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101 Abstract

102 This study offers a novel description of the sinonasal microbiome, through an unsupervised machine

103 learning approach combining dimensionality reduction and clustering. We apply our method to the

104 International Sinonasal Microbiome Study (ISMS) dataset of 410 sinus swab samples. We propose three
105  main sinonasal ‘microbiotypes’ or ‘states’: the first is Corynebacterium-dominated, the second is

106 Staphylococcus-dominated, and the third dominated by the other core genera of the sinonasal microbiome
107 (Streptococcus, Haemophilus, Moraxella, and Pseudomonas). The prevalence of the three microbiotypes
108 studied did not differ between healthy and diseased sinuses, but differences in their distribution were

109  evident based on geography. We also describe a potential reciprocal relationship between

110 Corynebacterium species and Staphylococcus aureus, suggesting that a certain microbial equilibrium

111 between various players is reached in the sinuses. We validate our approach by applying it to a separate
112 16S rRNA gene sequence dataset of 97 sinus swabs from a different patient cohort. Sinonasal

113 microbiotyping may prove useful in reducing the complexity of describing sinonasal microbiota. It may
114 drive future studies aimed at modeling microbial interactions in the sinuses and in doing so may facilitate

115  the development of a tailored patient-specific approach to the treatment of sinus disease in the future.

116  Keywords

117  microbiome, sinus, next-generation sequencing, 16S rRNA gene, chronic rhinosinusitis, microbiotype

118
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119 MAIN TEXT

120 Chronic rhinosinusitis (CRS) is a heterogenous, multi-factorial inflammatory disorder with a complex and
121 incompletely understood aetiopathogenesis.' A potential role of the sinonasal microbiome and its

122 “dysbiosis” in CRS pathophysiology has recently gained increased interest. The nature of the microbial
123 dysbiosis and its role in disease causation and progression however remains unclear, with conflicting

124 findings from the small sinonasal microbiome studies published thus far.

125  We recently reported the findings of our multi-national, multicenter “International Sinonasal Microbiome
126 Study” or ISMS.” This study, the largest and most diverse of its kind to date, attempted to address many
127 of the limitations of the smaller previous studies, by standardizing collection, processing and analysis of
128 the samples. Furthermore, its large sample size and multinational recruitment, meant that it was more

129 likely to capture geographical and centre-based differences if present. A recent meta-analysis of published
130 sinonasal 16S rRNA sequences revealed that the largest proportion of variance was attributed to

131 differences between studies,’ highlighting a role for performing a large multi-centre study that employed

132 aunified methodology.

133 Contrary to the findings of previous studies, our international cohort showed no significant differences in

134 alpha or beta diversity between the three groups of patients analyzed: healthy control patients without

135  CRS and the two phenotypes of CRS patients, those with polyps (CRSwNP) and those without

136 (CRSsNP). The study however revealed a potential grouping of samples as demonstrated on beta diversity
137 exploratory analysis.” Accordingly, we hypothesized that the bacteriology of the sinuses could be

138 categorized into various clusters of similar compositions. We inquired whether these potential groups

139 would aid in describing the sinonasal microbial composition of patients or associate with clinical features.
140 Similar attempts performed on gut microbiota in healthy individuals were termed enterotyping.* The

141  clinical relevance of gut enterotypes remain the topic of research, and sometimes controversy. A previous

142 exploration of clusters of sinus microbiota in patients was performed by Cope et al.” in which the authors
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143 reported four compositionally distinct sinonasal microbial community states; the largest group of patients
144 were dominated by a continuum of Staphylococcaceae and Corynebacteriaceae demonstrating a

145 reciprocal relationship.’

146 In this manuscript, we attempt “microbiotyping” to explain interpatient heterogeneity of the bacterial
147 communities in the paranasal sinuses, and are the first to describe “sinonasal microbiotypes” across the
148 first large, multi-centre cohort of individuals with and without CRS. We model our analysis on previous
149 attempts of enterotyping the gut microbiome. We then describe the composition of these microbiotypes,
150  explore potential clinical associations and validate microbiotyping on a separate sinus microbiome

151 dataset.
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153 RESULTS
154 Basic characteristics of the study cohort and beta diversity plots
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156  Figure 1: Beta diversity ordination plots.
157 The main ISMS study cohort was described in our previous publication.” In brief, 410 samples were
158  included in the analysis collected from 13 centres representing 5 continents. These samples are distributed
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159  along three diagnosis groups as follows: 99 CRSsNP patients, 172 CRSwNP patients, and 139 (non-CRS)
160 controls. Beta diversity ordination plots (of weighted UniFrac and Jensen-Shannon distances) are shown
161  in Figure 1. The plots do not reveal any distinct grouping by disease state or by centre, but on visual

162 inspection show a triangular arrangement suggesting that samples lie on a continuum between three

163 distinct clusters, providing motivation for further analysis.

