, we
can retrieve ξ through the steady state equations. However, due to the subtle
difference between x̄(ε) and ξ, we have to retrieve it with a shifted external
nutrient concentration x0 = ξ0.

The equations governing these two maps from ε are so similar that we can
predict an ordering between the two, based solely on how accurate the sensor
concentration xs is. If the current sensor value is different than the sensor in
optimum, the sensor value x̄s(ε) at the predicted enzyme distribution ε is in
the same direction as the optimum.

Let xo
s denote the sensor concentration in the unique optimum (recall Ω

(12)) as defined by x0.

Lemma 8 For any e ∈ E,

– if x̄s(e) = xo
s, then x̄s(e) = x̄s(ε),

– if x̄s(e) < xo
s, then x̄s(e) < x̄s(ε),

– if x̄s(e) > xo
s, then x̄s(e) > x̄s(ε).

Proof Let e ∈ E. The corresponding point on the slow manifold x̄(e) has
sensor value x̄s, which yields ε.

If x̄s(e) = xo
s, then ξ = ξo, ξ0 = x0 and ε is the true optimum. Therefore

(x0, x̄(ε)) = ξ,

so it follows that
x̄s(ε) = xo

s.

This proves the first result of the lemma.
Next, we assume x̄s(e) < xo

s. The set Ω defined in (12) has the property
that if xs increases, the corresponding element ξ ∈ Ω increases in all of its
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entries. This is a corollary to Lemma 2 as any alternative to this would con-
tradict that result. Specifically this means that ξ0 increases with xs and from
x̄s(e) < xo

s it follows that ξ0(xs) < x0.
The intermediate solution x∗(ε, c) yields ξ from ε if the following equation

holds for c,
ε1f1(ξ0, x

∗
1(ε, c))− c = 0. (46)

We recall that for c̄ equation (30) holds,

ε1f1(x0, x
∗
1(ε, c))− c = 0. (47)

If (47) holds, the intermediate solution yields x̄(e). Define c = c̃ as the solution
to (46). Then the intermediate solution yields ξ. Note that the only difference
between (46) and (47) is that we consider x0 = ξ0 instead of x0 = x0 respect-
ively.

So both c = c̃ and c = c̄ are solutions to equation

G1 := ε1f1(x0, x
∗
1(ε, c)− c = 0, (48)

for x0 = ξ0 and x0 = x0 respectively.
Partial differentiation of (48) yields that

∂c

∂x0
= −

(
∂G1

∂x0

)
(
∂G1

∂c

)
=

∂f1
∂x0

f1,2
∂x∗

1

∂c + 1

=

∂f1
∂x0

S
> 0,

where we use the known expression for ∂x∗
1

∂c (23). So ξ0(xs) < x0 yields that
c̃ < c̄.

Note that the statement that ∂c
∂x0

> 0 follows immediately from its inter-
pretation as well: if the nutrient concentration increases, the steady state flux
of balanced metabolism increases.

Recall that x̄s(e) = ξs = x∗
s(ε, c̃) and x̄s(ε) = x∗

s(ε, c̄). From expression
(23) in Lemma 3, it follows that the intermediate solutions increase with c,
∂x∗

i

∂c > 0, i = 1, . . . , n− 1. Specifically the intermediate solution for the sensor
increases with c, ∂x∗

s

∂c > 0, we conclude that x̄s(ε) < x̄s(e).
For x̄s(e) > xo

s the proof follows in the same way. ⊓⊔

This ordering is rather abstract, but strong in consequence. Combining it
with the result of Lemma 7 that x̄ defines a smooth bijection, this proves that
the unique and optimal steady state of the linear chain is locally stable.

