

1 **Single cell profiling of the VMH reveals a sexually dimorphic regulatory node of energy
2 expenditure**

3

4 Authors:

5 J. Edward van Veen^{1,2,7}, Laura G. Kammel^{1,2,3,7}, Patricia C. Bunda¹, Michael Shum^{4,6}, Michelle
6 S. Reid¹, Jae W. Park¹, Zhi Zhang^{1,2}, Megan G. Massa^{1,2,5}, Douglas Arneson¹, Haley Hrncir¹,
7 Marc Liesa^{4,6}, Arthur P. Arnold^{1,2}, Xia Yang¹, and Stephanie M. Correa^{1,2}

8

9 Affiliations:

10 ¹ Department of Integrative Biology and Physiology

11 ² Laboratory of Neuroendocrinology of the Brain Research Institute

12 ³ Molecular, Cellular, and Integrative Physiology Graduate Program

13 ⁴ Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical
14 Pharmacology, David Geffen School of Medicine

15 ⁵ Neuroscience Interdepartmental Doctoral Program

16 ⁶ Molecular Biology Institute,

17 University of California, Los Angeles, CA, USA

18

19 ⁷ authors contributed equally

20

21 author for correspondence: stephaniecorrea@ucla.edu

22

23

24

25

26 **Abstract**

27 Estrogen signaling in the central nervous system promotes weight loss by increasing
28 thermogenesis and physical activity in the ventromedial hypothalamus (VMH), but the precise
29 neuronal populations regulating these aspects of energy expenditure remain unclear. Here we
30 define the molecular and functional heterogeneity of the VMH using single cell RNA sequencing,
31 *in situ* hybridization, chemogenetic activation, and targeted gene knockdown. We describe six
32 molecularly distinct neuron clusters in the VMH. In females, estrogen receptor alpha (ER α) is
33 restricted to neurons expressing tachykinin-1 (*Tac1*) or reproto (Rprm). Further, *Tac1* and *Rprm*
34 expression is enriched in females, a sex difference that is established by permanent effects of
35 gonadal hormones early in life. Finally, while *Tac1* ablation selectively impairs movement, here
36 we show that silencing *Rprm* selectively dysregulates temperature without affecting physical
37 activity. Together this work provides a novel architectural framework whereby distinct and
38 sexually differentiated neuron populations within the VMH mediate sex-specific aspects of
39 metabolic homeostasis.

40

41

42

43

44

45

46

47

48

49

50

51

52 **Main**

53 Women transitioning to menopause exhibit decreased energy expenditure and
54 decreased fat oxidation compared to age-matched premenopausal women¹. Similar to humans,
55 rodents exhibit estrogen-induced changes in energy expenditure; female rats exhibit cyclic
56 patterns of wheel running throughout the estrous cycle^{2,3} and female mice exhibit similar
57 cyclicity in temperature and locomotion⁴⁻⁶. These effects are mediated by estrogen receptor
58 alpha (ER α) signaling: eliminating ER α either globally or in the central nervous system leads to
59 obesity due increased feeding, reduced movement, and reduced thermogenesis⁷⁻⁹. While
60 estrogen-based hormone therapy can improve metabolic profiles after menopause, it is
61 associated with higher cardiovascular disease risk¹⁰ and, in the case of estrogen plus
62 progestogen therapy, higher breast cancer risk¹¹. To ultimately circumvent the risks associated
63 with systemic estrogen therapy, we aim to pinpoint neurons that control systemic energetic
64 balance and define their responses to estrogen signaling.

65 Recent work has begun to define the neuron populations that mediate the effects of ER α
66 signaling on energy balance. Conditional knockout mouse models suggest that ER α signaling
67 modulates feeding in female mice via neurons of the pro-opiomelanocortin (*Pomc*) lineage,
68 possibly located in the arcuate nucleus (ARC)^{5,9,12,13} or outside the medial basal
69 hypothalamus¹⁴. Additionally, ER α signaling modulates two types of energy expenditure,
70 spontaneous physical activity and thermogenesis, via neurons of the steroidogenic factor 1
71 (*Sf1/Nr5a1*) lineage in the ventromedial hypothalamus (VMH)^{9,15-17}. However, ER α -expressing
72 neurons of the VMH have many functions. In addition to female-specific roles in energy
73 expenditure, ER α^+ VMH neurons control fear, territorial aggression, and self defense in males,
74 maternal aggression in females, and mating behaviors in both sexes¹⁸⁻²³. We hypothesize that
75 these diverse and sex-specific functions are mediated by distinct subpopulations of ER α^+
76 neurons. Consistent with this notion, distinct neuronal ensembles are activated in the

77 ventrolateral region of the VMH (VMHvl) of male mice during interactions with male or female
78 conspecifics^{18,24}. While these neuron populations remain to be defined, a subset of ER α ⁺
79 neurons in the VMH, which co-express tachykinin 1 (*Tac1*) and oxytocin receptor (*Oxtr*), drive
80 estrogen-dependent changes in physical activity in females^{17,25}. However, the VMHvl
81 populations that control other sex-specific behaviors, such as estrogen-dependent increases in
82 thermogenesis, have not been identified.

83 The VMH is sexually dimorphic with respect to hormone responsiveness, gene
84 expression, neurochemistry, synaptic organization, and neuron function²⁶⁻²⁸. Here, we use RNA
85 sequencing with single cell resolution to test the hypothesis that neurons in this region are
86 heterogenous and sexually dimorphic. We define six major neuron populations in the VMH and
87 a new sexually dimorphic transcript in the VMHvl, reproto (Rprm), which regulates core body
88 temperature. Collectively, these studies demonstrate that estrogen regulates energy
89 expenditure in females through two intermingled but distinct neuronal subsets, and suggest that
90 the VMH serves as a hormone-responsive nexus of distinct neural circuits controlling metabolic
91 homeostasis.

92

93 RESULTS

94 Single Cell Transcriptomics Reveals Neuronal Heterogeneity in the VMH

95 We used a fluorescent reporter strategy to isolate neurons of the VMH and single cell
96 RNA sequencing to cluster neurons by transcriptional signature. To selectively label VMH
97 neurons, the *Sf1Cre* driver²⁹ was crossed to mice carrying a latent allele of tdTomato (*Ai14*)³⁰
98 (Figure 1a). Importantly, this strategy yields tdTomato expression in neurons of the entire VMH
99 upon Cre expression, including in the ventrolateral VMH where it overlaps with ER α
100 immunoreactivity in both males and females (Figure 1b, c) as in³¹. tdTomato expression in
101 surrounding hypothalamic regions, the dorsomedial hypothalamus (DMH) and the arcuate

102 nucleus (ARC), was detectable but scattered and infrequent (Figure 1b, c, white arrowheads).

103 Fluorescence aided cell sorting (FACS) was performed on single cell suspensions of

104 hypothalami to isolate live neurons of the *Sf1* lineage for single cell transcriptomic analysis

105 (Figure 1d).

106 Unicellular transcriptional analysis of 530 single cells from 3 male and 3 female postnatal

107 day (P) 10 mice detected an average (median) of 2556 genes per single cell and revealed

108 strong and consistent expression of the neuronal markers β 3-tubulin (*Tubb3*) and neurofilament

109 light peptide (*Nefl*), while very few cells exhibited detectable expression of the glial markers

110 *Gfap* and *Olig1* (Figure 2a). Consistent with the VMH being predominantly glutamatergic, high

111 expression of the glutamatergic marker *Slc17a2* and consistently low expression of the

112 GABAergic marker *Gad2* was observed in all samples (Figure 2a). Finally, to assess how

113 dissociation and FACS sorting may have affected gene expression, we examined immediate

114 early gene expression. Expression of *Fos* and *Arc*, used as a readout for isolation stress and

115 activation^{32,33}, appears undetectable in the majority of cells from suspensions obtained from

116 different animals and sexes (Figure 2a). Overall, we conclude that the *Sf1Cre*-mediated

117 fluorescent reporter strategy primarily yields healthy VMH glutamatergic neurons.

118 To determine if VMH neurons show heterogeneity in gene expression profiles, we used

119 a Shared Nearest Neighbor (SNN) algorithm to identify clusters comprised of transcriptionally

120 similar cells³⁴. A uniform manifold approximation and projection (UMAP) revealed a main cluster

121 and two divergent clusters (Figure 2b). Within the main cluster, UMAP-based separation was

122 less pronounced, as may be expected when examining neurons of a single transcription factor

123 lineage (*Sf1Cre*). Nevertheless, we detected distinct clusters marked by differential expression

124 of genes that have known and unknown significance in the VMH. We identified a total of eight

125 clusters, hereby identified by the top most differentially expressed transcript within each cluster

126 (Figure 2b, c): *Tac1*, which has been previously demonstrated to promote physical activity in

127 female mice¹⁷; *reproto* (*Rprm*), a TP53 and ER α regulated gene³⁵ with no described role in the

128 brain; prodynorphin (*Pdyn*), a gene encoding an endogenous opioid precursor with described
129 roles in leptin-regulated energy homeostasis throughout the hypothalamus³⁶; somatostatin (*Sst*),
130 a neuropeptide precursor gene which has hypothalamic roles in the negative regulation of
131 growth hormone axis³⁷ and feeding³⁸; hippocalcin-like protein 1 (*Hpcal1*) encoding a neuron-
132 specific calcium binding protein; and galanin (*Gal*), a neuropeptide precursor gene shown to
133 increase food consumption when injected into the VMH of rats³⁹. In addition to the
134 subpopulations in the principal six clusters, we identified two divergent clusters (Figure 2b, c): a
135 cluster marked by differential expression of proopiomelanocortin (*Pomc*) and many other
136 markers indicating an ARC derived origin, and one marked by differential expression of
137 apolipoprotein E (*Apoe*) and many other markers of glial-like signature.

138 Comparing overall transcriptional signatures amongst the eight clusters (Figure 2d), the
139 most divergent population are the cells with glial-like signature (*Apoe*⁺), followed by neurons
140 expected to be from the ARC (*Pomc*). Neuron clusters expected to arise from the VMH are
141 more closely related in overall expression signature. Remarkably, the expression of cluster-
142 defining markers appears largely mutually exclusive (Figure 2e), suggesting distinct molecular
143 signatures among neuron clusters of the VMH.

144 All the neuron clusters identified in the unicellular analysis of the VMH were obtained by
145 analyzing males and females together (Supplementary Figure 1a). We then compared the gene
146 expression profiles between males and females to determine whether sex-specific signatures
147 existed in VMH neurons. The paternally-expressed gene necdin (*Ndn*) had the highest
148 enrichment in males, whereas the proto-oncogene *Araf* had the highest enrichment in females
149 (Supplementary Figure 1b). *Ndn* expression was consistently higher across all clusters in males
150 (Supplementary Figure 1c) and RNA *in situ* hybridization (ISH) confirmed enrichment of *Ndn*
151 transcripts in the male VMH as compared to females (Supplementary Figure 1d). *Araf*
152 expression was detected to be consistently higher in neurons from females across clusters,
153 compared to those from males (Supplementary Figure 1e). ISH of *Araf* was unable to clearly

154 confirm the female biased expression in the VMH, though it appears that *Araf* expression in
155 females might be slightly higher in the VMHvl (Supplementary Figure 1c, d). As *Araf* is a direct
156 effector of the RAF/MEK/ERK MAPK cascade, we sought to determine if this pathway is
157 activated differentially in females. Intriguingly, we found female-specific phosphorylation of MEK
158 in the VMHvl that co-localizes with ER α (Supplementary Figure 1g). This result supports a
159 female specific role of MAPK signaling in the VMHvl as well as *Araf* as a target to be explored to
160 induce changes in energy balance.

