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Abstract 

The onset and progression of Alzheimer’s disease (AD) is characterized by increasing intracellular 

aggregation of hyperphosphorylated tau protein and accumulation of β-amyloid (Aβ) in the 

neocortex. Despite recent success in identifying genetic risk factors for AD the transcriptional 

mechanisms involved in disease progression are not fully understood. We used transgenic mice 

harbouring human tau (rTg4510) and amyloid precursor protein (J20) mutations to investigate 

transcriptional changes associated with the development of both tau and amyloid pathology. Using 

highly-parallel RNA sequencing we profiled transcriptional variation in the entorhinal cortex at four 

time points identifying robust genotype-associated differences in entorhinal cortex gene expression 

in both models. We quantified neuropathological burden across multiple brain regions in the same 

individual mice, identifying widespread changes in gene expression paralleling the development of 

tau pathology in rTg4510 mice. Differentially expressed transcripts included genes associated with 

familial AD from genetic studies of human patients, and genes annotated to both common and rare 

variants identified in GWAS and exome-sequencing studies of late-onset sporadic AD. Systems-

level analyses identified discrete co-expression networks associated with the progressive 

accumulation of tau, with these enriched for genes and pathways previously implicated in the 

neuro-immunological and neurodegenerative processes driving AD pathology. Finally, we report 

considerable overlap between tau-associated networks and AD-associated co-expression modules 

identified in the human cortex. Our data provide further support for an immune-response 

component in the accumulation of tau, and reveal novel molecular pathways associated with the 

progression of AD neuropathology. 
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INTRODUCTION 

 

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that is characterized by 

progressive neuropathology and associated cognitive and functional decline1. In addition to the 

loss of synapses and neurons (manifesting as brain atrophy), AD involves two neuropathological 

hallmarks: the formation of neurofibrillary tangles (NFTs) that result from the intracellular 

aggregation of hyperphosphorylated tau protein, also a characteristic of other neurodegenerative 

disorders including frontotemporal dementia (FTD); and the development of senile plaques, which 

are extracellular deposits mainly composed of β-amyloid (Aβ) protein that have been the focus of 

extensive efforts in drug discovery. Although these neuropathological signatures of AD have been 

relatively well characterized in post-mortem human brain tissue, their exact mechanistic role in 

disease onset and progression remains poorly understood2. There have been considerable 

advances in identifying the genetic risk factors for both familial and sporadic forms of AD; in 

addition to the autosomal dominant mutations in APP, PSEN1, and PSEN2 that cause early-onset 

familial AD3, the power of genome-wide association studies (GWAS) and exome sequencing in 

large sample cohorts4-10 has been employed to notable success in identifying both common and 

rare variants associated with late-onset AD. Although the mechanisms by which associated 

variants mediate disease susceptibility are not well understood, many of the variants are non-

coding and hypothesized to involve regulatory disruption to transcriptional networks across 

affected regions of the brain. 

 

Mouse models of tau and amyloid have played a major role in defining critical pathology-related 

processes, including facilitating our understanding of the brain’s transcriptional response to the 

production and gradual deposition of tau and amyloid into tangles and plaques11. Recent studies 

have identified widespread gene expression differences in transgenic mice harbouring a diverse 

range of AD-associated mutations12-17. However, most analyses to date have been undertaken on 

relatively small numbers of animals and have not attempted to directly relate transcriptional 

alterations to the progressive burden of pathology in the same mice. 

 

In this study, we systematically assess the transcriptional changes associated with the progression 

of AD-associated pathology in the mouse brain, using highly-parallel RNA sequencing (RNA-seq) 

to quantify gene expression changes in the entorhinal cortex, a region characterized by primary 

and early neuropathology in human AD18. We used well-characterized transgenic mouse models of 

both tau and amyloid pathology, collecting transcriptional data at multiple time-points carefully 

selected to span from early to late stages of neuropathology in each model (see Supplementary 

Figure 1). First, to investigate transcriptional signatures of progressive tau pathology we used the 

rTg4510 mouse model, which overexpresses a human mutant (P301L) form of the microtubule-

associated protein tau (MAPT)19,20. Second, to investigate amyloid pathology we used the J20 
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mouse line, which expresses a mutant (K670N/M671L and V717F) form of the human amyloid 

precursor protein (APP)21,22. Transcriptional profiles were related to detailed neuropathological 

measurements of tau and amyloid burden in the same mice, enabling us to directly relate 

expression changes to the progressive accumulation of neuropathology. We identified robust 

genotype-associated differences in entorhinal cortex gene expression in both models, and 

widespread transcriptional changes paralleling the development of tau pathology in rTg4510 mice. 

Systems-level analyses uncovered discrete co-expression networks associated with the 

progression of tau pathology that were enriched for genes and pathways implicated in the onset of 

AD. Finally, we compared these networks to those identified in AD patients, finding considerable 

overlap with disease-associated co-expression modules identified in the human cortex. 

 

RESULTS 

Transgenic mice with APP and MAPT mutations are characterized by progressive neuropathology 

In both models, right brain hemisphere tissue sections from transgenic (TG) and wild type (WT) 

littermate control female mice (see Methods) were used to immunohistochemically quantify the 

progression of neuropathology across multiple brain regions (Supplementary Figure 2a and 

Supplementary Figure 3a). First, in rTg4510 mice we measured levels of phosphorylated tau 

(using the antibody PG-5) at 2, 4, 6 and 8 months comparing them to WT controls at the same 

ages (n = 7-10 animals per group, total n = 74). We identified a dramatic accumulation of tau 

pathology in the hippocampus (factorial ANOVA, F(3,66) = 69.76, P = 1.96E-20) (Figure 1a-b). 

Highly significant increases in phosphorylated tau were also observed within specific sub-regions 

of the hippocampus and each of the cortical regions we quantified (Supplementary Figure 2b-i). 

Previous studies have shown that rTg4510 mice develop pretangles around 2.5 months of age, 

with neurofibrillary tangle (NFT) pathology starting in the neocortex and progressing rapidly into the 

hippocampus and limbic structures with increasing age19,20,23. We have also carried out detailed 

longitudinal analyses of the progression of tau pathology in several parallel cohorts of mice from 

our rTg4510 colony as previously reported24,25. The spread of tau pathology in rTg4510 mice 

therefore reflects the spread of NFTs with increasing Braak stage in AD18. Second, we quantified 

levels of amyloid pathology (using the antibody b3D6) in J20 mice at ages 6, 8, 10 and 12 months 

comparing them to WT controls at the same ages (n = 9-10 animals per group, total n = 73). We 

again identified dramatic increases in pathology in the hippocampus (factorial ANOVA, F(3,68) = 

66.85, P = 3.00E-20) (Figure 1c-d), with a highly significant accumulation of amyloid also 

observed in each of the cortical regions examined (Supplementary Figure 3b-d). These results 

concur with previous data highlighting progressive deposition of amyloid plaques in the 

hippocampus and neocortex of J20 mice at 5-7 months, and ubiquitous plaque pathology by 8-10 

months of age22,26, reflecting the progressive deposition of amyloid seen in individuals with AD27. 

