
Pixel personality for dense object tracking in a 2D honeybee hive

Katarzyna Bozek a, Laetitia Hebert a, Alexander S Mikheyev a & Greg J Stephens a,b

aOkinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
bDepartment of Physics and Astronomy, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands

Tracking large numbers of densely-arranged, interacting objects is challenging due to occlusions
and the resulting complexity of possible trajectory combinations, as well as the sparsity of relevant,
labeled datasets. Here we describe a novel technique of collective tracking in the model environ-
ment of a 2D honeybee hive in which sample colonies consist of N ∼ 103 highly similar individuals,
tightly packed, and in rapid, irregular motion. Such a system offers universal challenges for multi-
object tracking, while being conveniently accessible for image recording. We first apply an accurate,
segmentation-based object detection method to build initial short trajectory segments by matching
object configurations based on class, position and orientation. We then join these tracks into full
single object trajectories by creating an object recognition model which is adaptively trained to
recognize honeybee individuals through their visual appearance across multiple frames, an attribute
we denote as pixel personality. Overall, we reconstruct ∼ 46% of the trajectories in 5 min record-
ings from two different hives and over 71% of the tracks for at least 2 min. We provide validated
trajectories spanning 3, 000 video frames of 876 unmarked moving bees in two distinct colonies in
different locations and filmed with different pixel resolutions, which we expect to be useful in the
further development of general-purpose tracking solutions.

Introduction

From cells in tissues to human crowds, the tracking of
densely packed, active objects is a challenging and im-
portant problem. Indeed, the understanding of collective
phenomena in biology across scales – from cellular inter-
actions to the organization of animal groups – requires
efficient tracking methods to connect ensemble behav-
ior with the mechanisms of individual components (see
e.g. [1, 2]). The automated tracking of individual ob-
jects in dense groups based on video recording is also of
practical interest for the implementation of monitoring
frameworks.

Social insects are an important category of animal
groups whose reproduction and survival depend on the
intrinsic organization and cooperation of the entire
colony. Honeybees, an example of social insects, live in
large organized family groups and perform activities un-
available to solitary insects, such as nest construction,
division of labor, or group defense [3]. Due to long-
established human husbandry, bees are accessible for ob-
servation with the use of an observation beehive. In such
a hive the entire colony is placed on one surface of a hon-
eycomb covered with glass. Tight spacing between the
glass and the comb constrains the colony to an approx-
imately 2D environment in which colony activities are
performed by thousands of individuals in dense configu-
rations and constant motion. The complexity of tracking
within the observation hive environment is representative
of other systems and thus of general interest.

We propose a new method for tracking of a large
number of highly similar individuals in dense configu-
rations. We adapt a previous method for identifying bee
position and orientation [4] by retraining with samples
from our imaging arrangement. We next create initial
track fragments with a basic matching approach using

the difference in object class, orientation and position
across neighboring frames. Finally, we iteratively learn
visual features of hundreds of individuals within the short
tracks, effectively assigning a unique “pixel personality”
to each object. We use these learned visual features to
match track fragments belonging to the same individual
into full trajectories spanning the entire recording.

With the remarkable rise of deep learning, there has
been surprisingly little progress with multi-target track-
ing, in part due to the lack of sufficiently large and an-
notated datasets. As an outcome of our work, we also
provide a unique dataset of a large number of trajecto-
ries in a dense and challenging environment with nearly
identical objects.

Related work

Among the diverse applications of multi-object track-
ing, crowd tracking has received the broadest attention in
computer vision due to applications in surveillance sys-
tems, robotics, and human-computer interaction environ-
ments. Given the difficulty of tracking multiple moving,
interacting, and visually overlapping targets, numerous
approaches have explored the spatiotemporal patterns
within human crowds and used local motion correlations
to aid the tracking task [5–8].

