

1 The regulatory factor ELF1 triggers a critical wave of transcription in the antiviral 2 response to type I interferon

3

4 Leon Louis Seifert^{1*}, Clara Si^{2*}, Sarah Ballentine², Debjani Saha³, Maren de Vries²,
5 Guojun Wang^{3,4}, Mohammad Sadic², Aaron Briley², Uwe Schäfer⁵, Hong Moulton⁶, Adolfo
6 García-Sastre^{3,4,7}, Shashank Tripathi^{3,4,8}, Brad R. Rosenberg³, and Meike Dittmann^{**2}

7

⁸ ¹ Laboratory of Virology and Infectious Disease, The Rockefeller University, New York,
⁹ NY 10065, USA

10 ² Department of Microbiology, New York University School of Medicine, New York, NY
11 10016, USA

12 ³ Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
13 10029, USA

14 ⁴ Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount
15 Sinai, New York, NY 10029, USA

16 ⁵ Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New
17 York, NY 10065, USA

18 ⁶Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331,
19 USA

20 ' Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at
21 Mount Sinai, New York, NY 10029, USA

22 ° Microbiology and Cell Biology Department, Centre for Infectious Disease Research,
23 Indian Institute of Science, Bangalore, 560012, India

24 **Short title:** ELF1 and the antiviral interferon response

25

26 * contributed equally as first authors

27

28 ** corresponding author: Meike Dittmann, Department of Microbiology, New York

29 University School of Medicine, Alexandria Center for Life Sciences, West Tower AW 313,

30 New York, NY 10016, USA, Email: Meike.Dittmann@nyulangone.org

31

32 **Keywords:** ETS transcription factor, interferon, RNA virus, DNA virus, innate immunity

33

34

35

36 **ABSTRACT**

37 The transcription of interferon-stimulated genes (ISGs) is classically triggered via
38 activation of the JAK-STAT pathway, and together, ISGs raise a multifaceted antiviral
39 barrier. An increasing body of evidence reports the existence of additional, non-canonical
40 pathways and transcription factors that coordinate ISG expression. Detailed knowledge
41 of how heterogenous mechanisms regulate ISG expression is crucial for the rational
42 design of drugs targeting the type I interferon response. Here, we characterize the first
43 ETS transcription factor family member as a regulator of non-canonical ISG expression:
44 E74-like ETS transcription factor 1 (ELF1). Using high-content microscopy to quantify viral
45 infection over time, we found that ELF1, itself an ISG, inhibits eight diverse RNA and DNA
46 viruses uniquely at multi-cycle replication. ELF1 did not regulate expression of type I or II
47 interferons, and ELF1's antiviral effect was not abolished by the absence of STAT1 or by
48 inhibition of JAK phosphorylation. Accordingly, comparative expression analyses by
49 RNAseq revealed that the ELF1 transcriptional program is distinct from, and delayed with
50 respect to, the immediate interferon response. Finally, knockdown experiments
51 demonstrated that ELF1 is a critical component of the antiviral interferon response in vitro
52 and in vivo. Our findings reveal a previously overlooked mechanism of non-canonical ISG
53 regulation that both amplifies and prolongs the initial interferon response by expressing
54 broadly antiviral restriction factors.

55

56 **AUTHOR SUMMARY**

57 Over 60 years after their discovery, we still struggle to understand exactly how interferons
58 inhibit viruses. Our gap in knowledge stems, on one hand, from the sheer number of
59 interferon-stimulated effector genes, of which only few have been characterized in
60 mechanistic detail. On the other hand, our knowledge of interferon-regulated gene
61 transcription is constantly evolving. We know that different regulatory mechanisms greatly
62 influence the quality, magnitude, and timing of interferon-stimulated gene expression, all
63 of which may contribute to the antiviral mechanism of interferons. Deciphering these
64 regulatory mechanisms is indispensable for understanding this critical first line of host
65 defense, and for harnessing the power of interferons in novel antiviral therapies. Here,
66 we report a novel mechanism of interferon-induced gene regulation by an interferon-
67 stimulated gene, which, paradoxically, inhibits viruses in the absence of additional
68 interferon signaling: E74-like ETS transcription factor 1 (ELF1) raises an unusually
69 delayed antiviral program that potently restricts propagation of all viruses tested in our
70 study. Reduced levels of ELF1 significantly diminished interferon-mediated host defenses
71 against influenza A virus *in vitro* and *in vivo*, suggesting a critical but previously
72 overlooked role in the type I interferon response. The transcriptional program raised by
73 ELF1 is vast and comprises over 400 potentially antiviral genes, which are almost entirely
74 distinct from those known to be induced by interferon. Taken together, our data provide
75 evidence for a critical secondary wave of antiviral protection that adds both “quality” and
76 “time” to the type I interferon response.

77

78 **INTRODUCTION**

79 Within minutes of engaging their host cell receptors, type I interferons trigger a signaling
80 cascade that results in the expression of hundreds of interferon-stimulated genes (ISGs)
81 with antiviral activity (1). ISGs act on different stages of viral life cycles, from entry to viral
82 genome replication, assembly, egress and finally, maturation (2). Given the plethora of
83 diverse antiviral mechanisms, we are still striving to understand the complexity of how
84 ISGs achieve their remarkably broad antiviral protection against positive, negative, and
85 double-stranded RNA viruses, as well as DNA viruses and even intracellular bacteria and
86 parasites (3-5).

87 The speed of the interferon signaling cascade is crucial for providing efficient antiviral
88 protection, and is enabled by signaling components already present at baseline that
89 eliminate the need for *de novo* protein synthesis (6). Three constitutively expressed
90 transcription factors mediate interferon-stimulated gene expression: signal transducer
91 and activator of transcription 1 and 2 (STAT1/2) (7) and interferon response factor 9
92 (IRF9) (8). Upon activation, phosphorylated STAT1/2 and IRF9 form the interferon-
93 stimulated gene factor 3 (ISGF3) complex, which shuttles to the nucleus and initiates
94 transcription from interferon-sensitive response elements (ISREs) (9). For over two
95 decades, this has been our understanding of canonical type I interferon-signaling (10)
96 (Fig. 1A, solid arrows).

97 Recently, a number of studies have added astonishing complexity to the interferon
98 signaling network by reporting multiple non-canonical mechanisms of ISG regulation, both
99 dependent on and independent of JAK-STAT signaling (reviewed in (11)). While these
100 important studies have begun to untangle the complexity of signaling mechanisms within

101 the interferon response, and even led to the discovery of specific ISG subsets with
102 antiviral activity, we are only starting to grasp that the interferon response also has a
103 temporal gene expression component. Using novel transcriptional profiling techniques,
104 several recent studies reveal that genes downstream of interferon signaling can be
105 classified into qualitatively distinct modules with different temporal expression dynamics
106 post-interferon (12-14). Such differences cannot be explained by the action of ISGF3
107 alone, suggesting non-canonical mechanisms at work (Fig. 1A, dashed arrows). How
108 temporal divergence may influence the antiviral potency of the interferon response, and
109 which factors or pathways drive divergent gene expression dynamics, remain unknown.
110 However, an in-depth understanding of these factors and their specific contributions to
111 the type I interferon response is crucial for defining the nature of host defenses and
112 associated detrimental pro-inflammatory effects.

113 Despite evidence of temporal dynamics, most well-characterized ISGs act on early steps
114 of viral life cycles. Hence, in search of “late-acting” ISGs, we previously performed a
115 screen for ISGs inhibiting influenza A virus (IAV) specifically at multi-cycle viral replication.
116 Intriguingly, we identified a transcription factor, E74-like ETS transcription factor 1 (ELF1),
117 that fit this late-acting profile (15). Among hundreds of ISGs in our gain-of-function screen,
118 expression of ELF1 alone was sufficient for potent virus inhibition with no detectable
119 cytotoxicity. Its uniquely late antiviral action and antiviral potency positioned ELF1 as a
120 putative novel regulator of a late module of antiviral genes. We speculate that ELF1’s
121 exclusively late action could explain why it has not been previously identified as antiviral.
122 Here, we characterize ELF1’s contribution to the type I interferon response, and show

123 that it regulates a critical, previously unidentified set of potent antiviral restriction factors
124 in a uniquely delayed fashion.

125

126

127 **RESULTS**

128 **ELF1 is an interferon-stimulated gene with delayed, STAT1-independent antiviral**
129 **activity.**

130 Previous studies on ELF1 focused on its role in lymphocyte maturation and immune
131 signaling (16-18). To our knowledge, except for our ISG screen, ELF1 has never been
132 characterized with regard to viral infections, and is completely uncharacterized in non-
133 hematopoietic cells (15). Thus, we first validated ELF1 as an ISG in non-lymphoid cells.

134 We used two airway epithelial cell culture systems relevant for IAV infection: A549, one
135 of the most commonly used human epithelial cancer cell lines (Fig. 1B,C, and Fig. S1A),
136 and stratified human airway epithelium cultures, a primary cell culture system that closely
137 mimics the airways (19) (Fig. S1B). ELF1 mRNA and protein were expressed at baseline,
138 and further induced by IFN-beta stimulation in both systems. Hence, ELF1 indeed acts
139 as an ISG in airway epithelial cells.

140 Next, we confirmed ELF1's delayed antiviral activity by high-content microscopy. This
141 technique allowed us to monitor events occurring during viral infections at sub-cellular
142 resolution. A549 cells were transduced to express ELF1 and controls, then challenged
143 with a low MOI of IAV. IAV-infected cells were visualized at both 12 hpi (early stages of
144 replication) and 48 hpi (late stages or multi-cycle replication) by immunostaining, and then
145 quantified by high-content microscopy (Fig. 1D). As expected, we found that the ISG

146 IFITM3, an early-acting positive control that blocks IAV fusion during entry, inhibited
147 influenza A/WSN/1933 (H1N1) virus at 12 hpi, and continued to inhibit it at 48 hpi (Fig.
148 1E). In contrast, ELF1 did not inhibit IAV during single-cycle replication, but did inhibit
149 multi-cycle replication (Fig. 1D,E), recapitulating the results from our screen.
150 In order to determine exactly when ELF1-mediated virus inhibition starts, we assessed
151 low MOI multi-cycle growth kinetics in 12-hour increments on both A549 and primary
152 normal human epithelial cells (NHBE). Viral titers from cells expressing exogenous ELF1
153 were significantly reduced for both cell types by at least 100-fold. While expression of
154 IFITM3 decreased viral titers at 12 hpi, ELF1's action was delayed, starting at 36 hpi (Fig.
155 1F and Fig. S2). Additional, detailed IAV life cycle studies revealed that this delayed
156 antiviral action was not due to inhibition of individual IAV life cycle steps, such as entry,
157 genome replication, egress or infectivity (Fig. S3A-E). Taken with its published role as a
158 transcription factor, we hypothesized that ELF1 mediates its antiviral activity through the
159 regulation of a transcriptional program that inhibits IAV at multiple levels during its
160 replication cycle.
161 To test whether ELF1's antiviral action is indeed through its activity as a transcription
162 factor, we generated ELF1 mutants lacking ETS-transcription factor domains (Fig. 1G-H).
163 These domains were all known or predicted by sequence homology with other related
164 ETS transcription factors, such as ELF4. We deleted either the putative transcription
165 factor (TF) domain, predicted to recruit RNA polymerase, or the ETS domain, which
166 contains the DNA binding domain (16). Furthermore, within the ETS domain, we alanine-
167 substituted an arginine (R8) that is conserved and critical for DNA binding in all ETS-
168 transcription factors (20) (Fig. 1G). All three mutant proteins were expressed at similar

169 levels as WT ELF1 (Fig. 1H). However, they lost their ability to inhibit IAV (Fig. 1I),
170 supporting the hypothesis that ELF1 inhibits IAV through its transcription factor activity.
171 From here on, we used the minimal ELF1 R8A mutant as a negative control for our study.
172 Next, we assessed whether ELF1 executes its antiviral program through canonical
173 interferon signaling. Theoretically, gene expression dynamics post-interferon could occur
174 through a second round of canonical signaling in the form of positive feedback
175 mechanisms, leading to temporal divergence (Fig. 1A, solid arrows). An example would
176 be ELF4, which exerts its antiviral function through feeding-forward to produce more
177 interferon (21). Another example of such a positive feedback loop is the ISG IRF1, which
178 also triggers the production of interferon, as well as regulates its own set of antiviral ISGs
179 (22). First, we tested by qRT-PCR whether ELF1 induces expression of type I or II
180 interferons. In contrast to IRF1 control, which induced expression of interferon alpha,
181 beta, kappa and gamma, ELF1 did not induce expression of any tested type I or II
182 interferons (Fig. S4A). We thus reasoned that ELF1 might not exert its antiviral function
183 through a positive feedback loop.
184 To examine this further, we performed ISRE reporter assays to test whether ELF1
185 induces gene expression from the ISRE element, the regulatory element recognized by
186 ISGF3 (9). Other human ELF family members (2, 3, 4 and 5) were also tested; MDA5
187 served as positive, and GFP as negative control (Fig. S4B). We found that, in contrast to
188 MDA5 and ELF4 (21), ELF1 does not induce transcription from the ISRE reporter.
189 Finally, we also repeated our IAV multi-cycle replication assay with ELF1 or positive
190 control IRF1 on A549 lacking STAT1 (23) (Fig. 1J), a critical component of ISGF3 (7) (Fig.
191 1A). We found that although IRF1 induced expression of interferons (Fig. S4A), in

192 accordance with its dual mechanism of antiviral action, it was still able to inhibit IAV in the
193 absence of STAT1. ELF1 also potently inhibited IAV in the absence of STAT1. However,
194 there was a striking difference in timing between the effects of IRF1 and ELF1: IRF1
195 inhibited IAV after one cycle of viral replication (as previously reported (4)), but ELF1
196 inhibited IAV exclusively in multi-cycle replication. Taking these results together, we
197 hypothesized that ELF1 is produced in concert with other ISGs, then drives the
198 expression of a distinct, delayed set of putative antiviral genes that without a second
199 round of canonical interferon signaling (Fig. 1A).

