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Abstract Microbial cells need to adapt to changing environmental conditions
to survive. There is an evolutionary advantage to grow fast; this requires high
metabolic rates, and an efficient allocation of enzymatic resources. Here we
study a general control theory called ¢gORAC, developed previously, which
allows cells to adaptively control their enzyme allocations to achieve maximal
steady state flux. The control is robust to perturbations in the environment,
but those perturbations themselves do not feature in the control. In this pa-
per we focus on the archetypical pathway, the linear chain with reversible
Michaelis-Menten kinetics, together with gORAC control. First we assume
that the metabolic pathway is in quasi-steady state with respect to enzyme
synthesis. Then we show that the map between steady state metabolite and
enzyme concentrations is a smooth bijection. Using this information, we finally
show that the unique (and hence flux-maximising) steady state of this system
is locally stable. We provide further evidence that it may in fact be globally
stable.

Mathematics Subject Classification (2010) 34H15 - 37N25 - 93D21 -
93D25 - 92C42

1 Introduction

Microbes live in ever-changing environments to which they need to adapt in
order to survive. If conditions are favourable, cells grow as fast as resources
allow them to (Schaechter et al. 2006). Depending on the environmental con-
ditions, cells use different metabolic networks to synthesise the components
they are made of, using different sets of enzymes to catalyse the individual
reactions in these networks. But even when the identity of the enzymes does
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not change, different resource availabilities, such as high or low concentrations
of a food source, force cells to adapt the levels of the relevant enzymes. It is
becoming increasingly clear that cells are indeed able to meet this challenge.
They use enzyme resources economically (Basan et al. 2015, Bosdriesz et al.
2015, Li et al. 2014, Scott et al. 2014, You et al. 2013), and tune enzyme levels
to maximise their growth rate (Dekel and Alon 2005, Jensen et al. 1995, Keren
et al. 2016).

This adaptation to different environments is particularly surprising because
many microbes do not have proteins in their membranes that would allow them
to infer directly changes in resource concentrations outside the cell. Indeed, for
microbes such as Fscherichia coli and Salmonella that are able to grow on a
multitude of carbon sources, having different membrane proteins to sense the
presence of each resource would severely reduce the membrane area available
for transport proteins. Instead, these microbes must rely on internal informa-
tion about external changes. With changing external resource concentrations,
internal metabolite concentrations must be used as proxies for those changes,
for instance through metabolite-binding transcription factors influencing gene
expression (Kochanowski et al. 2013, Kotte et al. 2010).

We have recently developed a general dynamical systems theory called
gORAC, or specific flux (¢) Optimisation by Robust Adaptive Control that
offers an implementation of this control problem (Planqué et al. 2018). It is
formed by adding to a given metabolic pathway with prescribed enzyme kinetic
rate laws a set of differential equations for enzyme synthesis. The details of the
implementation are postponed to Section 2. The rates of enzyme production
are constructed such that the only steady state of the combined metabolite-
enzyme dynamical system is one in which the flux per unit expended enzyme,
or “specific flux”, through the pathway is maximal. The optimal steady state
flux attained depends on the resource concentration, but this concentration is
not known in the enzyme synthesis control. Instead, the control uses an internal
metabolite concentration as ‘sensor’. Some well-known example metabolites
that act in this sensor role are Fructose-1,6-biphosphate (Kotte et al. 2014),
allolactose (Gilbert and Miiller-Hill 1966), and intracellular galactose (Sellick
et al. 2008).

qORAC-control may be added to any metabolic pathway with the prop-
erty that it cannot be simplified. More precisely, this means that deleting any
one reaction from the pathway would halt the flux through the pathway. Such
metabolic networks are called Elementary Flux Modes (Schuster and Hilgetag
1994). The control is derived straight from the kinetic rate laws of the en-
zymatic reactions, and is designed to have the right steady state property of
maximal steady state flux. There is no guarantee that solutions of the coupled
dynamical system actually converge to this optimal state.

For each choice of external resource concentration the gORAC-controlled
linear chain has a unique steady state: the one in which steady state flux
through the pathway is optimal (Planqué et al. 2018). Here we show, under
a quasi-steady state (QSS) assumption that metabolic rates are much higher
than enzyme synthesis rates, that this unique steady state is also locally stable,
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and provide additional insight that it might in fact be globally stable. Proving
local stability requires us to first make an in-depth characterisation of the
quasi-steady state, before focusing on the coupling with enzyme dynamics.
The structure of this paper is follows. First we review the gORAC frame-
work for general pathways—a detailed exposition may be found in (Planqué
et al. 2018). Then we introduce the linear chain with reversible Michaelis-
Menten reactions as the focal example. We proceed by assuming that meta-
bolism is in quasi-steady state and study how metabolite concentrations in this
QSS depend on the enzyme concentrations. Then we turn to the remaining
slow enzyme dynamics and prove local stability. We finish with a discussion
on global stability by considering a number of reasonable candidate Lyapunov
functions, one of which is conjectured to be an actual Lyapunov function.

2 Maximising specific flux and the gORAC framework

We start with the following model for the dynamics of metabolite concentra-
tions. Let the vector x indicate all internal metabolite concentrations, x p the
vector of constant external metabolite concentrations, let v denote the vector
of rates or fluxes of reactions in which metabolites are interconverted by cata-
lyzing enzymes e, and let the stoichiometric matrix be denoted by N. Then
we consider as metabolic pathway the ODE system

&= Nv(e,x;zg). (1)

The functions v(e, x; x ) are assumed to be known and we make the assump-
tion that each enzyme catalyzes exactly one reaction; in particular, we assume
that v; = e;f;(x;2E). Such a linear dependence on enzyme concentration
follows generally using QSSA-type analyses for enzyme-catalyzed reactions
(Cornish-Bowden 2004).

Consider a choice of enzyme concentrations e with total enzyme concentra-
tion ep = ;€ such that it allows a steady state flux through the pathway.
Then, by scaling all enzyme concentrations by the same constant, a new steady
state with the same metabolite concentrations may be constructed, with a flux
exactly scaling with the same factor. In other words, the flux per unit of total
enzyme concentration, or specific flux, remains constant. The linear depend-
ence of reaction rates on enzyme concentrations also implies that maximising
the steady state flux for a given total enzyme concentration is equivalent to
minimising the total enzyme concentration necessary to attain one unit of
steady state flux. (To clarify, the analogy in which trying to buy the maximal
number of apples for 10 EUR is equivalent to trying to buy the cheapest apples
is here an ezact analogy.) For the purposes of this paper, it turns out that it
is more fruitful to consider the question of maximal flux per unit total enzyme
than it is to minimize enzyme levels for one unit of flux.

It has recently been shown (Miiller et al. 2014, Wortel et al. 2014) that
maximal steady state specific flux is attained in special type of pathway, called
an Elementary Flux Mode (EFM). An EFM is a pathway that has a minimal
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number of enzymes involved: it allows for a balanced flow of metabolism, but
this possibility is void if any one of its enzymes is removed from the pathway.
As a result, if the pathway is in steady state and one flux is known, then all
fluxes are determined. An EFM may hence be denoted by a fixed vectors C,
in which one flux value, for instance the target flux that is to be maximised, is
set to 1. Any other steady state flux through the EFM may be characterised
by v = ¢C, with ¢ the target flux. A more in-depth description of EFMs may
be found in (Papin et al. 2004, Schuster and Hilgetag 1994, Schuster et al.
2002).