164 Composition of the three sinonasal microbiotypes

165  We applied our microbiotyping approach through the unsupervised dimensionality reduction and
166 clustering method described in the Methods. The composition of the resulting “sinonasal microbiotypes”

167  is found in Figure 2A.
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169 Figure 2: Microbiotyping the sinonasal microbiome. (4) Taxonomic composition of the three
170 microbiotypes at the genus level. (B) lllustration of the assigned microbiotypes on the Jensen-Shannon
171 PCoA biplot. Arrows were used to depict the projection of the genera onto the PCoA matrix. Each arrow

172 is indicated by the color of the genus according to the Legend. (C) Histograms demonstrating the relative
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173 abundance of Corynebacterium and Staphylococcus. (D) Distribution of staphylococcal species (mean

174 relative abundance). (E) Subgroups of microbiotype 3 (hierarchical density-based clustering).

175 Microbiotype 1 is dominated by Corynebacterium (mean relative abundance of 75.29%). Microbiotype 2
176 is dominated by Staphylococcus (mean relative abundance of 74.96%). Microbiotype 3 contained samples

177  that were mostly constituted of Streptococcus, Haemophilus, Moraxella, Pseudomonas and other genera.

178 The Abundance/Prevalence tables for the microbiotypes is demonstrated in Supplementary Tables S1A,

179  S1Band SIC.

180 We used a PCoA biplot to project features (genera) onto the PCoA matrix.® The 5 topmost abundant

181  genera were overlaid on the PCoA plot as arrows, originating from the centre of the plot and pointing to
182 the direction of the projected feature coordinates. (Figure 2B) Each arrow is indicated by the color of the
183 genus according to the Legend in Figure 2A, and the length of each was normalized as a percentage of the
184 longest arrow. The coloring of the samples in 2B in the PCoA scatter plot according to the microbiotype
185  assignment is provided for additional illustration. (Figure 2B) We note that the biplot arrows show a

186  quasi-orthogonal arrangement between the key genera that constitute the microbiome.

187  The distributions of the relative adundances of Corynebacterium and Staphylococcus in all three
188  microbiotypes were plotted in histograms (Figure 2C). It was noted that in microbiotype 1, most samples
189  have a high abundance of Corynebacteria (i.e. Corynebacteria dominate), while Staphylococci appeared

190  to dominate in microbiotype 2 in most samples.

191  Dissection of “sinonasal microbiotype 3”

192 We observed that Microbiotype 3 included various genera that did not cluster into the major two
193 microbiotypes. It was also evident that this microbiotype is more heterogeneous. Applying the K-Means
194 algorithm we showed poor clustering on only the first two and three Principal Components, since this

195  group included multiple signatures with various dominant organisms. Accordingly, we employed the
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hieararchical density-based clustering algorithm “hdbscan”’ on the full-dimensional OTU table. One
advantage of this algorithm is that it can estimate the number of clusters, without a priori specification by
the user. This algorithm also has the ability to detect “outliers” that fail to cluster with the rest of the
groups and detaches them into a separate “Miscellaneous/Other” group. We ran this algorithm on samples
in Microbiotype 3 and this revealed four clusters, each dominated by one of the genera of Streptococcus
(21 samples), Haemophilus (16 samples), Moraxella (9 samples), and Pseudomonas (7 samples), with a
mean relative abundance ranging from 73.49% to 95.5%. The fifth cluster was the assigned
“Miscellaneous/Other” group (18 samples). We term these “sub-microbiotypes”: microbiotype 3S, 3H,

3M, 3P, and 30, respectively. (Figure 2E)

Exploring microbiotypes at the species-level reveals potential antagonism between

Corynebacterium species and Staphylococcus aureus

At present, species level assignment is limited by the current technology of 16S-surveys, the current state
of microbial databases in general, and by our chosen short-read sequencing methodology. However,
species level associations hold clinical significance for sinus health, since Staphylococcus aureus has
been traditionally associated with biofilm formation and superantigen elaboration, both of which are
associated with more severe sinus disease and poorer response to treatment. Furthermore nasal carriage of
methicillin-resistant Staphylococcus aureus (MRSA) is a global health concern with implications that
extend far beyond the sinuses. Moreover, our new QIIME 2-based pipeline® allows a higher “sub-OTU”
resolution compared to older pipelines, offering an opportunity to resolve some taxa at species level when

possible.”"