161

162 **Sex differences established by gonadal hormones**

163 To test the prediction that each neuron cluster generated by gene expression would
164 have a correspondingly distinct spatial distribution within the intact VMH, we detected and
165 localized the expression of the cluster-defining markers using ISH. Further confirming the
166 efficiency of VMH neuron isolation used in the scRNA-seq, expression of all marker genes
167 except *Pomc* was detected within the anatomical boundaries of the VMH (Figure 3 and
168 Supplementary Figure 2a-d). The most restricted expression patterns were observed with *Tac1*,
169 *Rprm*, *Pdyn*, and *Sst* (Supplementary Figure 2a-e). Analysis along the rostral-caudal axis
170 revealed sexually dimorphic expression of *Tac1*, *Rprm*, and *Pdyn* in the caudal VMHvl (Figure
171 3a-c). Specifically, *Tac1* and *Rprm* expression were both significantly enriched in females within
172 the caudal VMHvl (Figure 3a, b). In contrast, *Pdyn* expression was significantly enriched in
173 males within the caudal VMHvl, although both males and females showed robust expression of
174 *Pdyn* in the dorsomedial VMH (Figure 3c). Finally, we did not detect any major differences in
175 expression of *Sst* between males and females (Figure 3d).

176 Sex hormones mediate permanent (organizational) differentiating effects on the brain
177 during development, as well as reversible (activational) effects during adulthood, with additional
178 contributions to sex differences caused by sex chromosome genes expressed within brain cells.
179 To delineate how sexually dimorphic expression of cluster markers develops in the VMHvl, we

180 used the four-core genotypes model⁴⁰ to reveal i) organizational effects of hormones, by
181 comparing XX female vs. XX male or XY male vs. XY female, all gonadectomized (GDX) upon
182 sexual maturity, ii) activational effects of hormones, by comparing GDX vs. intact XX females or
183 XY males, and iii) the effects of sex chromosomes, by comparing XX female vs. XY female or
184 XX male vs. XY male, all GDX, as illustrated in Figure 4a. Expression patterns of both *Tac1* and
185 *Rprm* were unchanged by GDX in females, showing that hormonal activation is not essential for
186 dimorphic expression. Moreover, the presence of the Y chromosome in females did not change
187 *Tac1* or *Rprm* expression, suggesting that the Y chromosome did not have a repressive role on
188 these genes. However, gonadal sex was critical for determining these sexually dimorphic
189 expression patterns, suggesting that these patterns are established during development and are
190 maintained in adulthood (Figure 4b, c). In contrast, the expression pattern of *Pdyn* was distinct
191 between GDX or intact females and gonad-intact males, but not GDX males (Figure 4d,
192 Supplementary Figure 3), suggesting that *Pdyn* expression is maintained by differences in
193 testicular sex hormone signaling in adulthood. Finally, we did not observe any sex differences in
194 *Sst* along any of the three phenotypic comparisons (Figure 4e).

195

196 **Two major estrogen-sensitive populations in the female VMHvl**

197 Estradiol, as a metabolite of testosterone from the testes, plays a major role in the early
198 permanent masculinization of the mammalian brain in males and the expression of male-
199 specific behaviors. To determine if any of the organizational and activational effects of sex
200 hormones on neuronal cluster markers, specifically *Tac1*, *Rprm*, and *Pdyn*, could be related to
201 estradiol action on ER α , we first examined the expression of ER α by fluorescent ISH (FISH)
202 within each cluster. In females, ER α immunoreactivity was robust in *Tac1*⁺ cells and *Rprm*⁺ cells
203 (Figure 5a, b), but weak in *Sst*⁺ cells (Supplementary Figure 4a). In males, we found that *Pdyn*
204 expression co-localized with ER α immunoreactivity, despite lower ER α expression at both the

205 transcript and protein levels compared to females (Figure 5c,d and Supplementary Figure 3c).

206 We then investigated the spatial relationship of these ER α^+ neuron populations in females.

207 *Tac1*⁺ and *Rprm*⁺ cells were highly intermingled within the VMHvl (Figure 5e), but largely

208 spatially distinct from *Sst*⁺ cells (Supplementary Figure 4b, c).

209 Finally, we asked if ER α is required for the sexually dimorphic expression of *Rprm* in
210 females, as previous studies showed that *Tac1* expression was independent of ER α status in
211 the VMHvl. We compared mice with genetic ablation of ER α in the *Sf1* lineage, which results in
212 a substantial loss of ER α^+ cells in the VMH⁹, and a second mouse model lacking ER α in the
213 *Nkx2-1* lineage, which shows near complete elimination of ER α both in the VMH and ARC¹⁷.
214 Interestingly, we found that *Rprm* expression, similar to *Tac1* expression, was insensitive to
215 ER α ablation in the female VMHvl (Figure 5f, g). Together, these findings are in line with
216 evidence that early brain masculinization, rather than feminization, is dependent on estradiol-
217 induced regulation of gene expression.

218

219 **VMH Expression of Reprimo Regulates the Central Control of Temperature**

220 To discern the role of ER α^+ VMHvl neurons in energy expenditure, we first
221 chemogenetically activated ER α neurons using the Cre-dependent DREADD (AAV-DIO-
222 hM3Dq⁴¹) delivered bilaterally to the VMHvl of *Esr1Cre* knockin mice²⁰. Administration of the
223 DREADD ligand, clozapine-N-oxide (CNO), elicited a sustained (6 hour) increase in both heat
224 and physical activity in *Esr1Cre* females compared to saline administration in the same mice on
225 a different day and compared to CNO administration to wild-type littermates (Figure 6a, b and
226 Supplementary Figure 5).

227 Previous studies suggest that *Tac1*⁺ neurons mediate estrogenic effects on physical
228 activity but not thermogenesis, and that these neurons require *Tac1* expression to fully induce
229 movement¹⁷. The neuronal population controlling thermogenesis in a sexual dimorphic manner,

230 however, was still elusive. Thus, we hypothesized that the specific role of these newly identified
231 *Rprm*⁺ neurons was to control thermogenesis. To test this hypothesis, we silenced *Rprm* gene
232 function within the VMHvl using cell permeable siRNA pools delivered via bilateral stereotaxic
233 injections (Figure 7a). When compared to animals injected with a non-targeting siRNA, the
234 animals injected with *Rprm* targeting siRNA showed a significant increase in body temperature
235 (Figure 7b, c). The increase in temperature was persistent across time points (Figure 7b) and
236 was significant both in the active night phase and the inactive day phase (Figure 7c).
237 Importantly, *Rprm* knockdown did not induce changes in physical activity (Figure 7d), further
238 supporting the notion that *Tac1*⁺ neuronal function does not overlap with *Rprm*⁺ neuronal
239 function. These data demonstrate for the first time that there are at least two classes of ER α ⁺
240 neurons in the VMHvl that are functionally distinct, and together coordinate the female specific
241 effects on physical activity and thermogenesis of this hormone-responsive region.
242
243

244 **DISCUSSION**

245 This study used the power of single cell RNA sequencing as a starting point for a high
246 resolution atlas of the VMH, one of the brain's longest known sexually dimorphic regions. By
247 performing our sequencing ten days after birth, we were able to discover populations
248 established in development, before they are altered by hormonal changes associated with
249 experience or puberty. Extensive validation experiments confirm all of the populations identified
250 by sequencing analysis. Additionally, *in situ* hybridization comparing the sexes revealed novel
251 sexually dimorphic populations in the caudal VMHvl that scRNA sequencing did not resolve. We
252 detected only scattered reads from *Esr1* in our sequencing, but combining
253 immunohistochemistry with *in situ* hybridization clearly identified specific populations that
254 overlap with ER α expression, notably including the sexually dimorphic subpopulations of the
255 VMH. Finally, *in vivo* validation experiments confirm that ER α^+ neurons in the VMHvl play
256 unique roles in regulating energy expenditure in females, and extend this finding by functionally
257 and molecularly subdividing these neurons. Functional dissection of sex differences in the
258 neural circuits that control food intake and energy expenditure is critical to understanding the
259 biological basis of gender differences in the control of body weight.

260 Single cell RNA sequencing has led to dramatic improvements in understanding diverse
261 cell populations of the hypothalamus, using dissociated brain tissue without purification of cell
262 types^{42,43}. Here, we extend these studies by using mice harboring a genetically encoded
263 fluorescent lineage tracer (*Sf1-Cre; Ai14*). This approach was tailored to allow specific
264 purification of VMH neurons by FACS prior to scRNA-Seq. We identified six major and two
265 minor clusters of cells with distinct transcriptional signatures. Notably, previous studies do not
266 identify the two clusters marked *Hpcal1* or *Rprm*, nor do they assign *Tac1*, *Pdyn*, *Sst*, or *Gal*
267 populations to the VMH^{42,43}. In contrast, targeted profiling of the *Sf1* lineage allows the study of
268 the VMH with unprecedented resolution.

269 As the overall anatomy of the VMH is conserved between males and females (Figure 1b-
270 c, 2b, Supplementary Figure 1a), it is curious how activation of equivalent neurons can evoke
271 sex specific behaviors. It is now generally accepted that sexually dimorphic behaviors are
272 sexually differentiated by sex hormones during critical developmental periods (reviewed in ^{44,45}).
273 Estrogen signaling in the VMH has clearly demonstrated roles in coordinating the increased
274 movement and thermogenesis that accompany the sexually receptive period in female mice^{16,46}.
275 Indeed, partial ablation of *Esr1*⁺ neurons in the VMH impairs BAT thermogenesis in females⁹.
276 Additionally, activation of neurons in the VMHvl increases physical activity in females, but not in
277 males, in a manner that is dependent on both circulating estrogens and hypothalamic
278 expression of ER α ¹⁷. Here, we find that specific activation of *Esr1*⁺ neurons in female VMHvl
279 increases physical activity and body temperature, supporting the notion that *Esr1*⁺ VMHvl
280 neurons coordinate estrogen-dependent energy expenditure.

281 The present results suggest that sex hormone signaling during development drives the
282 emergence of two female-specific subpopulations of *Esr1*⁺ neurons, defined by largely mutually
283 exclusive expression of either *Tac1* or *Rprm*. Previous studies link the *Tac1*⁺ subset of ER α ⁺
284 neurons to the regulation of physical activity in females, without affecting thermogenesis¹⁷. To
285 date, several lines of evidence have also implicated estrogen signaling in the VMH, primarily
286 dependent on inhibition of AMP-kinase (AMPK), in enhanced BAT thermogenesis through
287 activation of the sympathetic nervous system (SNS)^{16,47}. We now report that silencing *Rprm*
288 function selectively alters temperature without significantly affecting movement. Together, our
289 expression analyses and functional studies suggest a model in which estrogens act on the *Tac1*
290 and *Rprm* neuron clusters to increase energy expenditure in females by two distinct
291 mechanisms (Figure 7e). The intermingling of *Tac1*⁺ and *Rprm*⁺ neurons within the VMHvl is
292 intriguing. In the future, it will be very interesting to examine whether *Rprm*⁺ neurons and *Tac1*⁺
293 neurons exhibit crosstalk and how their circuit wiring differs, but this will require currently

294 unavailable tools, such as a *Rprm*-Cre mouse, to allow for specific labeling, activation, and
295 inhibition of these populations.