We also quantified neuropathology in the thalamus which, as expected, showed markedly lower 
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levels of both tau (rTg4150, Supplementary Figure 2j) and amyloid (J20, Supplementary Figure 

3e) pathology relative to the other brain regions tested. 

 

The rTg4510 model of tau pathology is characterized by widespread transcriptional differences in 

the entorhinal cortex  

The entorhinal cortex was dissected from the left hemisphere of the brain from each individual 

mouse (TG and WT) at each of the four time-points. High-quality RNA (mean RIN rTg4510 = 8.9 

(SD = 0.2), mean RIN J20 = 8.6 (SD = 0.3)) was isolated from each sample (total n = 121) and 

used for highly-parallel RNA-seq (see Methods). Raw RNA-seq data are available for download 

from the Gene Expression Omnibus (GEO) database 28,29 (accession number GSE125957). After 

stringent quality control (QC) of the raw RNA-seq data (see Methods), we obtained a mean of 

18.18 (SD = 3.33) million sequencing reads per sample for the rTg4510 dataset (Supplementary 

Table 1), and a mean of 22.05 (SD = 2.88) million sequencing reads per sample for the J20 

dataset (Supplementary Table 2), with no difference in read-depth between TG and WT controls 

(Supplementary Figure 4). We quantified read counts for each transcript and evaluated 

differences in gene expression between TG and WT animals for each model using DESeq2 (see 

Methods). To our knowledge, this represents the most extensive gene expression dataset 

generated on rodent models of AD pathology, providing excellent power to identify transcriptional 

variation associated with mutations in MAPT and APP, and the progressive changes in gene 

expression accompanying the development of AD pathology in TG mice (Supplementary Figure 

1c). 

 

Across all samples, striking differences in gene expression were identified in rTg4510 TG animals 

relative to WT control mice (n = 29 TG, n = 30 WT); gene expression results for all 18,822 detected 

transcripts are available to download from our online database 

(www.epigenomicslab.com/ADmice). In total we identified 154 differentially-expressed transcripts 

at false discovery rate (FDR) < 0.05 (Figure 2a and Supplementary Table 3). Among these, there 

was a significant (exact binomial test, n = 154 transcripts, P = 0.00014) enrichment of 

downregulated transcripts (n = 101 (66%) transcripts with reduced expression in TG compared to n 

= 53 (34%) transcripts with elevated expression in TG). Of note, differences for five of these 

transcripts are likely to reflect known deletions of the transgene integration sites for the CaMKIIα-

tTA (encompassing Wdr60, Esyt2, Ncapg2, and Ptprn2) and MAPT (encompassing Fgf14) 

transgenes30. Given the high homology between transcribed regions of the human and mouse tau 

gene, we also find highly elevated levels of Mapt (Wald statistic = 11.11, log2 fold change = 0.50, 

FDR = 7.08E-25) (Supplementary Figure 5a) confirming stable activation of the MAPT transgene 

in TG mice; of note, human-specific MAPT sequence domains were only detected in TG RNA-seq 

datasets (Supplementary Figure 5b-c). Furthermore, because the rTg4510 transgene is inserted 

into the context of two untranslated exons of the mouse prion protein gene (Prnp), as expected we 
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observe elevated expression of these Prnp domains in TG mice (Wald statistic = 25.40, log2 fold 

change = 1.54, FDR = 4.88E-138). 

 

Beyond these expected direct transgene-induced changes, we observed evidence for widespread 

transcriptional consequences of the rTg4510 genotype. The most significant rTg4510-associated 

differentially-expressed transcript is Car4, which encodes carbonic anhydrase 4 (Supplementary 

Figure 6a, upregulated in TG mice, Wald statistic = 8.36, log2 fold change = 1.11, FDR = 2.41E-

13). Other differentially expressed genes in mice carrying the rTg4510 transgene include Gpr17, 

which encodes the G protein-coupled receptor 17 that is involved in regulating oligodendrocyte 

differentiation and maturation31 (Supplementary Figure 6b, downregulated in TG mice, Wald 

statistic = -6.73, log2 fold change = -0.62, FDR = 5.11E-08); Blnk, which encodes a cytoplasmic 

linker protein that plays a critical role in B cell development and is involved in the TREM2 activation 

pathway32 (Supplementary Figure 6c, upregulated in TG mice, Wald statistic = 6.48, log2 fold 

change = 0.80, FDR = 2.12E-07); and Hspa5 (also known as Bip or Grp78), which encodes a 

member of the heat shock protein 70 (HSP70) family that is localized in the lumen of the 

endoplasmic reticulum (ER) and involved in the folding and assembly of proteins, and has been 

previously implicated in neuroprotection and AD33,34 (Supplementary Figure 6d, downregulated in 

TG mice, Wald statistic = -6.16, log2 fold change = -0.58, FDR = 1.37E-06). Hierarchical clustering 

of individual mice based on expression levels for genotype-associated transcripts robustly 

discriminates between rTg4510 and WT groups (Figure 2a). Within the rTg4510 TG group, 

samples also cluster by time-point, suggesting, importantly, that there are progressive changes in 

gene expression within the mutant mice, and highlighting the value of performing longitudinal 

analyses. 

 

The J20 model of amyloid pathology is characterized by differential expression of Ccdc80, Abca8a, 

Htr1a and Hspa5  

Relative to the widespread transcriptional signatures associated with the rTg4510 model, fewer 

significant expression differences were identified in J20 TG mice compared to WT control mice (n 

= 30 TG, n = 32 WT); gene expression results for all 18,745 expressed transcripts are available to 

download from our online database (www.epigenomicslab.com/ADmice). As expected, there was 

an apparent upregulation of App (Wald statistic = 8.55, log2 fold change = 0.66, FDR = 2.37E-13) 

(Supplementary Figure 5d), reflecting the high sequence homology with the human APP 

transgene, and confirming stable activation of the mutant transgene in TG mice; of note, we 

mapped our RNA-seq reads to human-specific APP sequence domains and only observed signal 

in TG animals (Supplementary Figure 5e-f). In total we identified four additional differentially-

expressed transcripts at a stringent false discovery rate (FDR) < 0.05 (Figure 2b and 