We explored taxonomy assignment at the species level, with a focus on Staphylococcal species.
Staphylococci were assigned to either Staphyloccocus aureus, Staphylococcus epidermidis or unclassified
Staphylococcus. We found that almost all of the assigned Staphylococcus aureus species were clustered in
Microbiotype 2, forming 47.81% mean relative abundance of this Microbiotype, compared to 1.36% and

0.3% in Microbiotype 1 and Microbiotype 3 respectively. (Figure 2E) Differential abundance of both
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221 Staphylococcus aureus and epidermidis between the disease groups was confirmed as statistically

222 significant using ANCOM.

223 Inlight of this finding, we hypothesized a reciprocal or antagonistic relationship between

224 Corynebacterium sp. and Staphylococcus aureus and investigated this using SparCC. This confirmed a
225  significant negative correlation between Corynebacterium genus and the species Staphylococcus aureus
226 (SparCC correlation coefficient = -0.339, p = 0.001). Interestingly, Staphylococcus epidermidis positively
227  correlated with Corynebacterium (SparCC correlation coefficient = 0.271, p = 0.001). These results

228  should be interpreted cautiously in light of 16S-sequencing limitations. Nevertheless, they do appear to
229  correlate to previous findings in the literature, including in vitro experiments'', a murine nasal bacterial
230  interaction model'’, and a survey of nasal vestibule swabs in healthy individuals'®. These results suggest
231  that a benign or probiotic role is played by both Corynebacterium spp. and Staphyloccocus epidermidis

232 when interacting with Staphylococcus aureus.

233 Prevalence and distribution of the microbiotypes in different diagnoses and centres

Prevalence of the sinonasal microbiotypes Distribution of microbiotypes by diagnosis

microbiotype_1 Control

CRSwWNP

CRSsNP

0 20 40 60 80 1(‘)0
Distribution of microbiotypes by continent

microbiotype

South_America

microbiotype_3 North_America
Europe

microbiotype 2 Australasia
Asia

234 80 100

235  Figure 3: Prevalence and distribution of the microbiotypes.

236 Microbiotype 1 was assigned to 222 samples (54.1%), microbiotype 2 to 117 samples (28.5%), and

237  microbiotype 3 to 71 samples (17.3%). The prevalence distribution of the sinonasal microbiotypes did not
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238  appear to significantly differ by the disease state of the sinuses. (Figure 3) However, a Chi-Squared test
239  on the contingency table by centre showed significantly different distributions by centre (FDR-corrected p
240 <0.001): there was a higher prevalence of microbiotype 2 in our European centre (Amsterdam), and a
241  higher prevalence of microbiotype 1 in Asian and Australasian centres, with a much lower prevalence of

242 microbiotype 3 in Asia. (Figure 3 and Table 1)

243 Table I1: Distribution of microbiotypes by diagnosis and continent.

variable value microbiotype 1 microbiotype 2 microbiotype 3 p value
Diagnosis CRSsNP 56 (56.6%) 27 (27.3%) 16 (16.2%) 0.507
CRSwNP 85 (49.4%) 48 (27.9%) 39 (22.7%)
Control 81 (58.3%) 42 (30.2%) 16 (11.5%)
Continent Asia 27 (69.2%) 11 (28.2%) 1 (2.6%) <0.001
Australasia 67 (61.5%) 23 (21.1%) 19 (17.4%)
Europe 7 (18.4%) 22 (57.9%) 9 (23.7%)
North_America 89 (56.3%) 43 (27.2%) 26 (16.5%)
South_ America 32 (48.5%) 18 (27.3%) 16 (24.2%)
244
245 Associations of microbiotypes with clinical variables
246 We then explore the distribution of the three microbiotypes among multiple clinical variables in Table 2.
247  This shows no significant difference for some variables including asthma, aspirin sensitivity, GORD,
248  diabetes mellitus, and current smoking status, (FDR-corrected p > 0.05; Chi-squared test). The cross
249  tabulation however revealed a statistically significant association with “aspirin sensitivity”” or aspirin-
250 exacerbated respiratory disease (AERD) (p = 0.02), although this did not persist after a Benjamini-
251 Hochberg correction (corrected p = 0.077). Patients who were aspirin-sensitive (or suffering from AERD)
252 showed less prevalence of microbiotypes 1, 2 and a higher prevalence of microbiotype 3, compared to
253 those who were not aspirin-sensitive. On the other hand, patients who were undergoing their “primary
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254 surgery”, had a higher prevalence of microbiotype 1 and a lower prevalence of microbiotype 3, compared

255 to those patients who had had previous surgeries, but these results were not statistically significant.