296 These studies also uncovered a male-specific pattern of expression in the VMHvl,
297 defined by the expression of *Pdyn*. A notable difference between the *Pdyn* and *Tac1* or *Rprm*
298 subpopulations is that maintenance of *Pdyn* in the VMHvl expression requires circulating
299 testicular hormones. This result is made more striking by the observation that *Pdyn* expression
300 in the dorsomedial VMH (VMHdm) is contrastingly unaffected by castration. Dynorphins, the
301 products of *Pdyn*, are potent endogenous opioid peptides⁴⁸ with demonstrated roles in reward,
302 addiction, and stress⁴⁹. It will be very interesting in future studies to examine the role of VMH
303 *Pdyn* expression in male behavior, and how these behaviors might be modified by circulating
304 levels of testosterone. In addition to the observed sub-specialization of the VMHvl, we observed
305 a limited number of VMH-wide sex differences in gene expression, including male-biased
306 expression of *Ndn*, which appears to be due to fewer *Ndn*⁺ cells in the VMH of females
307 compared to males.

308 Entry into menopause is associated with significant increases in visceral abdominal fat
309 and body weight. Surprisingly, this is not associated with an increase in caloric intake. Instead,
310 adiposity correlates with a decrease in overall energy expenditure, which manifests most
311 strikingly during sleep¹, implying that an increasingly sedentary lifestyle cannot be the primary
312 determinant. Because postmenopausal obesity confers enhanced risks of cardiovascular
313 disease and breast cancer, there is a clear and urgent need to find new strategies to combat
314 weight gain. Replacing hormones lost during menopause, such as estrogen and progesterone,
315 can bring about weight loss, but these treatments themselves carry potential cardiovascular and
316 cancer risks. We speculate that *Tac1*⁺ and *Rprm*⁺ neurons are important nodes in the
317 dysregulation of energy expenditure accompanying the abrupt decline in circulating sex
318 hormones experienced during menopause. As such, the molecular mechanism whereby these

319 neurons control thermogenesis will be of interest for the treatment of post-menopausal obesity.

320

321

322 **Experimental Procedures**

323 *Mice*

324 All studies were carried out in accordance with the recommendations in the Guide for the Care
325 and Use of Laboratory Animals of the National Institutes of Health. UCLA is AALAS accredited
326 and the UCLA Institutional Animal Care and Use Committee (IACUC) approved all animal
327 procedures. Mice expressing the *Sf1Cre* driver transgene (*Tg(Nr5a1-cre)7Low*), the *Nkx2-1Cre*
328 driver transgene (*Tg(Nkx2-1-cre)2Sand*), and the *Ai14*-tdTomato reporter with loxP-flanked
329 STOP cassette (*Gt(ROSA)26Sor^{t^{m14(CAG-tdTomato)Hze}}*) were maintained on a C57BL/6 genetic
330 background. The *Esr1* floxed allele (*Esr1^{tm1Sakh}*) was maintained on a CD-1;129P2 mixed
331 background. Breeder male “Four Core Genotypes” mice (FCG, background C57BL/6J) possess
332 a Y chromosome deleted for the testis-determining gene *Sry*, and an *Sry* transgene inserted into
333 chromosome 3. The four genotypes include XX and XY gonadal males (XXM and XYM), and XX
334 and XY gonadal females (XXF and XYF). Genotypes were discriminated using genomic PCR as
335 described in ⁵⁰. All other experiments were carried out on C57BL/6J mice (JAX 000664). Except
336 for gonadectomy studies, all experiments were performed in intact males and intact cycling
337 females.

338

339 *scRNA sequencing*

340 We labeled all VMH neurons by crossing the Cre-dependent tdTomato reporter (*Ai14*)³⁰
341 to the *Sf1Cre* driver²⁹ to generate *Ai14^{ff}*; *Sf1Cre* mice. Because the tdTomato signal is largely
342 restricted to the VMH, a fairly large hypothalamic region was collected under fluorescent
343 illumination. Cells were dissociated using a papain-based enzymatic process (Worthington

344 Biochemical). VMH neurons were sorted by FACS using parameters that select for tdTomato
345 signal. Because tdTomato is expressed in processes and projections, we enriched for cell
346 bodies using a nuclear DNA dye (cell permeant DRAQ5, ThermoFisher). Dead cells were
347 excluded by eliminating cells stained by NucBlue (cell impermeant DAPI). Doublet
348 discrimination was used to ensure single cells were deposited into each well. Individual
349 tdTomato⁺ neurons were sorted into each well of a 96-well plate (Precise WTA kits, BD). The
350 Precise WTA single cell sequencing kits include a well index to identify each cell and a unique
351 molecular index (UMI) to identify each transcript and reduce bias due to PCR amplification.
352 Libraries were prepared according to manufacturer's instructions and sequenced on an Illumina
353 NextSeq 500 using paired end 2 x 75 bp mode.

354 Expression data were analyzed using the R package Seurat⁵¹. Normalized data were
355 scaled with a linear regression model based on number of unique molecular identifiers (UMIs)
356 per cell and percentage of reads from the mitochondrial genome to remove unwanted sources
357 of variability and to normalize gene expression data. Analyses included all genes expressed in \geq
358 2 cells, and all cells expressing \geq 500 genes and a fraction of mitochondrial reads < 0.17 . To
359 cluster cells based on transcriptome similarity, we used Shared Nearest Neighbor (SNN)
360 algorithm⁵². For each cell cluster, marker genes were determined by comparing expression in
361 the given cluster against all other clusters using the smart local moving algorithm to iteratively
362 group clusters together⁵². To determine sex differences, all female neurons passing initial
363 filtering were compared to all male neurons passing initial filtering.

364

365 *Mouse Procedures*

366 Mice were anaesthetized with isofluorane and received analgesics (0.01mg/mL
367 buprenorphine, 0.58mg/mL carprofen) pre- and post- surgery. Bilateral ovariectomy and
368 castration surgery with complete removal of the ovaries or the testes was performed on adult
369 mice. For Figure 4, sham or gonadectomized control mice (XXF and XYM) and gonadectomized

370 FCG mice from separate experimental batches are shown together. The Cre-dependent AAV8-
371 hM3Dq-mCherry DREADD (Addgene, titer $\geq 4 \times 10^{12}$ vg/mL, 200 nL to each side) was injected
372 bilaterally into the VMHvl of adult female mice (coordinates: A-P: -1.56 mm from Bregma;
373 lateral: ± 0.85 mm from Bregma; D-V: 5.6 mm from the cortex). After 2 weeks of recovery, mice
374 received i.p. injections of CNO (0.3 mg/kg) or vehicle (saline, 0.15% DMSO) 3 hr after the onset
375 of the light phase. Saline and CNO were administered on consecutive days in a randomized
376 balanced design. siRNA pools against *Rprm* or non-targeting controls (Dharmacon, 0.4 mM,
377 350 nL to each side) were delivered to the VMHvl as described above. Indirect calorimetry was
378 performed in Oxymax metabolic chambers (Columbus Instruments). Gross movement and core
379 body temperature were measured using an IP-implanted G2 eMitter and VitalView software
380 (Starr Life Sciences).

381

382 *RNA probe generation*

383 Digoxigenin (DIG)- or fluorescein (FITC)-labeled sense and antisense riboprobes for
384 somatostatin (*Sst*), reproto (Rprm), tachykinin 1 (*Tac1*), prodynorphin (*Pdyn*), necdin (*Ndn*), and
385 proto-oncogene, serine/threonine kinase A-Raf (*Araf*) were in vitro transcribed from template
386 cDNA using T7/T3/SP6 RNA polymerase (DIG/FITC RNA labeling kit, Roche) and purified with
387 RNA Clean & Concentrator (Zymo Research). For template cDNA generation, PCR products for
388 individual genes were amplified from a hypothalamic cDNA library and cloned into pCR 2.1-
389 TOPO or pCR II-TOPO (Invitrogen) for all probes except *Tac1*, which was previously
390 described¹⁷. Plasmid DNA was isolated from bacterial cultures using ZymoPURE II Plasmid
391 Midiprep kit (Zymo Research), linearized by restriction digest, and purified with DNA Clean &
392 Concentrator (Zymo Research). All PCR products, except *Araf*, were generated using reference
393 primer sequences from the Allen Brain Institute. For *Araf*, cDNA was generated from bases 639-
394 942 (NM_009703.2).

395

396 *In situ hybridization*

397 The ISH protocol was partially adapted from previously published methods¹⁷. 18 μ m-thick
398 cryosections containing the VMH were obtained from paraformaldehyde-fixed mouse brains.
399 Day 1: Upon defrosting to room temperature (rt), slides were washed in PBS, postfixed in 4%
400 PFA, and washed again. TSA-fluorescent ISH (FISH) slides were also incubated in 3% H₂O₂ for
401 30min to quench endogenous peroxidase activity. To permeabilize the tissues, slides were
402 incubated in proteinase K (1ug/mL) for TSA-FISH and chromogenic ISH (CISH), or 0.3% Triton
403 X-100 in PBS for combined FISH-IHC. CISH slides were postfixed again in 4% PFA for 5 min.
404 Slides were incubated in hyb solution containing probe overnight at 65C. Day 2: Coverslips
405 were removed in solution containing 5x SSC heated to 65C. Slides were then subject to a series
406 of stringency washes, then blocked in NTT containing 2% blocking reagent and HISS for 2 h at
407 rt. Slides were incubated in antibody solution containing either anti-DIG-AP (1:5,000), anti-FITC-
408 AP (1:5,000), or anti-DIG-POD (1:4,000) in 4C overnight. FISH-IHC slides were additionally
409 incubated in anti-ER α (Rb, 1:1000). Day 3: Slides were washed in NTT, then NTML (0.15M
410 NaCl, 0.1M Tris pH 9.5, 50mM MgCl₂, 2mM levamisole, and 0.1% Tween-20) to quench
411 endogenous phosphatase activity. Slides were developed in INT/BCIP solution (Roche). FISH-
412 IHC slides were blocked in 10% normal goat serum for 1hr at rt, and incubated with anti-rabbit
413 647 for 2 h at rt, and incubated in HNPP/Fast red working solution according to manufacturer's
414 instructions (HNPP Fluorescent Detection Set, Roche). To stop the reaction, the slides were
415 washed 3x 5min in PBS, counterstained with DAPI, and immediately stored in -20C to prevent
416 HNPP/Fastred diffusion. TSA-FISH slides were incubated in working solution containing Cy5
417 Plus tyramide according to manufacturer's instructions (Perkin Elmer). Slides were then washed
418 in NTT and incubated in 3% H₂O₂ for 30min to quench the first tyramide reaction. Slides were
419 then washed 3x 5min in NTT, blocked in in NTT containing 2% blocking reagent and HISS for 2
420 h at rt, and incubated overnight in anti-FITC-POD (1:4,000). Day 4: TSA-FISH slides were
421 washed in NTT, and incubated in working solution containing FITC Plus tyramide according to

422 manufacturer's instructions (Perkin Elmer). The reaction was terminated with NTT and slides
423 were counterstained in DAPI. Control experiments using sense riboprobes and no probes
424 showed negligible signal. Additionally, performing the TSA reaction following 3% H₂O₂ for 30min
425 in the absence of a second POD incubation confirmed adequate quenching. Probes with weaker
426 signal intensity were developed first in TSA-FISH.

427

428 *Image Acquisition and Quantification*

429 All CISH experiments with imaged in brightfield on a DM1000 LED microscope (Leica)
430 using 5X or 10X objectives. Semi-quantitative optical density (O.D.) measurements of mRNA in
431 CISH slides were obtained with ImageJ (NIH) following calibration with a calibrated step tablet
432 (Kodak), according to standard protocols⁵³. Measurements from the left and right VMH were
433 averaged to calculate the mean O.D. for each animal using predetermined ROIs based on the
434 Franklin and Paxinos Mouse Brain Atlas. Sex differences in O.D. between the caudal VMH and
435 caudal VMHvl were determined by two-way ANOVA with Bonferroni multiple-comparison
436 correction. FISH and IHC experiments were imaged on a LSM780 confocal microscope (Zeiss)
437 using 10X or 20X objectives. Tile-scanned images were stitched using Zen Black (Zeiss). All
438 images were taken with the same z-sampling interval for a given objective and z-stacks were
439 merged to obtain maximum intensity projections. Cyan/magenta/yellow pseudo-colors were
440 applied to all fluorescent images for accessibility. Image processing, limited to brightness and
441 contrast, was performed using the Leica Application Suite (Leica), Zen Black (Zeiss), ImageJ
442 (NIH), and Photoshop (Adobe).