A given EFM, however, still allows many steady states: any choice of pos-
itive enzyme concentrations that take part in the EFM generally gives rise to
a corresponding vector of steady state metabolite concentrations, and the res-
ulting steady state flux is not maximal unless the enzyme allocation is chosen
exactly right.

Consider an EFM with n reactions, each with steady state rate v; = cC; =
eifi(z;zg). Then

CiC
6= 2
@ zs) .
where 7 = 1,...,n indexes the n enzymes, and
n n CZ
er = e; =c . 3
2 LT @

So for a fixed e, the steady state flux ¢ is a function of only the metabolite
concentrations
er
c=m
2i=1 Filwizg)
Thus finding the maximum c¢ can be reformulated as finding the vector x,
given the external conditions g, that minimises the objective function

Oz, zp) = Z % (4)

It was recently shown that for fixed external concentrations g, the objective
function (4) has a unique minimum «° for a large class of rate laws (Noor
et al. 2016, Planqué et al. 2018).
Any minimiser ° of O(x;xf) is also the unique critical point of this
objective function, and hence solves the optimum equations
o (@sp) = 0 )
Rather than prescribing g in (5) and calculating the remaining variables x?,
one might also prescribe some internal variables, termed sensors, g, and solve
for all other variables (including the external concentrations). The resulting
object is called the optimum as predicted by the sensors, or predicted optimum
in short. The Implicit Function Theorem gives the requirements which internal
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metabolites may be used for this procedure. Locally, the sensors should allow
a parametrisation of the family of optima that was initially parametrised by
xg. In particular, £ and s must have the same number of elements. The
optimum predicted by xg is denoted by &(xg). Clearly, if xg = x, then
§(xg) = =°.

The estimated optimal enzyme distribution € can then be computed from
& through the steady state equations of metabolism (2). Denoting the kinetic
functions f; as

Pn
if they use £ as argument rather than x, then

€5 =c—
J )
¥j

where ¢ is such that the total amount of enzyme (3) is er. Without loss of
generality, we assume ep = 1, by setting

1
2 o

k=1

C =

In conclusion, based on the sensor concentration xg, the estimated optimal
enzyme distribution is

1
vj(€(zs)) . (6)

€=

1
2 mEws)

We can now supply to the dynamical system for the metabolic pathway
(1) a set of differential equations for enzyme concentrations involved in the
pathway. The general structure of such equations is assumed to be

& = p(ei — ei), (7)

where pe; describes the enzyme synthesis rate of enzyme i, and the degradation
term involves dilution by growth in a cell population growing at rate p. (This
last term could have been present in (1) as well, but is neglected because
i < v; in biological systems.)
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To summarise, the complete dynamical system for a ¢qORAC-controlled
pathway is given by

ix =Y Nueifi(@izg),

k
€ =p(e—e),
1
e — »i(§) (8)
PORC()
k=1
and & is defined by
00
(&) =0,
5 ©

€s(t) = zs(t).

The construction ensures that if this system converges to a steady state, it is
necessarily one with maximal steady state flux (Planqué et al. 2018). Since
the enzyme synthesis rates do not depend on x g, this pathway is robust to
changes in . The reason is essentially that the complete dynamical system
can only be in steady state if the sensor has the right concentration, and
therefore predicts the right optimal enzyme concentration.

It is of course far from clear that this dynamical system in fact does con-
verge to steady state. In this paper we show local stability of the steady state
for the most important and also simplest EFM, the linear chain of reversible
reactions, under the additional assumption that metabolism is at quasi-steady
state.

2.1 gORAC for the linear chain

The analysis of this paper is confined to the study of the archetypical EFM,
the linear chain with n enzymatic reactions,

€1 €2 €3 €n—1 €n (9)
T =T = T2~ ... & Tp_-1— Tn,

where external nutrient xg is converted into the the external waste x,,. The

stoichiometric matrix is given by

1-10 ---00
01 ~-1---00
N=|. . . . ..

00 0 ---1-1
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which has a one-dimensional null space spanned by the vector

The rate functions are assumed to be given by standard Michaelis-Menten
kinetics, in which we choose kinetic constants as follows,

Tj—1 — kjﬂ?j
)
ajzj—1 + bz + ¢

fi= (10)
where for f; and f, we have o = ¢ and z,, = z,,.

For the remainder of this paper we assume that z, is a fixed parameter
and that the external nutrient concentration xg may vary.

Definition 1 The nutrient concentration xo and waste concentration x, are
positively oriented if a positive steady state flux through the linear chain is
possible, which follows exactly if

Every positively oriented zo yields a unique minimum @« of O(x; zo, z»).
We denote the set of all minima for all positively oriented ¢ as

2 = {(zg,2) CR" : O(2; 29, z,) is minimal } . (12)

We now show that in principle, any internal metabolite could be used as
a sensor in the gORAC-control. In other words, for the linear chain {2 can be
parametrised by any internal metabolite.

Lemma 2 Let x, be positively oriented with respect to z, for some 1 < s <
n — 1. Then there is a unique

o
&
. e

fnfl
such that &5 = xs.
Proof Since x, is positively oriented, zs > (H?:S 41 kl) T,. Metabolite concen-

trations  and x,, are the positively oriented endpoints of a linear (sub)chain
with enzymes esy1,...,e,, and therefore the function

- n 1
0®)= D Fe e

i=s+1
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has a unique minimum for f; > 0. This minimum has £; = x, and is the unique
solution to

00

&

where f; > 0. For (2, the defining equations are
00

% =

where f; > 0. The first s functions f1,..., fs depend only on x1,. .., xs, so the
minumum of O is the unique solution to the subset of defining equations for

0, s+1<i<n—1,

0, 1<i<n-—1,

0, y
00 00
= = 1<i<n-—1.
75, 7€, 0, s+1<i<n
Hence, any solution € € {2 with £, = x5 has these values for &;,...,&,—1.
Note that 9
50O =0

is an equation in &1, & and &s41 only, with & and &,41 already known.
With the prescribed kinetics (10), the resulting equation for £,_; is a quadratic
polynomial. It has two solutions, exactly one of which has fs(£s_1,&5) > 0.

By determining the subsequent coordinates in sequence, each time taking
the larger of the two solutions of the polynomial we need to solve, we construct
a solution to the equations

00
=0,1<i<n-—1,
9
where f; > 0 ensures that there is always but one choice. Therefore this solu-
tion is unique. O

The implementation of (8) for the linear chain is given by,

.%"i = eifi —ei+1fi+1, for i = 1,27...,’[7,— 1,
éj:/i(gj—ej) forj:172,...7n,
Ti_1 — k;x; )
fi= J I for j =1,2,...,n,20 = o and =, = T,
a;Ti—1 +bjxj +Cj — 7
1

5j:nL for j=1,2,...,n, (13)
> @kt
k=1
- _k .
;= §i-1 = K& forj=1,2,....n,& = zp.

a;€i—1 + b8 + ¢

The sensor concentration x4(t) defines the estimated optimal steady state
metabolic concentrations £€(t) as the unique element & € (2 that satisfies
& = x4(t). Note that this includes the external nutrient x¢ that is sensed
for, estimated as &.
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To aid the reader, all relevant vectors are explicitly given below,

x J1 €1
) f2 €2
T = f = . e =

Tn—1 fn €n

?1) ©1 £l
2% €2

é’ = 52 p = . € = .