Supplementary Table 4): Ccdc80, encoding a protein involved in cell adhesion and matrix 

assembly35 (upregulated in TG samples, Wald statistic = 6.37, log2 fold change = 0.81, FDR = 
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1.74E-06); Abca8a, encoding a member of the A-subclass of ATP-binding cassette (ABC) 

transporter family which regulates brain lipid homeostasis and has been implicated in AD36 

(downregulated in TG samples, Wald statistic = -4.67, log2 fold change = -0.81, FDR = 0.02); 

Htr1a, encoding a major G-protein-coupled serotonin receptor, the 5-HT1A receptor, that is widely 

expressed in the central nervous system (downregulated in TG samples, Wald statistic = -4.48, 

log2 fold change = -0.51, FDR = 0.035); and Hspa5 (downregulated in TG samples, Wald statistic 

= -4.36, log2 fold change = -0.28, FDR = 0.049) (Supplementary Figure 7). Overall, expression of 

these genotype-associated transcripts discriminates between J20 and WT groups (Figure 2b), 

although, in contrast to the rTg5410 differentially expressed transcripts, there are no clear age 

effects in the J20 TG mice. Although the transcriptional changes associated with the rTg4510 and 

J20 genotypes are generally distinct – there is no robust correlation of effect sizes (TG vs WT) 

between models for differentially expressed transcripts identified in either the rTg4510 (Pearson 

correlation, r = 0.15, P = 0.063, Supplementary Figure 8a) or J20 (r = 0.66, P = 0.23, 

Supplementary Figure 8b) models – it is noteworthy that Hspa5 is significantly downregulated 

(FDR < 0.05) in the same direction in both models (Supplementary Figure 6d and 

Supplementary Figure 7d), implicating a role for ER stress in both mouse models. 

 

Progressive changes in gene expression in the entorhinal cortex mirror the development of 

neuropathology in animal models of tau and amyloid pathology 

Given the progressive accumulation of brain neuropathology in TG mice (Figure 1), we next 

explored temporal changes in gene expression associated with genotype to identify transcriptional 

signatures paralleling the increases in tau and amyloid pathology in TG mice over time 

(Supplementary Figure 1c). We initially focused on the rTg4510 mice given the clear temporal 

clustering of samples amongst genotype-associated differentially-expressed transcripts identified in 

this model (Figure 2a). Using an approach designed to identify interactions between genotype (TG 

vs WT) and age group, we identified 1,762 transcripts (FDR < 0.05) whose expression significantly 

changed with the progression of tau pathology in rTg4510 mice (Supplementary Table 5). 

Expression differences at these transcripts were found to progressively increase with age relative 

to baseline (age 2 months) (Figure 3a, absolute mean difference (log2 fold change) at 4 months = 

0.42; absolute mean difference (log2 fold change) at 6 months = 0.60, absolute mean difference 

(log2 fold change) at 8 months = 0.78, P < 2.20e-16), paralleling the accumulation of tau pathology 

in these same individual animals. The top tau-associated differentially-expressed gene in rTg4510 

TG mice was Gfap, encoding glial fibrillary acidic protein (GFAP), a gene predominantly expressed 

in both mouse and human astrocytes37,38, and known to be upregulated in reactive astrocytes 

associated with brain pathology39. Gfap was dramatically upregulated with progressive tau 

pathology (Figure 3b; LRT statistic = 106.321, FDR = 1.28E-18), similar to results from another 

study reporting age-dependent (12-18 months) upregulation of hippocampal Gfap in tau (CaMKII-

MAPT P301L) and amyloid (APP/PSEN1) mouse models14, and paralleling the astrogliosis 
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observed in human AD brain40,41. Other top-ranked genes progressively altered in rTg4510 mice 

were notably enriched for microglial markers previously shown to be upregulated in AD42,43, 

including Cd68 (Figure 3c; LRT statistic = 103.77, FDR = 2.26E-18), Itgax (or Cd11c) (Figure 3d; 

LRT statistic = 86.85, FDR = 6.54E-15), and Clec7a (Figure 3e; LRT statistic = 83.20, FDR = 

2.97E-14). These genes have all been previously reported to be upregulated in hippocampal tissue 

from 6-month old rTg4510 female mice17, in isolated microglia from rTg4510 mice25, in the cortex of 

amyloid mice at late stages of pathology15, and in the neocortex, hippocampus and microglia of 

mice with amyloid and tau pathology13,43. Furthermore, recent transcriptional studies in human 

brain have shown that microglial gene networks are upregulated in response to AD 

neuropathology44. We used GOseq (see Methods) to identify ontological enrichments amongst 

genes characterized by progressively-altered gene expression in rTg4510 mice, finding highly-

significant enrichments for immune-related biological pathways including "immune system process" 

(FDR = 1.03E-25), “defence response” (FDR = 2.98E-24) and “immune response” (FDR = 4.79E-

24) (Supplementary Table 6). Given these findings, we next quantified Iba1, a 

microglia/macrophage-specific calcium-binding protein45, in matched tissue sections from the right 

brain hemisphere (n = 7-10 animals per group, total n = 70), observing a significant increase in all 

brain regions (hippocampus: factorial ANOVA, F(3,62) = 12.60, P = 1.56E-06; cortex: factorial 

ANOVA, F(3,62) = 18.13, P = 1.47E-08; thalamus: factorial ANOVA, F(3,62) = 18.85, P = 8.37E-

09) (Supplementary Figure 9). Together our results reflect the dramatic upregulation of microglial 

genes observed in studies of other AD rodent models13-15,43,46,47, and support a role – either causal 

or consequential – for dysregulation of the central nervous system (CNS) immune system in the 

development of AD pathology. Of note, the list of transcripts progressively altered in rTg4510 mice 

includes genes robustly associated with familial AD from genetic studies of human patients, 

including App (Supplementary Figure. 10a, LRT statistic = 13.88, FDR = 0.037) a key driver of 

amyloid pathology. It also includes genes annotated to both common and rare variants identified in 

GWAS and exome-sequencing studies of late-onset sporadic AD (LOAD), including Trem2 (LRT 

statistic = 43.82, FDR = 3.73E-07), Pld3 (LRT statistic = 36.80, FDR = 5.80E-06), Frmd4a (LRT 

statistic = 27.81, FDR = 0.00022), Clu (LRT statistic = 27.73, FDR = 0.00023), Apoe (LRT statistic 

= 22.99, FDR = 0.0014), Picalm (LRT statistic = 21.37, FDR = 0.0025), Cd33 (LRT statistic = 

27.32, FDR = 0.00026), and Abi3 (LRT statistic = 17.10, FDR = 0.012) (Supplementary Figure 

10b-i). 