443

444

445 **Acknowledgements**

446 The research was supported by UCLA Division of Life Sciences funds to SMC, NIH K01
447 DK098320 to SMC, NIH UL1TR001811 and Iris Cantor-UCLA Women's Health Center/UCLA
448 National Center of Excellence in Women's Health Pilot Awards to SMC and ZZ, UCSD/UCLA
449 Diabetes Research Center NIH P30 DK063491 Pilot and Feasibility awards to SMC and ML,
450 NIH grants DK104363 and NS103088 to XY, NIH grants HD076125 and HL131182 to APA,
451 UCLA Department of Medicine Chair commitment to ML, pre-doctoral NRSA (F31 AG051381)
452 and Hyde Fellowship to LGK, UCLA Dissertation Year Fellowships to LGK and DA, Canadian
453 Diabetes Association Postdoctoral fellowship to MS, American Heart Association Postdoctoral
454 Fellowship (18POST33960457) to ZZ, and NSF Graduate Research Fellowship to MGM. The
455 authors thank Carolina De La Cruz for technical assistance.

456

457

458 **Author Contributions**

459 JEV, LGK, and SMC conceived of and designed the studies. JEV, LGK, PCB, MS, MSR, JWP,
460 ZZ, MGM, HH, and SMC acquired and analyzed data. JEV, LGK, PCB, MS, DA, ML, APA, XY,
461 and SMC contributed to data interpretation. JEV, LGK, and SMC wrote the manuscript with
462 substantial input from MS, ZZ, MGM, DA, ML, APA, and XY.

463

464

465 **Competing Interests Statement**

466 The authors declare no competing interests.

467

468

469

470 **Figure Legends**

471 **Figure 1. *Sf1* lineage tracing allows for targeted scRNA-seq of the VMH.**

472 **a**, In-situ hybridization of *Sf1* transcripts in sagittal section of mouse brain (from Allen Brain
473 Atlas) shows a pattern of expression restricted to the VMH. **b,c**, Mice harboring both the *Sf1*-
474 *Cre* allele and a latent allele of tdTomato (*Ai14*) show VMH specific fluorescence within the
475 hypothalamus: coronal sections taken from P10 mice, scale bars = 200um. Both female (b) and
476 male (c) VMH show expression of ER α in the VMHvl. As expected, females show higher
477 immunoreactivity. White arrowheads highlight scattered *Sf1* lineage cells outside of the VMH. **d**,
478 Strategy for dissociation followed by FACS and VMH targeted scRNA-seq.

479

480 **Figure 2. Single cell RNA sequencing reveals non-overlapping gene expression
481 signatures in the VMH.**

482 **a**, scRNA sequencing results from (n = 3 female, 3 male) P10 mice showing high expression
483 levels of the neuron specific markers *Tubb3* and *Nefl* with only scattered cells expressing the
484 glial markers *Gfap* and *Olig1*. Cells also express high levels of the glutamatergic marker
485 *Slc17a2*, low levels of the GABAergic marker *Gad2*, and limited expression of the immediate
486 early genes *Fos* and *Arc*. **b**, UMAP showing clusters as defined by marker with highest
487 expression relative to other clusters. **c**, Table showing predicted localization, protein type, and
488 known function of cluster-defining markers. **d**, Hierarchical clustering tree showing relatedness
489 of clusters based on transcriptional signatures. **e**, Heatmap showing expression of top three
490 differentially expressed markers for each cluster.

491

492 **Figure 3. *Tac1*, *Rprm*, and *Pdyn* are sexually dimorphic genes in the adult VMHvl.** Spatial
493 organization of cluster marker within the VMH. Cells positive for **a**, *Tac1*, **b**, *Rprm*, **c**, *Pdyn*, and

494 **d**, *Sst* are identified in purple within the UMAP (left panels). Spatial localization of each cluster
495 marker along the rostral-caudal axis of the VMH in intact males (n = 3 mice) and females (n = 3-
496 4 mice) by chromogenic ISH (right panels). mRNA levels were quantified within the caudal VMH
497 and caudal VMHvl subregion. A statistically significant interaction between sex and ROI was
498 determined for *Tac1* ($F(1,5) = 8.932, p = 0.0305$), *Rprm* ($F(1,5) = 13.23, p = 0.0149$), and *Pdyn*
499 ($F(1,5) = 65.84, p = 0.0005$). Post-hoc Sidak's multiple comparison tests revealed statistically
500 significant sex differences in expression in the caudal VMHvl ($p = 0.0125$ for *Tac1*, $p = 0.0071$
501 for *Rprm*, $p = 0.0362$ for *Pdyn*). Dashed line shows boundary of VMH and VMHvl, in blue for
502 male and magenta for female. Scalebars = 200 μ m, * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$.

503
504 **Figure 4. Organizational effects of hormones establish sexual dimorphic expression of**
505 **cluster markers. a**, The Four-Core Genotypes (FCG) mouse model, which produces littermates
506 of XX gonadal females (XXF), XX gonadal males (XXM) with an autosomal transgene of the
507 testis-determining gene *Sry* (*Sry Tg*), XY gonadal males (XYM), and XY gonadal females (XYF)
508 with the *Sry Tg*, can be used to determine if the origin of sexually dimorphic gene expression
509 arises due to organizational effects of hormones, activational effects of hormones, or effects due
510 to differences in sex chromosome complement. Expression of **b**, *Tac1*, **c**, *Rprm*, **d**, *Pdyn*, and **e**,
511 *Sst* in the caudal VMH of gonadectomized (GDX) or sham FCG mice (n= 2-3 mice per group) by
512 chromogenic ISH. Dashed line shows boundary of VMH and VMHvl, in blue for male and
513 magenta for female. Scalebars = 200 μ m.

514
515 **Figure 5. *Tac1*⁺ and *Rprm*⁺ cells are principal ER α -expressing neurons in the female**
516 **VMHvl.** Transcript expression (magenta) of **a**, *Tac1*, and **b**, *Rprm* is shown together with ER α
517 immunoreactivity (yellow) in the VMHvl using fluorescent ISH (FISH, n = 5 female mice).
518 Scalebars on insets = 100 μ m. Transcript expression of *Pdyn* (magenta) in the VMHvl of **c**,
519 female mice (n = 5) and **d**, male mice (n = 5) and ER α immunoreactivity (yellow) using

520 FISH/IHC. Scalebars on insets = 100 μ m. **e**, *Rprm* (magenta) and *Tac1* (yellow) transcript
521 expression is visualized using TSA-FISH (n = 5 female mice) in the rostral (top panel) and
522 caudal (bottom panel) VMH. Scalebars = 100 μ m. Transcript expression (magenta) of **f**, *Tac1*
523 and **g**, *Rprm* together with ER α immunoreactivity (yellow) is visualized in *Esr1^{ff}* mice (n = 6
524 female mice, left panel), and mice with genetic ablation of ER α in neurons of *Sf1* lineage
525 (*Esr1^{ff};Sf1Cre*, n = 4 female mice, middle panel) and in neurons of *Nkx2-1* lineage (*Esr1^{ff};Nkx2-1Cre*,
526 n = 3 mice, right panel). Scalebars = 100 μ m. Images are merged with DAPI (cyan).

527

528 **Figure 6. Specific activation of *Esr1⁺* neurons in the VMHvl causes enhanced movement
529 and thermogenesis**

530 **a,c**, Strategy for and validation of stereotaxic injection of AAVs harboring CRE dependent Gq-
531 coupled DREADDs in the VMHvl **b**, Heat generation increases acutely in *Esr1-Cre* animals after
532 CNO injection but not after saline injection (n = 5 females). Two way RM ANOVA: Time
533 ($F(23,92) = 4.542, p < 0.0001$), CNO ($F(1,4) = 57.19, p = 0.0016$), Interaction ($F(23,92) = 3.517, p < 0.0016$). Wild-type littermate controls stereotactically injected with the CRE dependent Gq-
534 coupled DREADD show no significant increase in thermogenesis after CNO treatment (n = 3).
535 **d**, Movement increases acutely in *Esr1-Cre* animals after CNO injection but not after saline
536 injection. Two way RM ANOVA: Time ($F(23,92) = 6.361, p < 0.0001$), CNO ($F(1,4) = 47.17, p = 0.0024$), Interaction ($F(23,92) = 4.945, p < 0.001$). Wild-type animals stereotactically injected with
537 the CRE dependent Gq-coupled DREADD show no significant increase in movement after CNO
538 treatment. Within-subject changes in average heat and average total movement are shown as
539 averages 0-60 minutes prior to (Pre) and 30-90 minutes following the disturbance to deliver
540 CNO (Post). All subjects were female wild-type mice, ages 10-18 weeks, and singly housed in
541 indirect calorimetry chambers. Posthoc Sidak's multiple comparison tests were used for
542 pairwise comparisons: * = p<0.05, ** = p<0.01, *** = p<0.001, **** = p<0.0001.

545

546 **Figure 7. Temperature is dysregulated in mice lacking *Rprm***

547 **a**, Strategy for stereotaxic injection of cell-permeable siRNA pools either targeting *Rprm* (n = 6)
548 or non-targeting (n = 8). **b**, Core temperature is significantly increased in animals injected with
549 *Rprm* targeting siRNA pools compared to animals injected with non-targeting siRNA pools. Two
550 way RM ANOVA: Interaction ($F(23,276) = 1.653, p = 0.0329$), Time ($F(23,276) = 67.31, p$
551 <0.0001), siRNA ($F(1, 12) = 18.31, p = 0.011$). **c**, The effect of *Rprm* depletion on core
552 temperature is significant in both the sleep (day) phase and active (night) phase compared to
553 non-targeting controls. Two way RM ANOVA: Interaction ($F(1,12) = 1.653, p = 0.9408$), Time
554 ($F(1,12) = 330.1, p <0.0001$), siRNA ($F(1, 12) = 18.31, p = 0.011$). **d**, *Rprm* depletion showed no
555 significant effect on movement in either sleep or active phase when compared to non-targeting
556 controls. All subjects were female wild-type mice, ages 10-20 weeks, and singly housed. **e**,
557 diagram of neuronal populations found in the VMH with focus on sexually dimorphic female
558 VMHvl. Posthoc Sidak's multiple comparison tests were used for pairwise comparisons: * =
559 $p<0.05$, ** = $p<0.01$, *** = $p<0.001$, **** = $p<0.0001$.

560

561 **REFERENCES**

562 1. Lovejoy, J. C., Champagne, C. M., de Jonge, L., Xie, H. & Smith, S. R. Increased visceral fat
563 and decreased energy expenditure during the menopausal transition. *Int J Obes (Lond)*
564 **32**, 949–58 (2008).

565 2. Slonaker, J. R. The effect of copulation, pregnancy, pseudopregnancy and lactation on
566 the voluntary activity and food consumption of the albino rat. *Am J Physiol* **71**, (1925).

567 3. Brobeck, J. R., Wheatland, M. & Strominger, J. L. Variations in regulation of energy
568 exchange associated with estrus, diestrus and pseudopregnancy in rats. *Endocrinology*
569 **40**, 65–72 (1947).