256 Table 2: Distribution of microbiotypes by various clinical variables.

257

variable value microbiotype 1 microbiotype 2 microbiotype 3 p value
Asthma No 162 (56.4%) 81 (28.2%) 44 (15.3%) 0.906
Yes 55 (51.4%) 31 (29.0%) 21 (19.6%)
Aspirin No 202 (55.3%) 106 (29.0%) 57 (15.6%) 0.077
sensitivity
Yes 12 (48.0%) 5(20.0%) 8 (32.0%)
Diabetes No 189 (54.9%) 98 (28.5%) 57 (16.6%) 0.979
Yes 22 (55.0%) 11 (27.5%) 7 (17.5%)
GORD No 177 (55.3%) 93 (29.1%) 50 (15.6%) 0.979
Yes 35 (55.6%) 17 (27.0%) 11 (17.5%)
Current No 204 (54.4%) 110 (29.3%) 61 (16.3%) 0.077
Smoker
Yes 15 (57.7%) 4 (15.4%) 7 (26.9%)
Primary No 92 (47.2%) 57 (29.2%) 46 (23.6%) 0.114
surgery
Yes 130 (60.5%) 60 (27.9%) 25 (11.6%)

258  Validation of sinonasal microbiotyping on a separate dataset

259  We validated our approach on a separate 16S dataset we called Dataset Two. As described in the Methods
260  section, we validated this using an independent unsupervised approach and a semi-supervised approach

261 guided by the Main Dataset.
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The first unsupervised approach yielded three clusters similar to the microbiotypes described on the Main
Dataset, with one cluster exhibiting high mean relative abundance of Corynebacteria, a second cluster
exhibiting high mean relative abundance of Staphylococcus, and a third cluster with other dominant
genera. Plotting the first two Principal Components (Figure 4A) resulting from PCoA on the JSD matrix

revealed the same triangular distribution of samples observed in Figure 1.

Prevalence of the microbiotypes in this dataset (using the unsupervised approach) was as follows:
microbiotype 1 assigned 39.2% of samples, microbiotype 2 with 26.8% of samples, and microbiotype 3

with 34.0%.

The second semi-supervised approach yielded similar results (Figure 4; Supplementary Table), differing
in the classification of only 3 samples (out of 97 samples; i.e. 3.09%). (See Supplementary Jupyter
notebook) Two of these samples show Staphylococcus dominating the samples in combination with
Haemophilus, with no overt dominance of one taxon over the other, making them more-or-less
transitional samples between the signatures of microbiotypes 2 and 3. The third sample was dominated by
Staphyloccocus and Corynebacterium, making it a transitional sample between microbiotype 1 and
microbiotype 2, with Staphylococcal species assigned to epidermidis, making this more appropriately

assigned to microbiotype 1. (see Supplementary Jupyter notebook)

These results validate the microbiotyping approach and suggest that our approach and dataset could be
used to guide classification of sinonasal samples sequenced in future separate studies. (Figure 4)

Moreover, it points towards a potential clinical relevance of performing sinonasal microbiotyping.
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A. Independent K-Means clustering of Dataset Two samples B. Prediction of microbiotypes on Dataset Two samples
using our described K-means microbiotyping approach using the K-means model fitted on the Main Dataset
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282 Figure 4: Validation of microbiotyping approach on Dataset Two.
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284 DISCUSSION

285  We demonstrate that the microbiota of most sinus swab samples could be classified into distinct

286  signatures or archetypes, which we have termed “sinonasal microbiotypes”. We observed three main

287  microbiotypes: the most prevalent being a Corynebacterium-dominated microbiotype (microbiotype 1),
288  then a Staphylococcus-dominated microbiotype (microbiotype 2), and microbiotype 3 which includes
289  samples dominated by Streptococcus, Haemophilus, Moraxella, Pseudomonas, and other genera (3S, 3H,

290  3M, 3P, and 30 respectively).

291  As we have previously reported,” the sinus microbiota are dominated by the genera Corynebacterium and
292 Staphylococcus (microbiotypes 1 and 2). A similar clustering approach to the sinus microbiome was

293 applied by Cope and colleagues, who utilized Dirichlet multinomial mixture models (DMMs),’ and

294 reported that most samples in their study were occupied by a continuum of Staphylococcaceae and

295 Corynebacteriaceae.’ It appears that, regardless the statistical or clustering methodology utilized, it is

296  most likely that the sinonasal microbiome consists of core organisms” that have a distinct co-occurrence

297  pattern. This could be explored through a network analysis approach and should be a future area of study.