Expanding tracking beyond locally correlated groups
necessitates the use of additional cues to prevent identity
swaps. Examples include temporal and spatial linking
through quadratic programming [9], using appearance
and motion cues [10], blending appearance to multiple
hypothesis tracking [11], or integrating motion, time, po-
sition, size, and appearance into a single affinity model
[12]. With the broad adoption of deep learning for im-
age analysis, convolutional neural networks (CNNs) have
opened up new possibilities of extracting visual cues in
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the task of multi-object tracking. In particular, siamese
architectures have attracted broad interest for their abil-
ity of associating detection pairs [13].

Despite the capacity of recurrent neural networks
(RNNs) to learn temporal patterns, few studies have
shown their application to multi-object tracking. How-
ever, a notable example [14] suggested an integrated
architecture for trajectory association including object
birth and death based on existing detections. Trained
end-to-end, this model has shown high performance in
simulated data and crowd recordings. RNNs have also
been applied to space occupancy prediction based on
unsupervised representation learning in the context of
multi-object tracking [15, 16].

The need to create standards for the evaluation of
tracking methods has inspired the creation of the Multi-
Object Tracking benchmark, with both human tracks
and also elements of scene and other object classes in-
troduced in the benchmark’s 2016 release (MOT16) [17].
This dataset includes a total of 1, 276 tracks within 14
recordings of up to 1, 000 frames, addressing major chal-
lenges in scene tracking such as varying conditions, view-
points, and a moving camera.

Compared to the MOT16 benchmark, honeybee
colonies contain a significantly higher number of indi-
viduals (∼ 1, 000 each), a number prohibitively large for
the comprehensive exploration of track association hy-
potheses. Individual bees are generally of the same size,
largely similar, and not available for recording in isola-
tion, which limits the usefulness of comprehensive ap-
pearance models [18]. The beehives also exhibit a varied,
uneven background composed of comb cells, brood, and
food, the viewpoint of the recordings is static, and object
classes are limited to two types of bee body postures.

Due to the difficulties of multi-object tracking, stud-
ies in biological systems often produce collective record-
ings under controlled laboratory conditions or with the
marking of individuals. Typical experimental conditions
involve plain 2D or 3D arenas with uniform illumination
and high foreground-background contrast [18, 19]. The
controlled aspect of these arrangements allows for accu-
rate object detection as well as extraction of comprehen-
sive appearance cues from large volumes of recordings of
each individual [18]. The marking of individuals with
unique barcodes has also been extensively used in the
study of social insects [2, 20, 21], but has important fea-
sibility limitations in large colonies with short generation
time spans. Both the laboratory conditions and marking
itself can also have an important effect on behavior, ne-
cessitating versatile methods for marker-less tracking of
groups of individuals in their natural environments. Such
methods would also create the opportunity for collective
tracking in systems that cannot be observed under con-
trolled conditions and that cannot be easily marked.

Data

We collected two video recordings from observation
beehives in two different locations and filmed with
cameras of resolution (5120 × 5120 pixels and 3860 ×
2160 pixels, respectively) at 30 fps (Fig. S1) for 5 min.
The images of the first recording were downsized by a
factor of two along both axes to reach a similar spa-
tial resolution of the second recording, in which a bee’s
largest dimension is ∼ 80 pixels. Images, a segmentation
tutorial and resulting tracked trajectories are available at
https://groups.oist.jp/bptu/honeybee-tracking-dataset.

Object detection

We followed and improved a previous segmentation ap-
proach for the efficient estimation of honeybee position
and orientation [4] by combining the orientation and po-
sition loss functions into one architecture and adding one
convolutional layer (Fig. S2). This modified network net-
work enables the simultaneous computation of both ob-
ject orientation and class.