Theorem 9 The unique steady state εo of qORAC for the linear chain of n
enzymes is locally stable in the slow timescale.
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Proof The optimum εo is the given from ξo through the definition of ε (13),
where ξo is the unique optimum in Ω (12) such that ξo0 = x0. Recall that xo

s

denotes the sensor concentration of ξo.
This proof involves finding the eigenvalues of the Jacobian and proving they

are all negative. We will prove this by discussing the two distinct eigenspaces
spaces that are qualitatively different that together span Rn−1. There is the
(n−2)-dimensional eigenspace corresponding the xo

s-level-set. This entire space
corresponds to eigenvalue −1. And there is the eigenspace that is transverse
to this xo

s-level-set, which has dimension 1 and can be shown to correspond to
a negative eigenvalue.

The QSS x̄ is a smooth function and a bijection on E (43) and the Jac-
obian matrix of x̄ has maximal rank (Lemma 7). This implies that x̄s(e) is a
continuous function and the subset of E where x̄s = xo

s is a smooth manifold
around εo. If we consider a small enough neighbourhood of the optimum εo,
this manifold is approximated by an (n − 2)-dimensional linear space. Every
element e in this space has x̄s(e) = xo

s, therefore its estimated optimum is
correct,

ε(x̄s(e)) = εo,

and it follows that that e is an eigenvector with eigenvalue −1: its time deriv-
ative is given by

e′ = εo − e,

and in the linearisation around the optimum εo, the element e represents the
vector e− εo.

This accounts for n− 2 independent directions in the linearisation. Trans-
verse to this there is either an eigenvector transverse to the n− 2-dimensional
space, or a generalised eigenvector inside this same eigenspace. In the latter
case all eigenvalues are −1 and the proof is complete. So we assume there is
another eigenvector transverse to the space where x̄s(e) = xo

s. An element e
that yields this eigenvector e− εo therefore has x̄s(e) ̸= xo

s. Assume without
loss of generality that

x̄s(e) > xo
s.

As e− εo is an eigenvector, the direction of the time derivative

e′ = ε(x̄s(e))− e

is found by multiplying it by its eigenvalue

ε(x̄s(e))− e = λ(e− εo).

Hence the estimated enzyme distribution ε(x̄s(e)) is on the line defined as
containing e and εo

ε(x̄s(e)) = (1 + λ)e− λεo.

By Lemma 8, x̄s(e) > xo
s implies that x̄s(e) > x̄s(ε), so the steady state

level x̄s is decreased in the direction of the time derivative ε− e. The steady
state sensor level x̄s is increased in the direction of the vector time derivative
vector e − εo. This opposing direction implies that the estimated ε is in the
reverse direction on the line and therefore that λ < 0. ⊓⊔
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4 Global Stability of the shortest linear chain

The smallest linear chain that still has an internal metabolite is given by
setting n = 2,

e1 e2
x0 ⇌ x1 ⇌ x2

(49)

Since the QSS version of the qORAC-controlled pathway in this case has
only one dynamical variable, global stability is straightforward.

The differential algebraic system of our smallest model is given by

ẋ1 = e1f1 − e2f2,

ė1 = µε1 − µe1,

ė2 = µε2 − µe2,

where the reaction kinetics are defined by the standard reversible MM kinetics,

f1(x0, x1) =
x0 − k1x1

a1x0 + b1x1 + c1
,

f2(x1, x2) =
x1 − k2x2

a2x1 + b2x2 + c2
,

Furthermore,

φ1 = f1(ξ0, x1),

φ2 = f2(x1, x2),

ε1 =
φ−1
1

φ−1
1 + φ−1

2

,

ε2 =
φ−1
2

φ−1
1 + φ−1

2

.

Here x1 is the concentration of the only internal metabolite and sensor for the
nutrient concentration x0. The estimated external concentration ξ0(x1) is the
unique value such that x1 is the minimum of the objective function

O(x1, ξ0) = φ−1
1 + φ−1

2 ,

The nutrient concentration is positively ordered, so

x0 > k1k2x2. (50)
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4.1 Timescale Separation

Note that the sum of enzyme e1 + e2 = 1 is conserved over time as

d

dt
(e1 + e2) = ε1 − e1 + ε2 − e2

=
φ−1
1 + φ−1

2

φ−1
1 + φ−1

2

− (e1 + e2),

= 1− (e1 + e2)

= 0.