 

In contrast to the dramatic and progressive changes in gene expression identified in rTg4510 mice, 

fewer significant temporal transcriptional differences associated with the progression of amyloid 

pathology were identified in the J20 mice; in total we identified five transcripts (Cst7, Wdfy1, 

Grxcr2, Itgax, and Ifitm1) whose expression profile significantly changed (FDR < 0.05) with the 

progression of amyloid pathology (Supplementary Table 7). The relatively low number of 

significantly-altered genes in J20 mice potentially reflects the slower and later accumulation of 
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pathology in these mice compared to rTg4510 mice. Previous work has shown relatively limited 

amyloid pathology in J20 entorhinal cortex even at 14 months of age48, with neuronal cell loss 

varying by brain region49. Nevertheless, we found that effect sizes for the 1,762 transcripts 

identified as being progressively dysregulated in rTg4510 mice were significantly correlated across 

both models, suggesting some common molecular signals associated with both tau and amyloid 

pathology (Figure 4a; Pearson correlation, r = 0.46, P = 1.50E-92; exact binomial test, n = 1762 

transcripts, P = 1.97e-05). Interestingly, two genes identified as being associated with progressive 

tau pathology in rTg4510 mice were also significantly associated with amyloid pathology in J20 

mice (Cst7 and Itgax (Figure 4b-d and Supplementary Figure 11)). Like Itgax, Cst7 has been 

shown to be a marker for activated microglia and upregulated in AD pathology43,50; of note, Cst7 

was previously reported to be the top upregulated gene in cortex samples from 12 month-old APP 

NL-G-F knock-in mice12. 

 

Transcriptional changes identified in rTg4510 mice reflect those observed in other models of tau 

pathology 

A number of recent studies have described further evidence for differential gene expression in 

transgenic models of familial AD gene mutations12-15,17,25,43. We therefore explored hippocampal 

RNA-seq data from two other transgenic models (TAU (CaMKII-MAPTP301L) and TAS10 (SwAPP, 

K670N/M671L)) downloaded from the Mouseac database14,51 (www.mouseac.org) to identify 

consistencies in the transcriptional signatures between different models of tau and amyloid 

pathology. Effect sizes for transcripts identified as associated with rTg4510 genotype and also 

present in the Mouseac TAU RNA-seq dataset (n = 138) were significantly correlated between the 

two models (r = 0.33, P = 7.7E-05). Despite this consistency in effect sizes, many of the 

differentially expressed genes associated with rTg4510 genotype were not statistically replicated in 

the TAU model (Supplementary Figure 12 and Supplementary Table 8), although this likely 

reflects the distinct genetic background of the different transgenic lines and the modest power to 

detect effects given the small number of samples profiled in the Mouseac dataset (n = 49 RNA-seq 

samples, 1-4 animals per age group, after filtering for samples with complete phenotypic data). 

Differential expression of Gpr17 was associated with TAU genotype (Bonferroni-corrected P < 

0.00035), although the exact profile for this gene differed to that observed in the rTg4510 mice 

(Supplementary Figure 13). This putative receptor for leukotrienes, uracil nucleotides and/or 

oxysterols may warrant further investigation as its expression is associated with damage to neural 

tissue including white matter52. As expected, given the limited evidence for consistency in genotype 

effects between rTg4510 and J20 mice, there was no correlation between effects observed in 

rTg4510 and TAS10 mice for the 145 rTg4510-associated genes present in both datasets. In 

contrast, association statistics for the 1640 transcripts identified as being progressively altered with 

age in rTg4510 mice and also present in the Mouseac datasets (Supplementary Table 9 and 

Supplementary Table 10) were significantly correlated with those for the same genes in both TAU 
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(r = 0.46, P = 1.2e-86) and TAS10 (r = 0.23, P = 3.9E-21) transgenic mice (Supplementary Figure 

14). Given the small number of progressive alterations observed in J20 mice, it was not possible to 

systematically explore overlaps between differentially regulated genes in this model and the two 

Mouseac models. Of note, however, the two genes identified as being temporally-altered in both 

rTg4510 and J20 mice – Cst7 and Itgax – were both similarly altered in both the TAU and TAS10 

models (Supplementary Figure 15). 

 

Gene co-expression networks associated with the progression of tau pathology are enriched for 

functional pathways related to AD including synaptic transmission, the immune system, and glial 

cell activation.  

Given the dramatic transcriptional changes identified in the rTg4510 mice, we next used weighted 

gene correlation network analysis (WGCNA) (see Methods) to identify discrete co-expression 

modules and describe systems-level transcriptional variation associated with rTg4510 genotype 

and the progression of tau pathology. We constructed co-expression networks using entorhinal 

cortex RNA-seq data from rTg4510 TG and WT mice (n = 58 mice), identifying 18 discrete co-

expression modules (Supplementary Figure 16). Next, we used a linear regression model (see 

Methods) and identified six co-expression modules (here named as “salmon”, “turquoise”, “purple”, 

“yellow”, “light-cyan”, and “red”) that were significantly (Bonferroni corrected, P < 0.0028) 

associated with rTg4510 genotype (Supplementary Figure 16, Supplementary Figure 17 and 

Supplementary Table 11). Strikingly, these tau-associated co-expression modules are highly 

enriched for molecular functions and biological pathways directly related to AD. The red module, 

for example, which was down-regulated in TG mice compared to WT mice (β = -0.18, P = 1.43E-

10), is highly enriched for functional pathways involved in synaptic transmission (Supplementary 

Table 12). The turquoise module, which was up-regulated in TG mice compared to WT mice (β = 

0.18, P = 3.04E-10), is enriched for pathways involved in activation of the immune system 

(Supplementary Table 13). The salmon module, which was consistently up-regulated in TG mice 

compared to WT mice (β = 0.14, P = 3.58E-06), is enriched for genes involved in myelination and 

glial cell activation (Supplementary Table 14). The purple module, which was down-regulated in 

TG mice compared to WT mice (β = -0.13, P = 0.00012), is enriched for pathways related to 

cellular component disassembly (Supplementary Table 15). Finally, the yellow module, which was 

down-regulated in TG mice compared to WT mice (β = -0.10, P = 0.0015), is enriched for pathways 

related to mitochondria and synaptic processes (Supplementary Table 16). The module 

eigengenes for three of these co-expression modules (turquoise, yellow and red) were 

characterized by a significant interaction between genotype and age in rTg4510 mice 

(Supplementary Figure 16 and Supplementary Table 11), suggesting that they are temporally 

linked to the development of tau pathology in TG mice (Figure 5a-5c). The turquoise module 

becomes increasingly up-regulated with the development of tau pathology (β = 0.28, P = 4.23E-