200

201 **ELF1 regulates a vast transcriptional program, which is distinct from and delayed**
202 **with respect to the immediate IFN response.**

203 Hence, we aimed to determine the transcriptional program regulated by ELF1 by
204 performing RNAseq on A549 cells lacking ELF1. However, elevated amounts of ELF1
205 have been previously associated with lung cancer (24), suggesting that ELF1 may play a
206 critical role in A549 growth. Accordingly, a viable clonal A549 ELF1^{-/-} knockout line could
207 not be generated by CRISPR/Cas9 genome editing. To maintain a consistent cell type
208 across experiments, we instead expressed ELF1 wild type (WT), R8A, or empty vector
209 control in A549 (Fig. 2A, left column). Principal component analysis (PCA) indicated that
210 WT ELF1 modulates gene expression patterns differently than ELF1 R8A and empty
211 vector controls (Fig 2B). This analysis additionally validated ELF1 R8A as a negative
212 control in our experiments.

213 We then performed differential gene expression analyses to identify genes for which
214 expression changed upon ELF1 WT expression. Ectopic expression of ELF1 WT

215 significantly altered the expression of 465 genes (Fig. 2C, Supplementary Tables 1, 2),
216 most of which (434) were upregulated relative to both control conditions in additional
217 comparisons. Analyzing the set of ELF1 differentially expressed genes, we made three
218 key observations: 1. Gene ontology analyses of ELF1 differentially expressed genes
219 revealed that many of the most significantly enriched terms relate to cell membrane
220 and/or receptors (Fig. S5, Supplementary Table 5). 2. ELF1 does not trigger expression
221 of IFN type I, II or III genes, or other inflammatory cytokines such as TNF or IL-6 (Fig. S6,
222 Supplementary Tables 1 and 2). Indeed, IL-6 was downregulated upon ELF1 WT
223 expression. These findings corroborated our previous results from qRT-PCR and ISRE
224 reporter assays (Fig. S4), but were contrary to a previous study that found ELF1 to
225 enhance the transcriptional response to IFN-beta (25). The differences might indicate cell-
226 type specific differences between HeLa cells (25) and A549 cells in the present study. 3.
227 Genes differentially expressed upon ELF1 WT expression were not enriched for GO
228 terms implicated in IAV egress or infectivity, such as cargo trafficking, membrane
229 remodeling, or maturation proteases, providing additional evidence that the ELF1-
230 mediated antiviral program likely does not target specific steps of the IAV life cycle.
231 We next examined how different the ELF1 differentially expressed program was from the
232 immediate IFN response. Historically, the term “interferon-stimulated gene” has been
233 defined quite arbitrarily, depending on cell type, fold upregulation, and time post-
234 interferon-stimulation (26). Typically, interferon-stimulated transcriptomes are determined
235 experimentally only a few hours post-IFN exposure (4). To compare the ELF1
236 differentially expressed program to a typical ISG program, we treated A549 with IFN-beta
237 for 6 h, performed RNAseq, identified immediate ISGs by differential expression testing

238 (same statistical thresholds as above) and compared them to the differentially expressed
239 genes in the ELF1 WT condition (Fig. 2A). Genes most dramatically upregulated (i.e.
240 genes with highest -fold change) mostly did not overlap with ISGs rapidly induced by IFN
241 stimulation (Fig 2D and Supplementary Tables 1, 2 and 3); of the 434 ELF1 differentially
242 expressed genes relative to controls (by both adjusted p value and -fold change), only 24
243 cleared similar significance thresholds by IFN stimulation (Fig. 2E). Thus, although both
244 the ELF1 differentially expressed program and the immediate IFN response program
245 confer antiviral protection, they appear to be distinct, which leads us to one key
246 conclusion: ELF1 differentially expressed genes represent a previously untapped pool of
247 novel viral restriction factors.

248 To follow up on differences in timing of viral restriction, we determined the temporal
249 dynamics of ELF1-associated gene transcription within the concert of the type I interferon
250 response. Other studies have conducted similar experiments with endpoints up to 24 h
251 post-interferon (12, 27). But, given ELF1's delayed antiviral action, we followed mRNA
252 expression of five indicator genes over a period of 72 h: our gene of interest, ELF1; a
253 prototype of the immediate interferon-response, RIG-I; and three ELF1 differentially
254 expressed genes that were amongst those genes most significantly upregulated upon
255 ELF1 WT but not by 6 h IFN stimulation, FAR2, NR2E1 and CARD11 (Supplementary
256 Tables 1, 2 and 3). As expected, RIG-I and ELF1 displayed expression kinetics typical for
257 immediate ISGs, with peak expression occurring at 6 h post-IFN stimulation, followed by
258 a gradual decrease to eventually reach homeostasis (Fig. 2F). In accordance with their
259 presumed regulation by ELF1, upregulation of FAR2, NR2E1 and CARD11 temporarily
260 succeeded that of ELF1 and RIG-I. Upregulation of FAR2 peaked at 12 h post-IFN

261 stimulation, which was 6 h post-ELF1 peak expression. NR2E1- and CARD11-expression
262 peaked even later, at 48 and 60 h post-IFN stimulation, respectively. These data
263 demonstrate that putative ELF1 target genes are expressed with delayed kinetics relative
264 to immediate ISGs, which might explain the observed delayed mode of IAV inhibition
265 previously observed.

266 We thus propose the following temporal model of ELF1-mediated antiviral protection (Fig.
267 2G): upon interferon-stimulation, ELF1 is rapidly expressed in concert with hundreds of
268 other immediate ISGs, in a process regulated by ISGF3. Subsequently, ELF1 acts as a
269 direct regulator and initiates the expression of a distinct, second wave of novel antiviral
270 genes. In this way, ELF1 both amplifies and lengthens the immediate antiviral interferon
271 response via a novel transcriptional program. All of these genes qualify as “interferon-
272 stimulated genes”, however, we show that their expression is based on different
273 mechanisms of transcriptional regulation - i.e. the action of different transcription factors
274 such as ELF1. These mechanistic differences have important consequences with regard
275 to rational drug design to modulate the power of the interferon response—its activation
276 for antiviral applications, and down-regulation for anti-inflammatory purposes.

277

278 **ELF1 inhibits multi-cycle replication of diverse RNA and DNA viruses.**

279 Thus far, we characterized the timing and composition of ELF1’s antiviral program. Next,
280 we tested the breadth of ELF1’s antiviral action. We determined single and multi-cycle
281 replication of eight diverse RNA and DNA viruses in the presence of ELF1 wild type and
282 R8A (Fig. 3A): influenza A/WSN/1933 (H1N1) virus, human parainfluenzavirus 3 (HPIV3),
283 yellow fever virus (YFV), chikungunya virus (CHIKV) (all three enveloped +RNA viruses),

284 coxsackie B virus (Cx B, a non-enveloped +RNA virus), herpes simplex virus 1 (HSV-1),
285 vaccinia virus (VV) (both enveloped DNA viruses), and adenovirus 5 (AdV, a non-
286 enveloped DNA virus). The ISG and transcription factor IRF1 again served as positive
287 control, as it is known to inhibit all of these viruses in single cycle assays (3, 4). Our panel
288 of viruses was chosen to broadly represent different viral mechanisms, e.g. how they
289 enter cells and deliver their genomes, how they initiate viral transcription, how they
290 replicate their genomes, how they process their proteins, how progeny viruses exit cells,
291 how they counteract cellular immune responses, and more. These differences are
292 reflected by the different replication rates of these viruses, which we considered when
293 designing our single and multi-cycle assays (Fig. 3B-I, indicated at bottom of x-axes). We
294 found that both IRF1 and ELF1 significantly inhibited all viruses in the panel (Fig. 3B-I),
295 indicating that the breadth of ELF1-mediated virus inhibition is similar to that mediated by
296 IRF1 and the immediate IFN response. However, and as seen in previous experiments,
297 the difference between IRF1 and ELF1 was in timing, as ELF1 inhibited all viruses
298 exclusively at multi-cycle replication (Fig. 3B-I). Interestingly, this multi-cycle antiviral
299 action was apparent irrespective of the virus life cycle length. Therefore, it is possible that
300 inherent differences in cells being challenged for the first time (single cycle virus infection)
301 versus being challenged repeatedly (multi-cycle virus infection) contribute to ELF1's
302 delayed antiviral activity. Importantly, YFV and CHIKV are both extremely sensitive to
303 endogenous interferon in A549 cells and were thus assayed in the presence of a JAK1/2
304 inhibitor, Ruxolitinib, to suppress JAK-STAT signaling and allow for viral replication (Fig.
305 3 D, E, and Fig. S7). ELF1 inhibited both YFV and CHIKV in the presence of Ruxolitinib.

306 This validated our previous data from STAT1^{-/-} A549 cells (Fig. 1A), further supporting
307 that ELF1 inhibits viruses without a second round of canonical interferon signaling.

308
309 **ELF1 is a critical component of the interferon response to influenza A virus in vitro**
310 **and in vivo.**

311 How important is the ELF1-mediated gene expression module for the antiviral potency of
312 the overall type I interferon response? To answer this question, we applied a knockdown
313 strategy in A549. Treatment with peptide-conjugated phosphorodiamidate morpholino
314 oligomers (PPMO) designed to bind the 5'UTR of ELF1 mRNA resulted in a 55%
315 reduction of ELF1 protein (Fig. 4 A,B). We measured IAV growth in ELF1-PPMO-treated
316 cells and found increased IAV titers over time (Fig. 4C). This increase started at 36 hpi
317 and was most pronounced at 48 hpi, where viral titers were elevated up to 100-fold,
318 demonstrating that endogenous ELF1 is a critical component of the antiviral interferon
319 response *in vitro*.

320 To verify the specificity of PPMOs, we knocked down endogenous ELF1 in A549 with the
321 ELF1-PPMO, then aimed to rescue ELF1's antiviral function by providing ELF1 wild type
322 as a transgene (Fig. 4D, E). As the ELF1-PPMO targets the 5'-UTR, it represses the
323 translation of endogenous, but not overexpressed, ELF1. We used empty vector and
324 ELF1 mutant R8A as negative controls, and visualized IAV infection at 48 hpi by high-
325 content microscopy. As expected, knocking down endogenous ELF1 boosted the number
326 of IAV-infected cells; neither empty vector control nor ELF1 R8A were able to rescue this
327 phenotype (Fig. 4D, black and white bars). In contrast, expression of ELF1 wild type
328 reduced IAV late stage or multi-cycle replication to levels that were similar in NTC and

329 ELF1-PPMO-treated cells (Fig. 4D, grey bars). These results validated the specificity of
330 our PPMO-mediated knockdown.

331 Finally, we sought to establish Elf1's relevance *in vivo*, using the IAV infection mouse
332 model. Previously generated and characterized Elf1^{-/-} mice were viable, but no longer
333 available (<http://www.informatics.jax.org/allele/MGI:3590647>). Therefore, we induced a
334 local knockdown by administering PPMO intranasally, as described previously (28).
335 PPMOs targeting the 5'UTR of Elf1 and either a non-targeting PPMO mismatch control
336 or PBS, both negative controls, were administered twice prior to IAV challenge (Fig. 4F).
337 The Elf1-targeting PPMO yielded approximately 40% *in vivo* knockdown, as determined
338 by quantitative western blot of mouse lung homogenates (Fig. 4G). PPMO-treated or
339 control mice were infected intranasally with 40 PFU of influenza A/PR8/1934 (H1N1)
340 virus. Animals with reduced Elf1 lost significantly more body weight and showed
341 significantly increased mortality: 100% of Elf1-knockdown animals succumbed to
342 infection, as compared to 50% in either control. Finally, Elf1-knockdown animals had
343 significantly increased virus titers in the lung (Fig. 4H-J). Thus, Elf1 plays a pivotal role in
344 the type I interferon response against IAV *in vivo*.

345

346 **DISCUSSION**

347 In this study, we determine that ELF1 is an important antiviral regulator *in vitro* as well as
348 *in vivo*, given that mice with decreased Elf1 protein levels exhibit more pronounced weight
349 loss, higher mortality, and increased virus titers following influenza A virus challenge.
350 Elf1's *in vivo* role could either be fulfilled by cellular immunity (i.e. by lymphocytes), a cell-
351 intrinsic function (i.e. in non-hematopoietic cells), or both. Indeed, lymphocyte functions
352 of Elf1 have been previously published. The *in vitro* data presented in this study establish
353 that ELF1 additionally exerts a cell-intrinsic antiviral role. Such different roles in specific
354 cellular contexts are known for a number of other innate immune transcription factors. For
355 example, the transcription factor IRF1 has been shown to both support the development
356 of CD8⁺T and natural killer cells (29, 30), and to raise a cell-intrinsic antiviral program by
357 activating IFN- and ISG-expression in fibroblasts, epithelial cells and skeletal muscle cells
358 (31-34). Therefore, depending on the cellular context, it is feasible that ELF1 similarly
359 displays dual functions.