570 4. Kopp, C., Ressel, V., Wigger, E. & Tobler, I. Influence of estrus cycle and ageing on
571 activity patterns in two inbred mouse strains. *Behavioural brain research* **167**, 165–74
572 (2006).

573 5. Olofsson, L. E., Pierce, A. A. & Xu, A. W. Functional requirement of AgRP and NPY
574 neurons in ovarian cycle-dependent regulation of food intake. *Proceedings of the
575 National Academy of Sciences of the United States of America* **106**, 15932–7 (2009).

576 6. Sanchez-Alavez, M., Alboni, S. & Conti, B. Sex- and age-specific differences in core body
577 temperature of C57Bl/6 mice. *Age (Dordr)* **33**, 89–99 (2011).

578 7. Heine, P. A., Taylor, J. A., Iwamoto, G. A., Lubahn, D. B. & Cooke, P. S. Increased adipose
579 tissue in male and female estrogen receptor-alpha knockout mice. *Proceedings of the
580 National Academy of Sciences of the United States of America* **97**, 12729–34 (2000).

581 8. Park, C. J. *et al.* Genetic rescue of nonclassical ERalpha signaling normalizes energy
582 balance in obese Eralpha-null mutant mice. *The Journal of clinical investigation* **121**,
583 604–12 (2011).

584 9. Xu, Y. *et al.* Distinct hypothalamic neurons mediate estrogenic effects on energy
585 homeostasis and reproduction. *Cell metabolism* **14**, 453–65 (2011).

586 10. Hulley, S. *et al.* Randomized Trial of Estrogen Plus Progestin for Secondary Prevention
587 of Coronary Heart Disease in Postmenopausal Women. *JAMA* **280**, 605–613 (1998).

588 11. Writing Group for the Women's Health Initiative Investigators. Risks and Benefits of
589 Estrogen Plus Progestin in Healthy Postmenopausal WomenPrincipal Results From the
590 Women's Health Initiative Randomized Controlled Trial. *JAMA* **288**, 321–333 (2002).

591 12. Smith, A. W., Bosch, M. A., Wagner, E. J., Rønneklev, O. K. & Kelly, M. J. The membrane
592 estrogen receptor ligand STX rapidly enhances GABAergic signaling in NPY/AgRP
593 neurons: role in mediating the anorexigenic effects of 17 β -estradiol. *American Journal*
594 *of Physiology-Endocrinology and Metabolism* **305**, E632–E640 (2013).

595 13. Ismael González-García *et al.* mTOR signaling in the arcuate nucleus of the
596 hypothalamus mediates the anorectic action of estradiol. *Journal of Endocrinology* **238**,
597 177–186 (2018).

598 14. Herber, C. B. *et al.* Estrogen signaling in arcuate Kiss1 neurons suppresses a sex-
599 dependent female circuit promoting dense strong bones. *Nature Communications* **10**,
600 163 (2019).

601 15. Musatov, S. *et al.* Silencing of estrogen receptor alpha in the ventromedial nucleus of
602 hypothalamus leads to metabolic syndrome. *Proceedings of the National Academy of*
603 *Sciences of the United States of America* **104**, 2501–6 (2007).

604 16. Martinez de Morentin, P. B. *et al.* Estradiol Regulates Brown Adipose Tissue
605 Thermogenesis via Hypothalamic AMPK. *Cell metabolism* **20**, 41–53 (2014).

606 17. Correa, S. M. *et al.* An estrogen-responsive module in the ventromedial hypothalamus
607 selectively drives sex-specific activity in females. *Cell Rep* **10**, 62–74 (2015).

608 18. Hashikawa, K. *et al.* Esr1+ cells in the ventromedial hypothalamus control female
609 aggression. *Nature Neuroscience* **20**, 1580 (2017).

610 19. Lin, D. *et al.* Functional identification of an aggression locus in the mouse
611 hypothalamus. *Nature* **470**, 221–6 (2011).

612 20. Lee, H. *et al.* Scalable control of mounting and attack by Esr1+ neurons in the
613 ventromedial hypothalamus. *Nature* **509**, 627–32 (2014).

614 21. Yang, C. F. *et al.* Sexually dimorphic neurons in the ventromedial hypothalamus govern
615 mating in both sexes and aggression in males. *Cell* **153**, 896–909 (2013).

616 22. Wang, L. *et al.* Hypothalamic Control of Conspecific Self-Defense. *Cell Reports* **26**, 1747-
617 1758.e5 (2019).

618 23. Silva, B. A. *et al.* Independent hypothalamic circuits for social and predator fear. *Nature
619 neuroscience* **16**, 1731–3 (2013).

620 24. Remedios, R. *et al.* Social behaviour shapes hypothalamic neural ensemble
621 representations of conspecific sex. *Nature* **550**, 388–392 (2017).

622 25. Narita, K., Murata, T. & Matsuoka, S. The ventromedial hypothalamus oxytocin induces
623 locomotor behavior regulated by estrogen. *Physiology & behavior* **164**, 107–12 (2016).

624 26. Flanagan-Cato, L. M. Sex differences in the neural circuit that mediates female sexual
625 receptivity. *Frontiers in neuroendocrinology* **32**, 124–36 (2011).

626 27. Yang, T. & Shah, N. M. Molecular and neural control of sexually dimorphic social
627 behaviors. *Curr Opin Neurobiol* **38**, 89–95 (2016).

628 28. Krause, W. C. & Ingraham, H. A. Origins and Functions of the Ventrolateral VMH: A
629 Complex Neuronal Cluster Orchestrating Sex Differences in Metabolism and Behavior.
630 in *Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity* (ed.
631 Mauvais-Jarvis, F.) 199–213 (Springer International Publishing, 2017).
632 doi:10.1007/978-3-319-70178-3_10

633 29. Dhillon, H. *et al.* Leptin directly activates SF1 neurons in the VMH, and this action by
634 leptin is required for normal body-weight homeostasis. *Neuron* **49**, 191–203 (2006).

635 30. Madisen, L. *et al.* A robust and high-throughput Cre reporting and characterization
636 system for the whole mouse brain. *Nature neuroscience* **13**, 133–40 (2010).

637 31. Cheung, C. C., Kurrasch, D. M., Liang, J. K. & Ingraham, H. A. Genetic labeling of
638 steroidogenic factor-1 (SF-1) neurons in mice reveals ventromedial nucleus of the
639 hypothalamus (VMH) circuitry beginning at neurogenesis and development of a
640 separate non-SF-1 neuronal cluster in the ventrolateral VMH. *J Comp Neurol* **521**, 1268–
641 88 (2012).

642 32. Sheng, M. & Greenberg, M. E. The regulation and function of c-fos and other immediate
643 early genes in the nervous system. *Neuron* **4**, 477–485 (1990).

644 33. Wu, Y. E., Pan, L., Zuo, Y., Li, X. & Hong, W. Detecting Activated Cell Populations Using
645 Single-Cell RNA-Seq. *Neuron* **96**, 313-329.e6 (2017).

646 34. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and
647 Projection for Dimension Reduction. *arXiv:1802.03426v2*

648 35. Malik, S. *et al.* Histone deacetylase 7 and FoxA1 in estrogen-mediated repression of
649 RPRM. *Mol Cell Biol* **30**, 399–412 (2010).

650 36. Allison, M. B. *et al.* TRAP-seq defines markers for novel populations of hypothalamic
651 and brainstem LepRb neurons. *Molecular Metabolism* **4**, 299–309 (2015).

652 37. Tannenbaum, G. S. & Bowers, C. Y. Interactions of growth hormone secretagogues and
653 growth hormone-releasing hormone/somatostatin. *Endocrine* **14**, 21–27 (2001).

654 38. Luo, S. X. *et al.* Regulation of feeding by somatostatin neurons in the tuberal nucleus.
655 *Science* **361**, 76 (2018).

656 39. Schick, R. R. *et al.* Effect of galanin on food intake in rats: involvement of lateral and
657 ventromedial hypothalamic sites. *American Journal of Physiology-Regulatory,
658 Integrative and Comparative Physiology* **264**, R355–R361 (1993).

659 40. Arnold, A. P. & Chen, X. What does the ‘four core genotypes’ mouse model tell us about
660 sex differences in the brain and other tissues? *Front Neuroendocrinol* **30**, 1–9 (2009).

661 41. Dong, S., Allen, J. A., Farrell, M. & Roth, B. L. A chemical-genetic approach for precise
662 spatio-temporal control of cellular signaling. *Molecular bioSystems* **6**, 1376–80 (2010).

663 42. Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-Cell RNA-Seq Reveals Hypothalamic Cell
664 Diversity. *Cell Rep* **18**, 3227–3241 (2017).

665 43. Romanov, R. A. *et al.* Molecular interrogation of hypothalamic organization reveals
666 distinct dopamine neuronal subtypes. *Nature Neuroscience* **20**, 176 (2016).

667 44. Yang, C. F. & Shah, N. M. Representing sex in the brain, one module at a time. *Neuron* **82**,
668 261–78 (2014).

669 45. McCarthy, M. M., Pickett, L. A., VanRyzin, J. W. & Kight, K. E. Surprising origins of sex
670 differences in the brain. *Hormones and Behavior* **76**, 3–10 (2015).

671 46. Clegg, D. J. *et al.* Estradiol-dependent decrease in the orexigenic potency of ghrelin in
672 female rats. *Diabetes* **56**, 1051–8 (2007).

673 47. Contreras, C. *et al.* The brain and brown fat. *Ann Med* **47**, 150–68 (2015).

674 48. Chavkin, C., James, I. & Goldstein, A. Dynorphin is a specific endogenous ligand of the

675 kappa opioid receptor. *Science* **215**, 413 (1982).

676 49. Bruchas, M. R., Land, B. B. & Chavkin, C. The dynorphin/kappa opioid system as a

677 modulator of stress-induced and pro-addictive behaviors. *Brain Research* **1314**, 44–55

678 (2010).

679 50. Burgoyne, P. S. & Arnold, A. P. A primer on the use of mouse models for identifying

680 direct sex chromosome effects that cause sex differences in non-gonadal tissues.