We used two object classes corresponding to a fully
visible bee and an abdomen of a bee which is inside of a
comb cell. For the abdomen class, the orientation angle is
not defined and is set to 0. We retrained the modified ar-
chitecture on a previous dataset [4], downsized by a factor
of two on both axes to match the resolution of our video
recordings. We used ellipse-shaped segmentation labels
for marking fully visible bees and round-shaped for mark-
ing abdomens of bees inside comb cells. Both labels were
centered over reported bee central point position, ellipse-
shaped labels were additionally rotated to align with the
bee body axis. We resized the segmentation labels to
r1 = 6.7 pixels and r2 = 11.7 pixels for the semi-minor
and semi-major axes of the ellipse-shaped segmentation
label of a fully visible bee and r = 6.7 pixels radius for the
round-shaped segmentation label of bee abdomens inside
the comb cells (Fig. S3). This resizing produced more
precise position estimation and improved bee separation
in dense configurations. The segmentation output was
post-processed as described previously [4].

To improve the accuracy of the detection model, which
was trained on the original data [4], we retrained the net-
work on a small number of frames from our video record-
ings. We performed the labelling n an iterative manner,
where predictions of the detection model were first man-
ually corrected using a custom interface (Fig. S4), and
then used to retrain the detection model. In each itera-
tion, two frames of each recording spaced by 0.1 s were
corrected and the network was trained for 5 iterations
on image patches of 256 × 256 pixels covering the newly
labeled frames. In each iteration we noticed a decrease
by two of the time spent on labeling corrections of the
following two frames and we stopped the process when
no time gain remained, which happened when 32 frames
of each recording were labeled. The final network used
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FIG. 1: Reliable object detection is the foundation
of our dense tracking approach. (a, b) Example
detections from two recordings. Body centers and head-tail
orientation are marked with arrows, abdomens of bees inside
comb cells are marked with circles. (c) Average number of
detections per frame with vertical black lines denoting the
standard deviation. The low variation in the number of
detected objects is consistent with a constant and small false
positive rate of ∼ 0.06 [4].

for object detection was retrained for 30 iterations on the
newly labeled set of frames.

The training of the segmentation network and the de-
tection of bees were performed on image patches of size
256 × 256 pixels. Given the higher error rates of object
detection along the image boundaries [4], we overlapped
the patches by a margin of 25 pixels and results within
margins were discarded. Both recordings captured im-
ages at 30 fps and we used a segment of 5 min down-
sampled to 10 fps. Our segmentation procedure resulted
in 2, 756, 532 and 3, 840, 312 detections from recording 1
and 2, respectively with accuracy (after removing image
margins) of ∼ 0.06 false positive rate, an average position
error of 4.9 pixels and an orientation angle error of 9.7◦

(Fig. 1), thus providing a strong foundation for trajectory
reconstruction.

Constructing track fragments using
configuration-based matching

For each frame, the detection algorithm provides a list
of entries x, y, c, α, where x, y are object coordinates, c
is the object category (fully visible bee or an abdomen
only), and α is the orientation angle. We combine these
four features into a similarity measure Dij to identify
object detections across neighboring frames,

Dij = dij + w|ci − cj |+ w| sin(αi − αj)|+ |dxij |+ |dyij |,

where dij is the Euclidian distance between objects i and
j, w is a scaling factor of the class and angle differences
between the objects, and dxij

and dyij
are differences in

the motion vectors along the x and y axis in this matching
step compared to the previous one of the same objects i
and j. Since the orientation angle is based on the body
axis estimation [4], the angle component of Dij penalizes
deviations from axis orientation rather than the head-tail
orientation. We set the scaling factor w = 20.

Using Dij , objects in the following frames of each
recording were matched in an iterative manner, Fig. 2.
Starting from lowest values of D between two consecutive
video frames the respective objects were matched into a
track, until no pairs of objects with D < 50 remained.
Matching was done between following pairs of frames and
tracks for which no match was found over the last 10
frames were ended. Only tracks of length > 30 were kept
as shorter trajectories were considered as individual de-
tections. This greedy detection matching is reminiscent
of the Hungarian algorithm, however we do not search for
a complete matching as occlusions and detection errors
can lead to wrong associations. We only join detections
that are sufficiently close which ensures that the track
fragments are correct and thus leaving the task of ex-
panding these fragments to the appearance-based, pixel
personality matching described below.

