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Abstract

Expression quantitative trait loci (eQTL) studies are used to interpret the function of
disease-associated genetic risk factors. To date, most eQTL analyses have been
conducted in bulk tissues, such as whole blood and tissue biopsies, which are likely
to mask the cell type context of the eQTL regulatory effects. Although this context
can be investigated by generating transcriptional profiles from purified cell
subpopulations, the current methods are labor-intensive and expensive. Here we
introduce a new method, Decon2, a statistical framework for estimating cell
proportions using expression profiles from bulk blood samples (Decon-cell) and
consecutive deconvolution of cell type eQTLs (Decon-eQTL). The estimated cell
proportions from Decon-cell agree with experimental measurements across cohorts
(R =0.77). Using Decon-cell we can predict the proportions of 34 circulating cell
types for 3,194 samples from a population-based cohort. Next we identified 16,362
whole blood eQTLs and assign them to a cell type with Decon-eQTL using the
predicted cell proportions from Decon-cell. Deconvoluted eQTLs show excellent
allelic directional concordance with those of eQTL(= 96%) and chromatin mark QTL
(=87%) studies that used either purified cell subpopulations or single-cell RNA-seq.
Our new method provides a way to assign cell type effects to eQTLs from bulk blood,
which is useful in pinpointing the most relevant cell type for a certain complex
disease. DeconZ2 is available as an R package and Java application
(https://github.com/molgenis/systemsgenetics/tree/master/Decon2), and as a web

tool (www.molgenis.org/deconvolution).
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Introduction

For many of the genetic risk factors that have been associated to immune diseases by
genome-wide association studies (GWAS), the molecular mechanism leading to disease
remains unknown'. Most of these genetic risk variants are located in the non-coding regions
of the genome, implying that they play a role in gene regulation®*. Expression quantitative
trait locus (eQTL) analysis provides a way to characterize the regulatory effect of these risk
factors in humans, and many eQTL studies have now been carried out using bulk tissues, for
example, whole blood*®. However, bulk tissues comprise many different cell types, and gene
regulation is known to vary across cell types®®. In recent years, efforts to describe eQTL
effects in purified cell subpopulations have been carried out in specific cell types®.
Unfortunately, the length and cost of the study protocols have limited these studies to small
sample sizes and only a few cell types. Nevertheless, being able to pinpoint the particular
cell type (CT) in which a risk factor exerts an eQTL effect could help us to understand its role

in disease.

Statistical approaches to detect CT effects using tissue expression profiles have mainly been
developed to evaluate gene by environment interaction (GxE) terms, for example, being able
to detect CT eQTLs for myeloid and lymphoid lineages using only whole blood gene
expression and by evaluating the interaction between genotype and cell proportions for
neutrophils and lymphocytes in whole blood™. A second study linked eQTL genes to proxy
genes through correlation; these proxy genes were then associated to intrinsic or extrinsic
factors, such as cell proportions or inflammation markers''. However, these efforts focused

on exploiting only one GxE term, or on indirectly linking the CT proportions to given eQTL
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instead of directly ascertaining the interaction between all the main cell proportions
comprising the bulk tissue and genotype. Unfortunately, quantifying cell proportions, in
particular for rare subpopulations (total abundance of < 3% in circulating white blood cells), is
expensive and time-consuming. Hence, quantifying immune cell proportions in large

functional genomics cohorts is not common practice.

Here we present and validate Decon2, a computational and statistical framework that can:
(1) predict the proportions of known circulating immune cell subpopulations (Decon-cell), and
(2) use these predicted proportions along with whole blood gene expression and genotype
information to assign bulk eQTL effects into CT eQTLs (Decon-eQTL). Our two-step
framework provides an improvement over previously published methods. As unlike earlier
methods'?, Decon-cell does not rely on any prior information of transcriptome profiles from
purified cell subpopulations, as it only requires the proportions of the cells comprising the
bulk tissue, in this case whole blood, and identifies signature genes which correlate with cell
proportions in a bulk tissue. Secondly, Decon-eQTL is the first approach in which all major
cell proportions (the major cell types for which the sum of proportions per sample to
approximately 100%) of bulk blood tissue are incorporated into an eQTL model
simultaneously. This can then be systematically tested for any significant interaction
between each CT and genotype, while at the same time the effect of the other CTs are

modelled.

We generated the Decon-cell predictive models using data from the 500FG cohort', where
quantification of immune cell types was carried out using FACS' and RNA-Seq based bulk
whole blood transcriptome profiling were available for 89 samples'®. By using a
cross-validation approach we were able to accurately predict 34 out of 73 cell subtypes

using solely whole blood gene expression. For validation, we applied Decon-cell to three
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independent cohorts (Lifelines Deep'®, n = 627, Leiden Longevity cohort'’, n= 660 and the
Rotterdam Study'®, n= 773) with both blood RNA-seq and measured cell proportion data
available (neutrophils, lymphocytes and CD14+ monocytes and granulocytes). Additionally,
we benchmarked Decon-cell prediction performance against two other existing methods that
quantify immune cell composition using gene expression profiles from whole blood. After
showing that we can accurately predict circulating immune cell proportions, we applied
Decon-cell to estimate cell proportions in 3,194 individuals from the BIOS cohort'®'%? in
which both whole blood RNA-seq and genotypes were available. The BIOS cohort is a
valuable resource for functional genomics studies where extensive characterization of the
genetic component on gene expression "' and epigenetics % have been performed. We
integrated whole blood expression, genotype information and predicted cell proportion with
Decon-eQTL, to deconvolute 16,362 significant whole blood cis-eQTLs top effects into CT
eQTLs. These deconvoluted eQTL results were comprehensively validated using
transcriptome profiles from purified cell subpopulations®, eQTLs and chromatin mark QTLs
from purified cell types®, and eQTLs from single-cell experiments®. We also systematically
compared the performance of Decon-eQTL against previously published methods'®"" that

detect cell type eQTL effects using whole blood expression profiles.

Results

Decon-cell accurately predicts the proportions of known immune cell types

In order to assign the CT in which an overall eQTL effect from a bulk tissue sample (e.g.

whole blood), we need three types of information: genotype data, tissue expression data,
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and cell type proportions (Fig. 1). Here, we propose a computational method for predicting
the cell proportions of known immune cell types using gene signatures in whole blood
expression data by employing a machine-learning approach. Decon-cell employs the
regularized regression method elastic net® to define sets of signature genes for each cell
type. In other words, these signatures were selected as having the best prediction power for

individual cell proportions.