360 ELF1 is an example of non-canonical interferon-mediated gene regulation that is
361 independent of STAT1. ELF1 both adds "time" and "quality" to the immediate type I
362 interferon response (Fig. 2H). These findings raise questions about the evolutionary
363 rationale for multiple gene expression modules post-interferon. One explanation could be
364 to provide multiple layers of mechanistically different, antiviral genes to cover antiviral
365 strategies for as many diverse viruses as possible (4). Indeed, functional redundancy is
366 a common theme of the innate immune response (35). Another rationale for switching
367 antiviral programs could be to mitigate adverse effects brought about by prolonging
368 existing ones. The multi-layered antiviral state raised by interferon represents a double-

369 edged sword, as the associated inflammation can have detrimental effects (36). This is
370 exemplified by genetic defects in key mediators of innate immune signaling that ultimately
371 cause interferon overproduction or failure to return cells to homeostasis post-interferon
372 exposure (36). Interestingly, multiple independent genome-wide association studies
373 found single nucleotide polymorphisms in the ELF1 open reading frame or in ELF1 target
374 DNA binding sites to be associated with chronic inflammatory disorders such as Crohn's
375 disease, inflammatory bowel disease, and systemic lupus erythematosus (37-43). How
376 ELF1 may contribute to excess inflammation in these disorders remains elusive.
377 However, transcriptional dysregulation, e.g. of IFN- or NF κ B-mediated programs, has
378 been shown to contribute to disease pathogenesis (44-49). These findings and ours raise
379 the exciting possibility that ELF1 has a major regulatory function both in inflammation and
380 in innate antiviral immunity.

381 Defining non-canonical interferon response programs such as that raised by ELF1 may
382 pave new avenues in the rational drug design targeting the type I interferon response.
383 Transcription factors have historically been considered to be undruggable, but this
384 paradigm is slowly shifting (50). Novel small molecules are being developed that mimic
385 DNA binding properties (51) or disrupt protein-protein interactions critical for transcription
386 factor function (52), and artificial ligands aim to modulate transcription factor activation
387 (53). There is an unmet need for novel antiviral drug targets, especially to combat
388 emerging viruses, recently exemplified by Zika and Ebola viruses(54, 55). ELF1 inhibits
389 every virus we have tested in this study, including members from diverse (-)RNA, (+)RNA,
390 and DNA virus families. Thus, harnessing the antiviral power ELF1 might be an attractive
391 approach for broadly antiviral therapies.

392 **MATERIALS AND METHODS**

393 Detailed information on materials, including sources, are listed in Supplementary Table
394 S6.

395

396 **Contact for reagent and resource sharing**

397 Further information and requests for resources and reagents should be directed to and
398 will be fulfilled by the Lead Contact, Meike Dittmann (Meike.Dittmann@nyumc.org).

399

400 **Experimental model and subject details**

401 **Animals.** Five-week-old female BALB/cJ mice were purchased from Jackson
402 Laboratories (stock number 000651).

403

404 **Ethics Statement.** All research studies involving the use of animals were reviewed and
405 approved by the Institutional Animal Care and Use Committees of the Icahn School of
406 Medicine at Mount Sinai and were carried out in strict accordance with the
407 recommendations in the Guide for the Care and Use of Laboratory Animals.

408

409 **Primary human cells.** Primary human normal airway tracheobronchial epithelial cells
410 from de-identified donors (NHBE) (sex: male and female) were provided by Lonza
411 (Walkersville, MD) and grown in BEM media supplemented with the BEGM bullet kit
412 (Lonza). NHBE were used for functional studies, and for generation of polarized human
413 airway epithelial cultures (HAE). To generate HAE, NHBE from individual donors were
414 expanded on plastic to generate passage 1 cells, which were subsequently plated (5×10^4

415 cells/well) on rat-tail collagen type 1-coated permeable transwell membrane supports
416 (6.5mm; Corning Inc). HAE cultures were grown in B-ALI medium supplemented with
417 inducer (Lonza Inc.) at each media change with provision of an air-liquid interface for
418 approximately 6 weeks to form differentiated, polarized cultures that resemble *in vivo*
419 pseudostratified mucociliary epithelium.

420

421 **Cell lines.** A549 (human; sex: male), A549 CRISPR STAT1^{-/-}, HeLa (human; sex:
422 female), HFF (human; sex: male), 293T (human; sex: female), 293T LentiX, 293T ISRE
423 reporter, and MDCK (canine; sex female), LLC-MK2 (rhesus macaque), Vero (African
424 green monkey; sex female) cells were maintained in DMEM (Invitrogen) supplemented
425 with 10% fetal bovine serum (FBS), 1% NEAA, 1% P/S. A549 and HFF were used for
426 virus infection and functional studies. MDCK, HeLa and LentiX cells were used for virus
427 production and virus titration. All cell lines were obtained directly from the ATCC (with
428 exceptions of Lenti-X 293T cells, which were obtained from Clontech Laboratories, and
429 MDCK cells, which were obtained from the laboratory of Wendy Barclay). All cell lines
430 were grown at 37 °C, individually expanded, and all seed and working stocks tested
431 negative for contamination with mycoplasma. Cells were used in experiments below
432 passage 15 from thaw, or when population doubling times slowed beyond 25% of seed
433 stock doubling times.

434

435 **Viruses.** Influenza A/WSN/1933 (H1N1) virus stock was grown in MDCK cells. The
436 following virus stocks were grown as previously described: HPIV3-GFP (based on strain
437 JS) on LLC-MK2 cells (56), CxB-GFP (based on pMKS1-GFP) on HeLa cells (57), YFV-

438 Venus (YF17D-5'C25Venus2AUbi) on Vero cells (58), HSV-1-GFP (based on strain
439 Patton) on Vero cells (59), VV-GFP (derived on strain western reserve) on HeLa cells
440 (Schoggins et al., 2011).

441 AdV-GFP (based on AdV5) was generated by the Laboratory of Patrick Hearing. The
442 AdV5 E4-ORF3 reading frame was precisely replaced with EGFP in plasmid pTG3602
443 (60) using PCR, and recombineering in *E. coli*, as previously described (61). To generate
444 infectious virus, the pTG3602-EGFP plasmid was linearized with PstI and 1 µg DNA
445 transfected into 293T cells. Plaques were purified and working virus stocks were
446 generated by passaging virus on 293T cells. The optimum dose for viral assays was
447 determined by limited dilution and high content microscopy for EGFP-positive cells on
448 A549.

449 Experiments with all above viruses were carried out in biosafety level 2 (BSL2)
450 containment in compliance with institutional and federal guidelines.

451 The infectious clone of CHIKV La Réunion 06-049 expressing ZsGreen was constructed
452 by the Laboratory of Kenneth Stapleford using standard molecular biology techniques.
453 First, an AvrII restriction enzyme site was inserted 5' of the subgenomic promoter by site-
454 directed mutagenesis using the primers Forward 5'-
455 CACTAACCTGCTACACCTAGGATGGAGTTCATCCC-3' and Reverse 5'-
456 GGGATGAACTCCATCCTAGGTGTAGCTGATTAGTG-3'. The CHIKV subgenomic
457 promoter was then amplified by PCR (Forward 5'-
458 CCTAGGCCATGGCCACCTTGCAAG-3' and Reverse 5'-
459 ACTAGTTGTAGCTGATTAGTGTTAG-3') and subcloned into the AvrII site to generate
460 a CHIKV infectious clone containing two subgenomic promoters. Finally, the ZsGreen

461 cassette was amplified by PCR (Forward 5'-
462 GTGTACCTAGGATGGCCCAGTCCAAGCAC-3' and Reverse 5'-
463 GCTATCCTAGGTTAACTAGTGGGCAAGGC-3') from a CHIKV infectious clone
464 obtained from Andres Merits (University of Tartu) and subcloned into the AvrII restriction
465 enzyme site. The complete cassette and subgenomic regions were sequenced to ensure
466 there were no second-site mutations. To generate infectious virus, the plasmid was
467 linearized overnight with NotI, phenol-chloroform extracted, ethanol precipitated, and
468 used for in vitro transcription using the SP6 mMessage mMachine kit (Ambion). In vitro
469 transcribed RNA was phenol-chloroform extracted, ethanol precipitated, aliquoted at 1
470 mg/ml, and stored at -80 °C. 10 µg of RNA was electroporated into BHK-21 cells (62) and
471 virus was harvested 48 h post electroporation. Working virus stocks were generated by
472 passaging virus over BHK-21 cells and viral titers were quantified by plaque assay.
473 Experiments with CHIKV were carried out in biosafety level 3 (BSL3) containment in
474 compliance with institutional and federal guidelines.

475

476 **Lentiviral generation and transduction of cells.** ISGs with antiviral activity (ELF1,
477 IFITM3, IRF1, BST2) were part of the pSCRPSY lentiviral ISG library and co-expressed
478 tagRFP and a puromycin resistance gene (Dittmann et al., 2015). To generate ELF1
479 domain deletion and point mutants, ELF1 wild type was amplified using forward primer
480 5'- ATGGCTGCTGTTCCAACAGAAC-3' and reverse primer 5'-
481 CTAAAAAGAGTTGGTTCCAGCAGTTC-3', and cloned into pCR8/GW/TOPO TA (Life
482 Technologies). This entry clone DNA was used as starting point for mutagenesis.
483 Mutation R8A was generated by site directed mutagenesis using Quikchange technology

484 (Agilent), and forward primer 5'-
485 TATGAGACCATGGGAGCAGCACTCAGGTACTATTAC-3' and reverse primer 5'-
486 GTAATAGTACCTGAGTGCTGCTCCCATGGTCTCATA-3'. ELF1 lacking the
487 transcription factor (TF) domain was generated by PCR amplification of N-terminally
488 truncated ELF1, using forward primer 5'-ATGGCTGCTGTTGTCCAACAGAAC-3' and
489 reverse primer 5'-CTAAAAAGAGTTGGGTTCCAGCAGTTC-3' and cloning into
490 pCR8/GW/TOPO TA. ELF1 lacking the internal ETS domain was generated using a PCR
491 overlap extension PCR approach. We amplified the N-terminal fragment of ELF1 with
492 forward primer 5'-ATGGCTGCTGTTGTCCAACAGAAC-3' and reverse primer 5'-
493 GGTGGATTCTAAAGCAGTGTCCAGGGCAAAAGTGGAAAGGTCAAG-3', and the C-
494 terminal fragment with forward primer 5'-
495 GCAGTGTCCAGGGCAAAAGTGGAAAGGTCAAGCGCTTGGTGTATC-3' and reverse
496 primer 5'-CTAAAAAGAGTTGGGTTCCAGCAGTTC-3'. We then performed overlap
497 extension PCR with the N-terminal and C-terminal PCR products as template, using
498 forward primer 5'-ATGGCTGCTGTTGTCCAACAGAAC-3' and reverse primer 5'-
499 CTAAAAAGAGTTGGGTTCCAGCAGTTC-3'. The final PCR product was cloned into
500 pCR8/GW/TOPO TA. From pCR8/GW/TOPO TA, ELF1 R8A, dTF and dETS constructs
501 were swapped into pSCRPSY vector by gateway cloning.
502 To generate lentiviral stocks, we co-transfected 293T Lenti-X cells (Clontech laboratories)
503 with plasmids expressing VSV-G, gag-pol, and the respective pSCRPSY plasmid, at a
504 DNA ratio of 1:5:25. 48-72 h post transfection, we harvested the supernatant, centrifuged
505 to remove cellular debris, and filtered the supernatant through a 0.2 μ M filter. We then
506 added HEPES to a final concentration of 20 mM and polybrene to 4 μ g/ml. Each lentivirus

507 stock was titrated on the respective cell types and diluted to obtain 90% transduced cells
508 as determined by high-content microscopy.

509
510 **IAV low MOI growth kinetics.** To determine IAV growth, A549 or NHBE in 24-wells were
511 transduced to express ELF1 and controls. 48 h post transduction, cells were gently
512 washed twice with prewarmed PBS, and infected with influenza A/WSN/1933 (H1N1)
513 virus at MOI 0.01 in 200 μ l of PBS. The remaining inoculate was stored at -80 °C for back-
514 titration. Cells with inoculate were placed in a rocking incubator at 37 °C for 1 h, then
515 washed twice with prewarmed PBS, covered with 560 μ l of prewarmed growth medium,
516 and placed into a regular CO₂ incubator at 37 °C. After 1 h, 50 μ l of supernatant were
517 collected and stored at -80 °C to determine successful removal of input virus. Supernatant
518 was then collected every 12 h until 48 hpi, and stored at -80 °C. During supernatant
519 collections, 50 μ l of fresh, prewarmed growth medium were replaced in each well to keep
520 total volume constant throughout the 48 hours.

521
522 **IAV plaque assay.** IAV infectious titers were determined by plaque assay on MDCK cells.
523 Briefly, MDCK cells in 12-well plates were washed with PBS, and incubated with 1:10
524 serial dilutions of IAV in PBS for 1 h in a rocking incubator. After 1 h, cells were washed
525 and overlayed with DMEM (Gibco), 1.2 % avicel, 0.001 % DEAE, 0.45 % Sodium
526 Bicarbonate, GlutaMax, non-essential amino acids, penicillin/streptomycin, and 1 μ g/ml
527 TPCK trypsin. Cells were then placed in a CO₂ incubator at 37 °C for 48 h. To fix cells
528 and visualize plaques, the avicel overlay was aspirated, washed once with PBS, and cells

529 covered with 0.1 % crystal violet, 2 % ethanol, 20 % methanol for 15 min, then washed
530 with water, and plaques counted manually.