FIG. 2: Object detections are joined into short track
fragments using a simple distance metric. We join the
nearest detections in pairs of consecutive video frames using
a distance measure composed of position, orientation angle,
object class and direction of movement. The joining
procedure results in short track fragments of varying lengths
as well as start and end points.

The matching procedure resulted in 8, 895 and 8, 565
track fragments in recordings 1 and 2, respectively. The
fragments have various lengths (Fig. S5) and span a to-
tal of ∼ 106 detections in each recording. Within the
first 30 s of the recording we searched for a frame with
the highest number of tracks with length > 100. These
tracks represented the initial track set that was extended
further as described in the next section. This set con-
tains 794 initial trajectories from recording 1 and 1, 115
in recording 2. We also note that 36 and 137 trajectories
respectively, spanning > 95% of frames, were considered
complete and not extended further.

Joining track fragments using appearance-based
matching

The track segments obtained using the matching cri-
teria defined above are fragmented due to imperfect de-
tections, occlusions, and irregular, sometimes rapid mo-
tion. To connect the fragmented tracks and individual
detections into trajectories spanning the entire recording,
we devised a matching approach exploiting appearance,
space, and temporal cues, as well as taking into account
the space occupancy of other tracked objects.
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FIG. 3: Overview of the track joining algorithm. (upper left) Initial track fragments from different individuals are used
as a training set for the object identity recognition network [22]. After the training loss function decreases below a predefined
value, we consider track extensions through the joining of fragments. For a given object we examine the video frame
immediately following the current end of the assembled trajectory and consider all detections within a predefined similarity
(bottom-left, dashed line) from the last point in the trajectory. Among these detections, some belong to trajectories of other
objects (yellow squares), some are part of a track and are not at the beginning of track (gray squares), some are part of a
track and are at the beginning of this track (blue squares), and some represent individual detections (single-frame fragments,
orange squares). For detections belonging to the latter two categories we use the Inception V3 network to predict detection
identity. If the predicted identity of any of the tested detections matches the given object (here, i3) this detection is added to
the trajectory. If the chosen detection is at the beginning of a track fragment, all detections belonging to this fragment are
added to the assembled trajectory. Finally, the network is retrained on the updated training set and the process repeats.

We captured cues to individual identity across vary-
ing visual appearances, an attribute we denote as pixel
personality, by using the object recognition network In-
ception V3 [22]. We also note previous approaches that
exploit subtle but consistent visual differences for multi-
animal tracking [18, 23]. The initial track segments de-
scribed above were used as a training set for learning
object identities. Images of individuals from each track
were cropped to the size 80× 80 pixels centered over the
detected positions of each individual. Only N occur-
rences from the latter part of the individual’s track were
incorporated into the training set. If a trajectory was
shorter than N , the occurrences were repeated until size
N was obtained. These individual instances were stored
in memory, preserving their order in the recording. We
also randomly sampled images of background from the
space in between the bee detections from different video
frames. We collected 104 background images and selected
N = 250 which allows for feasible processing time.

Starting with our assembled training set, including
background images and images from separate objects la-
beled as a distinct category, we iteratively performed
training and matching steps, Fig. 3. In the train step,
the network is trained until the loss decreases below a se-

lected value (L < 0.01). In addition, two data augmenta-
tion operations are randomly performed on the train set
– masking and flipping. Masking is aimed at reducing
the background influence on the object recognition and
consists of covering the image’s outer parts and leaving
only the center either square- or round-shaped (Fig. S6).
Flipping is performed along the x- and y-axes. The loss
function of background images is down-scaled by a factor
of 0.1 to compensate for their higher number compared
to other object categories.