There are 89 samples in 500FG cohort with both whole blood RNA-seq and quantification of
73 immune cell subpopulations by FACS available. This data was used to build the
prediction models for estimating cell subpopulations by Decon-cell. First we determined
which of the 73 cell subpopulations could be reliably predicted by Decon-cell. A within-cohort
cross-validation strategy was employed by randomly dividing 89 samples (Fig. 1) into
training and test sets (70% and 30% of the samples, respectively ). After generating a model
using each training set, we applied the prediction models of each cell type to the samples in
the test sets. We compared the predicted and measured cell proportion for each cell type
using Spearman correlation coefficients to evaluate the prediction performance. We
repeated this process 100 times and then used the mean correlation coefficient in all 100
iterations to evaluate the prediction performance. We were able to predict 34 out of 73 cell
subpopulations using whole blood gene expression data at a threshold of mean absolute R =
0.5 across all 100 iterations (Fig. 2A, Supplementary Fig.1 , Supplementary Table 1). The
number of signature genes selected in the models for predicting cell proportions varied
across the cell types, ranging from 2 to 217 signature genes (Supplementary Fig. 2A,
Supplementary Table 1); and it was independent of the average abundance of these cell
types in whole blood (R = 0.02, Spearman correlation coefficient, Supplementary Fig.2A). In
particular, cell types that are abundant in whole blood (granulocytes-neutrophils, CD4+

T-cells, CD14+ monocytes) were predicted with high confidence (correlation between
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predicted and measured values, R = 0.73). Remarkably, we were also able to predict a
number of less abundant cell subpopulations, including NK cells, CD8+ T-cells, non-NK
T-cells (CD3- CD56-) including CD4+ central memory and CD4+ effector memory T-cells,
and regulatory T-cells (Supplementary Fig. 2A) as determined by FACS. Cell types with a
low prediction performance (R < 0.5) are those that have few signature genes whose
expression levels correlate sufficiently (i.e. absolute R < 0.3) with the actual cell proportions
in whole blood (Supplementary Fig. 2B-C). For each of the 34 predictable cell types, we
used Decon-cell to build models for predicting their cell counts using all 89 samples from the
500FG cohort. These models were applied to 3,194 samples in an independent cohort, to
predict cell proportions of circulating immune cell types for the subsequent deconvolution of

eQTL effect.

In addition to within-cohort validation, we tested our cell proportion models using three
independent cohorts (LLDeep, n = 627, LLS, n= 660, RS, n =773), for which cell type
abundances were quantified using a Coulter counter for neutrophils (granulocytes for RS),
lymphocytes, and CD14+ monocytes (Fig. 2B, Supplementary Fig. 3A-B). In LLDeep we
were able to accurately predict these three cell types with Spearman correlation coefficients
of R=0.73, R=0.89, and R = 0.73, respectively. For LLS and RS the prediction
performance was also accurate for neutrophils and lymphocytes, but less accurate for
monocytes (R= 0.76 for neutrophils, R= 0.50 for CD14+ monocytes and R= 0.84 for
lymphocyte proportions in LLS, R= 0.74 for granulocytes, R= 0.28 for CD14+ monocytes and

R=0.83 for lymphocytes in RS).

Next, in order to benchmark Decon-cell we have compared its prediction performance
against two other existing tools that quantify the abundance of known immune cell types

using bulk whole blood expression profiles: CIBERSORT? and xCell'>. We obtained the
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predicted proportions by CIBERSORT and enrichment scores of circulating immune cells by
xCell for the samples in three different cohorts: LLDeep, LLS and RS (Supplementary Fig.
4A-B). For each cell type, Decon-cell outperforms CIBERSORT and xCell (Supplementary
Fig. 3B). The scatterplots of predicted vs measured values (Supplementary Fig. 3 A, and
Supplementary Fig. 4 A-B) further demonstrate that the better performance of Decon-cell is

not due to cell proportion outliers.

Finally, we evaluated whether the signature genes showed CT expression in their relevant
purified cell types, using the BLUEPRINT?® RNA-seq data from the purified cell
subpopulations. We focused on cell types with more than three samples measured, these
included neutrophils, CD14+ monocytes, CD4+ T-cells and B-cells. The signature genes
showed overall higher expression in their relevant cell subpopulations compared to other cell
subpopulations. Interestingly, the signature genes were also able to cluster the samples of
the relevant CT using unsupervised hierarchical clustering (Supplementary Fig. 5A-D).
Together, our results demonstrated that the gene signatures identified by Decon-cell were
predictive for the proportions of circulating immune cell subpopulations using only whole

blood gene expression data.

To facilitate the cell proportion prediction of new samples using whole blood RNA-seq, we
have made the Decon-cell prediction models and gene signatures available in an R package
(Decon-cell) and as a web tool (www.molgenis.org/deconvolution). These two
implementations allow the user to pre-process their RNA-seq expression counts and
estimate cell proportions using the pre-established models for 34 cell types in whole blood.
Decon-cell R package also allows the user to input bulk expression profiles and cell

proportions to generate predictive models for new tissues.
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Decon-eQTL assigns bulk eQTLs to cell types eQTL effects

As we know, eQTL analysis using whole blood bulk expression data fails to distinguish
between a general eQTL that is present in all cells and an effect that is mainly found in a
particular cell subpopulation, or subset of one, significantly more than the others present in
the tissue. We therefore propose a new approach to assign the overall bulk eQTL into CT
effects, called Decon-eQTL (see Online Methods). By using the cell proportions in whole
blood, is possible to formally test if the genetic effect is dependent on cell proportions. More
explicitly, we include both the genotype and all CT proportions of interest in a linear model
and systematically test if there is a significant interaction effect between the genotype and
each of the predicted cell proportions in the variation of gene expression in whole blood. At
the same time we control the effect of the remaining CTs. In this way, whole blood
expression data, alongside genotypes and (predicted) cell proportions can be integrated to

assign a CT effect from a bulk eQTL(Fig. 1).

We applied Decon-eQTL to 3,198 samples (BIOS cohort) with transcriptome levels
(RNA-seq), genotype information and cell proportions predicted by Decon-cell. Whole blood
cis-eQTL mapping yielded 16,362 whole blood eQTLs (false discovery rate (FDR) < 0.05).
For each of these whole blood cis-eQTLs, we applied Decon-eQTL with a focus on 6 major
cell subpopulations: granulocytes, CD14+ monocytes, CD4+ T-cells, CD8+ T-cells, B-cells
and NK cells. These cell types were selected as the sum of their relative percentages was
close to 100% and none of these cell type pairs had an absolute correlation coefficient R =
0.75. Decon-eQTL computationally assigned 4,139 CT eQTLs from these subpopulations,
reflecting 3,812 genes and 3,650 SNPs. We observed that 25% of the whole blood eQTLs
have a significant (FDR < 0.05) CT eQTL effect given Decon-eQTL. The majority (31%) of

the total CT-eQTL effects detected were found to be associated to granulocyte, possibly
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because granulocytes comprise ~70% of circulating white blood cells (Fig. 3A). We also
observed that the majority (74%) of CT eQTLs detected by our method were assigned to a
single cell type. It should be noted that these eQTL are likely not exclusively present for this
particular cell type in biology, but that the statistical power was sufficient to detect CT eQTL
in this particular cell type (Supplementary Fig. 6). We found sharing of eQTLs for between
cell types only in few cases. An example of such shared eQTLs is on NOD2 gene, where
Decon-eQTL was able to detect a strong granulocyte-eQTL effect alongside a smaller,
opposite effect in CD14+ monocytes. This opposite effect has also been previously
described in eQTL studies on purified CD14+ monocytes and neutrophils®. These results
demonstrate that cell type effects should be taken into account when interpreting eQTLs

derived from bulk tissues.