: €
fn—l Pn "

3 Results

3.1 Timescale separation

We assume that the metabolism rates are much higher than the enzyme pro-
duction and dilution by growth rates, i.e., p is a small parameter. Hence we
separate the timescales.

3.1.1 Fast timescale

For the fast timescale we set ;1 = 0 and thus consider the enzyme concentra-
tions e; to be static while the metabolism flows. The differential equations are
then given by

i = e fi — eit1 fit1,
e=0.

From (Smillie 1984) we know that the linear chain without enzyme dy-
namics has a unique steady state that is globally stable. Since this older result
was not known to us at the start of our investigation, we first gave a different
proof of global stability ourselves, which is supplied in the Appendix.

Thus in this timescale, the metabolite concentrations x will converge to a
unique solution, Z(e).

3.1.2 Slow timescale

The slow timescale follows from substituting 7 = pt in the original system.
Then the time derivative changes as

d d

a Mar
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The differential equation system changes to,
px; = eifi — eir1 fip1s
pel = p(ej(zs) —ej).
Dividing out u, we have
pr; = eifi — eiv1fiy1,
¢f =¢j(xs) —ej.

Setting u = 0, we get the differential algebraic system that defines the dynam-
ics of the slow timescale for the quasi equilibrium Z(e) and the time-dependent
enzyme concentrations. They are

eifi(z(e)) — eiy1 fiv1(x(e)), (14)
=¢j(Ts) — ¢ (15)

0
/
€
fori=1,...,n—1.

3.1.8 Explicit dependence of the metabolic Quasi Steady State on enzyme
concentrations

We rewrite these equations to a form more amenable to analysis, by adding
the steady state flux as an extra variable ¢ as follows. For any e, the solution
Z yields that

eifi=exfo=...=enfn =c(e),

where the extra equation e, f,, = ¢ adds a dependent variable ¢, from which
we can rewrite all the other steady state equations to

Fi(xiflaxiveiac):()v izla"'vna (16)

where
Fi = €if7; — C.

Now we have n equations in n variables (x and c). For any e, the functions
Z(e) and ¢(e) are such that equations (16) are equivalent to (14) and solve

F(e,&,¢) = 0. (17)

These alternative equations yield a clearer picture of how & depends on e,
which we will deduce step by step. To be more precise, we will first introduce
a partial solution x*(e, ¢) based on n — 1 equations (F; =0,...,F, = 0) and
derive explicitly its partial derivatives to e and ¢ (Lemma 3). Then we solve
the last equation (F; = 0) for ¢, yielding é. We find explicit derivatives of ¢
to e (Lemma 4). Combining this with the results for z*, we calculate partial
derivatives of T to e.
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For convenience, we introduce some notation for the partial derivatives of
the flux functions to their substrate and product concentrations,

_ Ofi . Of;
ﬂJ'_-a$¢4 .ﬂQ-— 8xﬁ

where ¢ = 1,...,n. Note that f;; > 0 and f;2 > 0, but that fi; and f,
should be disregarded, because ¢ and x,, are not dynamic variables. Anywhere
where we do write f; 1, it will be both in the numerator and denominator of a
fraction rendering it irrelevant; this is done only to make the notation uniform.
We can immediately see which terms are positive and negative in the partial

derivatives of F; =e; f; — c:
OF; or; OF;

=eifin, - =—¢ifiz, 50, — 10
K3 (3

(18)

OF;
dc

-1 Q
. (19)

In the derivations to come we often come across the following terms,

v 15

I<k<u

where [ < u — 2. As we can see that

Cﬁ::fmlcT+a
me

we can generalise this notation also for when | > u — 1,

u—1 f
M 22 1<u-2

hmi 15
= 1 l=u-1, (20)
l
S

This will make the expressions for the explicit partial derivatives of &*, ¢ and
I more convenient.

Lemma 3 For any e > 0 such that >._, =1 and ¢ > 0 small enough, there

exist unique solutions xi(e,c),...,xk_ (e, c), that solve Fp = 0,...,F, = 0.
Furthermore their partial derivatives are:
ZZO j=1,...,i, (21)
gﬁj:—cgejfél j=it+1...n, (22)
oxt = 1
;C B l:zi;_l Cf etfin’ (23)

fori=1,...,n—1, with C! and Cij given by (20).
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Proof A sketch of the argument that this proof is based on can be found in
Figures 1 and 2.

Let 1 <¢<n—1.Ifi =n — 1, the next metabolite is external, T;11 = Zn.
Otherwise assume that x7, (e, c) solves Fi, such that

*
9,
3ej

=0 j<i+1.

Considering F;i1, note that if x; is at the boundary of the admissible
domain, x; = kij;12;, 4, then f;1; = 0 and Fyy1 = —c. On the other end, z;
is not bounded and f;;; saturates to some maximum value. If ¢ is smaller
than the maximum vlue of e; 1 fi+1, Fiy1 > 0 follows for great enough x;.
Furthermore,

OF;+

8177;

so inbetween these extremes, there is a unique z; that solves Fy 1 (2], 27,1, i1, ¢),
by continuity.

We consider the dependency of F; 11 on its variables,

= eit1fit11 > 0,

35;1 = ei+1fit1,1,
OFi11
86]‘
0Fi 1
8ej

OF;11 Oy
e Y [ : >0+ 2,
de, i+1fi+1,2 de; J =z

=0, 711

OFit1 Oz},
- _1_e )
ER eit1,2fi+1,2 e

Note the difference with (19) that comes from using the implicit solution z}
with the chain rule. Partial differentiation then yields the recursively defined
derivatives by the Implicit Function Theorem, assuming that c is small enough.

OFit1
ox: ( Oe; )

O e 24

Oe; (aFi+1) ’ (24)
Ox;
ox} fj . .

i , =741 25
86]' 6]‘ij1 J ( )
0xf  fix1.2 0274 S

= = 1= >+ 2, 26
36j fz'+1,1 363‘ J ( )
ox} 1 5 ox;

i + f+1,2 +1 ) (27)

Oc  eip1fivin fivin Oc
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For any pairi =1,...,n—1, j =1,...,n, either Ber = 0 or solution (26)

can be iteratively applied, until j = ¢ + 1 (solution (25)), yielding the explicit
partial derivatives

0 Jj<i,
o _ | “ap ot (28)
a@j _ jﬁl fk2> fi j>i+2.
k—it1 frea | eifin 4 =

For any 1 < i < n—1, solution (27) for the c-dependence of z} can also be
iteratively applied, taking into account that z, is constant, so

axn,1 o 1

60 - enfn,l ’ (29)

yielding the explicit partial derivatives

n -1
ox; 1 fr2 1 )
— R 2 1 <n—2
e eip1fivin l:z’z+2 <k1:[+1 fe ) efin
= i=n-—1
Oc enfn,l
If we now substitute (20) into the equations, the derivatives are given by (21),
(22) and (23). O
e €i+1fit1
C 1
) |
¢ |

Fig. 1: Schematic representation of Fy1+1 = 0 and how the solution x} depends
on c. For increased ¢ (the dotted graphs), fi+1 decreases, the equilibrium value
kiy1x7, | is increased, thus the solution x} is increased.