531

532 **High-content microscopy and image analysis.** If not otherwise stated, we used the
533 CellInsight CX7 High-Content Screening (HCS) Platform (Thermofisher) and high-content
534 software (HCS) for microscopy and image analysis. All small molecule inhibitors used in
535 this study were tested for cytotoxicity and optimum effective dose for each cell type. Cells
536 in 96-wells were incubated with a serial dilution of the inhibitor, keeping the carrier
537 concentration constant in each well. Incubation time corresponded to the time the drug
538 would be in contact with the cells in the actual assay. 10 % Ethanol was used as positive
539 control for cell death. Cells were then stained with Sytox green (1:20,000, Thermo),
540 washed with DMEM, fixed with 1.5 % paraformaldehyde, permeabilized with 0.1% triton
541 X-100, stained with DAPI, and imaged with the 4x objective. For this assay, we used the
542 HCS analysis protocol “Target Activation”, and reference levels were set at three standard
543 deviations from the mean of control wells. Cytotoxicity was evaluated by a reduction of
544 total (DAPI-positive) cells per well, as well as the % of dead (Sytox-positive) cells. Drugs
545 were used at the highest safe dose in the assays described below, i.e. the dose not
546 reducing the number total cells, and not increasing the number of dead cells as compared
547 to carrier control.

548 For virus spread experiments, the optimum MOI and timing of endpoints was determined
549 by high content microscopy prior to experiments for each cell type and each virus. For
550 experiments with the endpoint at one round of viral replication, we chose the time that
551 resulted in bright, yet individual virus-positive cells. For the optimum MOI, we chose the

552 viral dose that yielded reproducible 0.5-3 % infected cells at that time point. For the
553 second endpoint at multiple rounds of replication, we chose the time that resulted in 10-
554 60 % of infected cells from that viral dose, depending on the spreading capability of the
555 given virus. Experiments with YFV and CHIKV were performed in the presence of 0.4 μ M
556 of Ruxolitinib to allow for viral spread on IFN-competent A549. Further experiments
557 analyzing the action of antiviral ISGs (ELF1, IFITM3, BST2) were performed using these
558 optimized viral doses and time points: A549 (or A549 STAT1^{-/-}) in multiple 96-well plates
559 were transduced with pSCRPSY:empty lentivirus for 48h, and then infected with serial
560 dilutions of the respective viruses. At different times post-infection, each plate was fixed
561 with 1.5 % paraformaldehyde for 15 min, washed with PBS, quenched for 5 min with 20
562 mM NH₄Cl, and washed with PBS again. To permeabilize the cells, we used 0.1 % Triton-
563 X in PBS for 4 min, followed by washing with PBS three times. For reporter viruses
564 expressing a strong GFP-signal (HPIV3, YFV, CHIKV, AdV, HSV-1, CxB and VV), cells
565 were stained with DAPI only. IAV-infected cells were blocked with 1% BSA in PBS for 1
566 h at room temperature, stained with anti-NP antibody (1:500, BEI resources) for 1 h
567 rocking at 37°C, washed three times with PBS before staining with secondary goat Alexa
568 488 antibody and DAPI for 1 h rocking at 37°C and finally washed three times with PBS.
569 Plates were imaged using the 4x objective in 9 fields covering the entire 96-well. For this
570 assay, we used the HCS analysis protocol “Target Activation”, and reference levels were
571 set at three standard deviations for the highest background from all mock-infected control
572 wells.

573

574 **ISG induction assays.** To determine ISG mRNA expression and protein kinetics, we
575 treated PBMCs, A549 cells or HAE cultures with IFN-beta (Millipore Sigma) at 500 U/ml.
576 mRNA levels, normalized to housekeeping gene RPS-11, were determined by qRT-PCR
577 (SuperScript III First Strand Synthesis System, Life Technologies and PowerUP SYBR
578 Green Master Mix, Thermo Fisher Scientific). Primer sequences are listed in
579 Supplementary table 9. Endogenous ELF1 protein levels from cell lysates or mouse lung
580 homogenates were measured by western blotting using anti-ELF1 antibody (1:5000,
581 Santa Cruz).

582

583 **PPMO-mediate ELF1 knockdown in vitro.** All PPMOs were tested for cytotoxicity and
584 knockdown efficiency in A549 cells prior to infection experiments. PPMOs were delivered
585 to cells by adding them to the medium. For IAV growth kinetics, A549 were supplemented
586 with 15 μ M PPMOs for 2 d, then infected with influenza A/WSN/1933 virus at MOI 0.01
587 as described above. During supernatant collections, 50 μ l of fresh, prewarmed growth
588 medium with 8 μ M PPMOs were replaced in each well to keep total volume constant
589 throughout the 48 h. For determination of IAV spread by high content-microscopy, A549
590 were transduced to express ELF1 wild type, ELF1 R8A, or empty vector control for 6h,
591 then media was changed to media containing 15 μ M PPMOs. After 2 d, cells were infected
592 with 100 PFU/well of influenza A/WSN/1933 virus, and infection media supplemented with
593 8 μ M PPMOs. Samples were fixed and analyzed at 8 hpi and 36 hpi as described above.

594

595 **PPMO in vivo assays.** Five-week-old female BALB/c mice were anesthetized by
596 intraperitoneal injection of a mixture of Ketamine and Xylazine (100 μ g and 5 μ g per gram

597 of body weight), prior to intranasal administration of either PBS or 100 micro moles of
598 PPMO mix (50 micro moles of PPMO1 and 2 each) in 40 μ l of PBS, on Day -2 and Day
599 -1. On Day 0, Mice were challenged intranasally with 40 PFU of PR8 IAV (LD50 = 50
600 PFU) in 40 μ l PBS. Mice were monitored daily for weight loss and clinical signs. Mice
601 lungs were harvested on Day 3 and Day 6 post infection for measuring viral titers (5 mice
602 per condition). Lung homogenates were prepared using a FastPrep24 system (MP
603 Biomedicals). After addition of 800 μ l of PBS containing 0.3% BSA, lungs were subjected
604 to two rounds of mechanical treatment for 10 s each at 6.5 m/s. Tissue debris was
605 removed by low-speed centrifugation, and virus titers in supernatants were determined
606 by plaque assay. A group of mice (5 per condition) until day 14 post infection for survival.

607

608 **RNA-seq and analysis.** For ectopic ELF1 RNAseq experiments, A549 cells in 6-well
609 plates were transduced with pSCRPSY lentivirus encoding ELF1 wildtype, ELF1 R8A, or
610 empty vector control. After 48 h in culture, medium was aspirated, cells were washed with
611 PBS, and cells were scraped from the plate and homogenized in 1 ml of Trizol. Cell
612 lysates were transferred to phasemaker tubes (Invitrogen), to which 200 μ l chloroform
613 was added, followed by vigorous mixing for 20 s. After incubation at room temperature
614 for 2-3 min, samples were centrifuged at 12,000xg for 10 min at 4 °C. 600 μ l of the
615 aqueous (top) phase was transferred to 600 μ l ethanol and mixed well by vortexing. The
616 aqueous phase/ethanol mixes were then transferred to RNeasy columns and RNA
617 extracted following the RNeasy kit protocol (Qiagen). The experiment was performed
618 three times, with each transduction condition represented once in each replicate "batch."
619 RNAseq libraries (for all samples in a single batch) were prepared with the Illumina

620 TruSeq Stranded Total RNA Library Prep Kit according to manufacturer's instructions,
621 and sequenced on the Illumina NextSeq 500 platform at 75nt read length in single-end
622 configuration.

623 Reads were mapped to the human genome reference (hg19) supplemented with the
624 pSCRPSY plasmid sequence (containing EGFP gene), using the HISAT2 (v2.0.4)
625 alignment tool (63) with Ensembl v75 gene annotations (supplemented with pSCRPSY
626 gene annotation) and the "--rna-strandness R" and "--dta" parameters. Read counts per
627 gene were quantified against Ensembl (v75) transcript reference annotations (appended
628 with gene annotation for pSCRPSY, "MSTRG.1") using HTSeq-count (v0.6.1p1) (64).
629 Genes with greater than 2 read counts in at least 3 samples were defined as "expressed"
630 and included in downstream analyses. For principal component analysis (PCA), read
631 counts were normalized and variance stabilized by regularized log transformation (rlog
632 function, DESeq2 package v1.18.1 (65)). Replicate batch effects were corrected with the
633 removeBatchEffect function in the limma package. PCA was conducted on the 1000 most
634 variable genes across all samples.

635 For differential gene expression analysis, raw read counts were TMM-normalized and
636 log₂ transformed with voom (limma v3.34.9) (66, 67). Differential gene expression testing
637 was performed with a linear model including factors for ELF1 (WT, R8A, or empty vector)
638 and replicate batch. Pairwise tests were conducted for ELF1 (WT) vs (ELF1 R8A), and
639 ELF1 (WT) vs Empty vector contrasts. Differential gene expression test p values were
640 adjusted for multiple testing by the method of Benjamini and Hochberg
641 (<http://www.jstor.org/stable/2346101>). In order to focus further analyses on those genes
642 markedly affected by ELF1, a relatively stringent filter was applied to differential

643 expression results: “ELF1 differentially expressed genes” were defined as those genes
644 with adjusted p value < 0.05 and \log_2 fold-change ≥ 2 (or ≤ -2) in both ELF1 (WT) vs
645 (ELF1 R8A), and ELF1 (WT) vs Empty vector contrasts. GO term enrichment analysis in
646 ELF1 differentially expressed genes was performed with the GOSeq tool (v1.3) (68), and
647 results visualized with GOpplot (v1.0.2)(69).

648 For IFN-stimulation experiments, A549 cells were stimulated with IFN-beta at 500 U/ml
649 for 6 h, or left untreated. RNA was extracted and prepared for RNA-Seq as described
650 above. Libraries were sequenced on the Illumina HiSeq 2500 instrument at 50nt read
651 length in single-end configuration. Reads were processed and quantified against Ensembl
652 (v75) transcript reference annotations as for ELF1 transduction experiments above, with
653 identical expression filters applied. Differential gene expression testing was performed
654 using limma, with model including factors for interferon stimulation (IFN-stimulated or
655 mock-treated) and replicate batch. Pairwise tests were conducted for the IFN-stimulated
656 vs mock-treated contrast. As for the ELF1 transduction analysis, “IFN differentially
657 expressed genes” were defined as those with adjusted p value < 0.05 and \log_2 fold-
658 change ≥ 2 (or ≤ -2).

659

660 **Quantification and statistical analysis**

661 All n of in vitro experiments are from biologically independent experiments. Statistical
662 analysis was performed in Prism (GraphPad Software, v7.0f, 2018). The statistical tests
663 used and the number of biological replicates is indicated in each figure legend. Unless
664 otherwise stated two conditions were compared using two-tailed Student’s *t*-tests.
665 Statistical significance was defined as a p value of 0.05.

666 **Data and software availability**

667 All RNA-Seq data are available in NCBI GEO repository, combined in SuperSeries
668 GSE122252.

669

670 **ACKNOWLEDGEMENTS**

671 We would like to thank Charles M. Rice for mentorship and support to initiate this project,
672 and for YFV-Venus; Victor Torres for PBMC; Shoshanna Kahne and Nathan Mercado for
673 technical assistance; Peter Palese for all IAV isolates and Hans-Heinrich Hoffmann for
674 generating virus stocks, Paula Traktman for VV-EGFP, Peter Collins for HPIV3-EGFP,
675 Ann Palmenberg for CxB-EGFP, Kenneth Stapleford for CHIKV-ZsGreen, Ian Mohr for
676 HSV-1-EGFP, and Patrick Hearing for AdV-EGFP. This work was supported by National
677 Institutes of Health (NIH) grants K99/R00-AI121473, R01-AI091707, DP5OD012142, the
678 Boehringer Ingelheim Foundation, NYU Medical School startup funds, and anonymous
679 donations. This work was also partly supported by NIAID grant U19AI135972, and by
680 CRIP (Center for Research on Influenza Pathogenesis), an NIAID funded Center of
681 Excellence for Influenza Research and Surveillance (CEIRS, contract number
682 HHSN272201400008C).

683

684 **AUTHOR CONTRIBUTIONS**

685 M.D. designed the project and wrote the manuscript. M.D., S.T., A.G.-S., U.S. and B.R.R.
686 conceived and designed the experiments. L.S., C.S., S.B., A.B., M.d.V, M.S., D.S., G.W.,
687 S.T., B.R.R., and M.D. performed the experimental work and analyzed the results. H.M.

688 designed and synthesized PPMOs. All authors discussed the results and commented on
689 the final manuscript.

690 **DECLARATION OF INTERESTS**

691 The authors declare no competing interests.

692

693 **REFERENCES**

694 1. Schoggins JW. Recent advances in antiviral interferon-stimulated gene biology.
695 F1000Res. 2018;7:309.

696 2. Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex
697 web of host defenses. Annual review of immunology. 2014;32:513-45.

698 3. Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, Eitson JL, et al.
699 Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity.
700 Nature. 2014;505(7485):691-5.

701 4. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, et al. A
702 diverse range of gene products are effectors of the type I interferon antiviral response.
703 Nature. 2011;472(7344):481-5.

704 5. Perelman SS, Abrams ME, Eitson JL, Chen D, Jimenez A, Mettlen M, et al. Cell-
705 Based Screen Identifies Human Interferon-Stimulated Regulators of Listeria
706 monocytogenes Infection. PLoS Pathog. 2016;12(12):e1006102.

707 6. Larner AC, Jonak G, Cheng YS, Korant B, Knight E, Darnell JE, Jr. Transcriptional
708 induction of two genes in human cells by beta interferon. Proc Natl Acad Sci U S A.
709 1984;81(21):6733-7.

710 7. Levy DE, Kessler DS, Pine R, Darnell JE, Jr. Cytoplasmic activation of ISGF3, the
711 positive regulator of interferon-alpha-stimulated transcription, reconstituted in vitro.
712 Genes Dev. 1989;3(9):1362-71.

