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Abstract 101 

This study offers a novel description of the sinonasal microbiome, through an unsupervised machine 102 

learning approach combining dimensionality reduction and clustering. We apply our method to the 103 

International Sinonasal Microbiome Study (ISMS) dataset of 410 sinus swab samples. We propose three 104 

main sinonasal ‘microbiotypes’ or ‘states’: the first is Corynebacterium-dominated, the second is 105 

Staphylococcus-dominated, and the third dominated by the other core genera of the sinonasal microbiome 106 

(Streptococcus, Haemophilus, Moraxella, and Pseudomonas). The prevalence of the three microbiotypes 107 

studied did not differ between healthy and diseased sinuses, but differences in their distribution were 108 

evident based on geography. We also describe a potential reciprocal relationship between 109 

Corynebacterium species and Staphylococcus aureus, suggesting that a certain microbial equilibrium 110 

between various players is reached in the sinuses. We validate our approach by applying it to a separate 111 

16S rRNA gene sequence dataset of 97 sinus swabs from a different patient cohort. Sinonasal 112 

microbiotyping may prove useful in reducing the complexity of describing sinonasal microbiota. It may 113 

drive future studies aimed at modeling microbial interactions in the sinuses and in doing so may facilitate 114 

the development of a tailored patient-specific approach to the treatment of sinus disease in the future. 115 

Keywords 116 

microbiome, sinus, next-generation sequencing, 16S rRNA gene, chronic rhinosinusitis, microbiotype 117 
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MAIN TEXT 119 

Chronic rhinosinusitis (CRS) is a heterogenous, multi-factorial inflammatory disorder with a complex and 120 

incompletely understood aetiopathogenesis.1 A potential role of the sinonasal microbiome and its 121 

“dysbiosis” in CRS pathophysiology has recently gained increased interest. The nature of the microbial 122 

dysbiosis and its role in disease causation and progression however remains unclear, with conflicting 123 

findings from the small sinonasal microbiome studies published thus far. 124 

We recently reported the findings of our multi-national, multicenter “International Sinonasal Microbiome 125 

Study” or ISMS.2 This study, the largest and most diverse of its kind to date, attempted to address many 126 

of the limitations of the smaller previous studies, by standardizing collection, processing and analysis of 127 

the samples. Furthermore, its large sample size and multinational recruitment, meant that it was more 128 

likely to capture geographical and centre-based differences if present. A recent meta-analysis of published 129 

sinonasal 16S rRNA sequences revealed that the largest proportion of variance was attributed to 130 

differences between studies,3 highlighting a role for performing a large multi-centre study that employed 131 

a unified methodology. 132 

Contrary to the findings of previous studies, our international cohort showed no significant differences in 133 

alpha or beta diversity between the three groups of patients analyzed: healthy control patients without 134 

CRS and the two phenotypes of CRS patients, those with polyps (CRSwNP) and those without 135 

(CRSsNP). The study however revealed a potential grouping of samples as demonstrated on beta diversity 136 

exploratory analysis.2 Accordingly, we hypothesized that the bacteriology of the sinuses could be 137 

categorized into various clusters of similar compositions. We inquired whether these potential groups 138 

would aid in describing the sinonasal microbial composition of patients or associate with clinical features. 139 

Similar attempts performed on gut microbiota in healthy individuals were termed enterotyping.4 The 140 

clinical relevance of gut enterotypes remain the topic of research, and sometimes controversy. A previous 141 

exploration of clusters of sinus microbiota in patients was performed by Cope et al.5 in which the authors 142 
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reported four compositionally distinct sinonasal microbial community states; the largest group of patients 143 

were dominated by a continuum of Staphylococcaceae and Corynebacteriaceae demonstrating a 144 

reciprocal relationship.5 145 

In this manuscript, we attempt “microbiotyping” to explain interpatient heterogeneity of the bacterial 146 

communities in the paranasal sinuses, and are the first to describe “sinonasal microbiotypes” across the 147 

first large, multi-centre cohort of individuals with and without CRS. We model our analysis on previous 148 

attempts of enterotyping the gut microbiome. We then describe the composition of these microbiotypes, 149 

explore potential clinical associations and validate microbiotyping on a separate sinus microbiome 150 

dataset. 151 
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RESULTS 153 

Basic characteristics of the study cohort and beta diversity plots 154 

 155 

Figure 1: Beta diversity ordination plots. 156 

The main ISMS study cohort was described in our previous publication.2 In brief, 410 samples were 157 

included in the analysis collected from 13 centres representing 5 continents. These samples are distributed 158 
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along three diagnosis groups as follows: 99 CRSsNP patients, 172 CRSwNP patients, and 139 (non-CRS) 159 