After the network reaches a predefined loss L, the
matching step is performed. The object identities learned
by the network are used to find the most probable ob-
ject detections in the video frame following the frames
of the given object instances contained in the train set.
Specifically, for a given trajectory k that ends at frame
t at position p, we search for detections in the frame at
t + dt which fulfill the following criteria: (1) are not al-
ready assigned to another object, (2) are not part of a
track fragment or are within first 10 instances of a track
fragment, (3) are no further than a distance D

√
dt from

p, where D = 80 pixels is approximately the largest ob-
ject dimension size and dt is the difference (in frames)
between currently tested frame and the last frame of tra-
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Recording MT2↑ MT5↑ ML2↓ ML5↓ Det. err. ID swaps Occlusion Lost Assoc. MT2 Assoc. MT5

Rec. 1 0.74 0.46 0.01 0.12 0.03 0.19 0.10 0.17 981 10,681

Rec. 2 0.71 0.46 0.02 0.16 0.02 0.30 0.03 0.10 470 3,772

TABLE I: Summary results. The tracking quality metrics shown are: trajectories tracked for at least 1 min 40 sec
(MT2), for at least 4 min (MT5), for less than 10 sec (ML2), less than 30 sec (ML5). Within the trajectories not counted as
MT5 sources of errors were categorized as detection error (Det. err.), identity swap (ID swaps), occlusion (Occlusion), or
trajectory loss due to other reasons, for example, lack of detections or lack of detections recognized as the respective object
(Lost). Columns Assoc. MT2 and Assoc. MT5 list the number of track and detection associations performed using the
object recognition network described previously.

jectory k (Fig. 3). Detections fulfilling all three criteria
are cropped from the video frame and tested with the ob-
ject recognition network for their similarity to the object
in trajectory k.

From the set of tested detections, the one showing
the highest softmax score that is above a cutoff score of
s = 0.1 in the object category k is selected for extending
trajectory k. This detection is added to the trajectory
and the train set with label k. The earliest instances of
trajectory k are removed from the train set keeping the
number of instances of label k at the same number N .
If this detection belongs to a track fragment (recall that
the detection can be at most 10 frames from the start
of a track fragment), the entire track is added to the
train set with the label k and the same number of earlier
instances of this trajectory are removed from the train
set. If no tested detection shows a score above s or no
detection is found fulfilling the location and occupancy
criteria, trajectory k is not extended in frame t+ dt and
dt is increased by 1.

After the matching step, the iteration is repeated with
the updated train set. The trajectories that either have
been completed through matching or failed to be matched
over the last 50 iterations are removed from processing.
In training step we set the learning rate to 0.00005 and
used the Adam optimizer [24], to ensure gradual learn-
ing of the partially altered train set. The solution was
implemented in tensorflow and deployed on IBM power
system with four P100 GPU’s. The matching step was
computed in parallel on 160 cores of the computational
node with with train set modification, test set construc-
tion, and filtering of results performed by parallel process
pools, Fig. S7.

For both recordings, network training and detection
matching were first performed on half of the objects for
100 iterations, after which the procedure was done for an-
other 900 iterations on all objects whose trajectories were
yet unfinished. Reducing the number of tracked objects
allowed for faster training epochs in the initial 100 iter-
ations during which several trajectories were completed.
The total of 1000 iterations was completed during one
week using one computation node for each recording.

Results

To quantify the accuracy of our results in compara-
ble format, we adopted the metrics used in the MOT16
benchmark [17]. Importantly however, in the context of
a honeybee hive, ground truth detection of the trajecto-
ries would be prohibitively costly to obtain and thus we
omit Multiple Object Tracking Accuracy (MOTA) and
Multiple Object Tracking Precision (MOTP). Even so,
we provide other track quality measures which capture
the effectiveness of our solution.