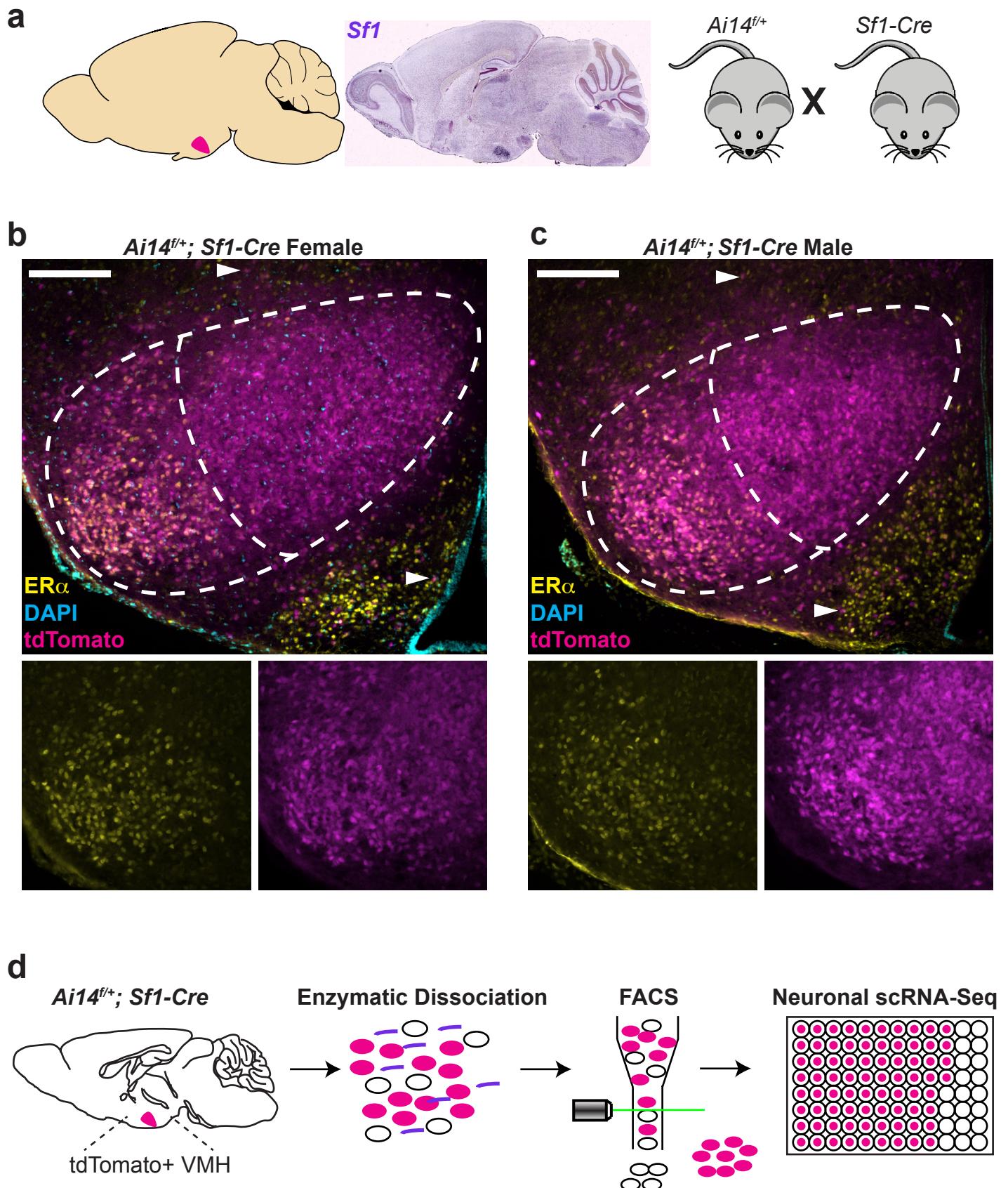
681 *Biology of sex differences* **7**, 68–68 (2016).

682 51. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of

683 single-cell gene expression data. *Nat Biotechnol* **33**, 495–502 (2015).

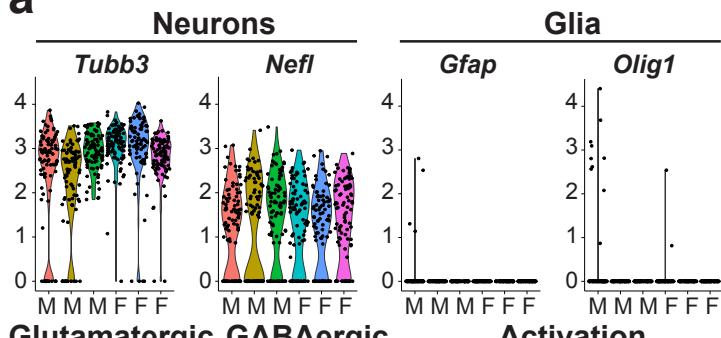
684 52. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of

685 communities in large networks. *Journal of Statistical Mechanics: Theory and Experiment*


686 **2008**, P10008 (2008).

687 53. Robbins, E. *et al.* Quantitative non-radioactive in situ hybridization of preproenkephalin

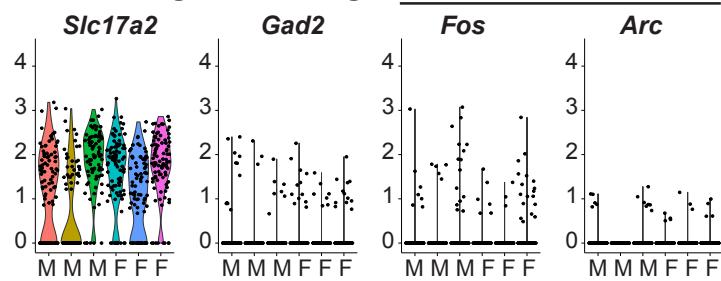
688 mRNA with digoxigenin-labeled cRNA probes. *Anat Rec* **231**, 559–62 (1991).