Note that the z} do not depend on e; as it always falls under (21), because
1 < for all 7.
We are ready to solve the last equation F; = 0 for ¢, using z3(e, c),

e1fi(zo,z7(e,c)) —c=0. (30)
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eir1fit1

eir1fit1

Zq

Fig. 2: Schematic representation of F; 11 = 0 and how the solution x depends
on e; for j > i+ 1. For increased e; (the dotted graph), xj,_, decreases,
increasing fi+1 and the solution x] becomes smaller. Note how the dotted
graph is not just above the original graph, but that the chemical equilibrium
value xj, where fiy1 = 0 is decreased due to e; changing the base value
kiyizi . If j = i+ 1, however, the dotted graph should actually have the same
origin on the horizontal axis, and an increased e; 1 would still put the dotted
graph above the original.

Lemma 4 For any e > 0 such that Z?Zl = 1, there is a unique ¢(e) that
solves (30), such that together with &* it represents the slow manifold, T(e) =
x*(e,é(e)). Furthermore the partial derivatives of € are given by

86 — S 1€1f12

c? i=1,...,n, 31
aej egfgl f] J ( )

where C{ is given by (20) and S normalises the factors in front of the f; in
the partial derivatives above,

S — Z 61f12 (32)

ekfkl

Proof Equation (30) has the following partial derivatives, based on the known
partial derivatives of 7 (21), (22) and (23),

F’
27611 = f1,
222—61f12?; J=2...,m,
_C{?“];jfj’
% =-1- 61]"1,2(%T
:—1—20%615[112 (33)

=2
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If ¢ = 0, the flux functions are at chemical equilibrium, f; (x;_l,a:;f) =0, so

Ti_q = ij;f, for 5 = 2,...,n, given that e > 0. Therefore the intermedi-
ate solution is then at equilibrium with the waste concentration zj(e,0) =

zo — (IiZy ki) 2n
ay + bixg + ey

J1(zo,27(e,0)) = > 0, (34)

because we have assumed our system to be positively oriented (11).

This proves that if ¢ = 0, x7 is such that F} > 0.

On the other end of the spectrum, x} is only defined for ¢ small enough
and as ¢ approaches this bound, x] will become unbounded. In particular for
c close to this bound, we get

so Fj is negative for ¢ large enough.

Note that F; is decreasing in ¢ (33) and goes from positive to negative
over the domain of ¢. Therefore there is a unique solution ¢(e) by continuity.
Substituting ¢ into «* yields a unique solution to the steady state equations
that define the slow manifold & (17).

Furthermore from the Implicit Function Theorem, we get the partial de-
rivatives are given through implicit differentiation using the above equations
and Lemma 3,

oec f1
der n 3
U1 Sicens
1=2 -
j e1fi,
e CIE72 1
T =2
) ey ciud
=2 ’
If we use a mathematical trick to substitute
1= €1f1,2 %
61f1,1 ’
the partial derivatives are given by
je1fi,
oc  Clogtli
aej o l€1f1,2,
l;l Cl elfl.,l
for j =1,...,n, which is exactly what we wanted to get (31) if we substitute

S (32). This trick is why C was defined as it was (20) and why f;.1 can still
be disregarded. O
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To get some intuition for the flux ¢ in the equations of the argument above,
consider some intermediate enzyme with concentration e;. It is only involved
in the equation Fj. If we set ¢ = 0 in this equation, we force the flux through
this enzyme to zero, yet if we push ¢ to its maximum value that still has a
solution in F}, the substrate concentration is pushed up to infinity. This is in
particular beyond its maximal value where it is at chemical equilibrium with
the nutrient concentration zo. That forces all enzymatic fluxes leading up to
e; to be zero, so c is caught inbetween being zero in this equation and pushing
itself to zero in other equations by increasing in this equation. The Lemma
above shows that if e; > 0 for all j, we can push c up from zero in all instances
at once to then push z] from chemical equilibrium with x,, up to Z, leading
to the steady state flux c.

Corollary 5 The implicit function T(e) that defines the slow manifold has
the following partial derivatives,

o0z, = eifia £ .
=51 =cict <i 35
Oe; 121 efin tleifin 7= (35)
e1f1,2 ~k f; .
= CcycC J > q, 36
Z et VT j (36)

where S is given in (32)
Proof The function & follows from x* and ¢,
Z(e) = x*(e,c(e)), (37)
thus forany i =1,...,n—1and j =1...,n it follows that
0z; Ox;  Ox} Oc

?

8ej o 86]- Oc 8ej

(38)

Taking the expressions from the derivatives given in (23) and (31), we can
immediately see

ox; de = 1 —1€e1f1,2
i 9¢ _ C! (S 12402 cd )
Oc Oe; (l_izﬂ 61fz,1> €jfin v

€1f1,2 Cjc,; fj

elfz,1 e ejfj,l’

=51
I=it+1
with S as in (32), in which C} is defined in (20).
From (21) and (22), we recall

ox’

F o <
8(3]‘ J=1
Ov; _ i fi j>i+ 1.

1
e ejfin
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oz,

Hence for 7 <1, be. Is given by (39).
For j > i+ 1 we have to do some more work, but we recognise in (39) we
can rewrite the following

cicl = (Cief)C
— Clcj
for | < j. Otherwise the same identity holds,
cict=ci(cicly)
=C! CJ

for I > j + 1, manipulating the factors based on the definition (20).
Combining these expressions in (38) and recalling S from (32) yields

0ti _ i Ji_gigyg1 3 @ahzgios 1
de; fejfin S i el
st oS e, g i
( ¢ ;ekfm ! zzw:rl 61f11 ejfia’

_ 1261f12 J;
= afin ejfj,l
O

From the explicit form of the partial derivatives of Z to all e, we can see
what is the time-dependency for &.

Corollary 6 In the slow timescale, we have

i k n l
Tp = e/ “ Z ¢ (frex — fier) (40)

St enfra S afia

Proof The change of an internal metabolite concentration in the slow timescale
completely depends on the change in the enzyme concentration,

0x; o
Z ae] (41)

The expression for the partial derivative gf% is qualitatively different for
~J
Jj < (35) and j > i (36). Hence we split the sum (41) into these two parts,

jlgiandj2>i.

qthe (s S A by oSG L
lfll e]lf.]h

€ &
=11=i+1 jo=it+1k=1 kf]%l J2f]271
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We can rename the indices j; = k, jo = [ and see that the two double sums
can be integrated,

,,_61f1,2 : . Cfcf fk / C'10 fi
o S (Z Z eifin ekszl Z Zekfk,l elfz,1€l ’

k=1l=i+1 l=i+1k=1

€1f1,2 : C{v - Cl /
= — & €.
S P ekfk,l lz elf (fk? k fl l)

The expressions for the time derivatives of the enzyme concentrations (15) can
be substitited and as we are at QSS, the steady state equations hold,

Ejfj —c=0,
for 5 =1,...,n, therefore we can finish the proof to the desired expression,
¢ k n l
/ e1f1,2 Cy G
e; = : E Teler —ex) — filer — &
J S imenfrn S afia (fa ) ( )

7 k n !
_ahfie i Z Ci (frex —¢— fie1 +¢),

S i enfen 7 afin

i k n 1

e C C;
= 1?’2 c fl > efl (frex — fier) -

= enfen S afin

O

From Lemma 4 and Corollary 5, we get derivatives towards the direction
of increasing e;, which does not comply with the notion that the total amount
of enzyme remains constant at ep = 1. To interpret the partial derivatives
inside the space where er = 1 holds, we would have to make some linear com-
bination of the e; dependent on the other variables and introduce directional
derivatives. A simple way is to take e; = 1 — Z _oe; for instance, such that
increasing any enzyme concentration other than e1 means decreasing e; by
that much and conserving the total amount.