713 8. Schindler C, Fu XY, Improta T, Aebersold R, Darnell JE, Jr. Proteins of
714 transcription factor ISGF-3: one gene encodes the 91-and 84-kDa ISGF-3 proteins that
715 are activated by interferon alpha. Proc Natl Acad Sci U S A. 1992;89(16):7836-9.

716 9. Levy DE, Kessler DS, Pine R, Reich N, Darnell JE, Jr. Interferon-induced nuclear
717 factors that bind a shared promoter element correlate with positive and negative
718 transcriptional control. Genes Dev. 1988;2(4):383-93.

719 10. Stark GR, Darnell JE, Jr. The JAK-STAT pathway at twenty. Immunity.
720 2012;36(4):503-14.

721 11. Wang W, Xu L, Su J, Peppelenbosch MP, Pan Q. Transcriptional Regulation of
722 Antiviral Interferon-Stimulated Genes. Trends Microbiol. 2017;25(7):573-84.

723 12. De La Cruz-Rivera PC, Kanchwala M, Liang H, Kumar A, Wang LF, Xing C, et al.
724 The IFN Response in Bats Displays Distinctive IFN-Stimulated Gene Expression Kinetics
725 with Atypical RNASEL Induction. J Immunol. 2018;200(1):209-17.

726 13. Bolen CR, Ding S, Robek MD, Kleinstein SH. Dynamic expression profiling of type
727 I and type III interferon-stimulated hepatocytes reveals a stable hierarchy of gene
728 expression. *Hepatology*. 2014;59(4):1262-72.

729 14. Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, et al. Single-cell
730 RNA-seq reveals dynamic paracrine control of cellular variation. *Nature*.
731 2014;510(7505):363-9.

732 15. Dittmann M, Hoffmann HH, Scull MA, Gilmore RH, Bell KL, Ciancanelli M, et al. A
733 serpin shapes the extracellular environment to prevent influenza a virus maturation. *Cell*.
734 2015;160(4):631-43.

735 16. Bredemeier-Ernst I, Nordheim A, Janknecht R. Transcriptional activity and
736 constitutive nuclear localization of the ETS protein Elf-1. *FEBS letters*. 1997;408(1):47-
737 51.

738 17. Lecine P, Algarte M, Rameil P, Beadling C, Bucher P, Nabholz M, et al. Elf-1 and
739 Stat5 bind to a critical element in a new enhancer of the human interleukin-2 receptor
740 alpha gene. *Mol Cell Biol*. 1997;17(4):2351.

741 18. Rellahan BL, Jensen JP, Howcroft TK, Singer DS, Bonvini E, Weissman AM. Elf-
742 1 regulates basal expression from the T cell antigen receptor zeta-chain gene promoter.
743 *J Immunol*. 1998;160(6):2794-801.

744 19. Gruenert DC, Finkbeiner WE, Widdicombe JH. Culture and transformation of
745 human airway epithelial cells. *Am J Physiol*. 1995;268(3 Pt 1):L347-60.

746 20. Verger A, Buisine E, Carrere S, Wintjens R, Flourens A, Coll J, et al. Identification
747 of amino acid residues in the ETS transcription factor Erg that mediate Erg-Jun/Fos-DNA
748 ternary complex formation. *J Biol Chem.* 2001;276(20):17181-9.

749 21. You F, Wang P, Yang L, Yang G, Zhao YO, Qian F, et al. ELF4 is critical for
750 induction of type I interferon and the host antiviral response. *Nat Immunol.*
751 2013;14(12):1237-46.

752 22. Stirnweiss A, Ksienzyk A, Klages K, Rand U, Grashoff M, Hauser H, et al. IFN
753 regulatory factor-1 bypasses IFN-mediated antiviral effects through viperin gene
754 induction. *J Immunol.* 2010;184(9):5179-85.

755 23. Aydillo T, Ayllon J, Pavlisin A, Martinez-Romero C, Tripathi S, Mena I, et al.
756 Specific Mutations in the PB2 Protein of Influenza A Virus Compensate for the Lack of
757 Efficient Interferon Antagonism of the NS1 Protein of Bat Influenza A-Like Viruses. *J Virol.*
758 2018;92(7).

759 24. Yang DX, Li NE, Ma Y, Han YC, Shi Y. Expression of Elf-1 and survivin in non-
760 small cell lung cancer and their relationship to intratumoral microvessel density. *Chinese*
761 *journal of cancer.* 2010;29(4):396-402.

762 25. Larsen S, Kawamoto S, Tanuma S, Uchiumi F. The hematopoietic regulator, ELF-
763 1, enhances the transcriptional response to Interferon-beta of the OAS1 anti-viral gene.
764 *Sci Rep.* 2015;5:17497.

765 26. van Boxel-Dezaire AH, Rani MR, Stark GR. Complex modulation of cell type-
766 specific signaling in response to type I interferons. *Immunity.* 2006;25(3):361-72.

767 27. Bolen CR, Ding S, Robek MD, Kleinstein SH. Dynamic expression profiling of Type
768 I and Type III Interferon-stimulated hepatocytes reveals a stable hierarchy of gene
769 expression. *Hepatology*. 2013.

770 28. Rajsbaum R, Versteeg GA, Schmid S, Maestre AM, Belicha-Villanueva A,
771 Martinez-Romero C, et al. Unanchored K48-linked polyubiquitin synthesized by the E3-
772 ubiquitin ligase TRIM6 stimulates the interferon-IKKepsilon kinase-mediated antiviral
773 response. *Immunity*. 2014;40(6):880-95.

774 29. Matsuyama T, Kimura T, Kitagawa M, Pfeffer K, Kawakami T, Watanabe N, et al.
775 Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and
776 aberrant lymphocyte development. *Cell*. 1993;75(1):83-97.

777 30. Ogasawara K, Hida S, Azimi N, Tagaya Y, Sato T, Yokochi-Fukuda T, et al.
778 Requirement for IRF-1 in the microenvironment supporting development of natural killer
779 cells. *Nature*. 1998;391(6668):700-3.

780 31. Kimura T, Nakayama K, Penninger J, Kitagawa M, Harada H, Matsuyama T, et al.
781 Involvement of the IRF-1 transcription factor in antiviral responses to interferons. *Science*.
782 1994;264(5167):1921-4.

783 32. Nair S, Poddar S, Shimak RM, Diamond MS. Interferon regulatory factor-1 (IRF-1)
784 protects against chikungunya virus induced immunopathology by restricting infection in
785 muscle cells. *J Virol*. 2017.

786 33. Pine R, Canova A, Schindler C. Tyrosine phosphorylated p91 binds to a single
787 element in the ISGF2/IRF-1 promoter to mediate induction by IFN alpha and IFN gamma,
788 and is likely to autoregulate the p91 gene. *EMBO J.* 1994;13(1):158-67.

789 34. Pine R, Decker T, Kessler DS, Levy DE, Darnell JE, Jr. Purification and cloning of
790 interferon-stimulated gene factor 2 (ISGF2): ISGF2 (IRF-1) can bind to the promoters of
791 both beta interferon- and interferon-stimulated genes but is not a primary transcriptional
792 activator of either. *Mol Cell Biol.* 1990;10(6):2448-57.

793 35. Nish S, Medzhitov R. Host defense pathways: role of redundancy and
794 compensation in infectious disease phenotypes. *Immunity.* 2011;34(5):629-36.

795 36. Rodero MP, Crow YJ. Type I interferon-mediated monogenic autoinflammation:
796 The type I interferonopathies, a conceptual overview. *The Journal of experimental
797 medicine.* 2016;213(12):2527-38.

798 37. Yamazaki K, Umeno J, Takahashi A, Hirano A, Johnson TA, Kumasaka N, et al. A
799 genome-wide association study identifies 2 susceptibility Loci for Crohn's disease in a
800 Japanese population. *Gastroenterology.* 2013;144(4):781-8.

801 38. Fuyuno Y, Yamazaki K, Takahashi A, Esaki M, Kawaguchi T, Takazoe M, et al.
802 Genetic characteristics of inflammatory bowel disease in a Japanese population. *J
803 Gastroenterol.* 2016;51(7):672-81.

804 39. Aiba Y, Yamazaki K, Nishida N, Kawashima M, Hitomi Y, Nakamura H, et al.
805 Disease susceptibility genes shared by primary biliary cirrhosis and Crohn's disease in
806 the Japanese population. *J Hum Genet.* 2015;60(9):525-31.

807 40. Peloquin JM, Goel G, Kong L, Huang H, Haritunians T, Sartor RB, et al.
808 Characterization of candidate genes in inflammatory bowel disease-associated risk loci.
809 JCI Insight. 2016;1(13):e87899.

810 41. Liu TC, Stappenbeck TS. Genetics and Pathogenesis of Inflammatory Bowel
811 Disease. Annu Rev Pathol. 2016;11:127-48.

812 42. Yang J, Yang W, Hirankarn N, Ye DQ, Zhang Y, Pan HF, et al. ELF1 is associated
813 with systemic lupus erythematosus in Asian populations. Hum Mol Genet.
814 2011;20(3):601-7.

815 43. Juang YT, Tenbrock K, Nambiar MP, Gourley MF, Tsokos GC. Defective
816 production of functional 98-kDa form of Elf-1 is responsible for the decreased expression
817 of TCR zeta-chain in patients with systemic lupus erythematosus. J Immunol.
818 2002;169(10):6048-55.

819 44. Atreya I, Atreya R, Neurath MF. NF-kappaB in inflammatory bowel disease. J
820 Intern Med. 2008;263(6):591-6.

821 45. Maeda S, Hsu LC, Liu H, Bankston LA, Iimura M, Kagnoff MF, et al. Nod2 mutation
822 in Crohn's disease potentiates NF-kappaB activity and IL-1beta processing. Science.
823 2005;307(5710):734-8.

824 46. Zubair A, Frieri M. NF-kappaB and systemic lupus erythematosus: examining the
825 link. J Nephrol. 2013;26(6):953-9.

826 47. Crow MK. Type I interferon in the pathogenesis of lupus. J Immunol.
827 2014;192(12):5459-68.

828 48. Ghosh S, Chaudhary R, Carpani M, Playford R. Interfering with interferons in
829 inflammatory bowel disease. *Gut*. 2006;55(8):1071-3.

830 49. Fais S, Capobianchi MR, Silvestri M, Mercuri F, Pallone F, Dianzani F. Interferon
831 expression in Crohn's disease patients: increased interferon-gamma and -alpha mRNA
832 in the intestinal lamina propria mononuclear cells. *J Interferon Res*. 1994;14(5):235-8.

833 50. Yan C, Higgins PJ. Drugging the undruggable: transcription therapy for cancer.
834 *Biochimica et biophysica acta*. 2013;1835(1):76-85.

835 51. Mansilla S, Portugal J. Sp1 transcription factor as a target for anthracyclines:
836 effects on gene transcription. *Biochimie*. 2008;90(7):976-87.

837 52. Buchwald P. Small-molecule protein-protein interaction inhibitors: therapeutic
838 potential in light of molecular size, chemical space, and ligand binding efficiency
839 considerations. *IUBMB Life*. 2010;62(10):724-31.

840 53. Scheuermann TH, Tomchick DR, Machius M, Guo Y, Bruick RK, Gardner KH.
841 Artificial ligand binding within the HIF2alpha PAS-B domain of the HIF2 transcription
842 factor. *Proc Natl Acad Sci U S A*. 2009;106(2):450-5.

843 54. Baud D, Gubler DJ, Schaub B, Lanteri MC, Musso D. An update on Zika virus
844 infection. *Lancet*. 2017;390(10107):2099-109.

845 55. Ebola Outbreak Epidemiology T. Outbreak of Ebola virus disease in the
846 Democratic Republic of the Congo, April-May, 2018: an epidemiological study. *Lancet*.
847 2018;392(10143):213-21.

848 56. Zhang L, Bukreyev A, Thompson CI, Watson B, Peeples ME, Collins PL, et al.
849 Infection of ciliated cells by human parainfluenza virus type 3 in an in vitro model of human
850 airway epithelium. *J Virol.* 2005;79(2):1113-24.

851 57. Feuer R, Mena I, Pagarigan R, Slifka MK, Whitton JL. Cell cycle status affects
852 coxsackievirus replication, persistence, and reactivation in vitro. *J Virol.* 2002;76(9):4430-
853 40.

854 58. Jones CT, Catanese MT, Law LM, Khetani SR, Syder AJ, Ploss A, et al. Real-time
855 imaging of hepatitis C virus infection using a fluorescent cell-based reporter system.
856 *Nature biotechnology.* 2010;28(2):167-71.

857 59. Benboudjema L, Mulvey M, Gao Y, Pimplikar SW, Mohr I. Association of the
858 herpes simplex virus type 1 Us11 gene product with the cellular kinesin light-chain-related
859 protein PAT1 results in the redistribution of both polypeptides. *J Virol.* 2003;77(17):9192-
860 203.

861 60. Chartier C, Degryse E, Gantzer M, Dieterle A, Pavirani A, Mehtali M. Efficient
862 generation of recombinant adenovirus vectors by homologous recombination in
863 *Escherichia coli.* *J Virol.* 1996;70(7):4805-10.

864 61. Evans JD, Hearing P. Distinct roles of the Adenovirus E4 ORF3 protein in viral
865 DNA replication and inhibition of genome concatenation. *J Virol.* 2003;77(9):5295-304.

866 62. Stapleford KA, Coffey LL, Lay S, Borderia AV, Duong V, Isakov O, et al.
867 Emergence and transmission of arbovirus evolutionary intermediates with epidemic
868 potential. *Cell Host Microbe.* 2014;15(6):706-16.