Decon-eQTL prioritizes genes to relevant cell types

To further validate our deconvoluted CT eQTLs, we systematically tested if the expression
levels of the CT eQTL genes detected in the BIOS cohort were correlated with their relevant
cell proportions. We calculated the Spearman correlation coefficients between the
expression of the identified CT eQTL genes and the measured cell proportions using the
500FG cohort (n = 89). Next, we compared the correlation coefficients obtained with those
between expression and the remaining cell proportions. For each of the six evaluated cell
subpopulations in Decon-eQTL, CT eQTL genes had a significantly higher correlation with
their relevant cell subpopulation than the other cell types (T test, p-value < 0.05) (Fig. 3B).
As such, this result validates the association of the CT-eQTL genes and the cell proportions

in an independent cohort.
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Next, we evaluated whether the significant CT eQTL genes were over-expressed in their
relevant cell subpopulation compared to eQTL genes that were found to be non-significant
for the same cell type. For this purpose, we made use of the purified neutrophil, CD14+
monocyte, CD4+ T-cell and B-cell RNA-seq data from the BLUEPRINT dataset. We only
include these cell types as they were the only ones with more than 3 samples measured. For
each of the four cell types, we observed that the expression of CT eQTL genes detected by
Decon-eQTL was significantly higher (T-test, p-value < 0.05) compared to the expression of
non-significant Decon-eQTL genes (Fig. 4A). We also observed that the deconvoluted eQTL
genes from granulocytes showed a relatively wider range of variation than the CT-eQTL
genes from the other three subpopulations. We hypothesized that this could be explained by
the fact that granulocytes comprise ~70% of the cell composition in whole blood, thus giving
us the power to detect eQTL for lowly-expressed genes in granulocytes. This was partly
supported by the observation that the variation of expression in whole blood for granulocyte
eQTL genes was significantly greater than those eQTL genes deconvoluted to the other five

cell subpopulations (F test, p-value < 0.05, Supplementary Fig. 7).

Furthermore, by using a publicly available transcriptome profiles (GSE78840%) of purified NK
cells and CD4+ T cells, we assessed if the differentially expressed genes across the two cell
types were enriched for eGenes of deconvoluted CT eQTLs. We observed that the CD4+
differentially expressed genes (Adjusted P-value < 0.05) were significantly enriched for
CD4+ T cell eQTLs (Fisher exact P = 1.8x10™""), whereas NK cell differential genes (Adjusted
P-value < 0.05) were significantly enriched for NK cell eQTLs (Fisher exact P = 2.3x107®) as

shown in Fig.4B.
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In summary, we were able to show that the eQTL genes detected by Decon-eQTL have a
relevant cell-type effect given we have been able to show that transcriptionally active in their

relevant cell type

CT eQTLs identified by Decon-eQTL in whole blood are replicated in purified
cell eQTL datasets

In order to validate the CT eQTLs defined by decon-eQTL, we utilized the eQTLs identified
from purified neutrophils, CD4+ T-cells and CD14+ monocytes®. We first compared the
absolute effect sizes from purified cells between significantly deconvoluted CT eQTLs, with
non-significant deconvoluted CT eQTLs for this CT. For all three cell populations, effect
sizes in our deconvoluted CT eQTLs were significantly higher compared to the effect size of
eQTLs without a significant CT eQTL (Wilcoxon test, p-value < 0.05, Fig. 4C). Next, we
assessed the specificity of our deconvoluted CT eQTLs by evaluating CT-eQTL effect sizes
in non-relevant cell subpopulations. For example, we compared the effect sizes of
deconvoluted granulocyte eQTLs against those with non-significant deconvoluted
granulocyte eQTLs using the effect sizes of purified CD4+ T-cell eQTLs. Notably, we
observed no statistically significant differences using effect sizes from non-relevant cell
subpopulations (see off-diagonal comparisons in Supplementary Fig. 8), further supporting
the biological significance of our deconvoluted CT eQTLs.

To further demonstrate that the cell type eQTLs assigned by Decon-eQTL are biologically
relevant, we have made use of the K27AC and K4AME1 epigenetic QTLs characterized using
purified neutrophils, CD4+ T-cells and monocytes CD14+°. In a similar fashion as the above
comparison of effect sizes with purified eQTLs, we compared the absolute effect sizes from
both K27AC and K4AME1 QTLs from eQTLs for which Decon-eQTL detects a CT effect

against the rest of whole blood eQTLs. We observed that for corresponding cell types, e.g.
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evaluating granulocyte CT eQTLs in K27AC QTLs from purified Neutrophils, the distribution
of the absolute effect sizes is significantly higher for the chromatin mark QTLs (cmQTLs)
than those non-significant CT eQTLs, which provide an epigenetic evidence that our method
is able to assign correctly the cell type eQTL effects, as shown in the diagonal comparisons
in both K27AC QTLS (Supplementary Fig.9) and for KAME1 QTLs (Supplementary Fig.10).
Notably, we observed that for the non-relevant cell subpopulations only one comparison, i.e.
granulocytes v.s. CD14+ monocytes, show a statistically significant higher effect sizes for
K27AC QTLs and K4AME1 QTLs, although the difference in effect sizes is less pronounced
as the ones observed with corresponding cell types. For the rest of the non-relevant
comparisons in the off-diagonal of both Supplementary Fig.9 and Supplementary Fig.10,
there are no statistically significant differences.

In addition to the comparison of effect sizes, we ascertained the allelic concordance between
deconvoluted eQTLs and eQTLs from purified cell subtypes®. For each available CT
(neutrophils, CD14+ monocytes, and CD4+ T cells), we evaluated whether the direction of
the eQTL effect on deconvoluted CT eQTLs was the same as the one observed from purified
cell subpopulations. Remarkably, the allelic concordance between the deconvoluted eQTLs
and purified eQTLs was high across cell types: 99% for granulocyte eQTLs (compared to
neutrophil eQTLs), 96% for CD14+ monocytes eQTLs, and 99% for CD4+ T cells (Fig. 5A).
These rates of allelic concordance are significantly higher for deconvoluted granulocyte and
CD4+ T-cell eQTLs compared to the those between whole blood eQTLs and eQTLs from
purified cell subpopulations (Fig. 5B, Neutrophils, Fisher exact p-value = 3.91x10°, CD4+ T
cells Fisher exact p-value = 0.005), whereas the allelic concordance for deconvoluted
CD14+ monocyte eQTLs is the same as for whole blood eQTLs and purified CD14+
monocyte eQTLs (Fig. 5B). We also compared the allelic concordance of deconvoluted
CT-eQTLs of a certain cell type against the eQTLs of non-relevant purified subpopulations.

Interestingly, the allelic concordance across non-relevant cell subtypes is consistently lower
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(off-diagonal Supplementary Fig.11). The higher allelic concordance across CTs was seen
between deconvoluted granulocyte eQTLs and CD14+ monocyte eQTLs with a 95% allelic
concordance, which shows that the direction of effect is often shared between related cell
types.