298  Staphylococcus aureus has been perceived to be an important pathogen in sinus inflammatory disease.
299 Staphylococcus aureus biofilms may act as a nidus for recurrent infections'*'” and as a “nemesis” of

1“1¥ Staphylococcus aureus is also a producer of exotoxins, which in

300  otherwise-successful sinus surgery.
301  some cases can serve as superantigens, and these have been previously described as playing an important
302 role in the pathogenesis of CRSWNP."” Pseudomonas aeruginosa biofilms are also virulent organisms that
303 are difficult to eradicate from the sinuses, and have been associated with worse clinical outcomes.”’ Both
304  these organisms are important pathogens in the chronic mucociliary dysfunction exhibited in cystic

305  fibrosis. However, methicillin-resistant Staphylococcus aureus (MRSA) is an important nasal colonizer

306  that could asymptomatically colonize the nose. What determines the clinical course, between

307  asymptomatic colonization versus symptomatic pathogenicity, remains an interesting topic of research. In
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308  this study, we identified a potential reciprocal relationship between Staphylococcus aureus and

309  Corynebacterium. Being aware of the challenges of compositional data analysis, we utilized for this

310 purpose the specialized SparCC algorithm which infers correlations from compositional data.”’ This

311  finding needs to be supported by future co-culture experiments, but suggests that Corynebacterium sp.
312 may be a “cornerstone” of sinus microbial health. It is important to note that our bioinformatic

313 methodology has been intentionally designed to utilize state-of-the-art software methods at every step of
314 the analysis pipeline, in order to maximise the resolution of taxonomy assignment.®”*” Nevertheless, our
315  approach is still confined within the limitations of current 16S sequencing methodologies, and the

316  confidence of assignment is reduced beyond the genus level. Our analysis pipeline could not delineate
317  between different Corynebacterium at the species level and Staphylococcus aureus at the strain level.
318  Hence functional difference between samples with same species remain to be determined using a

319  functional metagenomics approach. A recent study suggest that by incorporating location information or
320 “sample-level metadata” into species-level assignment accuracy could be improved.” In our study, the
321  differential relationships of both Staphylococcus aureus and epidermidis towards Corynebacteria

322 (negative and positive associations, respectively) could be of clinical significance and is worthy of future
323 investigation. We performed a post-hoc inspection of species-level assignment in Dataset Two, to

324 investigate whether this finding will be reproducible in a separate dataset. This confirmed clustering of
325  almost all Staphylococcus aureus species in microbiotype 2. (Supplementary Results in Jupyter

326 Notebook)

327  Interestingly, we found that the distribution of the sinonasal microbiotypes was not significantly dis-
328  similar amongst healthy controls and CRS patients. There appeared to be no significant associations with
329  other clinical variables such as asthma and aspirin-sensitivity after controlling for multiple comparisons.

330  (Table 2) The distribution of the microbiotypes however differed according to centre/location of

(O8]
W
—

collection. (Figure 3) As such, we cannot conclude based on our study that microbiotypes could function

332 independently as a disease biomarker. Although not reaching statistical significance (chi squared p >
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333 0.05) the prevalence of microbiotype 3 was higher in CRSsNP and CRSwNP, compared to controls. It
334 could be the case that chronicity of inflammation -on its own- is not a determinant of a dysbiotic

335  microbiome, but whether there is a clinically-evident “sinus infection” current at the time of sample

336 collection. In this theory, stable chronic sinuses with no overt signs of acute or chronic infection, may
337  remain similar to a “healthy sinus microbiome”. Only when the sinuses are clinically infected (as evident
338 on clinical symptoms and endoscopic findings), the microbiota become disrupted and the dysbiosis

339  exaggerated. It is important to note that Streptococcus, Haemophilus and Moraxella (represented here in
340  microbiotype 3) have been traditionally implicated in acute infections of the upper respiratory tract

341  including acute rhinosinusitis and acute otitis media. Unfortunately, information regarding acute

342 exacerbations was not explored within this study.

343 Regarding geographical differences: Asia and Australasia showed an over-representation of microbiotype
344 1. Europe had a higher prevalence of microbiotype 2. Unfortunately, the study only included one

345  European centre (Amsterdam) so it is difficult to be certain whether this finding generalizes to other

346 locations in Europe. The driving factors for these geographical differences could be multiple, including
347  but not limited to clinical practices such as local antibiotic prescriptions for CRS and timing of

348  recruitment of patients for sinus surgery, as discussed previously.”