We eliminate e2 from the equations and set it to 1− e1.
The nullcline ẋ1 = 0 describes the slow manifold of the quasi-steady

state, which according to Lemma 7 is a bijection between the interval X =
(k−1

1 x0, k2x2) (44) and E = {(e1, e2) : e1, e2 > 0, e1 + e2 = 1} (43).
In the smallest linear chain, the border of each of these two regions contains

only two points and then the bijection can be extended to the border points
as seen in the following lemma.

Lemma 10 The nullcline ẋ1 = 0 starts at e1 = 0, x1 = k2x2 and continues
strictly increasing until e1 = 1, x1 = 1

k1
x0.

Proof Considering ẋ1 = 0, we get

e1(x0 − k1x1)N
−1
1 = (1− e1)(x1 − k2x2)N

−1
2 ,

for N1, N2 the nonzero denominators of the flux functions f1 and f2 respect-
ively.

If x1 = 1
k1
x0, then x1 ̸= k2x2 (50), so e1 = 1.

If x1 = k2x2m then x1 ̸= 1
k1
x0 (50), so e1 = 0.

If x1 ∈ (k2x2,
1
k1
x0), then f1, f2 > 0, hence the nullcline ẋ1 = 0 yields

e1f1 = (1− e1)f2 (51)
e1

1− e1
=

f2
f1

(52)

There is always a unique solution e1, as f2
f1
∈ (0,∞) and e1

1−e1
is increasing

in e1, where (0, 1) is exactly mapped to (0,∞). The right hand side, f2
f1

is
increasing in x1 (f2 is increasing, f1 is decreasing), thus the unique solution
for e1 increases as x1 increases. ⊓⊔

Theorem 11 The shortest linear chain with qORAC control is globally stable.

Proof In the slow timescale, the internal metabolite x1 follows its nullcline
x1 = x̄1(e1) as given in Lemma 10.
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The estimated optimal enzyme concentration

ε1 =
1

1 + φ1

φ2

. (53)

follows a similar expression of x1 as e1 does on the nullcline. Hence, φ1 =
f1(ξ0(x1), x1) ̸= f1(x0, x1) as in (52), but φ2 = f2(x1, x2). Now note that
taking ξ0 instead of x0 in f1 is the only difference between e1 on the slow
manifold and ε1,

e1 such that ẋ1 = 0 : ε1 :

e1
1− e1

=
f2
f1

ε1
1− ε1

=
φ2

φ1

This leads us to the following three results:

– We can see the global uniqueness of the steady state solution. There is only
one option for an element of the nullcline ẋ1 = 0 to also satisfy e1 = ε1. This
is to have f1(x0, x̄1) = f1(ξ0, (x̄1), x̄1). The function f1 is strictly increasing
in its first argument, so the two sides can only be equal if ξ0(x1) = x0, and
as ξ0 is strictly increasing in x1, there is a unique solution.

– At its minimal value, x1 = k2x2, the estimate for the nutrient concentration
is ξ0 = k1k2x2, and then both flux functions are at equilibrium f1 = f2 = 0,
leading to f2

f1
being undefined, but the limit exists and can be computed.

For now, note that e1 has a limit value between 0 and 1. This limit is the
optimal enzyme production continued all the way to equilibrium.

– At its maximum value, x1 = 1
k1
x0, we have ξ0 at some value larger than

x0 and it follows that unlike the slow manifold, ε1 > 0:

φ1 = f1(ξ0,
1

k1
x0) > f1(x0,

1

k1
x0) = 0,

thus ε1 = φ1−1

φ−1
1 +φ−1

2

∈ (0, 1).