We used two tracking quality measures of MOT16 –
mostly tracked (MT) and mostly lost (ML) track – that
we quantified over the first 2 min and the entire 5 min
of both recordings. According to MOT16, a target is
mostly tracked if it is successfully tracked for at least
80% of its life span. It is irrelevant for this measure
whether the identity remains the same throughout the
track. Mostly lost tracks are those only recovered for
less than 20% of the tested time span. Also, we did
not consider as track discontinuities temporary identity
changes after which the track comes back to its original
identity.

Trajectories counted as MT2 in Table I are those
tracked for at least 100 s, MT5 are those tracked for at
least 4 min, ML2 tracks are recovered for less than 10 s,
and ML5 for less than 30 s. Within the trajectories not
counted as MT5 we additionally assessed the sources of
errors as detection error, identity swap, occlusion, or tra-
jectory loss due to lack of detections that were recognized
as the respective object.

We found 74% and 71% of trajectories mostly tracked
over 2 min in recording 1 and 2, respectively. 46% of
trajectories were mostly tracked over the entire 5 min of
both recordings. Few trajectories were mostly lost with
12% and 16% classified as ML5 in recording 1 and 2,
respectively. Unsurprisingly, identity swaps among the
highly similar honeybees were the predominant cause of
tracking errors with 19% and 30% trajectories lost due to
identity swap in both recordings, respectively. Trajectory
loss is the second most frequent reason for tracking error.
This type of error might result from the inaccuracy of the
object recognition network, as well as from previous in-
correct associations of tracks that might have incorrectly
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FIG. 4: Tracking reveals a variety of movement dynamics within the hive. Darker colors represent example
trajectories of rapidly moving bees, while bright colors represent stationary bees.

assigned the given object’s track to another object in one
of the previous iterations of the track matching algorithm
leaving no possible detections to associate to this object’s
trajectory. Trajectory loss due to occlusions (10% and
3% trajectories, respectively) might be caused by a dra-
matic change in object’s visual cues, not captured in the
train set as the object was occluded, as well as, if the
occlusion lasts longer than 50 frames the trajectory was
stopped according to the algorithm design. Importantly,
only a very small number of trajectories (2−3%) were lost
due to detection errors, corroborating the high accuracy
of the object detection method.

The setting of this important biological system is sub-
stantially different than those considered in the MOT16
benchmark. The density of objects, number of object
classes, visual variability of the scene, length and size
of the recordings differentiate our study from the videos
included in the benchmark. Nevertheless, our results ac-
cording to the MT and ML measures (22% and 37%,
respectively in MOT16) are both promising and sub-
stantially improved. Similarly, we are currently lack-
ing ground truth detections to comprehensively estimate
MOTA and MOTP measures. However, the low per-
centage of trajectory loss due to detection errors suggest
that our detection accuracy is similar or better than the
benchmark results.

We also note that our solution addresses several impor-
tant challenges of tracking in dense environments such as
rapid, irregular motion (MovieS1), body posture changes
(MovieS2), temporary occlusions (MovieS3), or densely

packed environments (MovieS4). Also, 70% of objects
tracked over the first 2 min and 46% of objects tracked
over 5 min represent a signficant proportion of the densely
packed comb (MovieS5 and MovieS6).

Currently limited to 5 min, our solution can
be straightforwardly parallelized across computational
nodes and time segments, thus allowing for longer term
tracking. Even within 5 min, essential behavioral dynam-
ics can be observed (Fig. 4, S8, S9) enabling the quanti-
tative analysis of collective properties of a naturally be-
having honeybee colony at a single-organism resolution.
The capability to track without tags also facilitates the
analysis of collective replicates and is relevant in systems
where population fluctuations are important such as di-
viding cells. While we developed our tracking solution in
the biologically-relevant and interesting system of a hon-
eybee hive, we expect our method to easily generalize to
other contexts.
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N. E. Pierce, S. A. Combes, and B. L. de Bivort, Science
362, 683 (2018).