controls. Beta diversity ordination plots (of weighted UniFrac and Jensen-Shannon distances) are shown 160 

in Figure 1. The plots do not reveal any distinct grouping by disease state or by centre, but on visual 161 

inspection show a triangular arrangement suggesting that samples lie on a continuum between three 162 

distinct clusters, providing motivation for further analysis. 163 

Composition of the three sinonasal microbiotypes 164 

We applied our microbiotyping approach through the unsupervised dimensionality reduction and 165 

clustering method described in the Methods. The composition of the resulting “sinonasal microbiotypes” 166 

is found in Figure 2A. 167 

 168 

Figure 2: Microbiotyping the sinonasal microbiome. (A) Taxonomic composition of the three 169 

microbiotypes at the genus level. (B) Illustration of the assigned microbiotypes on the Jensen-Shannon 170 

PCoA biplot. Arrows were used to depict the projection of the genera onto the PCoA matrix. Each arrow 171 

is indicated by the color of the genus according to the Legend. (C) Histograms demonstrating the relative 172 
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abundance of Corynebacterium and Staphylococcus. (D) Distribution of staphylococcal species (mean 173 

relative abundance). (E) Subgroups of microbiotype 3 (hierarchical density-based clustering). 174 

Microbiotype 1 is dominated by Corynebacterium (mean relative abundance of 75.29%). Microbiotype 2 175 

is dominated by Staphylococcus (mean relative abundance of 74.96%). Microbiotype 3 contained samples 176 

that were mostly constituted of Streptococcus, Haemophilus, Moraxella, Pseudomonas and other genera. 177 

The Abundance/Prevalence tables for the microbiotypes is demonstrated in Supplementary Tables S1A, 178 

S1B and S1C. 179 

We used a PCoA biplot to project features (genera) onto the PCoA matrix.6 The 5 topmost abundant 180 

genera were overlaid on the PCoA plot as arrows, originating from the centre of the plot and pointing to 181 

the direction of the projected feature coordinates. (Figure 2B) Each arrow is indicated by the color of the 182 

genus according to the Legend in Figure 2A, and the length of each was normalized as a percentage of the 183 

longest arrow. The coloring of the samples in 2B in the PCoA scatter plot according to the microbiotype 184 

assignment is provided for additional illustration. (Figure 2B) We note that the biplot arrows show a 185 

quasi-orthogonal arrangement between the key genera that constitute the microbiome. 186 

The distributions of the relative adundances of Corynebacterium and Staphylococcus in all three 187 

microbiotypes were plotted in histograms (Figure 2C). It was noted that in microbiotype 1, most samples 188 

have a high abundance of Corynebacteria (i.e. Corynebacteria dominate), while Staphylococci appeared 189 

to dominate in microbiotype 2 in most samples. 190 

Dissection of “sinonasal microbiotype 3” 191 

We observed that Microbiotype 3 included various genera that did not cluster into the major two 192 

microbiotypes. It was also evident that this microbiotype is more heterogeneous. Applying the K-Means 193 

algorithm we showed poor clustering on only the first two and three Principal Components, since this 194 

group included multiple signatures with various dominant organisms. Accordingly, we employed the 195 
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hieararchical density-based clustering algorithm “hdbscan”7 on the full-dimensional OTU table. One 196 

advantage of this algorithm is that it can estimate the number of clusters, without a priori specification by 197 

the user. This algorithm also has the ability to detect “outliers” that fail to cluster with the rest of the 198 

groups and detaches them into a separate “Miscellaneous/Other” group. We ran this algorithm on samples 199 

in Microbiotype 3 and this revealed four clusters, each dominated by one of the genera of Streptococcus 200 

(21 samples), Haemophilus (16 samples), Moraxella (9 samples), and Pseudomonas (7 samples), with a 201 

mean relative abundance ranging from 73.49% to 95.5%. The fifth cluster was the assigned 202 

“Miscellaneous/Other” group (18 samples). We term these “sub-microbiotypes”: microbiotype 3S, 3H, 203 

3M, 3P, and 3O, respectively. (Figure 2E) 204 

Exploring microbiotypes at the species-level reveals potential antagonism between 205 

Corynebacterium species and Staphylococcus aureus 206 

At present, species level assignment is limited by the current technology of 16S-surveys, the current state 207 

of microbial databases in general, and by our chosen short-read sequencing methodology. However, 208 

species level associations hold clinical significance for sinus health, since Staphylococcus aureus has 209 

been traditionally associated with biofilm formation and superantigen elaboration, both of which are 210 

associated with more severe sinus disease and poorer response to treatment. Furthermore nasal carriage of 211 

methicillin-resistant Staphylococcus aureus (MRSA) is a global health concern with implications that 212 

extend far beyond the sinuses. Moreover, our new QIIME 2-based pipeline8 allows a higher “sub-OTU” 213 

resolution compared to older pipelines, offering an opportunity to resolve some taxa at species level when 214 

possible.9,10 215 

We explored taxonomy assignment at the species level, with a focus on Staphylococcal species. 216 