From the above remarks, we can conclude on the basis of continuity that
the nullcline ė1 = 0, compared to the nullcline ẋ1 = 0, has higher e1 until the
unique intersection, after which it has lower e1.

Hence, the dynamical system in the slow manifold

0 = e1f1 − (1− e1)f2,

ė1 = ε1 − e1

has a unique steady state and the flow is always directed towards this solution.
Hence it is globally stable. ⊓⊔
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5 Discussion

In this paper we have studied the linear chain with reversible Michaelis-Menten
kinetics, coupled to a set of equations for enzyme synthesis and dilution by
growth which is designed to achieve maximal steady state flux. The construc-
tion is termed qORAC. The design of this control does in no way guarantee
that the coupled dynamical system is stable.

In (Planqué et al. 2018) we have given one example of a pathway coupled
to qORAC control in which dynamics do not converge to the optimal steady
state but away from it. (This is the only counterexample known to date, and
involves robustness to an internal kinetic parameter rather than robustness to
external concentrations.)

The counterexample makes clear that qORAC does not always work, and
that an in-depth analysis is required to show at least local stability. In this
paper we provide a proof of this for the simplest, but also arguable most
important, metabolic pathway, the linear chain. To facilitate the analysis, we
assumed that the chain is in QSS relative to enzyme synthesis, a reasonable
biological assumption.

5.1 An outline of the construction

In the fast timescale, the metabolic network finds a globally unique and stable
steady state x for fixed values of the enzyme concentrations e. This metabolic
steady state can be found for all possible enzyme concentration with total 1
(43), inducing the functions x̄(e) and c̄(e). By implicit differentiation, we can
find explicit partial derivatives of x to e (Corollary 5) and c̄ to e (Corollary
4).

The quasi-steady state x̄ is shown to be a bijection between the set of
conserved strictly positive enzyme concentrations E (43) and the set of pos-
itive metabolic concentrations where all flux functions are positive X (44).
The inverse of this bijection is explicitly given in (45). Applying this to the
expressions of the explicit partial derivatives for x̄ and c̄ to e yields a dynam-
ical system that is derived from the quasi-steady state assumption of the fast
timescale and which only depends on the x variables; the dependency on e is
eliminated.

Any estimate of the optimal steady state metabolic concentrations (i.e., an
element of Ω) induces an optimal distribution of enzyme concentrations through
the steady state equations of the metabolic network. Almost the same equa-
tions apply to this resultant enzyme distribution and its actual dual steady
state metabolic concentrations. Comparing these two steady states yields the
insight that the sensor concentration will change in the same direction as where
the eventual optimum is found as we step from where we are now, to where
the system is steering towards at this moment in time.

As a consequence, all but one eigenvalue of the Jacobi matrix are seen to
be -1, and the local stability of the system becomes evident (Theorem 9).
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5.2 Towards a Lyapunov Function

The argument that we used to prove global stability in the shortest chain relies
on it becoming essentially a scalar problem. Therefore this proof cannot be
extended to a linear chain of arbitrary length. However, it does show that the
objective of showing global stability for the linear chain is potentially attain-
able. Thus we can try other methods that might extend to longer linear chains.
So far, we have not been successful in this attempt. But we will introduce likely
candidates for a Lyapunov function and show counterexamples.

Recall that a Lyapunov function has a negative time derivative everywhere
except in the steady state, thereby showing that the steady state is globally
stable.

Consider for a general linear chain the function

L(xs, e) =
1

2
∥ε(xs)− e∥2 .

This shows some promise to be a Lyapunov function, because

dL

dt
= −∥ε− e∥2 +

n∑
j=1

(εj − ej)
dεj
dxs

ẋs,

where a large part of the expression is obviously negative. If we can estim-
ate the possibly positive part

∑n
j=1(εj − ej)

dεj
dxs

ẋs as less than the definitely
negative part −∥ε− e∥2 , then we can prove that L is a Lyapunov function.