One key observation is that in the direction

the total amount of enzyme is conserved and the directional derivative is pos-
itive

dz; g-1 e1fi,2 1o fi 1 ei1fi ckem fn
§ clolt—+s- § ok >0, (42)

del:m 1 e fi1 fia ekfkl enfn,1
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for all § = 1,...,n — 1. This has the consequence that the subspace of
the enzyme distribution space defined by having some fixed z; is a smooth
manifold.

3.2 The Quasi Steady State defines a smooth bijection

So far we have assumed that the enzymes are all present, e; > 0 for all j, which
is not unreasonable, but there is some insight to be gained from considering
the boundary where some enzyme concentrations are zero.

If exactly one enzyme concentration is zero, e; = 0, the function Z(e) is also
well-defined. Obviously then there is no flux through the system: ¢ = e; f; = 0,
and because all other enzyme concentrations are positive, e > 0, k # j, the
remaining fluxes must be at chemical equilibrium, fr = 0, k % j. Thus the
first few metabolite concentrations (i < j — 1) are at equilibrium with the
nutrient concentration zy and the last few metabolite concentrations (i > j)
are at equilibrium with the waste concentration z,. Therefore & is uniquely
defined for these border-points, but it is not an injection, as the exact values
of x are now given, solely based on the information that exactly one enzyme
concentration is zero, e; = 0 < ey, for some j and all k # j.

Let us therefore define clearly the spaces for which we will show that & is
a bijection,

n
E = eeR”:e>0,Zej:1 . (43)
j=1
The function &, implicitly defined solving equations (17), is a bijection between
FE and the space of admissible metabolite concentrations

X={zeR"':2>0 f(z)>0}. (44)

Lemma 7 For the nonzero enzyme concentrations, the steady state metabolite
concentrations are uniquely defined and they uniquely define the enzyme profile.
The implicit function

r:F— X
defined by equations (17) is a smooth bijection.

Proof Note that from Lemma 4, this function is well-defined for all e € E. We
have already shown in (6) that it has a unique inverse, given by

1

L (45)
1
PR

€j:

To prove smoothness, note that we have shown that inside F there is always

a direction in which all z; increase (42), hence the Jacobian matrix of Z(e)
always has full rank. Smoothness follows from the Implicit Function Theorem.
O
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3.3 Local stability

In the Appendix we show that it is possible to rewrite the dynamical system
to one for the metabolites only, see Theorems 12 and 13. However, for the con-
sideration of local stability it makes more sense to avoid this ‘simplification’,
because the direction of flow in the space of enzymes is much simpler,

e=c—e,

even though the definition of €(Zs(e)) is not simple at all. Nevertheless, as we
will see, detailed knowledge of the quasi-steady states will become informative
in the proof of local stability.

There is a subtle and important difference between the steady state for
(&,e) and for (Z(e),e). In the case of &, the external concentration xzq is
estimated at &y(zs), and & minimises the objective function O(x;&p); in the
case of Z(e), the nutrient concentration is fixed at its actual value zo, while it
does not necessarily minimise the objective function. As the estimated optimal
enzyme profile £ has sum equal to 1 by definition (13), it follows that € € E.

One could consider Z(e) and compare this to €. If € and &y are known, we
can retrieve £ through the steady state equations. However, due to the subtle
difference between &(e) and &, we have to retrieve it with a shifted external
nutrient concentration g = &g.

The equations governing these two maps from & are so similar that we can
predict an ordering between the two, based solely on how accurate the sensor
concentration z, is. If the current sensor value is different than the sensor in
optimum, the sensor value Zs(g) at the predicted enzyme distribution € is in
the same direction as the optimum.

Let x° denote the sensor concentration in the unique optimum (recall {2
(12)) as defined by .

Lemma 8 For any e € E,

— if Zs(e) = 22, then Z(e) = T4(e),
— if Ts5(e) < x2, then Ts(e)
— if Ts(e) > x2, then Zs(e)

Proof Let e € E. The corresponding point on the slow manifold Z(e) has
sensor value Z,, which yields e.
If z,(e) = 2, then £ = £°, £, = 2o and € is the true optimum. Therefore

so it follows that
Zs(e) = 22,
This proves the first result of the lemma.

Next, we assume Zg(e) < x9. The set (2 defined in (12) has the property
that if =4 increases, the corresponding element & € (2 increases in all of its
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entries. This is a corollary to Lemma 2 as any alternative to this would con-
tradict that result. Specifically this means that & increases with x, and from
Zs(e) < x9 it follows that & (zs) < xo.

The intermediate solution x* (e, ¢) yields € from ¢ if the following equation
holds for ¢,

51f1(€07x>1k(€’0)) —c=0. (46)
We recall that for ¢ equation (30) holds,
erfi(zo, 27 (e,¢)) —c=0. (47)

If (47) holds, the intermediate solution yields Z(e). Define ¢ = ¢ as the solution
to (46). Then the intermediate solution yields £€. Note that the only difference
between (46) and (47) is that we consider xy = & instead of x¢ = x¢ respect-
ively.

So both ¢ = ¢ and ¢ = ¢ are solutions to equation

G1 :=e¢1f1(xo,27(e,c) —c =0, (48)

for zg = & and zo = zp respectively.
Partial differentiation of (48) yields that

oo (22)
aro (%)

where we use the known expression for 88—9? (23). So &o(zs) < zg yields that
c<c.

Note that the statement that 88—;) > 0 follows immediately from its inter-
pretation as well: if the nutrient concentration increases, the steady state flux
of balanced metabolism increases.

Recall that Zs(e) = & = z%(e,¢) and Zs(e) = x%(e,¢). From expression
(23) in Lemma 3, it follows that the intermediate solutions increase with c,

6;5 >0,i=1,...,n — 1. Specifically the intermediate solution for the sensor
increases with c, ng > 0, we conclude that Z,(e) < Z;(e).
For zs(e) > x9 the proof follows in the same way. O

This ordering is rather abstract, but strong in consequence. Combining it
with the result of Lemma 7 that & defines a smooth bijection, this proves that
the unique and optimal steady state of the linear chain is locally stable.

Theorem 9 The unique steady state €° of qORAC for the linear chain of n
enzymes is locally stable in the slow timescale.
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Proof The optimum €° is the given from £° through the definition of € (13),
where £° is the unique optimum in 2 (12) such that £§ = xo. Recall that x¢
denotes the sensor concentration of £°.

This proof involves finding the eigenvalues of the Jacobian and proving they
are all negative. We will prove this by discussing the two distinct eigenspaces
spaces that are qualitatively different that together span R™~!. There is the
(n—2)-dimensional eigenspace corresponding the z:2-level-set. This entire space
corresponds to eigenvalue —1. And there is the eigenspace that is transverse
to this x2-level-set, which has dimension 1 and can be shown to correspond to
a negative eigenvalue.