Finally, we evaluated the allelic concordance rates for CT eQTLs assigned by Decon-eQTL
and K27AC QTLs from purified cell subpopulations, where we observed a consistently high
allelic concordance rate: 92% for granulocyte eQTLs (in purified Neutrophils), 87% for
CD14+ monocytes and 92% for CD4+ T cells (boxed diagonal comparisons in
Supplementary Fig. 12). These concordance rates are significantly higher than the ones
between the whole blood eQTLs and K27AC QTLs from purified cell subpopulations
(Supplementary Fig 13) for neutrophils (Fisher exact test p-value = 9.06x107*), CD14+
monocytes (Fisher exact test p-value = 3.33x10*), C4+ T cells (Fisher exact test p-value =
8.64x10°). Remarkably we also notice a consistent decrease on concordance rates when
assessing the allelic concordance of CT eQTLs in K27AC QTLs of non-relevant cell
subpopulations (off-diagonal compasons, Supplementary Fig. 12). Together, the results from
allelic concordance rates between deconvoluted CT eQTLs and eQTLs/K27AC QTLs from
purified cell subpopulations add a further layer of evidence supporting the biological

relevance of deconvoluted CT eQTLs.

CT eQTLs identified by Decon-eQTL in whole blood show allelic concordance
with single-cell RNA-seq eQTLs

To replicate the deconvoluted CT eQTLs in the cell subtypes that were not available in Chen
et al®. purified cell eQTLs, we utilized the recent single-cell RNA-seq eQTLs (sc-eQTLs)
identified in CD14+ monocytes, NK cells, CD4+ T-cells, CD8+ T-cells, and B-cells?*. We

selected the top SNP per sc-eQTL pair for each of the cell types and compared it to the
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direction of the eQTL effect given by Decon-eQTL. Overall we observed an allelic
concordance of 98% (Fig. 5C and Supplementary Table 3). This allelic concordance is
higher than the one achieved on comparing the direction of whole blood eQTL effects with
sc-eQTLs, where we observed an allelic concordance of 89% (Supplementary Fig. 14).
Although the difference is not statistically significant (Fisher exact p-value = 0.1102), we
expect that replication can be achieved for more rare cell types when single cell eQTL

datasets with a larger sample size become available.

Decon-QTL outperforms earlier methods

To our knowledge, our approach is the first to model the effect of multiple components of
bulk blood RNA-seq to deconvolute cell type effects. Previous studies used an interaction
effect between genotype and cell proportions of one specific cell type to detect the cell type
eQTLs effects using whole blood gene expression'®'!, or used the correlation of the eQTL

effect with cell type proxy genes'®'".

The Westra et al method has often been used to detect cell type eQTL effects using bulk
expression data and cell proportions?®=". In brief, it focuses on the effect of the GxE
interaction (where E represents cell proportions) for explaining the variation in gene
expression, and it only incorporates one cell type at each time. To properly compare
Decon-eQTL with the Westra et al method, coined here ‘Westra method’, both methods were
applied to the BIOS cohort, where we detected CT eQTLs for the six cell subpopulations.
Replication of CT eQTLs from Westra method was done in the same way as described
above for Decon-eQTL. We observed that the eGenes (i.e. genes with eQTLs) detected by
the Westra method are significantly higher expressed for granulocytes (observed in purified

neutrophils), CD4+ T cells and B cells, but not for CD14+ monocytes (Supplementary Fig.

14


https://paperpile.com/c/dHNHmX/9u8pY+5GLQy
https://paperpile.com/c/dHNHmX/9u8pY+5GLQy
https://paperpile.com/c/dHNHmX/dP656+vTLNS+JLiBQ+KyKg4
https://doi.org/10.1101/548669
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548669; this version posted February 19, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

15A). Next, we found that the distribution of effect sizes in eQTLs from purified cells is
significantly higher for the CT eQTLs detected using the Westra et al method when
compared to the rest of the whole blood eQTLs (boxed-diagonal comparisons in
Supplementary Fig. 15B), showing similar results as the ones from Decon-eQTL. However,
their performance differentiates when comparing effect sizes of eQTLs of non-relevant cell
subpopulations (off diagonal comparisons in Supplementary Fig. 16), where the Westra
method shows less CT specificity, mainly across neutrophils and CD14+ monocytes, as
observed by a significant difference (Wilcoxon test p-value = 4x10°, Fig S15B), whereas
from Decon-eQTL this comparison yields a non significant difference (Wilcoxon test p-value
= 5.2x10). This difference in effect sizes by the Westra method in non-relevant cell
subpopulations is also observed for eQTLs detected in CD14+ monocytes by the Westra
method when compared to CD4+ T cell effect sizes. These results suggest that the results

obtained with the Westra method are not as specific as the ones detected by Decon-eQTL.

When comparing the allelic concordance rates between the direction of effects given by the
interaction term from the Westra method and those found in eQTLs from purified cell
subpopulations, we observed that the allelic concordance for granulocytes eQTLs, 99%,
(evaluated in neutrophils) and for CD4+ T cells, 100% (Supplementary Fig.16) is comparable
as to those observed for Decon-eQTL (Fig.4A). Conversely, the allelic concordance rate for
the CD14+ monocytes is only 28%, much lower than the results from Decon-eQTL(96%).
Finally, for granulocytes, CD4+ T cell eQTLs and monocytes, we have overlapped the the
results from Westra method and Decon-eQTL with the eQTLs from purified cell types (Chen
et al) (Supplementary Fig. 17). For all three cell types, we found that Decon-eQTL is able to

detect a larger number of eQTLs, with a similar replication rate as the Westra method.
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The Zhernakova et al method'" uses modules of co-expressed genes from whole blood
RNA-seq data to ascertain the effect on context/CT dependent eQTLs. We compared our
Decon eQTL results with those from the Zhernakova method for neutrophils, CD4+ and
CD8+ T-cells, CD14+ monocytes, and B-cells. The reported Z-scores for bulk whole blood
eQTLs identified by Zhernakova et al were used to infer the allelic direction for each
available CT. Again, we compared the direction of the eQTL effect with that of the purified
neutrophils, CD4+ T-cell and CD14+ monocyte eQTLs®. Zhernakova et al. detected fewer
CT eQTLs effects compared to Decon-eQTL(Fig. 3A for Decon-eQTL, Supplementary Fig.
18A). Although the eQTLs from the neutrophil module showed 100% concordance with the
purified neutrophils, slightly outperforming Decon-eQTL (99% allelic concordance)
(Supplementary Fig. 18B), the concordance rate for the other two cell types (80% for CD14+
monocytes module and 95% for CD4+ module) are lower than those from Decon-eQTL (96%
and 99% respectively). Overall, these results demonstrate that Decon-eQTL is able to detect
more CT eQTLs that can be replicated in purifiec eQTL dataset that previously reported
methods, specially in not so abundant cell types such as CD14+ monocytes. However, the
detection of interaction effects between genotype and cell proportions to dissect bulk (in this
case whole blood) expression data and define cell type eQTLs remains an area of
opportunity that could still be explored by the increase number of samples present in
functional genomic cohorts and the greater number of purified eQTL dataset that can be

used for validation.