However, we can find a counterexample. Through some judicious guessing,
a set of parameters was chosen for the smallest linear chain (See Table 1).
The Lyapunov function is the square of the Euclidian distance between the
estimated optimal enzyme concentration vector ε and the current value e.
If we assume rapid equilibrium of the fast timescale, we will be on the slow
manifold and move towards the unique steady state.

As can be immediately seen in Figure 3, this proposed Lyapunov function
will then not necessarily be decreasing over time. If we start with very low e1,
the rapid equilibrium will yield very low x1 and in the slow timescale, we will
move upwards along the slow manifold, but the estimated enzyme concentra-
tion ε1 will move upward faster, increasing L(x̄s, e1) over time initially.

We can also choose as second try,

L(xs, ε
o) = ∥ε(xs)− εo∥2 .

As the system flows in the slow timescale, this might seem like a good candidate
for a Lyapunov function as the estimate will become better perhaps. Also for
this choice, a counterexample can be found. Changing the parameters a bit
from the previous counterexample (Table 1), the curve of ε1 shows a steeply
increasing initial slope, followed by a very gently decreasing slope. As we follow
x̄1 in the same manner as before, starting at e1 ≈ 0 (and thus x1 ≈ 0), ε1
will increase towards εo1 and then pass it, in order to gently decrease back
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Fig. 3: The dynamics of the smallest linear chain. The streamplot shows the
actual dynamics for a small parameter µ. The red line describes the slow
manifold and the blue line the estimated optimal enzyme concentration ε1 as
a function of x1. This depicts a counterexample to the claim that ∥ε− e∥ can
serve as a Lyapunov function.

to this eventual value. For a brief interval, this newly suggested candidate is
increasing over time, rendering it of no use for a Lyapunov function.

A third candidate would be

L(xs, x
o
s) = ∥xs − xo

s∥
2
.

This is in fact a Lyapunov function for the smallest linear chain, but in a linear
chain with 3 enzymes, we already found a counterexample (not illustrated).

The only remaining candidate for a Lyapunov function we have considered
for which we have found no counterexamples to date is

L(c̄) = −c̄

minus the steady state flux as the system flows in the slow manifold (or equi-
valently the objective function). In every numerical simulation that we have
performed, the steady state flux c̄ would improve over time in a monotone
manner. Proving that this is indeed a Lyapunov function is another matter.
By taking a great deal of explicit information about the control and the quasi-
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Fig. 4: The dynamics of the smallest linear chain. The streamplot shows the
actual dynamics for a small parameter µ. The red line describes the slow
manifold and the blue line the estimated optimal enzyme concentration ε1 as
a function of x1. This depicts a counterexample for that ∥εo− ε∥ can serve as
a Lyapunov function.

steady state into account, in the Appendix (Theorem 12) we show that

c̄′ =
n∑

j=1

S−1 fjf1,2
f1fj,1

Cj
1(εjfj − c̄).

We have not been able to take this result further, and show it to have a definite
sign.
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6 Appendix

6.1 Inverse Quasi Steady State; Enzyme levels follow the metabolic
concentrations

Lemma 7 shows that x̄(e) is a smooth bijection and its inverse ē is explicitly
defined by (45). Furthermore, we can use these explicit steady states e to derive
expressions for c̄′ and x̄′

i, i = 1, . . . , n − 1, that only depend on x, such that
we have simplified the total dynamical system to having only the metabolic
concentrations x as variables. This is based on the resulting expressions for
∂c̄
∂ej

from Lemma 4 and x̄′
i from Corollary 6. Note that from the definition

of the system in Section 3.1.2 it is not obvious that such a construction is
possible, but now that we have constructed the derivatives of x̄ and c̄ and
have equations that express e in terms of x, it follows immediately.
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Theorem 12 The steady state flux has time derivative in the slow timescale

c̄′ =
n∑

j=1

S−1 fjf1,2
f1fj,1

Cj
1(εjfj − c̄), (54)

where

S =
n∑

k=1

fkf1,2
f1fk,1

Ck
1 , (55)

c̄ =
1

n∑
j=1

1
fj

. (56)