Staphylococci were assigned to either Staphyloccocus aureus, Staphylococcus epidermidis or unclassified 217 

Staphylococcus. We found that almost all of the assigned Staphylococcus aureus species were clustered in 218 

Microbiotype 2, forming 47.81% mean relative abundance of this Microbiotype, compared to 1.36% and 219 

0.3% in Microbiotype 1 and Microbiotype 3 respectively. (Figure 2E) Differential abundance of both 220 
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Staphylococcus aureus and epidermidis between the disease groups was confirmed as statistically 221 

significant using ANCOM. 222 

In light of this finding, we hypothesized a reciprocal or antagonistic relationship between 223 

Corynebacterium sp. and Staphylococcus aureus and investigated this using SparCC. This confirmed a 224 

significant negative correlation between Corynebacterium genus and the species Staphylococcus aureus 225 

(SparCC correlation coefficient = -0.339, p = 0.001). Interestingly, Staphylococcus epidermidis positively 226 

correlated with Corynebacterium (SparCC correlation coefficient = 0.271, p = 0.001). These results 227 

should be interpreted cautiously in light of 16S-sequencing limitations. Nevertheless, they do appear to 228 

correlate to previous findings in the literature, including in vitro experiments11, a murine nasal bacterial 229 

interaction model12, and a survey of nasal vestibule swabs in healthy individuals13. These results suggest 230 

that a benign or probiotic role is played by both Corynebacterium spp. and Staphyloccocus epidermidis 231 

when interacting with Staphylococcus aureus. 232 

Prevalence and distribution of the microbiotypes in different diagnoses and centres 233 

 234 

Figure 3: Prevalence and distribution of the microbiotypes. 235 

Microbiotype 1 was assigned to 222 samples (54.1%), microbiotype 2 to 117 samples (28.5%), and 236 

microbiotype 3 to 71 samples (17.3%). The prevalence distribution of the sinonasal microbiotypes did not 237 
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appear to significantly differ by the disease state of the sinuses. (Figure 3) However, a Chi-Squared test 238 

on the contingency table by centre showed significantly different distributions by centre (FDR-corrected p 239 

< 0.001): there was a higher prevalence of microbiotype 2 in our European centre (Amsterdam), and a 240 

higher prevalence of microbiotype 1 in Asian and Australasian centres, with a much lower prevalence of 241 

microbiotype 3 in Asia. (Figure 3 and Table 1) 242 

Table 1: Distribution of microbiotypes by diagnosis and continent.  243 

variable value microbiotype_1 microbiotype_2 microbiotype_3 p value 

Diagnosis CRSsNP 56 (56.6%) 27 (27.3%) 16 (16.2%) 0.507 

 CRSwNP 85 (49.4%) 48 (27.9%) 39 (22.7%)  

 Control 81 (58.3%) 42 (30.2%) 16 (11.5%)  

Continent Asia 27 (69.2%) 11 (28.2%) 1 (2.6%) < 0.001 

 Australasia 67 (61.5%) 23 (21.1%) 19 (17.4%)  

 Europe 7 (18.4%) 22 (57.9%) 9 (23.7%)  

 North_America 89 (56.3%) 43 (27.2%) 26 (16.5%)  

 South_America 32 (48.5%) 18 (27.3%) 16 (24.2%)  

 244 

Associations of microbiotypes with clinical variables 245 

We then explore the distribution of the three microbiotypes among multiple clinical variables in Table 2. 246 

This shows no significant difference for some variables including asthma, aspirin sensitivity, GORD, 247 

diabetes mellitus, and current smoking status, (FDR-corrected p > 0.05; Chi-squared test). The cross 248 

tabulation however revealed a statistically significant association with “aspirin sensitivity” or aspirin-249 

exacerbated respiratory disease (AERD) (p = 0.02), although this did not persist after a Benjamini-250 

Hochberg correction (corrected p = 0.077). Patients who were aspirin-sensitive (or suffering from AERD) 251 

showed less prevalence of microbiotypes 1, 2 and a higher prevalence of microbiotype 3, compared to 252 

those who were not aspirin-sensitive. On the other hand, patients who were undergoing their “primary 253 
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surgery”, had a higher prevalence of microbiotype 1 and a lower prevalence of microbiotype 3, compared 254 

to those patients who had had previous surgeries, but these results were not statistically significant. 255 