Discussion

We have developed a novel statistical framework, Decon2, which predicts the proportions of
known cell subtypes using gene expression levels from bulk blood tissue (Decon-cell).
Subsequently, these predicted cell proportions, together with genotype information and

expression data, can be used to deconvolute a bulk eQTL effect into cell-type effects
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(Decon-eQTL). Using a set of samples with both whole blood RNA-seq data and cell
frequencies of 73 cell subpopulations, we demonstrated that Decon-cell was able to predict
34 independent cell subpopulations. The performance of Deocn-cell has been extensively
validated by using multiple independent cohorts and compared with existing methods. The
obtained Decon-cell models were applied to a cohort of 3,189 samples with whole blood
RNA-seq available, resulting in predicted cell counts for these samples. By integrating bulk
expression data, genotype and predicted cell counts of BIOS cohort, Decon-eQTL was able
to dissect whole blood eQTL effect into CT eQTLs without purifying immune cell
subpopulations. Again the results of Decon-eQTL were validated by using several
independent data types: 1) eQTLs from purified eQTL dataset, 2) chromatin QTLs purified
eQTL dataset 3) gene expression from purified cell types. Compared with existing methods,
Decon-eQTL consistently show superior performance. To sum up, the proposed framework
is useful for analyze/re-analyzing both existing and new bulk bloodtissue datasets to detect
cell-type eQTL effects, and can be applied and tested on other tissues once cell count
proportions become available. This will improve our understanding of the functional role of

SNPs associated to complex diseases, at the level of specific cell subtypes.

The main advantage of our method for predicting cell proportions by Decon-cell is that it
does not rely on the gene expression measured in purified cell subtypes when defining
signature gene sets. Moreover, our method does not require the definition of marker genes
based on their differential expression compared to other cell subpopulations unlike
previously reported methods'. The signature genes defined by Decon-cell are determined
by a completely unsupervised approach using a regularized regression to select an optimal
combination of genes to accurately predict a certain circulating cell proportion. Although the
majority of these marker genes are differentially expressed across purified cell

subpopulations, not all of them are. Nevertheless, these signature gene sets are still
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correlated to the cell proportions in whole blood. In summary, have shown that Decon-cell is
able to accurately predict the proportions of circulating immune cell subpopulations in three
independent cohorts and that within these cohorts it out-performs previously reported

methods.

Our Decon-eQTL method for detecting an CT eQTL effect with bulk blood tissue expression
data is, to our knowledge, the first attempt to simultaneously model bulk blood gene gene
expression profiles into its major components. In contrast to a previous method, where single
cell type (G x E) effects were evaluated one at a time'®*!, Decon-eQTL incorporates all the
major cell proportions simultaneously to better dissect the overall genetic effect of gene
expression signal into cell subpopulations. We have validated our Decon-eQTL results by
using eQTLs from purified neutrophils, CD14+ monocytes and CD4+ T-cells. Furthermore,
we have shown that the eQTLs detected by Decon-eQTL have significantly higher effect
sizes, specifically in the relevant cell subpopulations and they show an allelic concordance of
at least 96%. Moreover, we have also shown the biological relevance of the deconvoluted
CT eQTLs by validating our results on cmQTLs where CT eQTLs have significantly higher
effect sizes and its allelic concordance rates are significantly higher than those of whole
blood eQTLs. Finally, we have also demonstrated that Decon-eQTL can replicate CT eQTLs
derived from single-cell RNA-seq data, showing a higher allelic concordance with sc-eQTLs

compared to using only whole blood eQTL effects.

There are limitations in our method: the CT eQTLs detected by Decon-eQTL tend to be
exclusive eQTL for the specific CT suggesting that the CT with the strongest eQTL effect
was selected by Decon-eQTL. This is likely due to the partial collinearity present between
CT proportions included in the model (as shown by their correlation structure in

Supplementary Fig. 19A-B). Thus, the genetic effect of one cell type might be masked by
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another CT with correlated cell proportion. The highest correlation coefficient among cell
types included in the model was 0.75 (between granulocytes and B cells). Therefore, a
caveat to this is that by deconvoluting CT eQTLs for partially correlated cell proportions

could lead to false negative results for the CTs with relatively weaker eQTL effects.

The proposed framework of Decon2 is generic for predicting cell subpopulations in bulk
tissues (Decon-cell) and re-distribute the overall eQTL effect into cell types (Decon-eQTL).
Both methods have been implemented into freely available software. In both R package and
webtool, the models for predicting cell subpopulation in whole blood constructed and
validated in this work are provided for people interested in estimating immune cell
subpopulations in whole blood in health people with western european ethnicity, as our

models were built using a Dutch cohort (500FG).

In summary, Decon2 is a computational method that can accurately assign CT effects in bulk
blood eQTL datasets, which can be applied to any dataset for which genotypes and
expression data is available to and potentially aid in our understanding of the molecular
effects of genetic risk factors associated to complex diseases at cell type level. Our method
makes it possible to create CT gene regulatory networks that could explain the different
effects that each CT has on a complex disease in a cost-efficient way. Since Decon2 only
requires gene expression and genotype information to deconvolute eQTLs, it is possible to
re-analyze the existing bulk blood RNA-seq data for which genotypes are also available; this
is where we would use Decon-cell to predict cell proportions in whole blood and obtain CT
information on many more eQTLs from an increase in sample size. The methods behind
Decon2 can be potentially generalized to use transcriptional profiles derived from any other

type of bulk tissue in addition to whole blood, such as biopsies from tumors or other solid
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tissues implicated in complex disease etiology. Our methods can hence aid in the detection

of genetic effects on gene expression in rare cell subpopulations in bulk tissues.

Methods

RNA-seq data collection in 500FG cohort

We selected a representative subset of 89 samples from the 500 participants of the 500FG
cohort, which is part of the Human Functional Genomics Project (HFGP). Our subset was
balanced for age and sex given the original distribution in the cohort, we performed RNA-seq
in their whole blood samples. RNA was isolated from whole blood and subsequently globin
transcripts were filtered by applying the Ambion GLOBINCclear kit. The samples were then
processed for sequencing using the library preparation kit lllumina TruSeq 2.0. Paired-end
sequencing of 2x50-bp reads was performed on the lllumina HiSeq 2000 platform. The
quality of the raw reads was checked using FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Read alignment was performed
with STAR 2.3.0%%, using the human Ensembl GRCh37.75 as reference, whilst the aligned
reads were sorted using SAMTools*. Lastly, gene level quantification of the reads was done

using HTSeqg™®.

RNA-seq preparation and data processing in the BIOS cohort

RNA was isolated from whole blood and subsequently globin transcripts were filtered by
applying the Ambion GLOBINCclear kit. Library preparation was performed using the lllumina
TruSeq v2 library preparation kit. Next, lllumina HiSeq 2000 was used to performed

paired-end sequencing of 2 x 50 bp reads while pooling 10 samples per lane and expecting

20


http://www/
https://paperpile.com/c/dHNHmX/sq84H+HY4vF
https://paperpile.com/c/dHNHmX/VSZnX
https://paperpile.com/c/dHNHmX/xcTYj
https://doi.org/10.1101/548669
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/548669; this version posted February 19, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

> 15 million read pairs per sample. By using CASAVA read sets were generated, retaining
only reads that passed lllumina Chastity Filter for further processing.
Quality control of the reads was evaluated using FastQC

(http://www.bioinformatics.babraham.ac.uk/projects/fastqgc/). Adaptor sequences were

trimmed out using cutadapt (v1.1) using default settings. Low quality ends of reads were

removed using Sickle (v1.200) (https://github.com/najoshi/sickle).