Proof Using the expression for ∂c̄
∂ej

(31), we see

c̄′ =

⟨(
∂c̄

∂ej

)n

j=1

, ε− e,

⟩

=
n∑

j=1

S−1 e1f1,2
ejfj,1

Cj
1fj(εj − ej),

=

n∑
j=1

S−1 e1f1,2
ejfj,1

Cj
1(εjfj − ejfj).

An alternative form of the steady state equations

e1f1 = c̄ = ejfj ,

can be written as
e1
ej

=
fj
f1

.

Substituting these forms into the expression for c̄′ almost eliminates the en-
zyme concentrations from the equation,

c̄′ =
n∑

j=1

S−1 fjf1,2
f1fj,1

Cj
1(εjfj − c̄).

The only proliferance of the ej is in c̄ and

S =
n∑

k=1

e1f1,2
ekfk,1

Ck
1 ,

so through the steady state equations this can be rewritten without the enzyme
concentrations,

S =
n∑

k=1

fkf1,2
f1fk,1

Ck
1 . (57)
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Furthermore we can write c̄ as a function of only x, because

n∑
j=1

ej = 1

and from the steady state equations

ej =
c̄

fj
,

so we can see

c̄ =

 n∑
j=1

f−1
j

−1

.

⊓⊔

The time dependence of the metabolic concentrations x′ in terms of only
x follows by taking Corollary 6, while substituting any instance of ej by using
the quasi-steady state equations (45).

Theorem 13 By means of the quasi-steady state assumption, the system can
be rewritten as an ODE system in only x̄ by

x̄
′

i =
1

c̄

(
(1− Pi)

i∑
k=1

f2
k

fk,1
Ck

i εk − Pi

n∑
l=i+1

f2
l

fl,1
Cl

iεl

)
, (58)

where Pi is denoted in equation (59).

Proof Start with the following substitution from the quasi-steady state:

ej =
c̄

fj
j = 1, . . . , n,

where c̄ is given in (56)
We then get an expression of the time dependence of x solely in terms of

x,

x̄
′

i =
1

S

i∑
k=1

n∑
l=i+1

e1f1,2
ekfk,1

Ck
1

Cl
i

elfl,1
(fkεk − flεl)

=
1

Sc̄

i∑
k=1

n∑
l=i+1

fkf1,2
f1fk,1

Ck
1

fl
fl,1

Cl
i (fkεk − flεl) .

Recall that S can be rewritten through the steady state equations to not
depend on e (57).
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We can rewrite the expression for x̄
′

i, substituting Ci+1
1 Cl

i = Cl
1 on the

second line,

x̄
′

i =
1

c̄


n∑

l=i+1

f1,2fl
f1fl,1

Cl
i

S

i∑
k=1

f2
k

fk,1
Ck

1 εk −

i∑
k=1

f1,2fk
f1fk,1

Ck
1

S

n∑
l=i+1

f2
l

fl,1
Cl

iεl



=
1

c̄


n∑

l=i+1

f1,2fl
f1fl,1

Cl
1

S

i∑
k=1

f2
k

fk,1

Ck
1

Ci+1
1

εk −

i∑
k=1

f1,2fk
f1fk,1

Ck
1

S

n∑
l=i+1

f2
l

fl,1
Cl

iεl


Above we recognise the two complementary parts of the total sum of S

divided by S (55). So the following is always a fraction between 0 and 1
Pi ∈ [0, 1],

Pi =

i∑
k=1

f1,2fk
f1fk,1

Ck
1

n∑
j=1

f1,2fj
f1fj,1

Cj
1

, (59)

which can be substituted in the expression,

x̄
′

i =
1

c̄

(
(1− Pi)

i∑
k=1

f2
k

fk,1

Ck
1

Ci+1
1

εk − Pi

n∑
l=i+1

f2
l

fl,1
Cl

iεl

)
.