869 63. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory
870 requirements. *Nat Methods*. 2015;12(4):357-60.

871 64. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-
872 throughput sequencing data. *Bioinformatics*. 2015;31(2):166-9.

873 65. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion
874 for RNA-seq data with DESeq2. *Genome Biol*. 2014;15(12):550.

875 66. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
876 differential expression analyses for RNA-sequencing and microarray studies. *Nucleic
877 Acids Res*. 2015;43(7):e47.

878 67. Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock linear model
879 analysis tools for RNA-seq read counts. *Genome Biol*. 2014;15(2):R29.

880 68. Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-
881 seq: accounting for selection bias. *Genome Biol*. 2010;11(2):R14.

882 69. Walter W, Sanchez-Cabo F, Ricote M. GOpplot: an R package for visually
883 combining expression data with functional analysis. *Bioinformatics*. 2015;31(17):2912-4.

884

885

886 **FIGURE LEGENDS**

887 **Fig. 1. ELF1 is an interferon-stimulated transcription factor with delayed, STAT1-
888 independent antiviral activity.**

889 (A) Canonical IFN signaling (solid arrows) and proposed second wave of ISG expression
890 (dashed arrows). (B) Mean \pm SEM of mRNA fold increase over pre-treatment control by
891 qRT-PCR in A549 treated with IFN-beta or BSA carrier control (n=3). Paired t-test to BSA,
892 *p<0.1, ***p<0.001. (C) Time course of ELF1 protein expression by western blot in A549
893 treated with IFN-beta. Two different exposures. ELF1 68 kDa, precursor ELF1; ELF1 98
894 kDa, glycosylated ELF1; a-actin loading control. (D) Mean \pm SEM of % influenza
895 A/WSN/1933 virus-infected (NP-positive) cells by high content microscopy in A549
896 expressing ELF1, IFITM3 as early (entry) ISG inhibitor control, or empty vector as
897 negative control (n=3). 8 hpi (one cycle of replication, left y-axis) or 48 hpi (multi-cycle
898 replication, right y-axis). One-way ANOVA and Dunnett's multiple comparison test versus
899 "empty". (E) Representative images of one field of vision at 48 hpi from (C). (F) Influenza
900 A/WSN/1933 virus growth kinetics on A549 expressing ELF1, IFITM3 or empty vector
901 (n=3). Virus titers by plaque assay on MDCK cells. Individual t-tests to empty, *p<0.1,
902 **p<0.01. (G) ELF1 protein domains and mutational strategy. TF, transcription factor
903 domain; NLS, nuclear localization signal; ETS, E26 transformation-specific domain; R,
904 conserved arginine within DNA binding domain; A, alanine substitution of conserved
905 arginine within DNA binding domain. (H) Protein expression of mutant ELF1 by western
906 blot. (I) Box and whiskers \pm SEM of % influenza A/WSN/1933 virus-infected (NP-positive)
907 cells by high content microscopy in A549 expressing ELF1, IFITM3 or empty vector (n=3).
908 One-way ANOVA and Dunn's multiple comparison test versus "empty". *p<0.1, **p<0.01.

909 (J) STAT1 protein expression in A549 STAT1-/- or control cells by western blot. K. Mean
910 \pm SEM of % influenza A/WSN/1933 virus-infected (NP-positive) cells by high content
911 microscopy in STAT1-/- A549 expressing ELF1, ISG and transcription factor IRF1 as
912 positive control, or empty vector (n=3). ANOVA with Dunnett's multiple comparison to
913 empty. **** p<0.0001, *** p<0.001 * p<0.01.

914

915 **Figure 2. ELF1 regulates a vast transcriptional program, which is distinct from and**
916 **delayed with respect to the immediate IFN response.**

917 (A) Schematic of RNAseq approach to identify genes expressed differentially in A549
918 expressing empty vector, ELF1 wild type (WT), or ELF1 loss-of-function mutant R8A, or
919 in A549 treated with IFN-beta for 6 h. (B) Principal component analysis of 1000 most
920 variable genes across all samples from empty vector, ELF1 wild type (WT), or ELF1 R8A-
921 expressing cells (n=3, regularized log transformed counts, corrected for replicate batch
922 effects). Ellipses indicate 68% normal probability for each group. (C) Heatmap plotting z-
923 scaled expression values for ELF1 differentially expressed genes (n=3, adjusted p-value
924 < 0.05, log2 fold-change >2 or <-2). (D) Volcano plot of WT ELF1 vs R8A ELF1 differential
925 expression, also highlighting genes differentially expressed upon IFN stimulation. Each
926 dot indicates one gene; and red dots expression upon ELF1 WT expression (n=3,
927 adjusted p value < 0.05, log2 fold-change >2 or <-2), orange dots upon ELF1 expression
928 and IFN-beta stimulation , and purple dots upon IFN-beta stimulation only. (E) Venn
929 diagram depicting ELF1- vs IFN-beta- up or down-regulated genes. (F) Mean +/- SEM of
930 mRNA expression (ddCT-) by qRT-PCR in A549 treated with IFN-beta. RIG-I (a prototype
931 IFN-stimulated gene, left y-axis), ELF1 and ELF1 target genes FAR2 (left), NR2E1

932 (center) and CARD11 (right) on right y-axis, n=3. (G) Temporal schematic of ISGF3-
933 mediated vs ELF1-mediated antiviral gene expression. Both pools of antiviral genes
934 would be classified as “interferon-stimulated genes”.

935 **Figure 3. ELF1 inhibits multi-cycle replication of diverse RNA and DNA viruses.**

936 (A) A549 were transduced to express empty vector as negative control, ISG and
937 transcription factor IRF1 as positive control, ELF1 wild type, or ELF1 R8A, a DNA binding
938 domain mutant. 48 h post transduction, cells were challenged with a low MOI of the
939 indicated viruses and % of infected cells determined by high content microscopy. Mean
940 \pm SEM of % virus-infected cells (n=3) at one replication cycle (left y-axes) or multi-cycle
941 viral replication (right y- axes): (B) influenza A/WSN/1933 (H1N1), % NP-positive cells,
942 (C) human parainfluenzavirus 3-EGFP, (D) yellow fever virus-Venus, (E) chikungunya-
943 virus-ZsGreen, (F) coxsackievirus-EGFP, (G) adenovirus-EGFP, (H) herpes simplex
944 virus 1-EGFP, or (I) vaccinia virus- EGFP. One-way ANOVA and Dunn’s multiple
945 comparison test versus “empty” of the respective time point, *p<0.1, **p<0.01, ***p<0.001,
946 ****p<0.0001.

947

948 **Figure 4. ELF1 is a critical component of the interferon response to influenza A**
949 **virus in vitro and in vivo.**

950 (A) Schematic of peptide-conjugated morpholino (PPMO)-mediated ELF1 knockdown in
951 A549 and influenza A/WSN/1933 virus low MOI growth kinetics. ELF1, ELF1 5’UTR-
952 targeting PPMO; NTC, 5-base-pair non-targeting mismatch control. (B) Endogenous
953 ELF1 protein and actin control post PPMO knockdown prior to infection (A) by western
954 blot. % ELF1 protein normalized to actin and mismatch control. (C) Influenza

955 A/WSN/1933 growth kinetics post PPMO knockdown, n=3. Mean \pm SEM virus titer by
956 plaque assay on MDCK cells. (D) Schematic of PPMO-mediated knockdown and
957 transgene rescue in A549 expressing ELF1 wild type, R8A, or empty negative control. (E)
958 Mean \pm SEM of % influenza A/WSN/1933 virus-infected (NP-positive) cells by high-
959 content microscopy, n=3. t-test comparing matching NTC and ELF1-knockdown samples,
960 **p<0.01. (F) Schematic of PPMO-mediated in vivo knockdown. PPMOs targeting Elf1, a
961 control mismatch PPMO, or PBS, were administered to BalbC mice intranasally at two
962 and one days prior to infection. Mice were then challenged with 40 PFU of influenza
963 A/PR8/1934 virus, and monitored for body weight and survival. Lungs were collected at
964 days 0, 3 and 6 post infection for western blot analyses (G) and lung titer determination
965 (J). (H) Mean \pm SEM from PPMO-treated or control mice, n=15 mice per group. Unpaired
966 two-tailed t-test comparing Elf1 to PBS, *p=0.1, ** p<0.01, ***p<0.001, **** p<0.0001. (I)
967 % survival (>25% body weight loss) of PPMO-treated or control mice, n=5 mice per group.
968 Log-rank Mantel-Cox test, *p<0.1. (J) Virus titers in mouse lung homogenates were
969 measured by plaque assay on MDCK cells, from n=5 mice per group. Mann-Whitney test,
970 *p<0.1, **p=0.01.

971

972 **SUPPLEMENTARY INFORMATION**

973 Supplemental Information includes seven figures and seven tables and can be found with
974 this article online.

975

976 **Supplementary Figure legends**

977 **Supplemental Fig. S1, related to Fig. 1 B,C.**

978 (A) A549 were treated with IFN-beta or BSA carrier control, and mRNA expression
979 determined over time by qRT-PCR. Fold increase over pre-treatment control from n=3
980 independent experiments. Data for ELF1 and RSAD2 as immediate ISG control are
981 shown side-by-side as mean \pm SEM. Paired t-test of each time point compared to
982 carrier, *p<0.1, ***p<0.001. (B) H&E stain of human airway epithelial cultures. Human
983 airway epithelial cultures were basolaterally stimulated with IFN-beta, and mRNA
984 expression determined over time as described in (A). Data for ELF1 and RSAD2 shown
985 as mean \pm SEM of 3 technical replicates. Paired t-test of each time point compared to t=0,
986 *p<0.1, **p<0.01, ***p<0.001.

987

988 **Supplementary Fig. S2, related to Fig. 1F.**

989 Normal human bronchiolar epithelial (NHBE) cells were transduced to express the
990 indicated ISGs and infected with influenza A/WSN/1933 virus at MOI 0.01. Virus titers in
991 the supernatants were measured in the inoculate (0 h), after inoculation and washing (2
992 h), and in 12 h intervals, by plaque assay on MDCK cells. Individual t-tests compared to
993 empty control, **p<0.01.

994

995 **Supplementary Fig. S4, related to Fig. 1 J,K.**

996 (A) A549 were transduced to express ELF1 wild type (wt), ELF1 loss-of function mutant
997 R8A, IRF1 as positive control, or empty vector control. Expression of type I and II IFNs
998 by qRT-PCR. Data is shown normalized to empty control, as mean \pm SEM. **** p<0.0001,

999 ** p<0.01. (B) Reporter assay for ISRE-driven transcription. 293T carrying firefly
1000 luciferase under the control of a promoter carrying the ISRE motif and stably expressing
1001 renilla luciferase as control was transfected to express GFP as negative control, MDA5
1002 as positive control, or ELF1, ELF2, ELF3, ELF4 and ELF5, respectively. Cells were
1003 subsequently stimulated by transfection of polyI:C. Data as mean \pm SEM from n=3
1004 independent experiments.

1005

1006 **Supplementary Fig. S2, related to Fig. 1. ELF1 does not inhibit specific life cycle**
1007 **steps, but inhibits multi-cycle IAV replication.**

1008 (A-E) A549 cells were transduced to express the indicated ISGs. Empty vector served as
1009 negative control, and the following positive controls were used for individual IAV life cycle
1010 steps: Diphylarin for IAV entry, Ribavirin for IAV replication, Oseltamivir for IAV budding
1011 and detachment, IFITM3 for IAV entry, BST2 for IAV egress. Data are represented as
1012 mean \pm SEM from at least n=3 independent experiments for all panels. (A) A549 were
1013 challenged with influenza A/WSN/33 virus at MOI 1, and the number of NPpositive nuclei
1014 was determined by high-content microscopy at 6 hpi. 1-way ANOVA and Dunn's multiple
1015 comparison test. *p<0.1, **p<0.01, ***p<0.001. (B) IAV replication efficiency was assayed
1016 by a luciferase-based IAV minigenome assay in 293T cells. Expression constructs for
1017 components of the IAV replication machinery (PB1, PB2, PA and NP, of A/WSN/1933
1018 origin) were co-transfected with a reporter construct mimicking the viral genome, leading
1019 to expression of firefly luciferase when the genome mimic is replicated. Individual t-tests
1020 compared to empty control, ***p<0.001. (C) Influenza A/PR/8/1934-NS1-GFP virus single

1021 cycle replication was assayed by flow cytometry, determining the percentage of infected
1022 (GFP-positive) A549 at 10 hpi, in the ISG-expressing (RFP-positive) population. Individual
1023 t-tests compared to empty control, **p<0.01, ***p<0.001. (D.-E) A549 were infected with
1024 influenza A/WSN/1933 virus at MOI 1, washed, and assayed at 12 hpi. (D) viral RNA
1025 (vRNA) was extracted from supernatants, and vRNA copy number was determined by
1026 qRT-PCR. (E) Infectious virus titers in the supernatant were determined by plaque assay
1027 on MDCK cells. Individual t-tests compared to empty control, *p<0.1, **p<0.01,
1028 ***p<0.001.

1029

1030 **Supplementary Fig. S5, related to Fig. 2C.**

1031 “Bubble plot” depicting GO terms enriched in ELF1 differentially expressed genes from
1032 Figure 2C. Each bubble represents a significant (GOSeq adjusted p-value < 0.05) GO
1033 term. y-axis indicates enrichment significance (-log10 adjusted p-value) and x-axis
1034 indicates gene expression fold-change score ([upregulated genes – downregulated
1035 genes]/ √number of genes]) for term member genes. Bubble size is proportional to the
1036 number of term member genes. GO categories (Biological Process, Cellular Component,
1037 Molecular Function) are presented as separate panels to facilitate visualization. Highly
1038 significant enriched GO terms (adjusted p-value < 10-5) are annotated.