The QSS Z is a smooth function and a bijection on E (43) and the Jac-
obian matrix of & has maximal rank (Lemma 7). This implies that Z,(e) is a
continuous function and the subset of E' where Z; = ¢ is a smooth manifold
around €. If we consider a small enough neighbourhood of the optimum &°,
this manifold is approximated by an (n — 2)-dimensional linear space. Every
element e in this space has Zs(e) = 22, therefore its estimated optimum is
correct,

e(zs(e)) =€,
and it follows that that e is an eigenvector with eigenvalue —1: its time deriv-
ative is given by
e =e’—e,
and in the linearisation around the optimum &, the element e represents the
vector e — €°.

This accounts for n — 2 independent directions in the linearisation. Trans-
verse to this there is either an eigenvector transverse to the n — 2-dimensional
space, or a generalised eigenvector inside this same eigenspace. In the latter
case all eigenvalues are —1 and the proof is complete. So we assume there is
another eigenvector transverse to the space where Zs(e) = x9. An element e
that yields this eigenvector e — €° therefore has zs(e) # x2. Assume without
loss of generality that

Zs(e) > x2.

o

As e — €° is an eigenvector, the direction of the time derivative

e =¢e(zs(e)) —e
is found by multiplying it by its eigenvalue
e(zs(e)) —e= e —¢€?).

Hence the estimated enzyme distribution £(Zs(e)) is on the line defined as
containing e and &°
e(Zs(e)) = (1+ Ne — Ae’.

By Lemma 8, Z,(e) > z9 implies that Z,(e) > Zs(e), so the steady state
level Z, is decreased in the direction of the time derivative € — e. The steady
state sensor level Z, is increased in the direction of the vector time derivative
vector e — g°. This opposing direction implies that the estimated € is in the
reverse direction on the line and therefore that A < 0. O
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4 Global Stability of the shortest linear chain

The smallest linear chain that still has an internal metabolite is given by
setting n = 2,

€1 €2
To = 21 = T2

(49)

Since the QSS version of the gORAC-controlled pathway in this case has
only one dynamical variable, global stability is straightforward.
The differential algebraic system of our smallest model is given by

1 = e1f1 — eafa,

€1 = pe1 — pey,

éQ = U&2 — €2,

where the reaction kinetics are defined by the standard reversible MM kinetics,

o — k171
To,T1) = —
f1(707 1) a1@+b1x1+017
21 — koo
f2($17@)= —

b)
a1 + baxg + 2

Furthermore,

o1 = f1(&o, 1),
w2 = fa(z1,x2),

_ $1
o e E— )
©1 T ¥
-1
€2 = %
©1 T ¥

Here z; is the concentration of the only internal metabolite and sensor for the
nutrient concentration xzo. The estimated external concentration §y(x1) is the
unique value such that z; is the minimum of the objective function

O(xlafo) = %01_1 + g02_1a
The nutrient concentration is positively ordered, so

Zo > klk’gﬂ. (50)
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4.1 Timescale Separation

Note that the sum of enzyme e; + es = 1 is conserved over time as

d
&(61 +62) =1 — €1 +E3 — €9
—1 —1
+
= % — (e1 + e2),
Pt
= 1 — (61 —|—€2)
0.

We eliminate ey from the equations and set it to 1 — e;.

The nullcline ;3 = 0 describes the slow manifold of the quasi-steady
state, which according to Lemma 7 is a bijection between the interval X =
(k7 2o, koxa) (44) and E = {(e1,e2) : e1,e2 > 0,61 + eg = 1} (43).

In the smallest linear chain, the border of each of these two regions contains
only two points and then the bijection can be extended to the border points
as seen in the following lemma.

Lemma 10 The nulicline &1 = 0 starts at ey = 0, x1 = kaxa and continues
strictly increasing until ey = 1, x1 = %@.

Proof Considering 27 = 0, we get

61(@— kzlml)Nfl = (1 — 61)(3?1 — kg@)Ngl,
for N1, Ny the nonzero denominators of the flux functions f; and fs respect-
ively.

If v = k%@, then z1 # kozy (50), so e; = 1.

If 21 = kozom then z; # 1711@ (50), so e; = 0.
If 21 € (kaxo, k%@), then f1, fo > 0, hence the nullcline z; = 0 yields

ertfr=010-e)fo (51)

€1 f2
== 52
1-— €1 f1 ( )
There is always a unique solution e;, as % € (0,00) and lflel is increasing
in e, where (0,1) is exactly mapped to (0,00). The right hand side, % is
increasing in 21 (f2 is increasing, fi is decreasing), thus the unique solution
for ey increases as x7 increases. O

Theorem 11 The shortest linear chain with qORAC control is globally stable.

Proof In the slow timescale, the internal metabolite z; follows its nullcline
21 = Z1(e1) as given in Lemma 10.
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The estimated optimal enzyme concentration

1
1+

&1 = (53)

g

follows a similar expression of x; as e; does on the nullcline. Hence, ¢, =

filo(z1), 1) # fi(xo, 1) as in (52), but o = fa(z1,2z2). Now note that
taking & instead of xp in f; is the only difference between e; on the slow
manifold and &1,

e1 such that 1 =0 €1
a _ /) L _ 2
l—e1 fr -1 1

This leads us to the following three results:

— We can see the global uniqueness of the steady state solution. There is only
one option for an element of the nullcline ; = 0 to also satisfy e; = 1. This
is to have fi(zo,Z1) = fi(£o, (1), %1). The function f; is strictly increasing
in its first argument, so the two sides can only be equal if {o(x1) = xo, and
as &g is strictly increasing in x1, there is a unique solution.

— At its minimal value, 1 = kox2, the estimate for the nutrient concentration
is §o = k1kow2, and then both flux functions are at equilibrium f; = fo = 0,
leading to f—f being undefined, but the limit exists and can be computed.
For now, note that e; has a limit value between 0 and 1. This limit is the
optimal enzyme production continued all the way to equilibrium.

— At its maximum value, 1 = 1711@’ we have &y at some value larger than
xo and it follows that unlike the slow manifold, e; > 0:

1 1
Y1 = fl(fo; 7@) > fl(@a 7@) = Oa
k1 k1

us €1 P €(0,1)

From the above remarks, we can conclude on the basis of continuity that
the nullcline é; = 0, compared to the nullcline #; = 0, has higher e; until the
unique intersection, after which it has lower e;.

Hence, the dynamical system in the slow manifold

0=-eifi — (1 —e1)fo,
é1 =&1 — €1

has a unique steady state and the flow is always directed towards this solution.
Hence it is globally stable. ad
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5 Discussion

In this paper we have studied the linear chain with reversible Michaelis-Menten
kinetics, coupled to a set of equations for enzyme synthesis and dilution by
growth which is designed to achieve maximal steady state flux. The construc-
tion is termed gORAC. The design of this control does in no way guarantee
that the coupled dynamical system is stable.

In (Planqué et al. 2018) we have given one example of a pathway coupled
to gORAC control in which dynamics do not converge to the optimal steady
state but away from it. (This is the only counterexample known to date, and
involves robustness to an internal kinetic parameter rather than robustness to
external concentrations.)

The counterexample makes clear that gORAC does not always work, and
that an in-depth analysis is required to show at least local stability. In this
paper we provide a proof of this for the simplest, but also arguable most
important, metabolic pathway, the linear chain. To facilitate the analysis, we
assumed that the chain is in QSS relative to enzyme synthesis, a reasonable
biological assumption.