Recall that we introduced a natural extention to the definition of Cu
l in

(20). From this we can see, if k ≤ i,

Ck
i =

Ck
1

Ci+1
1

,

which leads to the expression

x̄
′

i =
1

c̄

(
(1− Pi)

i∑
k=1

f2
k

fk,1
Ck

i εk − Pi

n∑
l=i+1

f2
l

fl,1
Cl

iεl

)
. (60)

⊓⊔

6.2 Global stability of the linear chain with fixed enzyme concentrations

Here we provide a new proof for the global stability of the linear chain with
fixed enzyme concentrations,

ẋi = eifi − ei+1fi+1. (61)
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For the purposes of this Appendix, the Michaelis-Menten kinetics are chosen
here to have the following form,

fi =
xi−1 −Ki

eqxi

aixi−1 + bixi + ci
, (62)

An older proof, which seems to have been largely forgotten, can be found in
(Smillie 1984).

Theorem 14 The unique steady state of (61)–(62) is globally stable.

Proof Write the system in the form

ẋi = Fi(xi−1, xi, xi+1) (i = 1, . . . , N),

x0 = x0 > 0, xN+1 = xN+1 > 0,
(63)

where
Fi = vi − vi+1. (64)

Note that
∂vi
∂xi

< 0 <
∂vi

∂xi−1
(65)

for all nonnegative values of the concentrations.
The proof follows from sub- and supersolution arguments and a suitable

comparison principle. We show below that (65) implies that two solutions with
initial data satisfying 0 ≤ xi(0) ≤ xi(0) for i = 1, . . . , N have the property that
0 < xi(0) < xi(0) for all t > 0 and all i = 1, . . . , N , unless xi(0) = xi(0) for all
i = 1, . . . , N . (The reader should not be confused by the different use of the
underlines in the notation.) We use this comparison principle with small and
large initial data, both characterised as being a thermodynamic equilibrium
for the linear chain from x1 to xN , defined by

xi(0) ≤
x1(0)

K2
eq · · ·Ki

eq

, xi(0) ≤
x1(0)

K2
eq · · ·Ki

eq

.

We can then take x1(0) so close to zero and x1(0) so large that

xi(0) < xi(0) < xi(0) (i = 1, . . . , N),

whence for all t > 0

xi(t) < xi(t) < xi(t) (i = 1, . . . , N). (66)

These solutions are called the subsolution, the solution and the supersolution.
We then also show that the sub- and the super solution satisfy

ẋi(t) > 0 > ẋi(t) (i = 1, . . . , N), (67)

for all t > 0 whence both of them, and therefore also the solution itself converge
to the unique steady state determined by x0 and x0. Below we give some of
the details of the argument.
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Writing zi = xi − xi we have

żi = ẋi − ẋi

= [vi(ξ, xi)]
ξ=xi−1

ξ=xi−1
+
[
vi(xi−1, ξ)− vi+1(ξ, xi+1)

]ξ=xi

ξ=xi
+ [vi+1(xi, ξ)]

ξ=xi+1

ξ=xi+1

=
[vi(·, xi)]

xi−1

xi−1

xi−1 − xi−1

zi−1 −

[
vi+1(·, xi+1)− vi(xi−1, ·)