1039

1040 **Supplementary Fig. S6, related to Fig. 2 C.**

1041 A549 were transduced to express ELF1 wild type (wt), ELF1 loss of function mutant R8A,
1042 or empty vector control. 48 h post transduction, cells were harvested and mRNA
1043 expression determined by RNAseq. All data shown from n=3 biologically independent
1044 experiments. RNAseq read counts per million (not normalized) for type I and II IFNs, TNF
1045 and IL-6 (Ensembl v75) from (A) for each sample. Although positive read counts were
1046 detected for IFNE in all samples, IFNE was not differentially expressed in any contrasts
1047 across conditions. IL-6 was downregulated in ELF1 WT samples.

1048

1049 **Supplementary Fig. S7, related to Fig. 3. D and E.**

1050 A549 cells were treated with indicated amounts of the pan-Jak inhibitor Ruxolitinib (Rux),
1051 or DMSO carrier control, and infected with YFV-Venus. Cells were imaged and cell
1052 numbers or YFV-Venus positive cells determined by high-content microscopy. (A) Cell
1053 count per well (DAPI-positive) 72 post Rux treatment. (B) % YFV-Venus positive cells.
1054 (C) Representative images of (A) and (B). (D) Analysis of STAT3 phosphorylation as a
1055 readout of Jak activity. A549 cells were treated with 500 U/ml of IFN-beta, indicated
1056 amounts of Rux, or DMSO carrier control. At 48h post treatment, cells were harvested
1057 and analyzed by western blotting using anti-pSTAT3 antibody, or anti-actin antibody as
1058 loading control.

1059

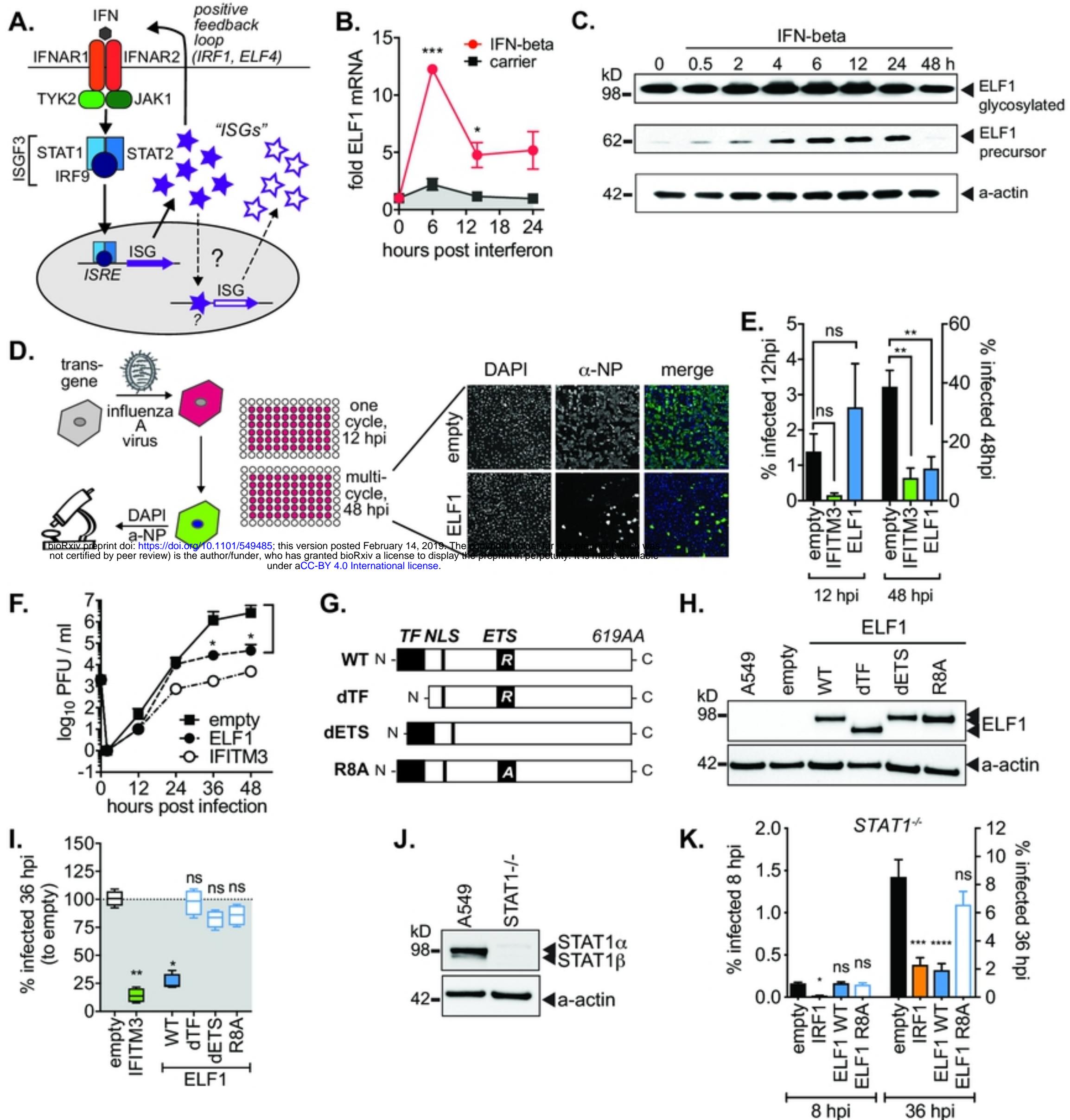
1060

1061

1062 **Supplemental Tables**

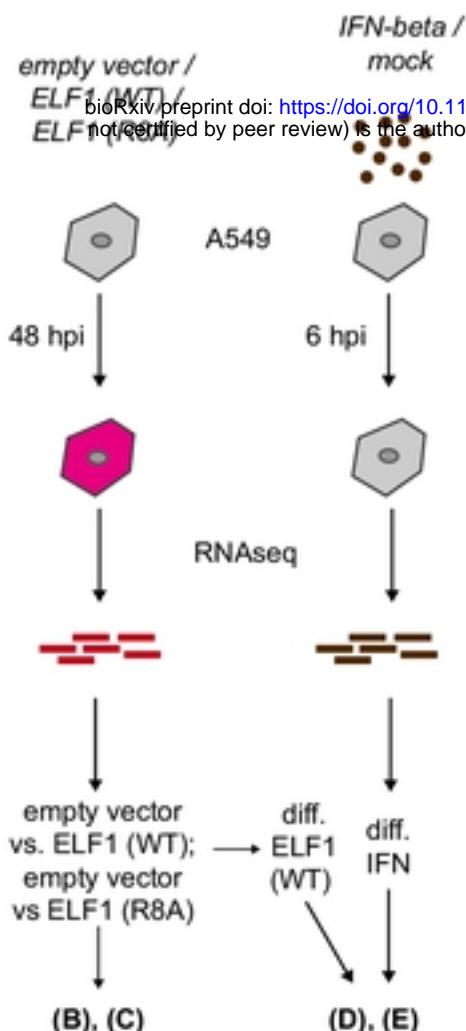
1063 Supplemental Table 1. RNAseq ELF1-wt vs empty, related to Figure 2.

1064 Supplemental Table 2. RNAseq ELF1-wt vs R8A, related to Figure 2.


1065 Supplemental Table 3. RNAseq IFN vs control, related to Figure 2.

1066 Supplemental Table 4. Gene Ontology ELF1 all categories, related to Figure 2.

1067 Supplemental Table 5. RNAseq 434 ELF1-wt unique genes, related to Figure 2.


1068 Supplemental Table 6. Material and sources, related to Methods.

1069 Supplemental Table 7. Oligonucleotides, related to Methods.

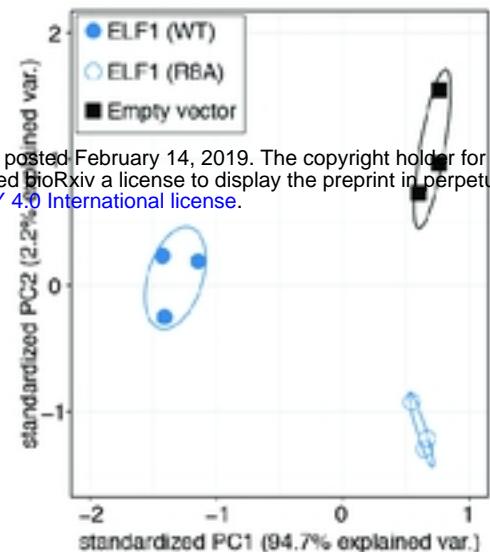
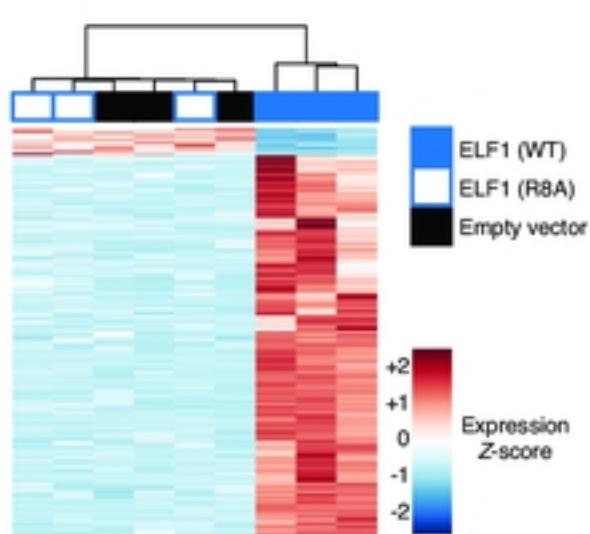
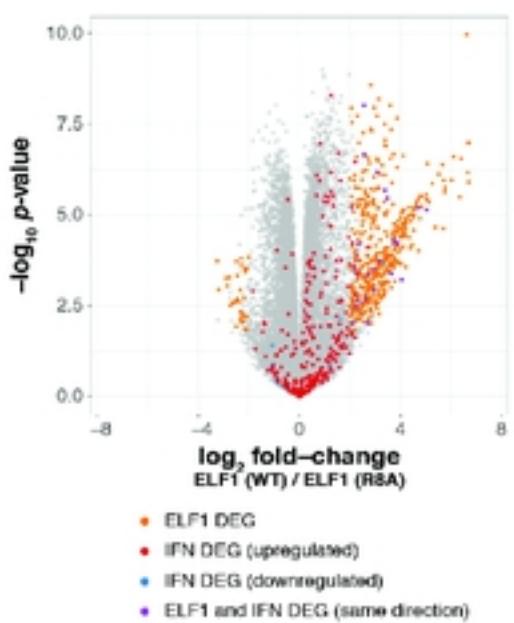
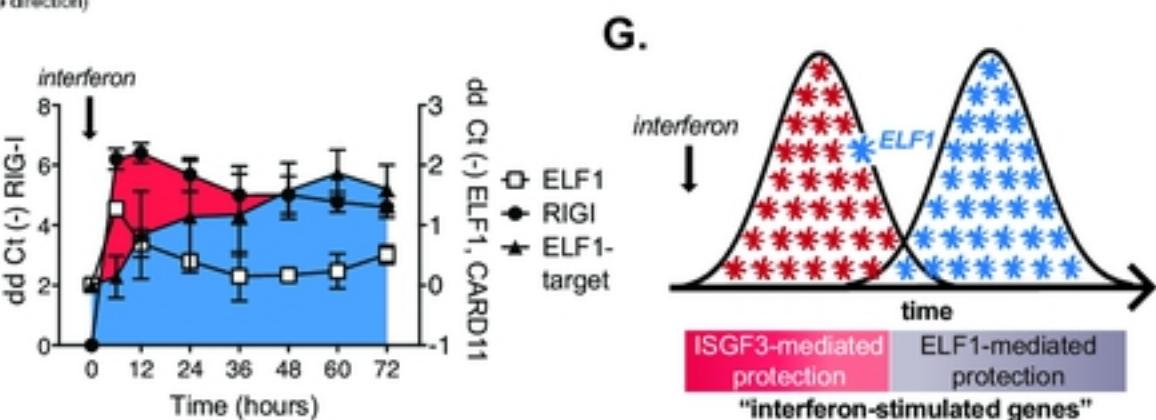


Fig. 1. ELF1 is an interferon-stimulated transcription factor with delayed, STAT1-independent antiviral activity. (A) Canonical IFN signaling (solid arrows) and proposed second wave of ISG expression (dashed arrows). (B) Mean \pm SEM of mRNA fold increase over pre-treatment control by qRT-PCR in A549 treated with IFN-beta or BSA carrier control (n=3). Paired t-test to BSA, *p<0.1, ***p<0.001. (C) Time course of ELF1 protein expression by western blot in A549 treated with IFN-beta. ELF1 68 kDa, precursor ELF1; ELF1 98 kDa, glycosylated ELF1; a-actin loading control. (D) Mean \pm SEM of % influenza A/WSN/1933 virus-infected (NP-positive) cells by high content microscopy in A549 expressing ELF1, IFITM3 as early (entry) ISG inhibitor control, or empty vector as negative control (n=3). 8 hpi (one cycle of replication, left y-axis) or 48 hpi (multi-cycle replication, right y-axis). One-way ANOVA and Dunnett's multiple comparison test versus "empty". (E) Representative images of one field of vision at 48 hpi from (C). (F) Influenza A/WSN/1933 virus growth kinetics on A549 expressing ELF1, IFITM3 or empty vector (n=3). Virus titers by plaque assay on MDCK cells. Individual t-tests to empty, *p<0.1, **p<0.01. (G) ELF1 protein domains and mutational strategy. TF, transcription factor domain; NLS, nuclear localization signal; ETS, E26 transformation-specific domain; R, conserved arginine within DNA binding domain; A, alanine substitution of conserved arginine within DNA binding domain. (H) Protein expression of mutant ELF1 by western blot. (I) Box and whiskers \pm SEM of % influenza A/WSN/1933 virus-infected (NP-positive) cells by high content microscopy in A549 expressing ELF1, IFITM3 or empty vector (n=3). One-way ANOVA and Dunn's multiple comparison test versus "empty". *p<0.1, **p<0.01. (J) STAT1 protein expression in A549 STAT1-/- or control cells by western blot. (K) Mean \pm SEM of % influenza A/WSN/1933 virus-infected (NP-positive) cells by high content microscopy in STAT1-/- A549 expressing ELF1, ISG and transcription factor IRF1 as positive control, or empty vector (n=3). ANOVA with Dunnett's multiple comparison to empty. **** p<0.0001, *** p<0.001 * p<0.01.