5.1 An outline of the construction

In the fast timescale, the metabolic network finds a globally unique and stable
steady state a for fixed values of the enzyme concentrations e. This metabolic
steady state can be found for all possible enzyme concentration with total 1
(43), inducing the functions Z(e) and ¢(e). By implicit differentiation, we can
find explicit partial derivatives of x to e (Corollary 5) and ¢ to e (Corollary
4).

The quasi-steady state & is shown to be a bijection between the set of
conserved strictly positive enzyme concentrations F (43) and the set of pos-
itive metabolic concentrations where all flux functions are positive X (44).
The inverse of this bijection is explicitly given in (45). Applying this to the
expressions of the explicit partial derivatives for Z and ¢ to e yields a dynam-
ical system that is derived from the quasi-steady state assumption of the fast
timescale and which only depends on the & variables; the dependency on e is
eliminated.

Any estimate of the optimal steady state metabolic concentrations (i.e., an
element of £2) induces an optimal distribution of enzyme concentrations through
the steady state equations of the metabolic network. Almost the same equa-
tions apply to this resultant enzyme distribution and its actual dual steady
state metabolic concentrations. Comparing these two steady states yields the
insight that the sensor concentration will change in the same direction as where
the eventual optimum is found as we step from where we are now, to where
the system is steering towards at this moment in time.

As a consequence, all but one eigenvalue of the Jacobi matrix are seen to
be -1, and the local stability of the system becomes evident (Theorem 9).
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5.2 Towards a Lyapunov Function

The argument that we used to prove global stability in the shortest chain relies
on it becoming essentially a scalar problem. Therefore this proof cannot be
extended to a linear chain of arbitrary length. However, it does show that the
objective of showing global stability for the linear chain is potentially attain-
able. Thus we can try other methods that might extend to longer linear chains.
So far, we have not been successful in this attempt. But we will introduce likely
candidates for a Lyapunov function and show counterexamples.

Recall that a Lyapunov function has a negative time derivative everywhere
except in the steady state, thereby showing that the steady state is globally
stable.

Consider for a general linear chain the function

1
L(zs,€) = 5 [le(zs) — e

This shows some promise to be a Lyapunov function, because

dL P de; .
7 = " le—el +;(5j—€j)d71ws,

where a large part of the expression is obviously negative. If we can estim-

ate the possibly positive part 2?21(53‘ - ej)%jcs as less than the definitely

negative part — |le — e||2 , then we can prove that L is a Lyapunov function.

However, we can find a counterexample. Through some judicious guessing,
a set of parameters was chosen for the smallest linear chain (See Table 1).
The Lyapunov function is the square of the Euclidian distance between the
estimated optimal enzyme concentration vector € and the current value e.
If we assume rapid equilibrium of the fast timescale, we will be on the slow
manifold and move towards the unique steady state.

As can be immediately seen in Figure 3, this proposed Lyapunov function
will then not necessarily be decreasing over time. If we start with very low e,
the rapid equilibrium will yield very low 21 and in the slow timescale, we will
move upwards along the slow manifold, but the estimated enzyme concentra-
tion £; will move upward faster, increasing L(Zs, e1) over time initially.

We can also choose as second try,

L(wy,e%) = ||e(s) — ||

As the system flows in the slow timescale, this might seem like a good candidate
for a Lyapunov function as the estimate will become better perhaps. Also for
this choice, a counterexample can be found. Changing the parameters a bit
from the previous counterexample (Table 1), the curve of €1 shows a steeply
increasing initial slope, followed by a very gently decreasing slope. As we follow
Z1 in the same manner as before, starting at e; =~ 0 (and thus z; ~ 0), &1
will increase towards ef and then pass it, in order to gently decrease back
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Fig. 3: The dynamics of the smallest linear chain. The streamplot shows the
actual dynamics for a small parameter p. The red line describes the slow
manifold and the blue line the estimated optimal enzyme concentration €1 as
a function of x1. This depicts a counterexample to the claim that ||e — e|| can
serve as a Lyapunov function.

to this eventual value. For a brief interval, this newly suggested candidate is
increasing over time, rendering it of no use for a Lyapunov function.
A third candidate would be
o o 2
L(xs, x7) = [los — 2]
This is in fact a Lyapunov function for the smallest linear chain, but in a linear
chain with 3 enzymes, we already found a counterexample (not illustrated).

The only remaining candidate for a Lyapunov function we have considered
for which we have found no counterexamples to date is

L(e) = —¢

minus the steady state flux as the system flows in the slow manifold (or equi-
valently the objective function). In every numerical simulation that we have
performed, the steady state flux ¢ would improve over time in a monotone
manner. Proving that this is indeed a Lyapunov function is another matter.
By taking a great deal of explicit information about the control and the quasi-
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Fig. 4: The dynamics of the smallest linear chain. The streamplot shows the
actual dynamics for a small parameter p. The red line describes the slow
manifold and the blue line the estimated optimal enzyme concentration €1 as
a function of x1. This depicts a counterexample for that ||e® —e|| can serve as
a Lyapunov function.

steady state into account, in the Appendix (Theorem 12) we show that

‘=S5 BRcl g0,
j=1 7,

We have not been able to take this result further, and show it to have a definite
sign.
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6 Appendix

6.1 Inverse Quasi Steady State; Enzyme levels follow the metabolic
concentrations

Lemma 7 shows that Z(e) is a smooth bijection and its inverse € is explicitly
defined by (45). Furthermore, we can use these explicit steady states e to derive
expressions for @ and Z, ¢ = 1,...,n — 1, that only depend on x, such that
we have simplified the total dynamical system to having only the metabolic
concentrations x as variables. This is based on the resulting expressions for
8870; from Lemma 4 and Z; from Corollary 6. Note that from the definition
of the system in Section 3.1.2 it is not obvious that such a construction is
possible, but now that we have constructed the derivatives of & and ¢ and
have equations that express e in terms of «, it follows immediately.
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Theorem 12 The steady state flux has time derivative in the slow timescale

o S —1@ Jeif: — ¢
C_;S f1fj,1cl(53fj o), (54)

where

(56)

oc
Proof Using the expression for ec_

¢ = ge ! e—e
- 8€j ‘:17 b

:ZS 1€1f12cjfj( )’
j=1

ejfin

= Zs_lelfl 2C{ (e /5 — es5)-

j=1 €j f]v
An alternative form of the steady state equations
e1f1 =c=e;fj,

can be written as

a_f

€j h
Substituting these forms into the expression for ¢ almost eliminates the en-
zyme concentrations from the equation,

N OT L)
i=1 ’

The only proliferance of the e; is in ¢ and

n

S — Z 61f12

ekfkl

so through the steady state equations this can be rewritten without the enzyme
concentrations,

fkf12
5= Zflfkl (57)
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Furthermore we can write ¢ as a function of only «, because

zn:ej =1
j=1

and from the steady state equations

SO we can see

-1

:Zf

a

The time dependence of the metabolic concentrations =’ in terms of only
x follows by taking Corollary 6, while substituting any instance of e; by using
the quasi-steady state equations (45).

Theorem 13 By means of the quasi-steady state assumption, the system can
be rewritten as an ODE system in only & by

((1—P)fo’f Clep — P Z J{:l Clal> (58)

k=1 7 k1 l=i+1

Q=

where P; is denoted in equation (59).

Proof Start with the following substitution from the quasi-steady state:

where ¢ is given in (56)
We then get an expression of the time dependence of @ solely in terms of
m?