]xi

xi

xi − xi

zi

+
[vi+1(xi, ·)]xi+1

xi+1

xi+1 − xi+1

zi+1

= ai,i−1(xi−1, xi−1, xi, xi)zi−1 − ai,i(xi−1, xi−1, xi, xi, xi+1, xi+1)zi

+ ai,i+1(xi, xi, xi+1, xi+1)zi+1,
(68)

with the obvious adaptation for i = 1 and i = N . Note that via long division
the coefficients ai,i−1, ai,i, ai,i+1 of zi−1, zi, zi+1 are smooth positive rational
functions of their arguments, because of (64)–(65). The strict comparison prin-
ciple now follows by standard arguments: if the initial data are strictly ordered,
then at a first t for which there exists i with zi = 0 we must have that the
neighbouring zj are also zero and hence xi and xi coincide. Repeating the
argument it follows that all zj are zero at this value of t. Thus x(t) and x(t)
coincide, contradicting the fundamental theorem about existence and unique-
ness for solutions of initial value problems systems of ODE’s. Thus such a first
t cannot exist.

Solutions with initial data x(0),x(0) which are ordered, but not strictly
ordered in the sense that some of but not all the initial concentrations co-
incide, can be approximated with solutions with strictly ordered initial data
xϵ(0),xϵ(0). Taking the limit it follows that the zi are globally nonnegative.
But then (68) implies żi ≥ ai,izi and the real analyticity of solutions implies
that each zi(t) is either globally positive, or identically equal to zero. Any such
zero solution can only have zero neighbours because otherwise, again in view
of (68), its derivative would be positive. Thus all zi(t) are strictly positive
because at least must be, as the fundamental theorem prohibits all zi(t) to
vanish.

It remains to be shown that all xi(t) and xi(t) are strictly monotone in the
sense of (67). From ẋi = vi(xi−1, xi)− vi+1(xi, xi+1) we obtain

ẍi =
∂vi

∂xi−1
ẋi−1 +

(
∂vi
∂xi
− ∂vi+1

∂xi

)
ẋi −

∂vi+1

∂xi+1
ẋi+1,

i.e.,

ẍi =
i+1∑

j=i−1

∂Fi

∂xj
ẋj =

i+1∑
j=i−1

∂Fi

∂xj
Fj (69)

with
∂Fi

∂xi
< 0,

∂Fi

∂xj
> 0 for j = i± 1,

∂Fi

∂xj
≡ 0 for j ̸= i, i± 1. (70)
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Suppose that initially Fi(x) < 0 for all i = 1, . . . , N and for some first t there
is an i with ẋi(t) = Fi(x(t)) = 0. Then by (69) and (70) we have ẍi(t) > 0
unless both Fi−1(x(t)) and Fi+1(x(t)) also vanish. If i = 1 this applies only
to F2 and if i = N only to FN+1 of course. But then it follows by the same
argument that all Fi(x(t)) vanish, contradicting the fundamental theorem.
The same argument applies to solutions for which initially all Fi(x) > 0.

The strong version of this invariance, assuming only Fi(x) ≤ 0 for all
i = 1, . . . , N with at least one inequality strict, seems a bit trickier to establish,
so we cannot directly conclude that the derivatives of x(t) and x(t)) are strictly
negative and strictly positive. Using a variation of the above argument for
existence of a unique steady state, the initial data for both these solutions
can easily be perturbed to initial data for which 0 = v1 < · · · < vN = ϵ, for
which ϵ = v2 > · · · > vN+1 = 0. The corresponding solutions xϵ(t) and xϵ(t)
are then globally strictly ordered and strictly monotone in the sense that the
derivatives are nonzero. Clearly we can take the limit ϵ→ 0 and conclude that
x(t) and x(t) are then globally strictly ordered and monotone in the sense
that the derivatives do not change sign. But then we also have that for each i

ẍi =
N∑
j=1

∂Fi

∂xj
ẋj ≤

∂Fi

∂xi
ẋi,

whence ẋi(t) has the property that once it is strictly negative it remains strictly
negative. But since all xi(t) are real analytic in t we have that either ẋi(t) < 0
for all t > 0 or ẋi(t) ≡ 0. Hence, the latter case is excluded by the same
argument as used above to establish the global strict positivity of all zi(t) =
xi(t)− xi(t). ⊓⊔
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