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2019. ; https://doi.org/10.1101/549006doi: bioRxiv preprint 

https://groups.oist.jp/bptu/honeybee-tracking-dataset
https://doi.org/10.1101/549006
http://creativecommons.org/licenses/by/4.0/


7

[2] D. P. Mersch, A. Crespi, and L. Keller, Science 340,
1090 (2013).

[3] T. D. Seeley, The Wisdom of the Hive: the social phys-
iology of honey bee colonies (Harvard University Press,
2009).

[4] K. Bozek, L. Hebert, A. S. Mikheyev, and G. J.
Stephens, in Computer Vision and Pattern Recognition
(CVPR), 2017 IEEE (2017).

[5] L. Kratz and K. Nishino, in Computer Vision and Pat-
tern Recognition (CVPR), 2010 IEEE Conference on
(ieeexplore.ieee.org, 2010) pp. 693–700.

[6] I. Ali and M. N. Dailey, in Advanced Concepts for Intel-
ligent Vision Systems, Lecture Notes in Computer Sci-
ence, edited by J. Blanc-Talon, W. Philips, D. Popescu,
and P. Scheunders (Springer Berlin Heidelberg, 2009) pp.
540–549.

[7] W. Ge, R. T. Collins, and R. B. Ruback, IEEE Trans.
Pattern Anal. Mach. Intell. 34, 1003 (2012).

[8] M. Rodriguez, J. Sivic, I. Laptev, and J. Y. Audibert,
in 2011 International Conference on Computer Vision
(2011) pp. 1235–1242.

[9] R. Henschel, L. Leal-Taixé, B. Rosenhahn, and
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Supplementary Material

FIG. S1: Example frames from recording 1 (upper image) and 2 (lower image).
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9

FIG. S2: UNet architecture used for object detection. The network was reduced to ∼ 6% of the parameters compared
to the original UNet [25]. A temporal component was added (pink box) to incorporate information from the previous video
frame as a prior to improve the prediction of object positions in the following frame. An additional convolutional layer was
added before the final two loss function layers – softmax for class prediction and angle loss function as proposed in [4].

FIG. S3: Example labels and images used for object detection. The Image size was 256× 256 pixels, segmentation
labels indicate object class (left panel) and orientation angle (right panel, angle color code indicated in the inserted circle).
Segmentation labels are sized to r1 = 6.7 pixels and r2 = 11.7 pixels for the semi-minor and semi-major axes of the
ellipse-shaped label and r = 6.7 pixels radius for the round-shaped label.
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FIG. S4: Labeling interface. The interface was implemented in JavaScript. Labeling was done through dragging and
dropping the yellow arrow and orange round symbols on the labelled image. The round end of the arrow allows for rotating it
to align with the bee body axis. The entire video frame is labeled by scrolling with the use of square shaped zoom in the left
image. An editable list of all annotations is displayed in the right panel.
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FIG. S5: Distributions of track fragment lengths. The Distributions of the lengths of track fragments obtained
through position matching are shown for recording 1 (upper panels) and 2 (bottom panels). All tracks are included in the
panels on the left, right-side panels show lengths of track fragments in the initial train set before the start of the track
matching algorithm. Recording 2 contains a larger number of individuals with slower movement which resulted in a longer
average track length compared to recording 1.
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FIG. S6: Augmentation operations. All possible combinations of augmentation operations are shown on an example
image (upper left image). These operations include flipping along 2 axes and round- or square-shaped masking of the outer
parts of the image.

FIG. S7: Training and tracking loop implementation. Four process pools (blue boxes) are used for preparing images
for the train and test and for processing of the network predictions. Queues (orange boxes) are used for process
synchronization, images in the train and test sets are placed in shared data structures (green boxes).
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FIG. S8: The reconstructed trajectories of 4 min and longer in recording 1 (upper plot) and 2 (bottom plot).

FIG. S9: Example trajectories of objects with different movement dynamics. Analogous to Fig. 4, examples of
fast moving and stationary object trajectories from recording 2 are shown in dark and bright colors, respectively.
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