Table 2: Distribution of microbiotypes by various clinical variables.  256 

variable value microbiotype_1 microbiotype_2 microbiotype_3 p value 

Asthma No 162 (56.4%) 81 (28.2%) 44 (15.3%) 0.906 

 Yes 55 (51.4%) 31 (29.0%) 21 (19.6%)  

Aspirin 

sensitivity 

No 202 (55.3%) 106 (29.0%) 57 (15.6%) 0.077 

 Yes 12 (48.0%) 5 (20.0%) 8 (32.0%)  

Diabetes No 189 (54.9%) 98 (28.5%) 57 (16.6%) 0.979 

 Yes 22 (55.0%) 11 (27.5%) 7 (17.5%)  

GORD No 177 (55.3%) 93 (29.1%) 50 (15.6%) 0.979 

 Yes 35 (55.6%) 17 (27.0%) 11 (17.5%)  

Current 

Smoker 

No 204 (54.4%) 110 (29.3%) 61 (16.3%) 0.077 

 Yes 15 (57.7%) 4 (15.4%) 7 (26.9%)  

Primary 

surgery 

No 92 (47.2%) 57 (29.2%) 46 (23.6%) 0.114 

 Yes 130 (60.5%) 60 (27.9%) 25 (11.6%)  

 257 

Validation of sinonasal microbiotyping on a separate dataset 258 

We validated our approach on a separate 16S dataset we called Dataset Two. As described in the Methods 259 

section, we validated this using an independent unsupervised approach and a semi-supervised approach 260 

guided by the Main Dataset. 261 
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The first unsupervised approach yielded three clusters similar to the microbiotypes described on the Main 262 

Dataset, with one cluster exhibiting high mean relative abundance of Corynebacteria, a second cluster 263 

exhibiting high mean relative abundance of Staphylococcus, and a third cluster with other dominant 264 

genera. Plotting the first two Principal Components (Figure 4A) resulting from PCoA on the JSD matrix 265 

revealed the same triangular distribution of samples observed in Figure 1. 266 

Prevalence of the microbiotypes in this dataset (using the unsupervised approach) was as follows: 267 

microbiotype 1 assigned 39.2% of samples, microbiotype 2 with 26.8% of samples, and microbiotype 3 268 

with 34.0%. 269 

The second semi-supervised approach yielded similar results (Figure 4; Supplementary Table), differing 270 

in the classification of only 3 samples (out of 97 samples; i.e. 3.09%). (See Supplementary Jupyter 271 

notebook) Two of these samples show Staphylococcus dominating the samples in combination with 272 

Haemophilus, with no overt dominance of one taxon over the other, making them more-or-less 273 

transitional samples between the signatures of microbiotypes 2 and 3. The third sample was dominated by 274 

Staphyloccocus and Corynebacterium, making it a transitional sample between microbiotype 1 and 275 

microbiotype 2, with Staphylococcal species assigned to epidermidis, making this more appropriately 276 

assigned to microbiotype 1. (see Supplementary Jupyter notebook) 277 

These results validate the microbiotyping approach and suggest that our approach and dataset could be 278 

used to guide classification of sinonasal samples sequenced in future separate studies. (Figure 4) 279 

Moreover, it points towards a potential clinical relevance of performing sinonasal microbiotyping. 280 
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 281 

Figure 4: Validation of microbiotyping approach on Dataset Two. 282 

  283 
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DISCUSSION 284 

We demonstrate that the microbiota of most sinus swab samples could be classified into distinct 285 

signatures or archetypes, which we have termed “sinonasal microbiotypes”. We observed three main 286 

microbiotypes: the most prevalent being a Corynebacterium-dominated microbiotype (microbiotype 1), 287 

then a Staphylococcus-dominated microbiotype (microbiotype 2), and microbiotype 3 which includes 288 

samples dominated by Streptococcus, Haemophilus, Moraxella, Pseudomonas, and other genera (3S, 3H, 289 

3M, 3P, and 3O respectively). 290 

As we have previously reported,2 the sinus microbiota are dominated by the genera Corynebacterium and 291 

Staphylococcus (microbiotypes 1 and 2). A similar clustering approach to the sinus microbiome was 292 

applied by Cope and colleagues, who utilized Dirichlet multinomial mixture models (DMMs),5 and 293 

reported that most samples in their study were occupied by a continuum of Staphylococcaceae and 294 

Corynebacteriaceae.5 It appears that, regardless the statistical or clustering methodology utilized, it is 295 

most likely that the sinonasal microbiome consists of core organisms2 that have a distinct co-occurrence 296 

pattern. This could be explored through a network analysis approach and should be a future area of study. 297 