349 We have adapted our methodology from the enterotyping approach taken by Arumugam et al.* for
350  classifying bacterial signatures of the gut microbiome. In their original manuscript, they described three
351  different enterotypes in the gut dominated by Prevotella, Bacteroidetes, and Ruminococcus respectively.”

24,25

352  Several papers have correlated gut enterotypes with various clinical variables.” Despite this,
353  enterotyping as an approach to population stratification has not been without its controversies. Several
354 authors have criticized the definition of distinct clusters, since it neglects intra-cluster variation and

26—

355  gradients between clusters.”’ We provide answers to previous critique’ to enterotyping as it applies to
356 our study in Supplementary Table S2. It is important to note these valid criticisms to any community

357  typing approach. In our experiment, the clusters or types lie on a continuum, with some samples falling in
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358  the gradients between two, or perhaps even all three microbiotypes (see ordination plots). The histograms
359  in Figure 2 also suggest this, but they do show most samples in each microbiotype feature a high relative
360  abundance of a dominating genus in many samples. We investigated a simple dominance measure, the
361  Berger-Parker (BP) alpha diversity index,” in the combined datasets’ 507 samples. The Berger-Parker
362 index simply reports the relative abundance of the most dominant taxon in a sample. This found that only
363 24.9% of samples had a dominating taxon that only had a relative abundance of 50% or less. On the other
364  hand, 51.9% of samples had the dominant taxon exhibiting a relative abundance of greater than 70% of
365  the sample.(Supplementary Results in Jupyter notebook; Supplementary Figure S1) This shows that in
366  most samples, there is one dominating organism. Based on these results, the microbiotyping approach is
367  therefore proposed to reduce complexity about modeling bacterial interactions in the sinuses, and not to
368  suggest that each type is a walled-off discrete cluster. Further investigations into the local substructures of
369  each type will be required to further explore the roles and interactions of its constituent taxa. Another

370  limitation of our description of microbiotypes is that they may as well describe different community

371  “states” rather than community “types”, since we do not have longitudinal data to describe how these

372 clusters behave with the passage of time and treatments. Hence, we could not confirm whether these are
373 stable, consistent communities across time. It may well be that intermediate samples lying between two or
374 more microbiotypes are representing a transitional state. An important future avenue of research is to

375  conduct a longitudinal study to investigate the temporal stability of these clusters.

376 We predict that ongoing sinonasal microbiome research and consequent large meta-analyses of

377  microbiota studies, with novels tools (such as QIITA®") enabling such large-scale studies, will allow the
378  refinement of these types and further clarify their clinical/microbiological utility. Our methodological
379  approach to describe the microbiotypes is not exclusive, as alternative statistical or machine-learning
380  approaches could be employed to investigate them. In light of this, we expect that international multi-
381  centre standardization and rationalization of the sinonasal microbiotypes would be possible in the future,

382  similar to the recent proposed effort to standardize enterotyping of the gut microbiota by Costea et al.”’
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383 CONCLUSION

384 We investigated the ISMS dataset through an approach modeled on human gut microbiome enterotyping
385  and we found three major microbial community types or “microbiotypes” as clusters that liec on a

386  continuum, based on an unsupervised machine learning approach that involved dimensionality reduction
387  and clustering. Microbiotypes did not show an association with disease state or clinical variable,

388  suggesting that they could not function as independent disease biomarkers. The description of these

389  microbiotypes has also unveiled a potential reciprocal relationship between Staphyloccocus aureus and
390  Corynebacterium spp. in the sinuses that requires further investigation in future studies. The findings
391  were validated on a separate previously unpublished sinus bacterial 16S gene dataset. Microbiotypes are
392 therefore proposed to reduce the complexity of modeling bacterial interactions in the sinuses, and in this
393  sense hold microbiological and clinical relevance that could potentially influence medical and surgical

394 treatment of CRS patients.

395
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300 METHODS

397  The “International Sinonasal Microbiome Study (ISMS)” dataset

398  We perform the primary analysis on the dataset obtained from the “International Sinonasal Microbiome
399 Study (ISMS)” project.” In summary, this dataset is a multi-centre 16S-amplicon dataset which includes
400  endoscopically-guided, guarded swabs collected from the sinuses (in particular the middle meatus /

401  anterior ethmoid region) of 532 participants in 13 centres representing 5 continents. Details of sample

402 collection, DNA extraction and sequencing methodologies are described in the original report.” The 16S
403 gene region sequenced was the V3—V4 hypervariable region, utilizing primers

404  (CCTAYGGGRBGCASCAG forward primer) and (GGACTACNNGGGTATCTAAT reverse primer)
405  according to protocols at the sequencing facility (the Australian Genome Research Facility; AGRF).