689

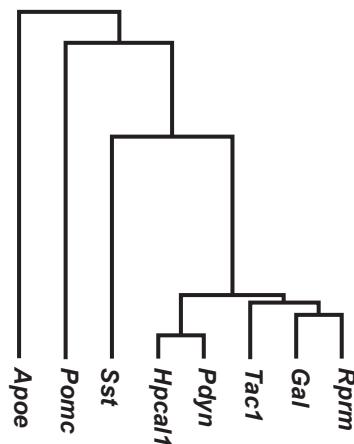
van Veen, Kammel, et al. Fig. 1

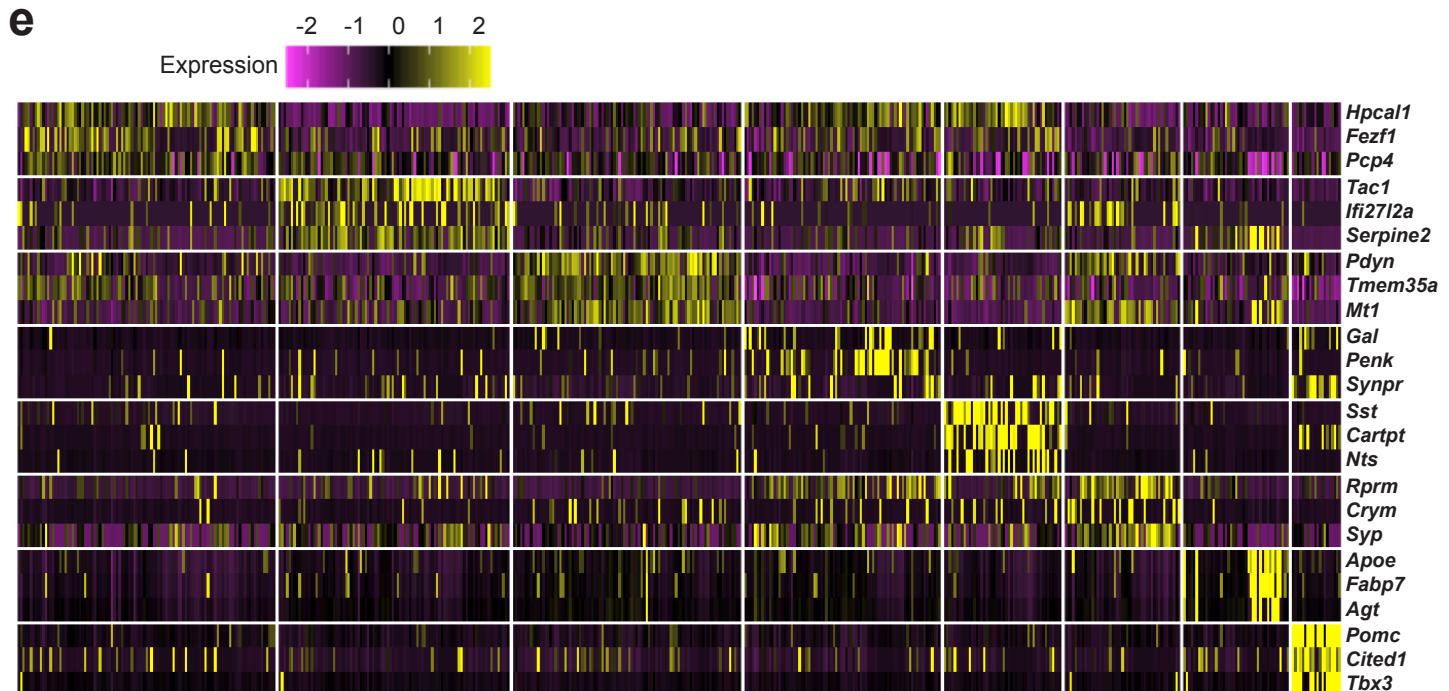


van Veen, Kammel, et al. Fig. 2

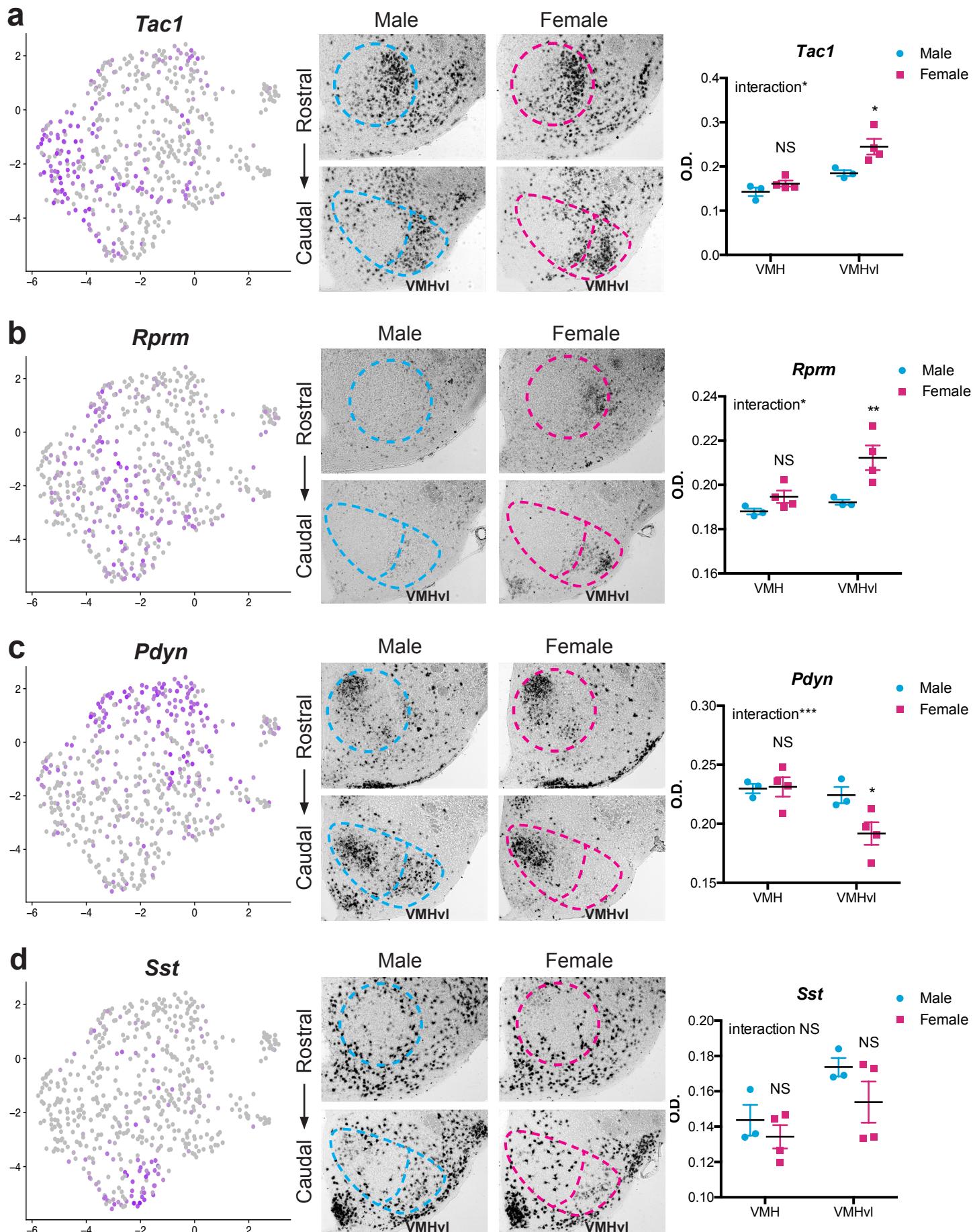

a

b

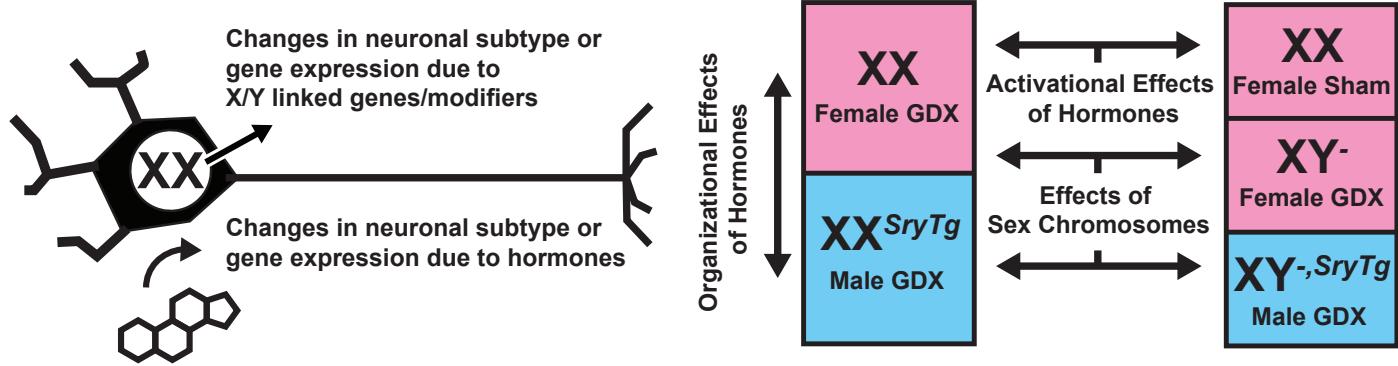

Glutamatergic GABAergic


c

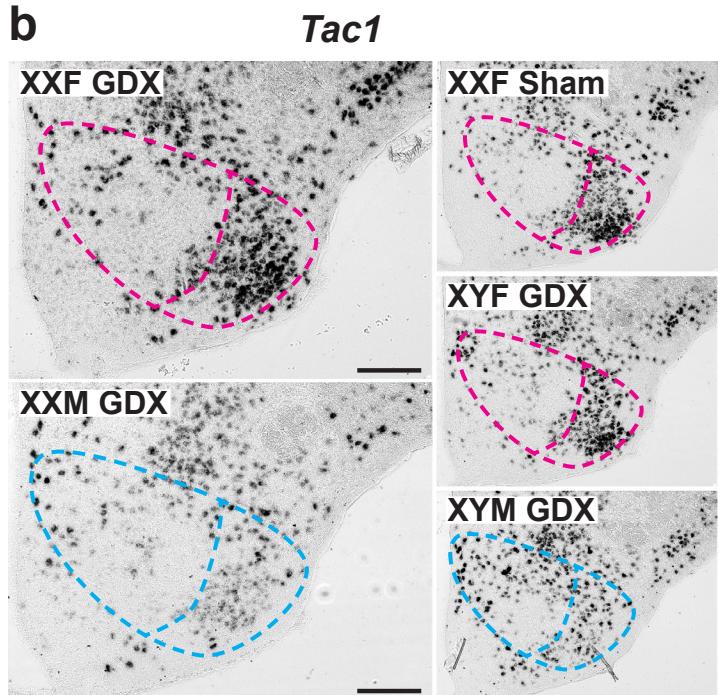
Marker	Cell Type	Protein type	Function in VMH
<i>Hpcal1</i>	VMH neurons	Calcium binding	Unknown
<i>Tac1</i>	VMH neurons	Neuropeptide	Movement
<i>Pdyn</i>	VMH neurons	Neuropeptide	Leptin signaling
<i>Gal</i>	DMH/ARC neurons	Neuropeptide	N/A
<i>Sst</i>	VMH neurons	Neuropeptide	Leptin signaling
<i>Rprm</i>	VMH neurons	Unknown	Unknown
<i>Pomp</i>	ARC neurons	Neuropeptide	N/A
<i>Apoe</i>	Oligodendrocytes	Lipoprotein Metab	Unknown