Staphylococcus aureus has been perceived to be an important pathogen in sinus inflammatory disease. 298 

Staphylococcus aureus biofilms may act as a nidus for recurrent infections14,15 and as a “nemesis” of 299 

otherwise-successful sinus surgery.16–18 Staphylococcus aureus is also a producer of exotoxins, which in 300 

some cases can serve as superantigens, and these have been previously described as playing an important 301 

role in the pathogenesis of CRSwNP.19 Pseudomonas aeruginosa biofilms are also virulent organisms that 302 

are difficult to eradicate from the sinuses, and have been associated with worse clinical outcomes.20 Both 303 

these organisms are important pathogens in the chronic mucociliary dysfunction exhibited in cystic 304 

fibrosis. However, methicillin-resistant Staphylococcus aureus (MRSA) is an important nasal colonizer 305 

that could asymptomatically colonize the nose. What determines the clinical course, between 306 

asymptomatic colonization versus symptomatic pathogenicity, remains an interesting topic of research. In 307 
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this study, we identified a potential reciprocal relationship between Staphylococcus aureus and 308 

Corynebacterium. Being aware of the challenges of compositional data analysis, we utilized for this 309 

purpose the specialized SparCC algorithm which infers correlations from compositional data.21 This 310 

finding needs to be supported by future co-culture experiments, but suggests that Corynebacterium sp. 311 

may be a “cornerstone” of sinus microbial health. It is important to note that our bioinformatic 312 

methodology has been intentionally designed to utilize state-of-the-art software methods at every step of 313 

the analysis pipeline, in order to maximise the resolution of taxonomy assignment.8,9,22 Nevertheless, our 314 

approach is still confined within the limitations of current 16S sequencing methodologies, and the 315 

confidence of assignment is reduced beyond the genus level. Our analysis pipeline could not delineate 316 

between different Corynebacterium at the species level and Staphylococcus aureus at the strain level. 317 

Hence functional difference between samples with same species remain to be determined using a 318 

functional metagenomics approach. A recent study suggest that by incorporating location information or 319 

“sample-level metadata” into species-level assignment accuracy could be improved.23 In our study, the 320 

differential relationships of both Staphylococcus aureus and epidermidis towards Corynebacteria 321 

(negative and positive associations, respectively) could be of clinical significance and is worthy of future 322 

investigation. We performed a post-hoc inspection of species-level assignment in Dataset Two, to 323 

investigate whether this finding will be reproducible in a separate dataset. This confirmed clustering of 324 

almost all Staphylococcus aureus species in microbiotype 2. (Supplementary Results in Jupyter 325 

Notebook) 326 

Interestingly, we found that the distribution of the sinonasal microbiotypes was not significantly dis-327 

similar amongst healthy controls and CRS patients. There appeared to be no significant associations with 328 

other clinical variables such as asthma and aspirin-sensitivity after controlling for multiple comparisons. 329 

(Table 2) The distribution of the microbiotypes however differed according to centre/location of 330 

collection. (Figure 3) As such, we cannot conclude based on our study that microbiotypes could function 331 

independently as a disease biomarker. Although not reaching statistical significance (chi squared p > 332 
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0.05) the prevalence of microbiotype 3 was higher in CRSsNP and CRSwNP, compared to controls. It 333 

could be the case that chronicity of inflammation -on its own- is not a determinant of a dysbiotic 334 

microbiome, but whether there is a clinically-evident “sinus infection” current at the time of sample 335 

collection. In this theory, stable chronic sinuses with no overt signs of acute or chronic infection, may 336 

remain similar to a “healthy sinus microbiome”. Only when the sinuses are clinically infected (as evident 337 

on clinical symptoms and endoscopic findings), the microbiota become disrupted and the dysbiosis 338 

exaggerated. It is important to note that Streptococcus, Haemophilus and Moraxella (represented here in 339 

microbiotype 3) have been traditionally implicated in acute infections of the upper respiratory tract 340 

including acute rhinosinusitis and acute otitis media. Unfortunately, information regarding acute 341 

exacerbations was not explored within this study. 342 

Regarding geographical differences: Asia and Australasia showed an over-representation of microbiotype 343 

1. Europe had a higher prevalence of microbiotype 2. Unfortunately, the study only included one 344 

European centre (Amsterdam) so it is difficult to be certain whether this finding generalizes to other 345 

locations in Europe. The driving factors for these geographical differences could be multiple, including 346 

but not limited to clinical practices such as local antibiotic prescriptions for CRS and timing of 347 

recruitment of patients for sinus surgery, as discussed previously.2 348 

We have adapted our methodology from the enterotyping approach taken by Arumugam et al.4 for 349 

classifying bacterial signatures of the gut microbiome. In their original manuscript, they described three 350 

different enterotypes in the gut dominated by Prevotella, Bacteroidetes, and Ruminococcus respectively.4 351 