406 Sequencing was done on the [llumina MiSeq platform (Illumina Inc., San Diego, CA) with 300-base-pairs

407  paired-end Illumina chemistry

408  Bioinformatics pipeline

409  Details of the bioinformatic pipeline is detailed in the original report.” In summary, we utilized a QIIME
410 2-based pipeline.® Forward and reverse fastq reads were joined’, quality-filtered,”, abundance-filtered**,
411  then denoised using deblur’ through QIIME 2-based plugins. This yielded a final feature table of high-
412 quality, high-resolution Amplicon Sequence Variants (ASVs). Taxonomy assignment and phylogenetic
413 tree generation’” was done against the Greengenes’® database; and taxonomy was assigned using the

414 QIIME 2 BLAST assigner.”” A rarefaction minimum depth cut-off was chosen at 400 and this yielded 410
415  samples out of the original 532 for downstream analysis. The same pipeline was then applied on DataSet
416 Two for purposes of validation of microbiotyping. We chose to reproduce exactly all the original pipeline

417  steps on DataSet Two, despite being a completely separate dataset, to reduce bias.
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418  Delineating the microbiotypes of the sinonasal microbiome

419 Our approach was guided by the “enterotyping” method described by Arumugam et al.” with adaptations.
420  We constructed a sample distance matrix using the Jensen-Shannon distance (JSD) metric, as used in the
421 original “enterotypes” paper.* The Jensen-Shannon distances were calculated between samples in the

422 genus-level-assigned table in a pairwise fashion using the JSD function in the R package “philentropy”
423 with a log (logio) base. Following this, Principal Coordinate analysis (PCoA) was done on the distance
424 matrix for dimensionality reduction and visualization. Clustering was then performed using a standard K-
425  means clustering algorithm, as implemented in the machine learning Python package scikit-learn (version
426 0.20.1);’") on the first two principal components (PCs) obtained from the PCoA, with the number of

427 clusters (k) chosen at 3 based on visual inspection of the beta diversity PCoA plots. Average silhouette
428  scores, as implemented in scikit-learn, for the range (k = 2 - 8) were calculated to assess clustering

429 quality, and this revealed the highest silhouette scores: 0.61 and 0.6 for [k=4] and [k=3] respectively. The
430  three resulting clusters were defined as the three sinonasal microbiotypes. For further exploration of the
431  subgroups that constitute microbiotype 3, we used the hierarchical density-based clustering algorithm
432 “hdbscan”’ on the full-dimensional feature table. Genera were projected onto the PCoA matrix using a
433 biplot approach®, as implemented in scikit-bio’s function “pcoa biplot”. Genera were represented in the
434 biplot figure as arrows, originating from the centre of the plot pointing to the direction of the projected
435  feature coordinates, and the lengths normalized as a percentage of the longest arrow. We utilized

436 “Analysis of Compositions of Microbiomes (ANCOM)”** for identifying differentially-abundant taxa.
437  Taxa genus level and Staphylococcus species level co-occurrence/correlation analysis were done after

438 taxonomy assignment using SparCC algorithm,’ in the fast implementation in FastSpar.*’

439  Validating microbiotypes on a second sinonasal microbiome dataset

440  To infer whether our classification could be generalizable to other sinonasal microbiome samples not
441  included in this study, we sought to validate our microbiotyping approach on a separate, previously-

442 unpublished, 16S dataset. This dataset includes sinonasal microbiome swabs collected from private and
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443 public patients attending the Otolaryngology Department (University of Adelaide) to have surgery done
444 by the authors P.J.W., A.J.P. or the Otorhinolaryngology Service at the Queen Elizabeth Hospital in

445 Adelaide, South Australia. Similar to the main dataset, these included CRS patients who underwent

446 endoscopic sinus surgery for this sinus disease, and non-CRS control patients who underwent other

447 otolaryngological procedures, such as tonsillectomy, septoplasty or skullbase tumour resection. Sample
448 collection, and processing were done in a standardized fashion similar to that has been described in the
449 ISMS main dataset, except that DNA extraction was carried out using the PowerLyzer Power-Soil DNA
450 kit (MoBio Laboratories, Salona Beach, CA) as previously described”’, rather than the Qiagen DNeasy kit
451 (Qiagen, Hilden, Germany). Similar to the ISMS samples, library preparation and 16S sequencing were
452 done at the Australian Genome Research Facility (AGRF) on the Illumina MiSeq platform (Illumina Inc.,
453 San Diego, CA, USA) with the 300-base-pairs paired-end chemistry. Libraries were generated by

454 amplifying (341F-806R) primers against the V3—V4 hypervariable region of the 16S gene

455  (CCTAYGGGRBGCASCAG forward primer; GGACTACNNGGGTATCTAAT reverse primer).*' PCR
456 was done using AmpliTaq Gold 360 master mix (Life Technologies, Mulgrave, Australia) following a
457 two-stage PCR protocol (29 cycles for the first stage; and 8 cycles for the second, indexing stage).