06), the red module becomes increasingly down-regulated with the development of tau pathology 
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(β = -0.21, P = 0.0022), and the yellow module becomes down-regulated specifically during the 

later stages of tau pathology (β = -0.29, P = 0.0018). Using the matched immunohistochemistry 

data generated across multiple brain regions for each mouse we were able to explore the 

relationship between co-expression modules and actual tau pathology in rTg4510 mice, confirming 

that the turquoise, yellow, and red modules are robustly associated with the accumulation of tau 

across the brain (Supplementary Figure 18). The association with pathology was particularly 

strong in highly affected brain regions such as the hippocampus (Figure 5d-5f, Supplementary 

Figure 19, and Supplementary Figure 20a-c), in which the module eigengene for the turquoise 

module is positively correlated with levels of tau in TG mice (r = 0.85, P = 1.20E-16), and those for 

the yellow and red modules are negatively correlated with levels of tau in TG mice (yellow: r = -

0.63, P = 2.00E-07, red: r = -0.79, P = 4.61E-13). Although these co-expression modules were also 

correlated with measures of tau pathology in the thalamus, the magnitude of effects was much 

lower, reflecting the later and less aggressive accumulation of tau in this region of the brain 

(Supplementary Figure 20d-f). 

 

Within each of these three modules we ranked transcripts based on their intramodular connectivity 

to identify “hub” genes within each network, finding many genes known to play a major role in the 

neuro-immunological and neurodegenerative processes involved in AD. In the turquoise module 

the four genes with the highest intramodular connectivity (i.e. those with most connections to other 

genes) were Cd63, Msn, Npc2 and Tnfrsf1a (Supplementary Table 17), with other highly 

interconnected transcripts including several genes identified as having a role in LOAD from GWAS 

(e.g. Abca1, Clu and Apoe) in addition to genes previously implicated in AD pathology (e.g. Itgax, 

Clec7a and Cd68). Furthermore, genes identified as having the strongest connections (edges) to 

other genes (nodes) in the turquoise module included C1qb, Mpeg1, Tyrobp, and Trem2 (Figure 

6a). In the yellow module the four genes with the highest intramodular connectivity were Atp9a, 

Ywhag, Rab3a and Svop (Supplementary Table 18), with App also being a highly-connected 

gene in this module. Genes identified as having the strongest connections to other genes in the 

yellow module included Atp9a, Faim2, Ppp2r1a (Figure 6b). In the red module Atxn7l3, Sept5, 

Cbx6 and Fbxl16 were the top most connected genes (Supplementary Table 19). Genes with the 

strongest connections to other genes in the red module included Dlgap3, Shank3, Epn1, and 

Fbxl16 (Figure 6c). 

 

Co-expression changes identified in rTg4510 mice overlap with AD-associated co-expression 

changes from human studies 

We next compared the significant rTg4510 co-expression modules to AD-associated co-expression 

modules reported in a recent human post-mortem RNA-seq meta-analysis, focusing on modules 

identified in dorsolateral prefrontal cortex (DLPFC) and temporal cortex (TCX)53. Briefly, we used a 

hypergeometric test to identify overlaps between the six rTg4510-associated co-expression 
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modules (“salmon”, “turquoise”, “purple”, “yellow”, “light-cyan”, and “red”) and four DLPFC 

(Supplementary Table 20) and five TCX (Supplementary Table 21) AD-associated human co-

expression modules, restricting our analysis to mouse-human homologs (see Methods). After 

controlling for the number of comparisons performed for each of the human brain regions (DLPFC: 

P < 0.0021; TCX: P < 0.0017), each of the rTg4510-associated modules was found to significantly 

overlap with at least one AD-associated module in both human cortical regions. For example, 

genes in the turquoise rTg4510 module (enriched for pathways involved in activation of the 

immune system (Supplementary Table 13)), were found to overlap significantly with two human 

DLPFC modules (“DLPFC-blue” and “DLPFC-brown” from Logsdon et al.53) and three TCX 

modules (“TCX-blue”, “TCX-turquoise” and “TCX-yellow” from Logsdon et al.53) associated with 

AD; for this module the largest proportion of overlaps in genes were found with the “DLPFC-blue” 

module (n = 658 genes, 40.82% of the human module gene list, P < 2.2E-16) and the “TCX-

turquoise” module (n = 389 genes, 39.1% of the human module gene list, P < 2.2E-16). 

Interestingly, GOseq analysis highlighted a strong enrichment for immune response processes 

amongst the rTg4510 turquoise module genes overlapping with those in both the “DLPFC-blue” 

module (Supplementary Table 22) and the “TCX-turquoise” module (Supplementary Table 23). 

Reflecting the similarities between these two human cortex modules, the list of overlapping genes 

includes many of the core hub transcripts identified in the turquoise rTg4510 turquoise module for 

both the “DLPFC-blue” module (e.g. CD63, ABCA1, CLU, APOE, ITGAX, CLEC7A, C1QB, 

TYROBP, and TREM2) and “TCX-turquoise” module (e.g. CD63, ITGAX, CLEC7A, C1QB, 

TYROBP, and TREM2). Together, these results indicate that the transcriptional networks 

associated with tau pathology in rTg4510 mice overlap considerably with those identified in human 

AD cortex and are involved in driving common molecular pathways. 

 

CONCLUSIONS 

In this study, we identified transcriptional changes in the entorhinal cortex associated with the 

progression of AD-associated pathology in transgenic models of both tau (rTg4510) and amyloid 

(J20) pathology. We found robust genotype-associated differences in entorhinal cortex gene 

expression in both models and identified widespread changes in gene expression paralleling the 

development of tau pathology in rTg4510 mice and reflecting alterations observed in other models 

of tau pathology. Of note, the list of transcripts progressively altered in rTg4510 mice includes 

genes robustly associated with familial AD from genetic studies of human patients, including App 

which is a key driver of amyloid pathology. It also includes genes annotated to both common and 

rare variants identified in GWAS and exome-sequencing studies of late-onset sporadic AD. 

Systems-level analyses identified discrete co-expression networks associated with the progressive 

accumulation of tau, with these also being enriched for genes and pathways previously implicated 

in neuroimmune and neurodegenerative processes driving AD pathology. Further support for 

upregulation of immune system genes in response to tau pathology comes from our finding of 
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increased expression of complement pathway genes including C1qa, C1qb, and C1qc. Finally, we 

compared these tau-associated networks to those identified in human post-mortem tissue from AD 

individuals, finding considerable overlap with disease-associated co-expression modules. 