Several papers have correlated gut enterotypes with various clinical variables.24,25 Despite this, 352 

enterotyping as an approach to population stratification has not been without its controversies. Several 353 

authors have criticized the definition of distinct clusters, since it neglects intra-cluster variation and 354 

gradients between clusters.26–29 We provide answers to previous critique28 to enterotyping as it applies to 355 

our study in Supplementary Table S2. It is important to note these valid criticisms to any community 356 

typing approach. In our experiment, the clusters or types lie on a continuum, with some samples falling in 357 
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the gradients between two, or perhaps even all three microbiotypes (see ordination plots). The histograms 358 

in Figure 2 also suggest this, but they do show most samples in each microbiotype feature a high relative 359 

abundance of a dominating genus in many samples. We investigated a simple dominance measure, the 360 

Berger-Parker (BP) alpha diversity index,30 in the combined datasets’ 507 samples. The Berger-Parker 361 

index simply reports the relative abundance of the most dominant taxon in a sample. This found that only 362 

24.9% of samples had a dominating taxon that only had a relative abundance of 50% or less. On the other 363 

hand, 51.9% of samples had the dominant taxon exhibiting a relative abundance of greater than 70% of 364 

the sample.(Supplementary Results in Jupyter notebook; Supplementary Figure S1) This shows that in 365 

most samples, there is one dominating organism. Based on these results, the microbiotyping approach is 366 

therefore proposed to reduce complexity about modeling bacterial interactions in the sinuses, and not to 367 

suggest that each type is a walled-off discrete cluster. Further investigations into the local substructures of 368 

each type will be required to further explore the roles and interactions of its constituent taxa. Another 369 

limitation of our description of microbiotypes is that they may as well describe different community 370 

“states” rather than community “types”, since we do not have longitudinal data to describe how these 371 

clusters behave with the passage of time and treatments. Hence, we could not confirm whether these are 372 

stable, consistent communities across time. It may well be that intermediate samples lying between two or 373 

more microbiotypes are representing a transitional state. An important future avenue of research is to 374 

conduct a longitudinal study to investigate the temporal stability of these clusters. 375 

We predict that ongoing sinonasal microbiome research and consequent large meta-analyses of 376 

microbiota studies, with novels tools (such as QIITA31) enabling such large-scale studies, will allow the 377 

refinement of these types and further clarify their clinical/microbiological utility. Our methodological 378 

approach to describe the microbiotypes is not exclusive, as alternative statistical or machine-learning 379 

approaches could be employed to investigate them. In light of this, we expect that international multi-380 

centre standardization and rationalization of the sinonasal microbiotypes would be possible in the future, 381 

similar to the recent proposed effort to standardize enterotyping of the gut microbiota by Costea et al.29 382 
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CONCLUSION 383 

We investigated the ISMS dataset through an approach modeled on human gut microbiome enterotyping 384 

and we found three major microbial community types or “microbiotypes” as clusters that lie on a 385 

continuum, based on an unsupervised machine learning approach that involved dimensionality reduction 386 

and clustering. Microbiotypes did not show an association with disease state or clinical variable, 387 

suggesting that they could not function as independent disease biomarkers. The description of these 388 

microbiotypes has also unveiled a potential reciprocal relationship between Staphyloccocus aureus and 389 

Corynebacterium spp. in the sinuses that requires further investigation in future studies. The findings 390 

were validated on a separate previously unpublished sinus bacterial 16S gene dataset. Microbiotypes are 391 

therefore proposed to reduce the complexity of modeling bacterial interactions in the sinuses, and in this 392 

sense hold microbiological and clinical relevance that could potentially influence medical and surgical 393 

treatment of CRS patients. 394 
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METHODS 396 

The “International Sinonasal Microbiome Study (ISMS)” dataset 397 

We perform the primary analysis on the dataset obtained from the “International Sinonasal Microbiome 398 

Study (ISMS)” project.2 In summary, this dataset is a multi-centre 16S-amplicon dataset which includes 399 

endoscopically-guided, guarded swabs collected from the sinuses (in particular the middle meatus / 400 

anterior ethmoid region) of 532 participants in 13 centres representing 5 continents. Details of sample 401 

collection, DNA extraction and sequencing methodologies are described in the original report.2 The 16S 402 

gene region sequenced was the V3–V4 hypervariable region, utilizing primers 403 

(CCTAYGGGRBGCASCAG forward primer) and (GGACTACNNGGGTATCTAAT reverse primer) 404 

according to protocols at the sequencing facility (the Australian Genome Research Facility; AGRF). 405 