Reads were then aligned using STAR 2.3.0e*. All SNPs present in the Genome of the
Netherlands (GoNL) with MAF = 0.01 were masked from the reads to avoid reference
mapping bias. Read pairs with at most eight mismatches and mapping to at most five
positions, were used. Quantification of counts per genes was done using Ensembl v.71

annotation (which corresponds to GENCODE v.16).

Genotype data of the BIOS cohort

Genotype information was independently generated by each of the cohorts, further details on
data collection and and methods used for genotyping can be found in their papers
(CODAM¥*, LLDeep', LLS", RS' and NTR¥)

Genotypes were harmonized to GoNL with Genotype Harmonizer*® and imputed using
IMPUTE2%* using GoNL as reference panel. SNPs with an imputation score below 0.5,
Hardy—Weinberg equilibrium P value smaller than 1x107*, a call rate below 95% or a MAF
smaller than 0.05 were filtered out. For further analysis only eSNPs from whole blood

cis-eQTLs top effects were subsequently used in Decon-eQTL.

Quantification of cell proportions in 500FG cohort

The inclusion criteria and further description of the participants of the 500FG cohort can be

found at http://www.humanfunctionalgenomics.org. A total of 73 manually annotated immune

cell subpopulations were quantified using 10-color flow cytometry. To minimize biological
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variability, cells were processed immediately after blood sampling and typically analyzed

within 2-3 hr. Cell populations were gated manually as previously described™.

cis-eQTLs in the BIOS cohort

For cis-QTL mapping, we tested association between genes and SNPs located within 250 kb
of a gene center. SNPs with MAF = 0.01, call rate = 1 and Hardy—Weinberg equilibrium
p-value = 0.0001 were included. eQTLs were declared to be significant at FDR < 0.05.
Pre-processing of RNA-seq and QTL mapping was performed using a custom eQTL pipeline

which has been previously described"".

Prediction of cell proportions using gene expression levels from bulk tissue

(Decon-cell)

We proposed that the abundance of molecular markers such as gene expression could be

used as proxies to predict cell proportions. This can be represented as:
Cy = Bkin]'+ekj (1)

where expression data is Y,.j forgenesi=1,2,...,G,and samplesj=1, 2, ..., N, and cell
count data is C,; for sample j in cell type k (k = 1, 2, ..., K), whilst B,; represents the
coefficients of gene /in determining cell counts of cell type k of a complex tissue and e; is
the error term.

In order to select only the most informative genes for predicting cell counts, we implemented
a feature selection scheme by applying an elastic net (EN) regularized regression®. In the
EN algorithm, the B, Y are estimated by minimizing:

|| Co— BY| [P subjectto (1=a) [|B|[© + of[By|; <s (2)

sis a tuning parameter that limits the number of features that will be included in the final

predictor model. We estimate the best s per cell type by applying a 10-fold cross-validation

approach, where the most optimal penalty parameter (a ) was obtained.
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Normalization and correction of gene expression data for deconvolution of
eQTL effects

Total read counts from HTSeq were first normalized using the trimmed means of M (TMM)
values®?. TMM expression values were log2 transformed. For predicting cell proportions, we
used scaled expression data in both the 500FG and BIOS cohorts.

For the deconvolution of eQTLs, the expression was log2 transformed and corrected using a
linear model for the effect of cohort, age, sex, GC content, RNA degradation rates, library
size, and number of detected genes per sample. The corrected expression data is then
exponentiated in order to maintain the original linear relationship across read counts (gene

expression) and cell proportions.

Deconvolution of eQTL effects (Decon-eQTL)

Decon-eQTL models the expression level in the bulk tissue by considering the genetic
contribution of multiple cell types present in the system. For identifying the CT eQTL effect,
the interaction term between a particular cell type and genotype was tested for statistically
significance contribution to the explained variance on the expression levels of particular
gene, while accounting for the remaining cell proportions.

If we consider a generic eQTL linear model for whole blood it can be described as:
y=atpgte (3)

where y is the measured gene expression, a the modeled non-genetic dependent
expression, g the genotype coded as 0, 1 or 2, B.g the genotype-dependent expression,
and e the error, e.g. unknown environmental effects. Here all three terms are modeling the

effect of the mixture of different cell types present in blood.
In an RNA-seq based gene expression quantification of a bulk tissue, one could express

gene expression levels (y) as the sum of counts (y) per K cell types:
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For every cell type the expression level has can be written as a generic eQTL model

(equation 3) weighted by the cell proportions. vy, is a combination of the genetic and non
genetic contribution of the cell type to y. The non-genetic contribution per cell type is B. ¢
where ¢ is the cell count proportions, while the genetic contribution is B,. g : ¢, . For & cell

types the expression then is

M=

V=2V = BBt Ep(y. g X ) te )

k

Il
—

Where y is the measured expression levels, kis the total number of cell types, ¢, is the cell
count proportions of cell type &, gisthe genotype . And e is the error term. Since we are
assuming a linear relationship between total gene expression and the levels of expression
generated by each of the cell types composing a bulk tissue, the cell proportions are scaled
to sum to 100%, such that the sum of the effect of the cell types equals the effect in whole
blood. Here we assume that the true sum of the cell counts should be very close to 100% of
the total PBMCs count, which is why we include the 6 cell types that together form the top
hierarchy given the gating strategy used to quantify the cell subpopulations™. The genotype
main effect is not include in the model as the sum of the genotype effect per cell type should
approximate the main effect.

Because the contribution of each of the cell types to expression level y can not be negative,
we constrain the terms of the model to be positive by using Non-Negative Least Squares**’
to fit the parameters to the measured expression levels. However, if the allele that has a
negative effect on gene expression is coded as 2, the best fit would have a negative

interaction term, which would be set to 0. To address this we want the allele that causes a

positive effect on gene expression to always be coded as 2. However, the effect of an allele
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has can be different per cell type, therefore the coding of the SNP should also be different
per cell type. Therefore, we run the model multiple times, each time swapping the genotype
encoding for one of the interaction terms. The encoding that gives the lowest R-squared is
then chosen as the optimal genotype encoding. For the encoding we limit the amount of
genotypes that have an opposite genotypic encoding to maximum of one interaction term, as
we have observed that there no significant difference compared to using all possible

configurations and this limits the amount of models that have to be run from k?to (2*k)+2.

To test if there is a CT interaction effect we run the linear model of equation 5. and, for each
CT, run the same model with the cell proportion:genotype interaction term removed. E.g.

when testing two cell types the full model is

y=PBrethrotygxetygxete (6)
and the two models with the interaction terms removed are

y=PBrep Tty gxe te (7)
y=PBpcthrotrgxe te

For both the full model and the CT models we calculated the sum of squares using the
different genotype configurations detailed above. For both the full and the CT models we
then selected the genotype configuration with lowest sum of squares. Then, for each CT, we

test if full model can significantly explain more variance than the CT model using an ANOVA.