 

To our knowledge, our study represents the most systematic analysis of transcriptional variation in 

mouse models of tau and amyloid pathology, and is the first to focus specifically on changes in the 

entorhinal cortex, a key region of the brain implicated early in the pathogenesis of AD18. Compared 

to previous studies of transcriptional variation in transgenic mouse models of AD we profiled a 

relatively large number of samples spanning multiple time-points selected to encompass the 

development of pathology; our study was therefore well powered to identify gene expression 

differences associated with both genotype and the progression of AD pathology. Furthermore, we 

implemented a statistical approach that enabled us to detect progressive changes in gene 

expression across age between the TG and WT samples, not only identifying stable differences 

induced by the transgene at each time-point, but also assessing temporal transcriptional changes 

relative to baseline within mutant mice. Our detailed immunohistochemical analyses also allowed 

us to directly compare transcriptional variation with measures of tau and amyloid pathology 

measured in the same individual mice. 

 

Despite these strengths, our study has a number of important limitations that should be considered 

when interpreting these results. First, to minimize the heterogeneity in our analysis we only profiled 

female mice. However, a number of sex differences have been previously reported for these 

models, with females demonstrating elevated and more progressive pathology than males24,54. 

Future work should focus on examining the extent to which the transcriptional profiles identified 

here are consistent between male and female mice. Second, our analysis was performed on bulk 

entorhinal cortex tissue, comprising a mix of different neural cell-types; consequently, changes in 

the fractional contribution of any given cell type to the total cellular population will contribute to the 

observed outcomes at each time-point. Given the compelling evidence in our data for an 

enrichment of microglial markers, previously shown to be upregulated in AD42,43, as well as 

upregulation of canonical markers of astrocytes, future work should focus on identifying changes 

that occur within these and other brain cell-types. Of note, immunocytochemistry analyses of tissue 

sections from the left-brain hemisphere of these mice revealed a progressive increase in the 

microglia/macrophage marker Iba1, indicating that our bulk-tissue RNA-seq measurements reflect 

real underlying cellular changes. In rTg4510 mice it is also interesting to consider neuron-specific 

genes that are not downregulated in what is a falling total neuronal population; these might 

represent transcripts that are actually upregulated in response to neuropathology in neuronal cells. 

Third, compared to the rTg4510 model, relatively few transcriptional changes were observed in J20 

mice, potentially reflecting the slower and later accumulation of pathology48, as well as the potential 

absence of neurodegeneration, in the entorhinal cortex in this model; future work should focus on 
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the analysis of other brain regions more directly affected in the early stages of amyloid pathology. 

Interestingly, however, we found that effect sizes for the transcripts identified as being 

progressively dysregulated in rTg4510 mice were significantly correlated across both models, 

suggesting some common transcriptional mechanisms are involved in both tau and amyloid 

pathology. 

 

In summary, we provide compelling evidence for widespread transcriptional changes in the 

entorhinal cortex paralleling the progression of AD pathology. Our data suggest that the altered 

expression of multiple genes, including several known AD risk genes is robustly associated with 

the accumulation of tau, with tau-associated co-expression networks overlapping those altered in 

human AD cortex. Our data provide further support for an immune-response component in the 

accumulation of tau, and reveal novel molecular pathways associated with the progression of AD 

neuropathology. 

 

 

METHODS 

Mouse samples 

All animal procedures were carried out at Eli Lilly and Company, in accordance with the UK 

Animals (Scientific Procedures) Act 1986 and with approval of the local Animal Welfare and Ethical 

Review Board. rTg4510 (rTg(tet-o-TauP301L)4510)19,20, licensed from the Mayo Clinic 

(Jacksonville, FL, USA), were bred on a mixed 129S6/SvEvTac + FVB/NCrl background 

(heterozygous tau responder x heterozygous tTA effector). Bi-transgenic (CC, here referred as TG) 

female mice and littermate controls (WW, here identified as WT), 2, 4, 6 and 8 months-old (n = 9-

10 animals per group), were used for this study. J20 (B6.Cg-Zbtb20Tg(PDGFB-

APPSwInd)20Lms/2Mmjax)22,26, licensed from Gladstone Institute (San Francisco, California, 

United States), with founder mice purchased from MMRRC at The Jackson Laboratory (Bar 

Harbor, Maine, United States), were bred on a C57BL/6JOlaHsd background (parental generation: 

hemizygous male x wild type female). Hemizygous (here identified as TG) females and littermate 

controls (WT), 6, 8, 10 and 12 months of age (n = 9-10 animals per group), were used for this 

study. All mice were bred and delivered to Eli Lilly and Company (Windlesham, UK) by Envigo 

(Loughborough, UK). At Eli Lilly, animals were housed under standard conditions (constant 

temperature and humidity) with a 12h light/dark cycle in individually ventilated cages (up to 5 

animals per cage), with free access to food (Teklad irradiated global rodent diet (Envigo, United 

Kingdom)) and water. Mice were terminally anaesthetized with pentobarbital (intraperitoneal 

injection) and transcardially perfused with phosphate-buffered saline (PBS). The entorhinal cortex 

was dissected from the left brain hemisphere on wet ice (according to Heffner et al.55) and snap-

frozen on dry ice for subsequent RNA-seq analysis. The right brain hemisphere was immersed in 
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10% buffered formalin for fixation (7-8 days) and processed for subsequent immunohistochemistry 

pathology assessments.  

 

Histopathology 

The right hemisphere from all animals was processed using the Tissue TEK® VIP processor (GMI 

Inc) and embedded in paraffin wax. 6 μm serial sagittal sections (from bregma 0.84 to 1.08) were 

obtained using rotary microtomes (HM 200 from Ergostar and HM 355S from Thermo Scientific), 

with sections mounted on glass slides (two sections per slide). Negative and positive controls were 

used for each immunohistochemistry experiment. Deparaffinisation of the tissue was achieved 

using xylene (Fisher Scientific), followed by 70% ethanol (industrial methylated spirit, Fisher 

Scientific) and deionised water for rehydration of the sections. Heat induced epitope retrieval was 

performed in a PT Module (Thermo Scientific) containing citrate buffer (dilution 1:100). Samples 

were blocked using normal goat serum (Vector labs, catalogue number S-1000). To assess tau 

pathology, we used mouse monoclonal PG5 (provided by Peter Davies from Albert Einstein 

College of Medicine, Bronx, NY, USA)56 as the primary antibody (1:8000), which recognizes tau 

phosphorylated at Ser409, and biotinylated goat anti-mouse IgG (Vector labs, catalogue number 

BA-9200, lot number 2B0324) as the secondary antibody (1:200), as previously described57. To 

assess amyloid pathology, we used mouse monoclonal biotinylated 3D6 (b3D6, provided by Eli 

Lilly, 1:1000), which binds to the amino acids 1-5 in amyloid beta (Aβ)58.All samples for each 

mouse model were immunostained together in an autostainer (Autostainer 720 for PG-5 and 720N 

for b3D6, Thermo Scientific). For detection we undertook enzymatic labelling using peroxidase 

(Vectastain Elite ABC HRP Reagent, Vector Laboratories) and DAB substrate (Vector 

Laboratories). Images were digitised with Scanscope AT slide scanner (Aperio) at 20x 

magnification. Visualization of the digitized tissue sections and delineation of the regions of interest 

(hippocampus, cortex and thalamus) were achieved using Imagescope software (version 

12.2.1.5005; Aperio). Positivity was quantified automatically using a positive pixel algorithm 

calibrated to ignore non-specific staining, and the burden of tau or amyloid pathology was 

expressed as percentage area. Statistical analysis (mixed factorial ANOVA) was performed using 

Microsoft Excel 2013. 