Sequencing was done on the Illumina MiSeq platform (Illumina Inc., San Diego, CA) with 300-base-pairs 406 

paired-end Illumina chemistry 407 

Bioinformatics pipeline 408 

Details of the bioinformatic pipeline is detailed in the original report.2 In summary, we utilized a QIIME 409 

2-based pipeline.8 Forward and reverse fastq reads were joined32, quality-filtered,33, abundance-filtered34, 410 

then denoised using deblur9 through QIIME 2-based plugins. This yielded a final feature table of high-411 

quality, high-resolution Amplicon Sequence Variants (ASVs). Taxonomy assignment and phylogenetic 412 

tree generation35 was done against the Greengenes36 database; and taxonomy was assigned using the 413 

QIIME 2 BLAST assigner.22 A rarefaction minimum depth cut-off was chosen at 400 and this yielded 410 414 

samples out of the original 532 for downstream analysis. The same pipeline was then applied on DataSet 415 

Two for purposes of validation of microbiotyping. We chose to reproduce exactly all the original pipeline 416 

steps on DataSet Two, despite being a completely separate dataset, to reduce bias. 417 
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Delineating the microbiotypes of the sinonasal microbiome 418 

Our approach was guided by the “enterotyping” method described by Arumugam et al.4 with adaptations. 419 

We constructed a sample distance matrix using the Jensen-Shannon distance (JSD) metric, as used in the 420 

original “enterotypes” paper.4 The Jensen-Shannon distances were calculated between samples in the 421 

genus-level-assigned table in a pairwise fashion using the JSD function in the R package “philentropy” 422 

with a log (log10) base. Following this, Principal Coordinate analysis (PCoA) was done on the distance 423 

matrix for dimensionality reduction and visualization. Clustering was then performed using a standard K-424 

means clustering algorithm, as implemented in the machine learning Python package scikit-learn (version 425 

0.20.1);37) on the first two principal components (PCs) obtained from the PCoA, with the number of 426 

clusters (k) chosen at 3 based on visual inspection of the beta diversity PCoA plots. Average silhouette 427 

scores, as implemented in scikit-learn, for the range (k = 2 - 8) were calculated to assess clustering 428 

quality, and this revealed the highest silhouette scores: 0.61 and 0.6 for [k=4] and [k=3] respectively. The 429 

three resulting clusters were defined as the three sinonasal microbiotypes. For further exploration of the 430 

subgroups that constitute microbiotype 3, we used the hierarchical density-based clustering algorithm 431 

“hdbscan”7 on the full-dimensional feature table. Genera were projected onto the PCoA matrix using a 432 

biplot approach6, as implemented in scikit-bio’s function “pcoa_biplot”. Genera were represented in the 433 

biplot figure as arrows, originating from the centre of the plot pointing to the direction of the projected 434 

feature coordinates, and the lengths normalized as a percentage of the longest arrow. We utilized 435 

“Analysis of Compositions of Microbiomes (ANCOM)”38 for identifying differentially-abundant taxa. 436 

Taxa genus level and Staphylococcus species level co-occurrence/correlation analysis were done after 437 

taxonomy assignment using SparCC algorithm,21 in the fast implementation in FastSpar.39 438 

Validating microbiotypes on a second sinonasal microbiome dataset 439 

To infer whether our classification could be generalizable to other sinonasal microbiome samples not 440 

included in this study, we sought to validate our microbiotyping approach on a separate, previously-441 

unpublished, 16S dataset. This dataset includes sinonasal microbiome swabs collected from private and 442 
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public patients attending the Otolaryngology Department (University of Adelaide) to have surgery done 443 

by the authors P.J.W., A.J.P. or the Otorhinolaryngology Service at the Queen Elizabeth Hospital in 444 

Adelaide, South Australia. Similar to the main dataset, these included CRS patients who underwent 445 

endoscopic sinus surgery for this sinus disease, and non-CRS control patients who underwent other 446 

otolaryngological procedures, such as tonsillectomy, septoplasty or skullbase tumour resection. Sample 447 

collection, and processing were done in a standardized fashion similar to that has been described in the 448 

ISMS main dataset, except that DNA extraction was carried out using the PowerLyzer Power-Soil DNA 449 

kit (MoBio Laboratories, Salona Beach, CA) as previously described40, rather than the Qiagen DNeasy kit 450 

(Qiagen, Hilden, Germany). Similar to the ISMS samples, library preparation and 16S sequencing were 451 

done at the Australian Genome Research Facility (AGRF) on the Illumina MiSeq platform (Illumina Inc., 452 