We have then applied our strategy to 16,362 significant whole blood cis-eQTLs top effects
that were detected using the BIOS cohort. We then correct the p-values for multiple testing
using FDR by each of the cell types, e.i. Granulocyte eQTL p-values were corrected for
16,362 tests, in the same way CD4+ T cells eQTL p-values were corrected for the exact

same number of tests.
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Figure Legends

Figure 1. Workflow of application of Decon2 to predict cell counts followed by
deconvolution of whole blood eQTLs. With whole blood expression and FACS data of
500FG samples, Decon-cell predicts cell proportions with selected marker genes of
circulating immune cell subpopulations. Validations of Decon-cell were carried out on three
independent cohorts where measurements of neutrophils/granulocytes, lymphocytes and
monocytes CD14+ were available, alongside to expression profiles of whole blood.
Benchmarking of Decon-cell was performed against CIBERSORT? and xCell'?. Decon-cell
was applied to an independent cohort (BIOS) to predict cell counts using whole blood
RNA-seq. Decon-eQTL subsequently integrates genotype and tissue expression data
together with predicted cell proportions for samples in BIOS to detect cell type eQTLs. We
validated Decon-eQTL using multiple independent sources, including expression profiles of
purified cell subpopulations, eQTLs and chromatin mark QTLs (cmQTLs) from purified
neutrophils, monocytes CD14+ and CD4+ T cells®, and single cell eQTLs results®.
Benchmarking of Decon-eQTL was carried out for comparison with previously reported
methods which detected cell type eQTL effects using whole blood expression data, i.e.

Westra method ° and Zhernakova, et al method™).

Figure 2. Prediction of cell proportions using whole blood transcriptome by
Decon-cell. (A) Distribution of prediction performance (Spearman correlation coefficient) of
the 34 predictable cell types in 100 iterations of prediction within the 500FG cohort. (B)
Cross- cohort validation in an independent Lifelines-Deep cohort (n=627): the measured

and predicted cell proportions for neutrophils (given by granulocytes in 500FG), lymphocytes

and monocytes are compared.
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Figure 3. Deconvolution of whole blood eQTLs into cell-type eQTLs. By integrating
proportions of cell subpopulations (predicted by Decon-cell), gene expression and genotype
information, Decon-eQTL detect cell-type eQTLs. (A) The number of deconvoluted eQTLs in
each cell type by using whole blood RNA-seq data of 3,189 samples in BIOS cohort. (B)
Distribution of Spearman correlation coefficients between expression levels of deconvoluted
eQTL gene and cell counts for each cell subpopulation. The deconvoluted eQTL genes show
positive and statistically higher correlation (Spearman) with its relevant cell type proportions

than compared to the rest (T test p value < 0.05) in an independent cohort (500FG).

Figure 4. Validation of deconvoluted cell-type eQTLs. (A) Expression of eQTL genes in
purified cell subpopulations from BLUEPRINT? is significantly higher in its relevant cell
subpopulation compared to other available cell subtypes (green for granulocyte eQTL genes
showing expression for purified neutrophils; orange for monocytes; purple for CD4+ T cells;
pink for B cells). (B) Differential expressed genes (Adjusted p-value < 0.5) between CD4+ T
cells and NK cells are significantly enriched for CT eQTLs effects on CD4+ T cells (dots in
purple, Fisher exact P = 1.8x10") and NK Cells (dots in yellow, Fisher exact P = 2.3x10'®)
respectively. (C) Deconvoluted eQTLs (FDR < 0.05) show significantly larger effect sizes in
the purified cell eQTLs data ° compared to the rest of the whole blood eQTLs for which we
do not detect cell type effect, as shown for deconvoluted granulocyte eQTLs in neutrophil

derived eQTLs (green); monocytes (orange); CD4+ T cells (purple).

Figure 5. Allelic concordance of deconvoluted cell-type eQTLs with eQTLs from
purified cells. Deconvoluted CT QTLs show high allelic concordance compared to eQTLs
from purified cell subpopulations®. (A) for granulocyte eQTLs (orange), Decon-eQTL
achieved an allelic concordance of 99% compared to eQTLs from purified neutrophils.

Similarly, the allelic concordance were 96%and 99% for monocytes and CD4+ T cells,
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respectively. They are higher than those observed for whole blood eQTLs when comparing
to eQTLs from purified subpopulations. as shown in panel (B). Deconvoluted eQTLs show
an allelic concordance of 95% for significant eQTLs obtained from single cell RNA-seq data

24 on monocytes CD14+, B cells, CD4+ T cells, CD8+ T cells and NK cells (C).
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Supplementary Materials

Supplementary figures:

Supplementary Figure 1: Prediction performance of Decon-cell within 500FG: The
Y-axis represents the 73 immune cell types quantified by FACS in the 500FG cohort. The
bar plot on the left panel shows the mean Prediction Performance (Spearman correlation
coefficient between predicted and measured cells across 100-fold cross validations). On the
right panel, box plots represent the distribution of the Prediction Performance within 100
iterations of the cross validations. A cutoff of mean Prediction Performance 20.5 was applied

to define predictable cell types (green).

Supplementary Figure 2. Signhature genes selected for prediction of cell proportions
by Decon-cell: (A) Total number of marker genes (genes selected in = 80% of all models in
the 100 iterations) per predictable cell type. Different colors indicate different subpopulations.
(B) The number of genes significantly correlated with cell counts (Spearman correlation,
adjusted P < 0.05) (y-axis) shows the total number of significantly correlated genes , while
the x-axis shows the prediction performance (x-axis). (C) Distributions of the total number of
“strongly” correlated genes (absolute Spearman correlation = 0.3) between predictable and

unpredictable cell subpopulations.

Supplementary Figure 3. Comparison of prediction performance between Decon-cell
and other existing methods. (A) Performance of Decon-cell: he measured (x axis) and
predicted cell proportions (y-axis) were compared for neutrophils (given by granulocytes in
500FG), lymphocytes and monocytes CD14+ and granulocytes three independent cohorts

(shown by row, from top to bottom: LLDeep (n= 627 ), LLS (n=660) , RS (n=773)). (B)
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Comparison of prediction performance for Decon-cell, CIBERSORT and xCell in three

independent cohorts for a total of 4 major immune subpopulations.

Supplementary Figure 4. Prediction performance of xCell and CIBERSORT in three
independent Dutch populations (LLDeep, n= 627; LLS, n= 660; RS, n=773). (A) Scatter
plots showing on the x-axis the measured cell proportions of circulating immune cells and
the xCell enrichment score on the y-axis. (B) Scatter plots showing on the x-axis the
measured cell proportions of circulating immune cells and the predicted cell proportions

given by CIBERSORT)

Supplementary Figure 5. Expression of marker genes selected by Decon-cell.
Expression levels (scaled, log2(TPM+1) of signature genes in the data in three purified cell
subpopulations: CD4+ T cells (A), neutrophils/granulocytes (B) and monocytes (C) in the
data from the BLUEPRINT. Cell subpopulations are indicated in different colors by columns.
Correlation of each of the signature genes and the cell subpopulation percentage in 500FG
cohort is shown on green bar at the left-hand side of heatmaps figure,i.e. darker green

correspond to higher correlations.