 

RNA isolation and sequencing 

Samples were labelled with anonymized ID codes and processed in batches, blinding genotype 

from the experimenter/analyst for individual samples. Tissue samples from each model were 

processed separately and individual samples were randomized to ensure that each group was 

equally represented in each processing batch. Total RNA from all samples was isolated from the 

entorhinal cortex using the AllPrep DNA/RNA Mini Kit (Qiagen), with minor modifications to the 

manufactuer’s protocol. Briefly, we added lysis buffer (containing added β-mercaptoethanol) to 

each tissue sample, disrupted the tissue using a homogenizing pestle, and homogenized the lysate 
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using a pipette. The lysate was centrifuged and the supernatant removed and transferred to an 

AllPrep DNA spin column. After centrifugation, the flow-through was used for RNA purification by 

mixing with 70% ethanol, running it through the RNeasy spin column (including DNase treatment) 

and eluting in RNase-free water. RNA quality and quantity for all samples was checked using RNA 

ScreenTape (Agilent) with the optimal eight samples for each group (RIN ≥ 8, Supplementary 

Table 1 and Supplementary Table 2) selected for transcriptional profiling (total n = 128 samples; 

two models (rTg4510/J20) x two groups (TG/WT) x four time-points x eight individual animals per 

group). Stranded-specific mRNA sequencing libraries were prepared using the TruSeq Stranded 

mRNA Sample Prep Kit (Illumina) using the Bravo Automated Liquid Handling Platform (Agilent). 

cDNA libraries were prepared from ~450ng of total RNA plus ERCC spike-in synthetic RNA 

controls59 (Ambion, dilution 1:100). Libraries were individually cleaned up using Ampure XP 

magnetic beads (Beckman Coulter), their concentrations were determined using D1000 

ScreenTape System (Agilent), and samples were pooled together to a 2nM concentration, for 

subsequent sequencing (three pools of 22 samples for J20 samples and one pool of 64 samples 

for rTg4510 samples). Pooled libraries were quantified using a Qubit Fluorometer (Thermo Fisher 

Scientific), Tapestation HS ScreenTape System (Agilent Technologies), and qPCR. Final library 

pools were distributed across twelve HiSeq2500 (Illumina) lanes (six lanes for each model) and 

subjected to 125bp paired-end sequencing yielding a mean untrimmed read depth of ~20 million 

reads/sample (Supplementary Table 1 and Supplementary Table 2). 

 

RNA-seq data processing 

All sequencing data processing was performed on a Unix-based operating system server. Raw 

files were demultiplexed into FASTQ files (Phred (Q) ≥ 35, Supplementary Table 1 and 

Supplementary Table 2) and checked for potential contamination. The randomized FASTQ files 

underwent quality control (QC) assessments using FastQC60 (version 0.11.4). Trimming (ribosomal 

sequences removal, quality threshold 20, minimum sequence length 35) was performed with 

fastqmcf61 (version 1.0) and trimmed samples were aligned to the mm10 (GRCm38.p4) reference 

mouse genome using STAR62 (version 2.5.3a), with mapping ≥ 85% (Supplementary Table 1 and 

Supplementary Table 2). Gene expression quantification (quantification of fragments or 

templates, hereby referred as read counts) was achieved using featureCounts63 (version 1.5.2). 

Following confirmation of genotype and QC, 7 samples were excluded from subsequent analysis 

leaving a final number of 121 high-quality RNA-seq datasets (6-8 animals per group). 

 

Gene expression analysis 

All analyses were performed in R (version 3.4.3) unless otherwise stated. Read counts were 

analysed for differential expression using the R package DESeq264 (version 1.16.1) downloaded 

from Bioconductor14.DESeq2 uses the raw read counts, applies an internal normalization method, 

and does estimation of library size, estimation of dispersion, and negative binomial generalized 
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linear model fitting64. Data sets were filtered for non-expressed and lowly expressed genes 

(minimum of 6 counts across all samples), and similarity in the genome-wide expression profile 

between samples was visualized in a heatmap clustered by Euclidean distance (Supplementary 

Figure 21 and Supplementary Figure 22) and a principal component analysis (PCA) plot of the 

first two principal components (Supplementary Figure 23 and Supplementary Figure 24). We 

were interested in detecting both genotype effects and progressive changes across age between 

the transgenic and wild type samples. We used the following statistical model, including main 

effects for both Genotype and Age (both coded as categorical variables) and an interaction 

between these two terms: 

 

𝐺𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =  𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 +  𝐴𝑔𝑒 +  𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 ∗ 𝐴𝑔𝑒  

 

To identify significant Genotype effects a Wald test was used, and to identify significant effects of 

Age and interaction effects (i.e. Genotype*Age) we used the likelihood-ratio test, both applied with 

the DESeq function from the DESeq2 package64. P values were adjusted for multiple testing, using 

the false discovery rate (FDR) method (also known as Benjamini and Hochberg correction)65 

implemented with the R function p.adjust; FDR-adjusted P values < 0.05 were defined as 

significant. Potential differences in proportions of upregulated versus downregulated genes as well 

as overlapping fold changes in both models were interrogated using the binomial test. Functional 

annotation and gene ontology analyses were done with GOseq66 (1.30.0), based on genes with 

FDR < 0.05. 

 

Quantifying human transgene expression 

Mouse and human App/APP and Mapt/MAPT sequences were compared using BLAT67 for 

divergent transcript sequences representing specific mouse and human gene sequences. Two 

200bp regions spanning 4 exons were chosen as representative mouse-specific App. Similar 

regions consisting of two 200bp exonic regions were also chosen for human APP. Mouse-specific 

Mapt and human-specific MAPT sequences were chosen from a 2kb region present in the 3’UTR. 

Using Bowtie268 (version 2.3.4.3), indices based on these sequences were then built, and 

alignments were performed using the FASTQ read 1 sequences. Counts of read alignments for 

mouse and human specific indices were then plotted as a ratio of unique (mouse or human) reads 

relative to the total number of input reads. 