San Diego, CA, USA) with the 300-base-pairs paired-end chemistry. Libraries were generated by 453 

amplifying (341F–806R) primers against the V3–V4 hypervariable region of the 16S gene 454 

(CCTAYGGGRBGCASCAG forward primer; GGACTACNNGGGTATCTAAT reverse primer).41 PCR 455 

was done using AmpliTaq Gold 360 master mix (Life Technologies, Mulgrave, Australia) following a 456 

two-stage PCR protocol (29 cycles for the first stage; and 8 cycles for the second, indexing stage). 457 

Sequencing was done over two MiSeq runs in January 2015. We termed this dataset in this manuscript 458 

“Dataset Two”. This dataset comprises samples collected from 129 participants. Rarefaction at a cutoff of 459 

400 reads was performed, to match what was performed for the main dataset, and samples with read 460 

number less than 400 were excluded; this yielded a final feature table containing 97 samples, representing 461 

33 CRSsNP patients, 35 CRSwNP patients, and 29 controls. 462 

We took two separate approaches to validation. The first approach is to replicate the previously-described 463 

unsupervised K-means microbiotyping methodology independently on samples in Dataset Two. We call 464 

this first approach the “unsupervised approach”. The second approach is to use the K-means model that 465 

was fitted on the samples from the Main Dataset to predict labels (i.e. microbiotypes) of the samples in 466 
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Dataset Two. As such, the Main Dataset is used as a “training dataset” in the language of machine 467 

learning. We called the second approach the “semi-supervised approach”. 468 

Statistical Analysis 469 

All frontend analyses were done using the Jupyter notebook frontend42 and utilizing the assistance of 470 

packages from the Scientific Python43 stack (numpy, scipy, pandas, statsmodels), scikit-learn37, scikit-bio 471 

(https://github.com/biocore/scikit-bio) and omicexperiment 472 

(https://www.github.com/bassio/omicexperiment). 473 
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Supplementary Figures 475 

 476 

Figure S1: Cumulative distribution function of the Berger-Parker Index in the combined datasets. 477 
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Supplementary Tables 479 

Table S1A: Predominant taxa of microbiotype 1.  480 

genus Mean Relative Abundance (%) Prevalence (%) 

Corynebacterium 75.29 100 

Staphylococcus 10.69 76.58 

Alloiococcus 2.79 28.83 

Moraxella 2.31 9.91 

unidentified 

(Enterobacteriaceae) 

1.41 15.32 

unidentified (Neisseriaceae) 1.18 20.72 

Streptococcus 1 21.62 

Haemophilus 0.56 9.91 

unidentified (Moraxellaceae) 0.44 2.7 

Ralstonia 0.34 10.36 
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Table S1B: Predominant taxa of microbiotype 2.  482 

genus Mean Relative Abundance (%) Prevalence (%) 

Staphylococcus 74.96 100 

Corynebacterium 9.87 64.1 

Streptococcus 3.22 25.64 

unidentified 

(Enterobacteriaceae) 

1.82 15.38 

Haemophilus 1.41 10.26 

Moraxella 1.27 5.13 

Ralstonia 1.19 11.97 

Pseudomonas 1.05 6.84 

Parvimonas 0.72 0.85 

unidentified (Neisseriaceae) 0.61 7.69 
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Table S1C: Predominant taxa of microbiotype 3.  484 

genus Mean Relative Abundance (%) Prevalence (%) 

Haemophilus 23.78 40.85 

Streptococcus 23.22 46.48 

Moraxella 12.11 19.72 

Pseudomonas 9.17 15.49 

unidentified 

(Enterobacteriaceae) 

5.74 9.86 

Serratia 5.7 8.45 

Klebsiella 2.75 4.23 

Corynebacterium 2.56 46.48 

Prevotella 1.44 12.68 

Acinetobacter 1.38 1.41 
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Table S2: Addressing previous criticism to gut enterotyping.  486 

Critique Answer 

Discrete clusters or a 

multi-dimensional 

gradient? 

We acknowledge the a proportion of samples fall in the gradient between the 

proposed microbiotypes. Berger-Parker index investigation showed that most 

samples had one dominating taxon. 

Do discrete clusters link 

to human disease? 

No. We report that we could not find an association between the microbiotype 

and chronic sinusitis disease status. 

Is sampling frame or 

selection bias affecting 

results? 

No; Multi-centre international study with consecutive sampling methodology. 

We also validate on a separate dataset. 

Use inappropriate 

visualization such as 

“star-burst plots”? 

We did not use inappropriate visualizations. 

Use a supervized 

approach “between-

class analysis”? 

We use an unsupervised clustering and dimensionality reduction approach. 

Is an individual’s 

microbiotype stable 

over time? 

Answer unknown; Future longitudinal studies required. 
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