458  Sequencing was done over two MiSeq runs in January 2015. We termed this dataset in this manuscript
459 “Dataset Two”. This dataset comprises samples collected from 129 participants. Rarefaction at a cutoff of
460 400 reads was performed, to match what was performed for the main dataset, and samples with read

461  number less than 400 were excluded; this yielded a final feature table containing 97 samples, representing

462 33 CRSsNP patients, 35 CRSwNP patients, and 29 controls.

463  We took two separate approaches to validation. The first approach is to replicate the previously-described
464 unsupervised K-means microbiotyping methodology independently on samples in Dataset Two. We call
465  this first approach the “unsupervised approach”. The second approach is to use the K-means model that

466  was fitted on the samples from the Main Dataset to predict labels (i.e. microbiotypes) of the samples in
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467  Dataset Two. As such, the Main Dataset is used as a “training dataset” in the language of machine

468  learning. We called the second approach the “semi-supervised approach”.

469  Statistical Analysis

470 All frontend analyses were done using the Jupyter notebook frontend*” and utilizing the assistance of
471  packages from the Scientific Python*’ stack (numpy, scipy, pandas, statsmodels), scikit-learn’’, scikit-bio
472 (https://github.com/biocore/scikit-bio) and omicexperiment

473 (https://www.github.com/bassio/omicexperiment).

474
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475 Supplementary Figures
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477 Figure S1: Cumulative distribution function of the Berger-Parker Index in the combined datasets.
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479 Supplementary Tables

480  Table S1A: Predominant taxa of microbiotype 1.

genus Mean Relative Abundance (%) Prevalence (%)
Corynebacterium 75.29 100
Staphylococcus 10.69 76.58
Alloiococcus 2.79 28.83
Moraxella 231 9.91
unidentified 1.41 15.32
(Enterobacteriaceae)

unidentified (Neisseriaceae) 1.18 20.72
Streptococcus 1 21.62
Haemophilus 0.56 9.91
unidentified (Moraxellaceae) 0.44 2.7
Ralstonia 0.34 10.36
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482 Table S1B: Predominant taxa of microbiotype 2.

genus Mean Relative Abundance (%) Prevalence (%)
Staphylococcus 74.96 100
Corynebacterium 9.87 64.1
Streptococcus 3.22 25.64
unidentified 1.82 15.38
(Enterobacteriaceae)

Haemophilus 1.41 10.26
Moraxella 1.27 5.13
Ralstonia 1.19 11.97
Pseudomonas 1.05 6.84
Parvimonas 0.72 0.85
unidentified (Neisseriaceae) 0.61 7.69
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484 Table SIC: Predominant taxa of microbiotype 3.

genus Mean Relative Abundance (%) Prevalence (%)
Haemophilus 23.78 40.85
Streptococcus 23.22 46.48
Moraxella 12.11 19.72
Pseudomonas 9.17 15.49
unidentified 5.74 9.86
(Enterobacteriaceae)

Serratia 5.7 8.45
Klebsiella 2.75 4.23
Corynebacterium 2.56 46.48
Prevotella 1.44 12.68
Acinetobacter 1.38 1.41
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Table S2: Addressing previous criticism to gut enterotyping.

Critique

Answer

Discrete clusters or a
multi-dimensional

gradient?

We acknowledge the a proportion of samples fall in the gradient between the
proposed microbiotypes. Berger-Parker index investigation showed that most

samples had one dominating taxon.

Do discrete clusters link

to human disease?

No. We report that we could not find an association between the microbiotype

and chronic sinusitis disease status.

Is sampling frame or
selection bias affecting

results?

No; Multi-centre international study with consecutive sampling methodology.

We also validate on a separate dataset.

Use inappropriate
visualization such as

“star-burst plots”?

We did not use inappropriate visualizations.

Use a supervized
approach “between-

class analysis™?

We use an unsupervised clustering and dimensionality reduction approach.

Is an individual’s
microbiotype stable

over time?

Answer unknown; Future longitudinal studies required.
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