d

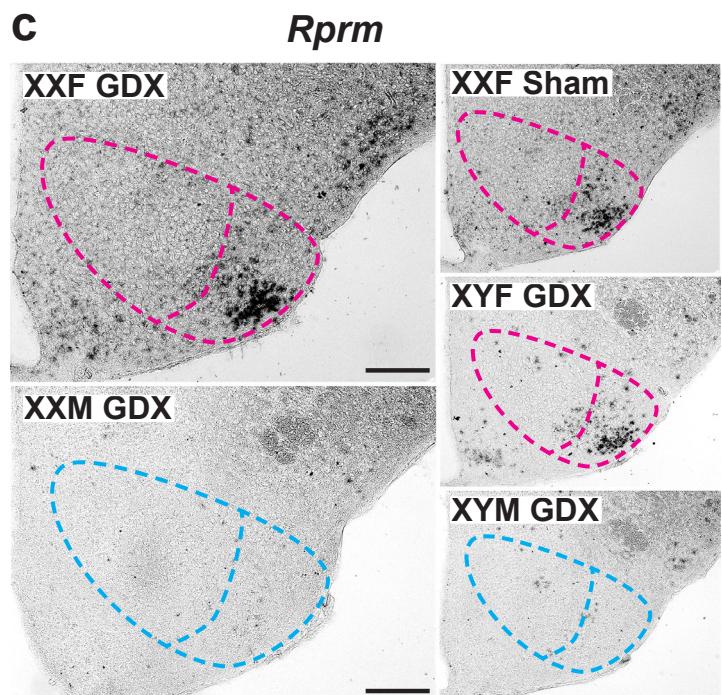
e

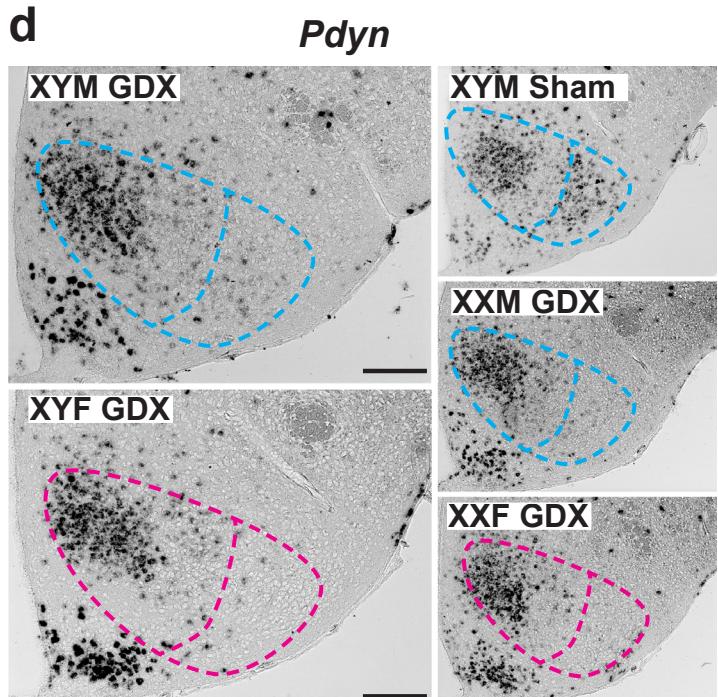


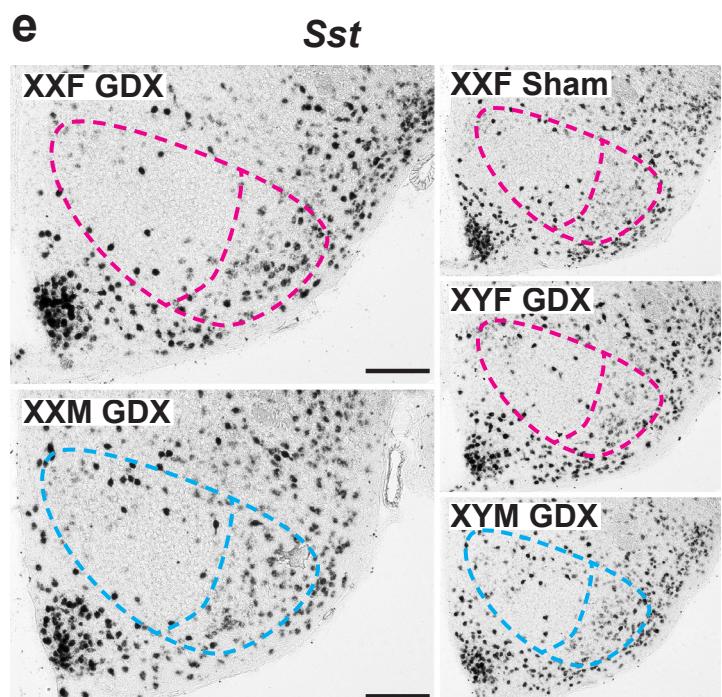
van Veen, Kammel, et al. Fig. 3

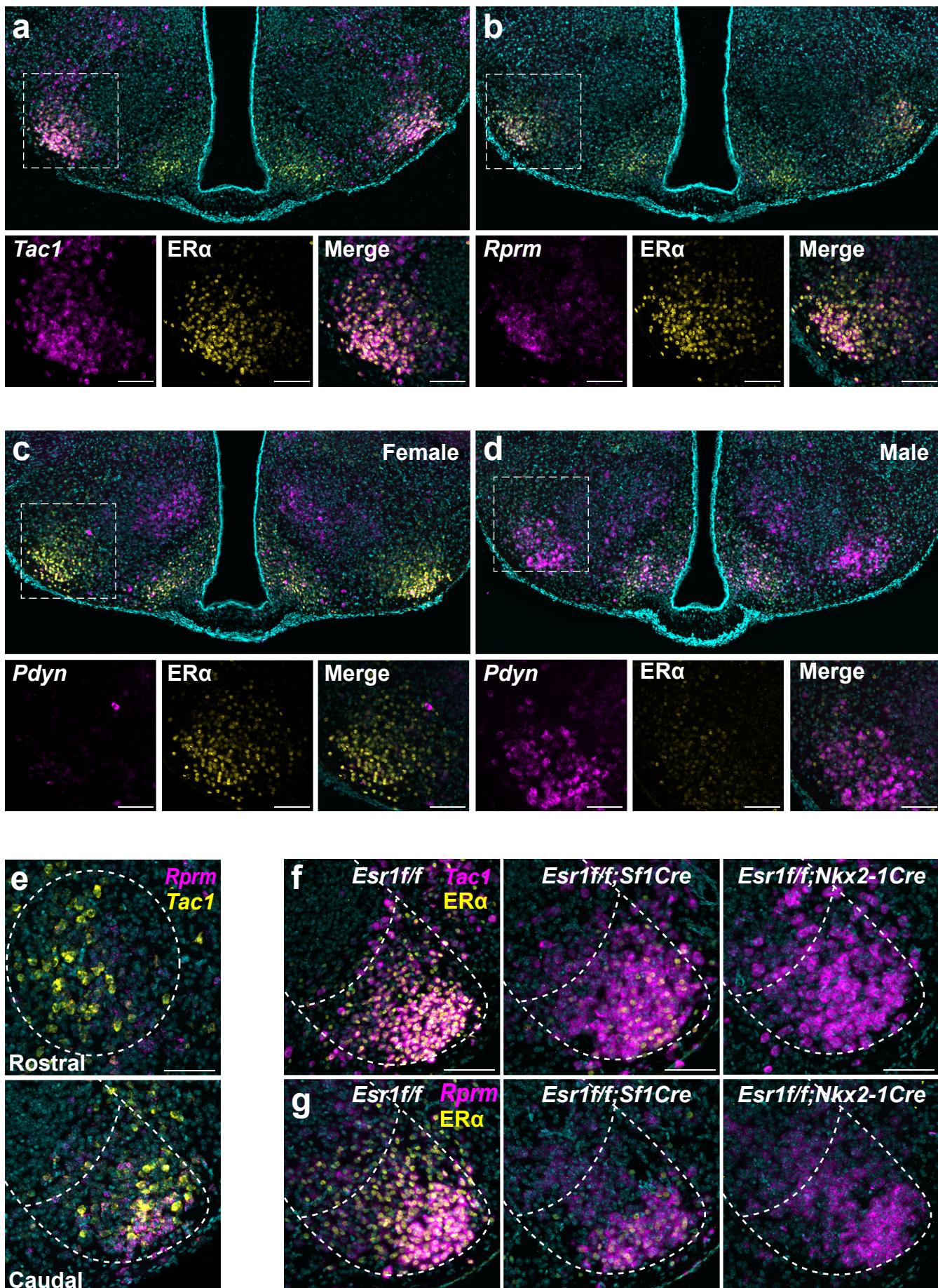


van Veen, Kammel, et al. Fig. 4

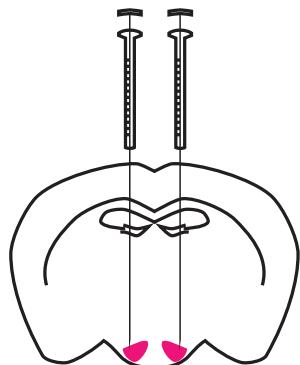

a

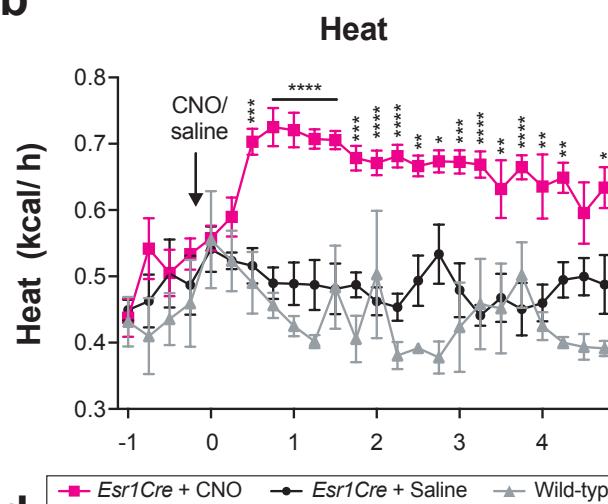

b


c

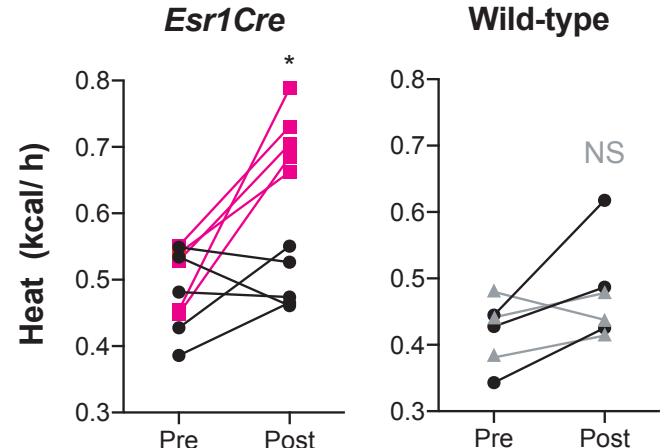

d

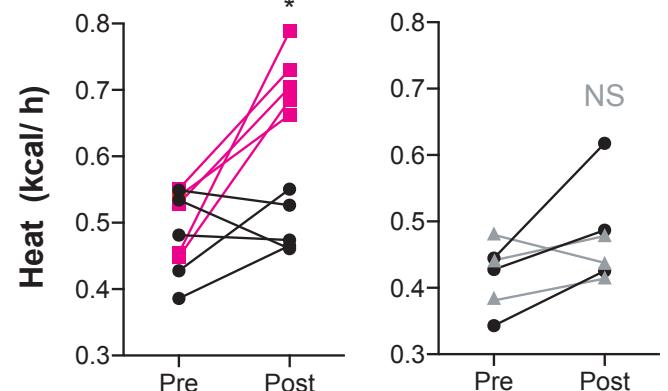
e


van Veen, Kammel, et al. Fig. 5

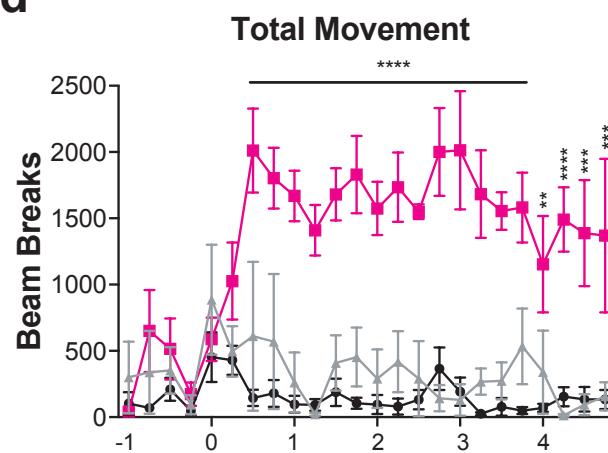

van Veen, Kammel, et al. Fig. 6

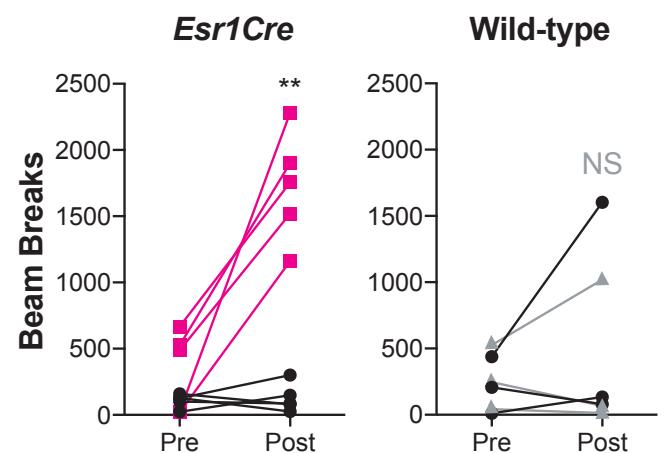
a

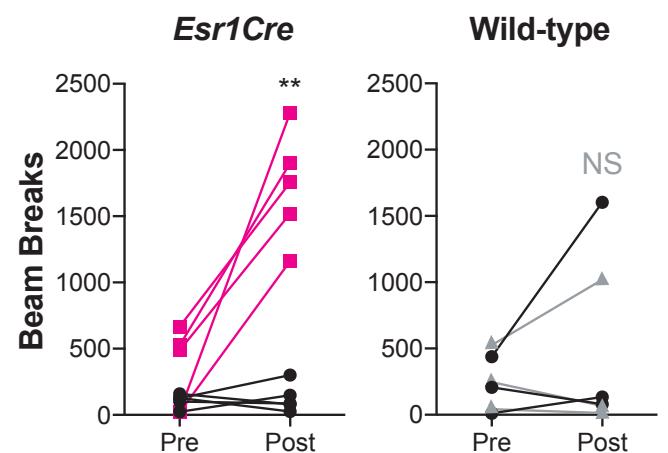

CRE dependent
Gq-DREADD

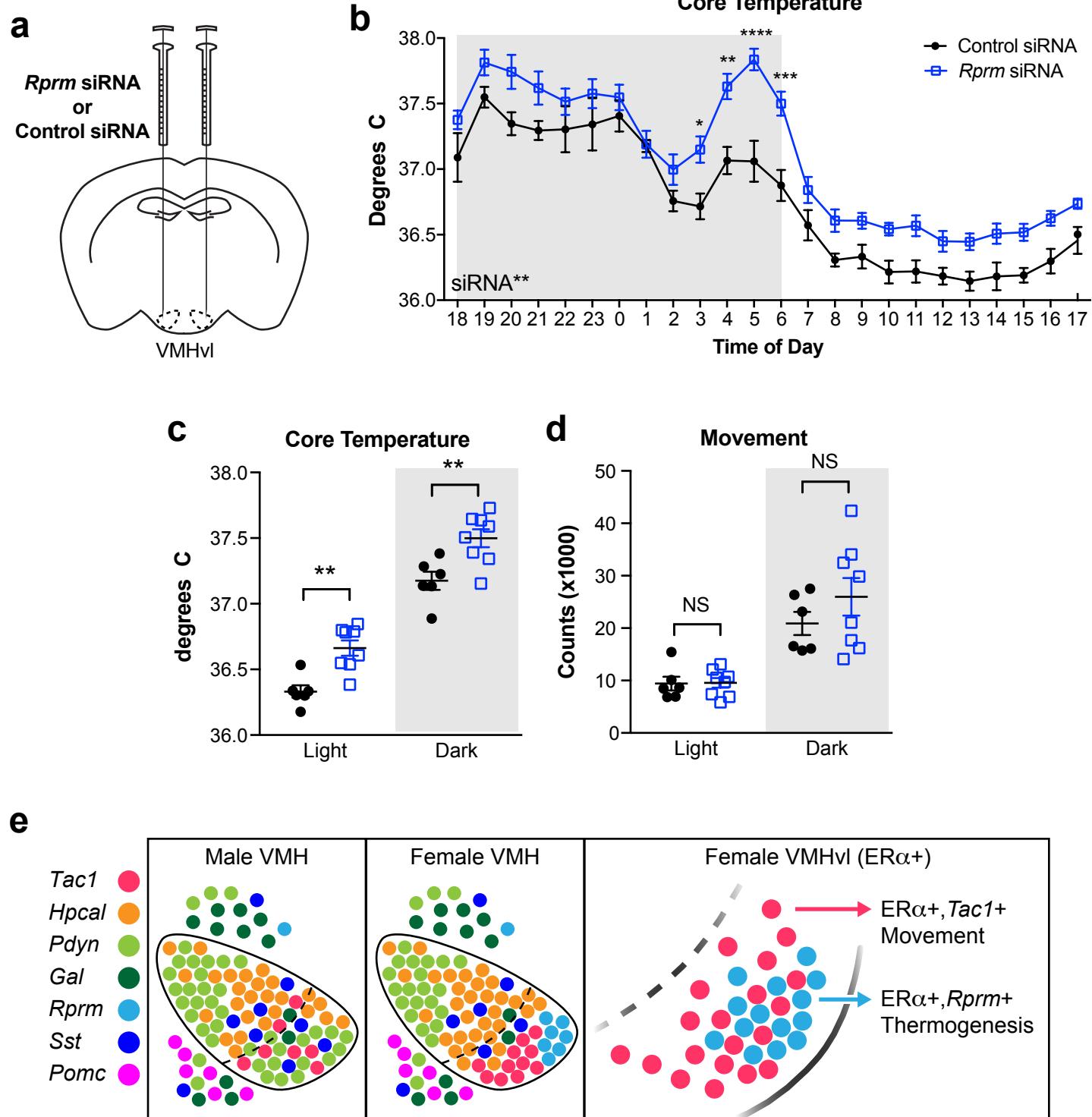

b

Esr1Cre


Wild-type


c


d



Esr1Cre

Wild-type