Ti = SZ Z €1f12 ezfz (frex — fier)

=~ ekfkl

frfr kfl . -
l;lz flfkl 11 Ci (frer — fie1) -

Recall that S can be rewritten through the steady state equations to not
depend on e (57).
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We can rewrite the expression for Z;, substituting C:*'C! = C! on the
second line,

Z f12f1 . XZ: 12fk
- z+1f1f” Ci g /2 = A i e
toe Z tes S z:z‘zﬂ fia
f12fz flsz
Z )
_L=m A5 i Cr Z:: R S Cle,
c S = 1fmCZ+1 S f11

Above we recognise the two complementary parts of the total sum of S
divided by S (55). So the following is always a fraction between 0 and 1
P, € [0, 1},

1, 2fk

1fk, 1

Zf
1 ]
;fl;‘]ic

which can be substituted in the expression,

7
( Zf c¢+1’“ PZfUC )

I=i+1

Il =

Recall that we introduced a natural extention to the definition of C}* in
(20). From this we can see, if k < 1,

ok = G
1 Cn+1 )

which leads to the expression

( kackk_PZflCl> (60)

l=i+1

S

6.2 Global stability of the linear chain with fixed enzyme concentrations

Here we provide a new proof for the global stability of the linear chain with
fixed enzyme concentrations,

Ty = eifi — eit1fit1- (61)
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For the purposes of this Appendix, the Michaelis-Menten kinetics are chosen
here to have the following form,

%
Ti—1 — Keql‘i

fi= (62)

)
a;ri—1 + biw; +¢;

An older proof, which seems to have been largely forgotten, can be found in
(Smillie 1984).

Theorem 14 The unique steady state of (61)-(62) is globally stable.
Proof Write the system in the form

& = Fy(zio1, v, 0i01) (i=1,...,N),

_ (63)
xo =29 >0, Tnyy1 =Tny1 >0,
where
Fi = V; — Vi41- (64)
Note that P 5
Vi Vi
<0< 65
6.231‘ 8.731'_1 ( )

for all nonnegative values of the concentrations.

The proof follows from sub- and supersolution arguments and a suitable
comparison principle. We show below that (65) implies that two solutions with
initial data satisfying 0 < z,(0) < %;(0) for ¢ = 1,..., N have the property that
0 <z,0) <7z;(0) forallt >0and alli =1,..., N, unless z;(0) = Z;(0) for all
it =1,...,N. (The reader should not be confused by the different use of the
underlines in the notation.) We use this comparison principle with small and
large initial data, both characterised as being a thermodynamic equilibrium
for the linear chain from x; to xy, defined by

2,(0) < 20

_ 71(0)
< ————, T;(0) <
K2, Ki,

< m.
We can then take z,(0) so close to zero and 71 (0) so large that

z,(0) < z;(0) <7;(0) (i=1,...,N),
whence for all £ > 0

z,(t) <ax;(t) <z(t) (i=1,...,N). (66)

These solutions are called the subsolution, the solution and the supersolution.
We then also show that the sub- and the super solution satisfy

(1) >0>7(t) (i=1,...,N), (67)

for all ¢ > 0 whence both of them, and therefore also the solution itself converge
to the unique steady state determined by x¢ and To. Below we give some of
the details of the argument.
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Writing z; = Z; — z; we have

2 =T — &

= (& Ty ! + [0, €) = v (6T + i (@ OIS

[oi (T [vi1 (5 Tir) = vil@i_y, )],
== ——Zi—1 — = —Z;
LTi—1 — Lj_q Ty —Z;
i (@i, )z

— Zit1
Ti+1 — Ljq

= Qi i—1(Tim1, 2y 1, T, %) 2i—1 — Qi i (Tim1, L5 1, Tiny L4, Tig 1, L4541 ) %
+ @ i1 (T, Ty Tip1, T4 1) Zig 1

(68)
with the obvious adaptation for ¢ = 1 and ¢ = N. Note that via long division
the coefficients a;;—1,a; 4, @i 41 of zi—1,2i, zi41 are smooth positive rational
functions of their arguments, because of (64)—(65). The strict comparison prin-
ciple now follows by standard arguments: if the initial data are strictly ordered,
then at a first ¢ for which there exists ¢ with z; = 0 we must have that the
neighbouring z; are also zero and hence z; and 7; coincide. Repeating the
argument it follows that all z; are zero at this value of ¢t. Thus Z(t) and z(¢)
coincide, contradicting the fundamental theorem about existence and unique-
ness for solutions of initial value problems systems of ODE’s. Thus such a first
t cannot exist.

Solutions with initial data (0),Z(0) which are ordered, but not strictly
ordered in the sense that some of but not all the initial concentrations co-
incide, can be approximated with solutions with strictly ordered initial data
z.(0),Z.(0). Taking the limit it follows that the z; are globally nonnegative.
But then (68) implies %; > a;,% and the real analyticity of solutions implies
that each z;(t) is either globally positive, or identically equal to zero. Any such
zero solution can only have zero neighbours because otherwise, again in view
of (68), its derivative would be positive. Thus all z;(¢) are strictly positive
because at least must be, as the fundamental theorem prohibits all z;(¢) to
vanish.

It remains to be shown that all z,(¢) and Z;(t) are strictly monotone in the
sense of (67). From &; = v;(2;-1,%;) — vi11(2;, Ti+1) we obtain

_— (91)1- . avi avi+1 (9’Ul-+1 .
T; = axi_llﬁfl + <8$IL 8331 ) i 8.1?1‘4_1 Tit1,
ie.,
i+1 i+1
(69)
32121 8:6] Z 8%
with
OF; OF; OF;
L <0 ) =1+ 1 =0 f ) £ 1,0+ 1. 70
oz~ o ITIED b or Jj#ii (70)
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Suppose that initially F;(x) < 0 for all ¢ = 1,..., N and for some first ¢ there
is an ¢ with #;(t) = F;(x(t)) = 0. Then by (69) and (70) we have &;(t) > 0
unless both F;_1(x(t)) and F;;1(x(t)) also vanish. If i = 1 this applies only
to Fy and if i = N only to Fy41 of course. But then it follows by the same
argument that all F;(a(t)) vanish, contradicting the fundamental theorem.
The same argument applies to solutions for which initially all F;(x) > 0.

The strong version of this invariance, assuming only F;(x) < 0 for all
i =1,..., N with at least one inequality strict, seems a bit trickier to establish,
so we cannot directly conclude that the derivatives of T(t) and x(t)) are strictly
negative and strictly positive. Using a variation of the above argument for
existence of a unique steady state, the initial data for both these solutions
can easily be perturbed to initial data for which 0 = v; < --- < vy = ¢, for
which € = v > -+ > vy41 = 0. The corresponding solutions Z(t) and x(t)
are then globally strictly ordered and strictly monotone in the sense that the
derivatives are nonzero. Clearly we can take the limit ¢ — 0 and conclude that
Z(t) and x(t) are then globally strictly ordered and monotone in the sense
that the derivatives do not change sign. But then we also have that for each 4

T — S 8Fi*. < @*

Ti= = &rj i = ox; i

whence 7;(t) has the property that once it is strictly negative it remains strictly
negative. But since all 7;(t) are real analytic in ¢ we have that either 7;(t) <0
for all ¢ > 0 or Z;(t) = 0. Hence, the latter case is excluded by the same
argument as used above to establish the global strict positivity of all z;(t) =
T;(t) — z;(t). O
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