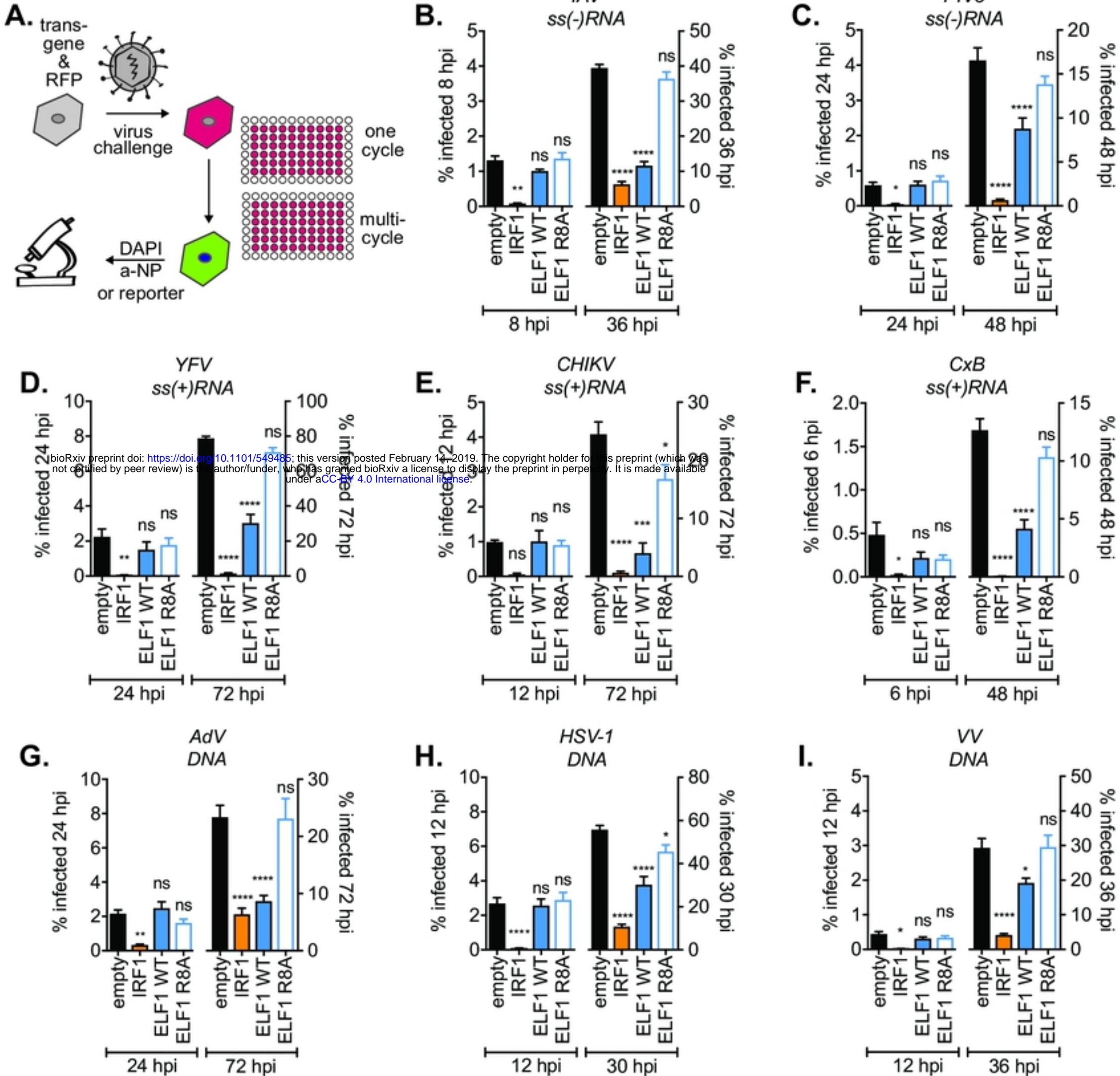

A.

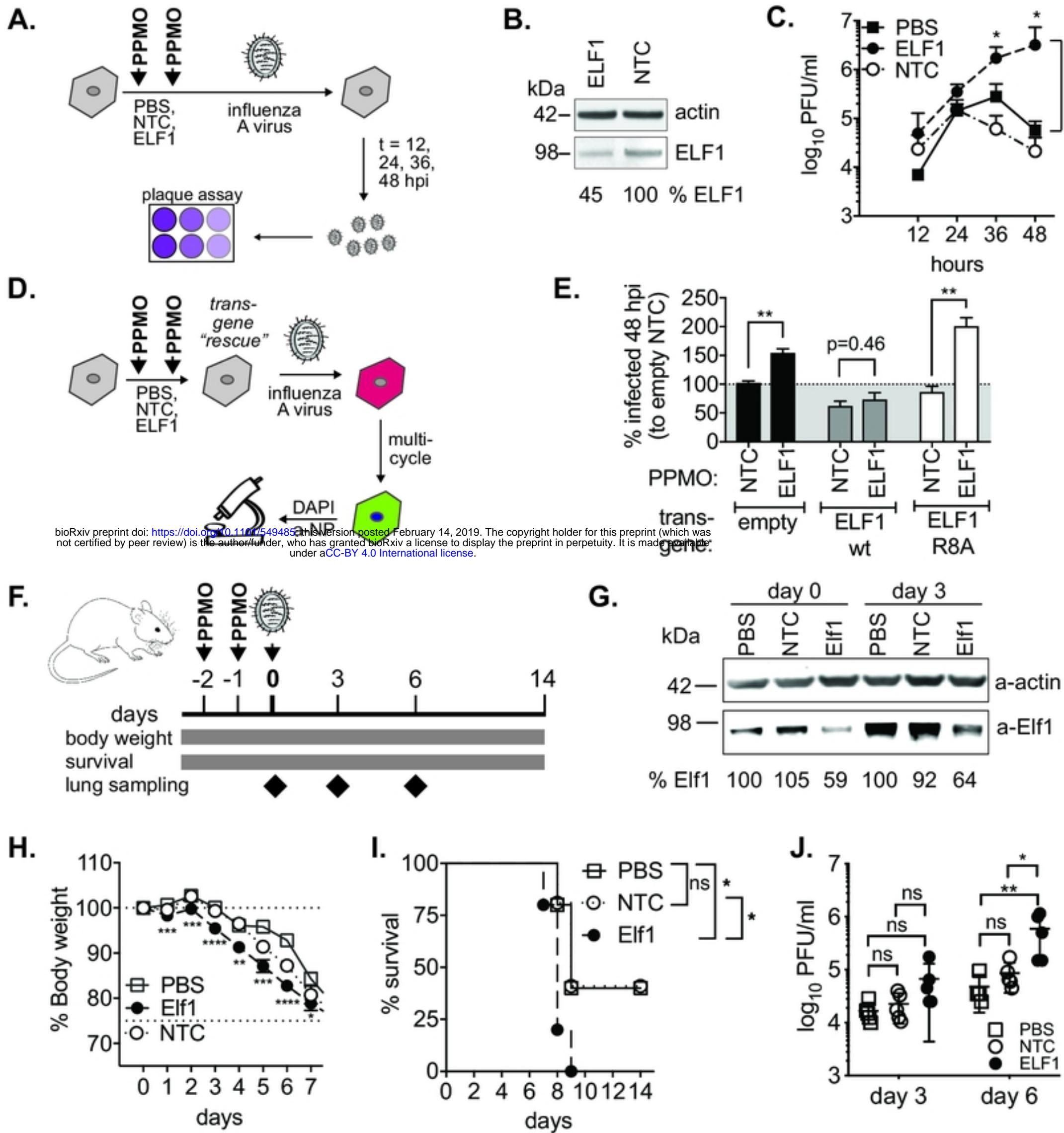

B.

C.


D.

E.


G.


Fig. 2. ELF1 regulates a vast transcriptional program, which is distinct from and delayed with respect to the immediate IFN response.

(A) Schematic of RNAseq approach to identify genes expressed differentially in A549 expressing empty vector, ELF1 wild type (WT), or ELF1 loss-of-function mutant R8A, or in A549 treated with IFN-beta for 6 h. (B) Principal component analysis of 1000 most variable genes across all samples from empty vector, ELF1 wild type (WT), or ELF1 R8A-expressing cells (n=3, regularized log transformed counts, corrected for replicate batch effects). Ellipses indicate 68% normal probability for each group. (C) Heatmap plotting z-scaled expression values for ELF1 differentially expressed genes (n=3, adjusted p-value < 0.05, log2 fold-change >2 or <-2). (D) Volcano plot of WT ELF1 vs R8A ELF1 differential expression, also highlighting genes differentially expressed upon IFN stimulation. Each dot indicates one gene; and red dots expression upon ELF1 WT expression (n=3, adjusted p value < 0.05, log2 fold-change >2 or <-2), orange dots upon ELF1 expression and IFN-beta stimulation, and purple dots upon IFN-beta stimulation only. (E) Venn diagram depicting ELF1- vs IFN-beta-up or down-regulated genes. (F) Mean +/- SEM of mRNA expression (ddCT-) by qRT-PCR in A549 treated with IFN-beta. RIG-I (a prototype IFN-stimulated gene, left y-axis), ELF1 and ELF1 target genes FAR2 (left), NR2E1 (center) and CARD11 (right) on right y-axis, n=3. (G) Temporal schematic of ISGF3-mediated vs ELF1-mediated antiviral gene expression. Both pools of antiviral genes would be classified as "interferon-stimulated genes".

Figure 2

Fig. 3. ELF1 inhibits multi-cycle replication of diverse RNA and DNA viruses. (A) A549 were transduced to express empty vector as negative control, ISG and transcription factor IRF1 as positive control, ELF1 wild type, or ELF1 R8A, a DNA binding domain mutant. 48 h post transduction, cells were challenged with a low MOI of the indicated viruses and % of infected cells determined by high content microscopy. Mean +/- SEM of % virus-infected cells (n=3) at one replication cycle (left y-axes) or multi-cycle viral replication (right y-axes): (B) influenza A/WSN/1933 (H1N1), % NP-positive cells, (C) human parainfluenzavirus 3-EGFP, (D) yellow fever virus-Venus, (E) chikungunya-virus-ZsGreen, (F) coxsackievirus-EGFP, (G) adenovirus-EGFP, (H) herpes simplex virus 1-EGFP, or (I) vaccinia virus-EGFP. YFV (D) and CHIKV (E) were assayed in the presence of 0.04 μ M Ruxolitinib to suppress JAK-STAT signaling and enable virus spread. One-way ANOVA and Dunn's multiple comparison test versus "empty" of the respective time point, *p<0.1, **p<0.01, ***p<0.001, ****p<0.0001.

Fig. 4. ELF1 is a critical component of the interferon response to influenza A virus in vitro and in vivo. (A) Schematic of peptide-conjugated morpholino (PPMO)-mediated ELF1 knockdown in A549 and influenza A/WSN/1933 virus low MOI growth kinetics. ELF1, ELF1 5'UTR-targeting PPMO; NTC, 5-base-pair non-targeting mismatch control. (B) Endogenous ELF1 protein and actin control post PPMO knockdown prior to infection (A) by western blot. % ELF1 protein normalized to actin and mismatch control. (C) Influenza A/WSN/1933 growth kinetics post PPMO knockdown, n=3. Mean \pm SEM virus titer by plaque assay on MDCK cells. (D) Schematic of PPMO-mediated knockdown and transgene rescue in A549 expressing ELF1 wild type, R8A, or empty negative control. (E) Mean \pm SEM of % influenza A/WSN/1933 virus-infected (NP-positive) cells by high-content microscopy, n=3. t-test comparing matching NTC and ELF1-knockdown samples, **p<0.01. (F) Schematic of PPMO-mediated in vivo knockdown. PPMOs targeting Elf1, a control mismatch PPMO, or PBS, were administered to BalbC mice intranasally at two and one days prior to infection. Mice were then challenged with 40 PFU of influenza A/PR8/1934 virus, and monitored for body weight and survival. Lungs were collected at days 0, 3 and 6 post infection for western blot analyses (G) and lung titer determination (J). (H) Mean \pm SEM from PPMO-treated or control mice, n=15 mice per group. Unpaired two-tailed t-test comparing Elf1 to PBS, *p=0.1, **p<0.01, ***p<0.001, ****p<0.0001. (I) % survival (>25% body weight loss) of PPMO-treated or control mice, n=5 mice per group. Log-rank Mantel-Cox test, *p<0.1. (J) Virus titers in mouse lung homogenates were measured by plaque assay on MDCK cells, from n=5 mice per group. Mann-Whitney test, *p<0.1, **p=0.01.