Supplementary Figure 6. Many of the deconvoluted eQTL are cell type exclusive. The
colored bar plot on the left shows the total number of significantly deconvoluted eQTLs in
whole blood eQTLs (as shown also in Figure 2A). The gray bar plot shows the total number
of eQTLs shared across the possible combinations of the six cell subpopulations under

study.
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Supplementary Figure 7. Variation of gene expression across samples for
deconvoluted cell-type eQTLs genes in whole blood. Granulocyte eQTL genes show
significantly higher variance across the BIOS samples (F test p-value < 0.05) compared to

those from monocytes, CD4+ T cells, CD8+ T cells, B cells and NK cells.

Supplementary Figure 8. Validation of deconvoluted eQTLs using effect sizes of
eQTLs from purified cells. Deconvoluted eQTLs (FDR =< 0.05) from BIOS cohort show a
significantly bigger effect size in purified cell eQTLs® from their relevant cell subtype
compared to other whole blood eQTLs (diagonal boxed comparisons). The off-diagonal
comparisons show that these eQTL genes are specific to a cell subpopulation because the
differences in effect sizes are non-significant in all but one (CD4+ T cell eQTL genes in

monocyte-derived eQTLSs).

Supplementary Figure 9. Validation of deconvoluted eQTLs using effect sizes of
K27AC QTLs from purified cells.Deconvoluted eQTLs (FDR < 0.05) show a significantly
bigger effect size for K27AC QTLs which have peaks located in the promoter region of the
the eGenes from their relevant cell subtype compared to the rest of the significant whole
blood eQTLs (diagonal boxed comparisons). The off-diagonal comparisons show that these
eQTL genes are specific to a cell subtype because the differences in effect sizes are

non-significant in all but the comparisons across Neutrophils and Monocytes (CD14+).

Supplementary Figure 10. Validation of deconvoluted eQTLs using effect sizes of
K4ME1 QTLs from purified cells.Deconvoluted eQTLs (FDR < 0.05) show a significantly
bigger effect size for KAME1 QTLs (where the eGenes is the closest gene tagging the

K4ME1 QTLs peak)from their relevant cell subtype compared to the rest of the significant
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whole blood eQTLs (diagonal boxed comparisons). The off-diagonal comparisons show that
these eQTL genes are specific to a cell subtype because the differences in effect sizes are

non-significant in all but the comparisons between neutrophils and monocytes (CD14+).

Supplementary Figure 11. Validation of deconvoluted eQTLs using allelic
concordance with eQTLs results from purified cells. Deconvoluted eQTLs (FDR < 0.05)
show a high allelic concordance in their respective purified cell eQTLs. Top row shows allelic
concordance of deconvoluted granulocyte eQTLs (all in green) against neutrophils,
monocytes and CD4+ T cells. Second row shows deconvoluted monocyte eQTLs against
purified cell eQTLs in the same order as top row; bottom row shows the same comparisons
as for deconvoluted CD4+ eQTLs. Allelic concordance of the off-diagonal (comparing
deconvoluted eQLTs with non-relevant cell types) show a consistent decrease in allelic

concordance.

Supplementary Figure 12. Validation of deconvoluted eQTLs using allelic
concordance with K27AC results from purified cells. Deconvoluted eQTLs (FDR < 0.05)
show a high allelic concordance in their respective purified cell K27AC QTLs. Top row
shows allelic concordance of deconvoluted granulocyte eQTLs (all in green) against
neutrophils, monocytes and CD4+ T cells derived K27AC QTLs. Second row shows
deconvoluted monocyte eQTLs (all in orange) against purified cell K27AC QTLs in the same
order as top row; bottom row shows the same comparisons as for deconvoluted CD4+
eQTLs (all in purple). Allelic concordance of the off-diagonal (comparing deconvoluted
eQLTs with non-relevant cell types) show a consistent decrease in allelic concordance when

compared to the relevant cell type comparisons.
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Supplementary Figure 13. Allelic concordance between whole blood eQTLs and

K27AC QTLs for purified neutrophils, CD14+ monocytes and CD4+ T cells.

Supplementary Figure 14. Comparison of whole blood eQTLs with eQTLs from single
cell RNA-seq Whole blood eQTLs show 89% allelic concordance for significant eQTLs
derived from single-cell RNA-seq data, comprising monocytes CD14+, B cells, CD4+ T cells,

CD8+ T cells and NK cells.

Supplementary Figure 15. Validation of cell type eQTLs detected in the BIOS cohort
using Westra et at, method: (A) Expression of eGenes in purified cell subpopulations from
BLUEPRINT (green for granulocyte eQTL genes showing expression for purified
neutrophils; orange for monocytes; purple for CD4+ T cells; pink for B cells). (B) CT eQTLs
detected by the Westra method show a significantly larger effect size in purified cell eQTLs"
compared to the rest of the whole blood eQTLs. Boxed-diagonal show the comparisons with

relevant cell types, were the effect differences are stronger.

Supplementary Figure 16. Allelic concordance rates of cell type eQTLs detected using
the Westra et al method and eQTLs from purified cells. Top row shows allelic
concordance of granulocyte CT eQTLs against neutrophils, monocytes and CD4+ T cells.
Second row shows CT monocyte eQTLs against purified cell eQTLs in the same order as

top row; bottom row shows the same comparisons for CT CD4+ eQTLs.

Supplementary Figure 17. Comparison of Decon-eQTL with Westra et al method.

Overlap of CT eQTLS detected with Decon-eQTL, the Westra et al method and those found
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to be significant in purified cell subpopulations, for granulocyte QTLs (A), CD4+ T cells (B),

and monocytes (C).

Supplementary Figure 18. Comparison of Decon-eQTL with other methods for
detecting cell type eQTLs. Total number of eQTLs per cell proportion module obtained by
Zhernakova et al. (Nat Gen, 2017) (A). Allelic concordance between overall z-score for
eQTLs from neutrophil, monocytes and CD4+ T cell modules against the effect size of

purified eQTLs from neutrophils, monocytes and CD4+ T cells.

Supplementary Figure 19. Distribution and correlation among circulating cell
proportions. (A) With 89 samples from 500FG, the scatter plots show the correlations
between different cell subpopulations. Blue line indicates a fitted linear model. Diagonal plots
depict the overall density distribution per cell type. Upper right triangle shows the Pearson
correlation coefficient for each pairwise comparison. (B) shows correlations between
different cell subpopulations in the BIOS cohort, which were obtained by prediction using

Decon-cell.

Supplementary Tables:

Supplementary table 1: Ensembl IDs and symbol names of the marker genes selected by

Decon-cell for the 34 predictable circulating immune cell proportions.

Supplementary table 2: Summary statistics from Decon-eQTLs for the 16,362 whole blood

eQTLs.
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Figure 4.
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Figure 5.
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