 

Comparison with RNA-seq data from the Mouseac database 

RNA-seq data (transcripts per million, TPM) from two mouse models14,51 (TAU (CaMKII-

MAPTP301L) and TAS10 (SwAPP, K670N/M671L)) were downloaded from the Mouseac online 

database (www.mouseac.org), with corresponding detailed phenotypic data downloaded from 

GEO28,29 (accession number GSE64398). Only genes identified as differentially expressed (FDR < 
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0.05) in our analysis (for rTg4510 and J20 mice) were kept for further statistical analysis. TPM was 

log transformed (log2(x+1)) and the same linear regression model described above 

(𝐺𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =  𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 +  𝐴𝑔𝑒 +  𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 ∗ 𝐴𝑔𝑒), using ANOVA to test for significant 

differences associated with either the Genotype, Age, or Genotype*Age terms, was used. P values 

were corrected for the number of genes compared across datasets using Bonferroni correction. 

Potential differences in proportions of upregulated versus downregulated genes as well as 

overlapping fold changes in both models were interrogated using the binomial test. 

 

Co-expression network analysis 

Using weighted co-expression network analysis69,70 (WGCNA) (version 1.63), we constructed a 

signed co-expression network for each mouse model using log transformed counts from all 

samples. Logarithmic transformation of raw counts was achieved using the rlog function from 

DESeq2, which minimizes variability in genes with low counts64. We checked the data for missing 

values and outliers, and removed one sample from the analysis for the rTg4510 dataset (flagged 

as an outlier) before building the networks. Signed WGCNA co-expression networks were built 

using the lowest power for which the scale-free topology fit index curve flattened out after reaching 

0.90 resulting in a soft-threshold power of 10 and 9 for rTg4510 and J20 datasets, respectively, 

and a minimum module size of 30. For each module of highly interconnected genes, colour-

labelled according to the WGCNA conventions, we calculated the module eigengenes (MEs) as the 

first principal component of the expression matrix, which provide a representative expression 

profile for each module69. In order to identify modules significantly associated with pathology 

burden, we calculated correlation coefficients between these MEs with the available pathology data 

and explored the most significant associations. In addition we used the same linear regression 

model as described for the gene-level analysis (𝑀𝐸 =  𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 +  𝐴𝑔𝑒 +  𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 ∗ 𝐴𝑔𝑒) using 

ANOVA to test for significant differences due to either the Genotype, Age, or Genotype*Age terms. 

P values were corrected for multiple comparisons using the Bonferroni correction, to correct for 18 

modules in the rTg4510 (statistical threshold was adjusted to 0.05/18 = 0.0028) and 21 modules in 

the J20 (statistical threshold was adjusted to 0.05/21 = 0.0024) mice. We used the GOseq R 

package (version 1.30.0) to perform functional annotation and gene ontology (GO) analyses for 

each module, where significant pathways were selected using an FDR threshold of 0.05 as 

previously described66. We used Cytoscape71 (version 3.7.0) for network visualization using the 

topological overlap matrix for the log transformed expression data. 

 

Comparison with human co-expression networks 

The six rTg4510-associated co-expression modules identified in this study (“salmon”, “turquoise”, 

“purple”, “yellow”, “light-cyan”, and “red”), and AD-associated human co-expression modules in the 

dorsolateral prefrontal cortex (DLPFC) and temporal cortex (TCX)53, were reduced to contain only 

mouse-human homologs as defined by Ensembl72 (accessed on 14/11/2018). The level of overlap 
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between gene members of each pair of modules was assessed via a hypergeometric test using the 

R (version 3.5.1) function phyper. P values were corrected for multiple comparisons using 

Bonferroni correction in a tissue-specific manner, where only the set of raw P values related to 

DLPFC (statistical threshold was adjusted to 0.05/24 = 0.0021) or TCX (statistical threshold was 

adjusted to 0.05/30 = 0.0017) modules’ overlap were considered. Using GOseq (version 1.30.0), 

we performed functional annotation and GO analyses for the common genes in each overlapping 

pair of modules. 
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FIGURE LEGENDS 

Figure 1. Transgenic models expressing mutant human MAPT and APP exhibit progressive 

neuropathology across the hippocampus and cortex. (a) Representative 

immunohistochemistry images from the hippocampus (CA1 subregion) showing the dramatic 

accumulation of tau pathology (PG-5) in rTg4510 transgenic (TG) mice compared to wild type (WT) 

control mice at 2, 4, 6 and 8 months of age. (b) The quantification of PG-5 immunoreactivity 

highlighted a striking increase in hippocampal tau in the TG animals (blue) but not WT animals 

(black) (total n = 73 animals, 8-10 animals per group, factorial ANOVA, F(3,66) = 69.76, P = 1.96E-

20). (c) Representative immunohistochemistry images from the hippocampus showing the 

dramatic accumulation of amyloid pathology (b3D6) in J20 TG mice compared to WT control mice 

at 6, 8, 10 and 12 months of age. (d) The quantification of b3D6 immunoreactivity highlighted a 

striking increase in hippocampal amyloid in the TG mice (red) but not WT mice (black) (total n = 77 

animals, 9-10 animals per group, factorial ANOVA, F(3,68) = 66.85, P = 3.00E-20). Dashed lines 

represent mean paths of pathological burden across the four age groups.  

 

Figure 2. Genotype-associated transcriptional variation robustly discriminates between 

transgenic and wild type mice. (a) Hierarchical clustering of each individual mouse based on 

expression levels for differentially expressed genes (DEGs) associated with rTg4510 genotype (n = 

59 mice (29 TG, 30 WT), 147 transcripts). (b) Hierarchical clustering of each individual mouse 

based on expression levels for differentially expressed genes (DEGs) associated with J20 

genotype (n = 62 mice (30 TG, 32 WT), 5 transcripts). Direction of normalized DESeq2 read 

counts, relative to mean levels of expression across all individual mice (“relative gene expression”), 

is represented in the heatmaps (scaled) from high (red) to low (blue). 

 

Figure 3. Transcriptional trajectories associated with the accumulation of tau pathology in 

rTg4510 mice. (a) Violin plot showing increasing absolute effect size (Log2 fold change) across 

age groups for transcripts characterized by significant (FDR < 0.05, n = 1,762 transcripts) temporal 

changes in gene expression associated with genotype (Mann-Whitney U test, W (4-6 months) = 

1182700, P (4-6 months) < 2.20e-16, W (6-8 months) = 1031000, P (6-8 months) < 2.20e-16, W 

(4-8 months) = 679520, P (4-8 months) < 2.20e-16). White dots represent the median absolute 

fold-change. Shown are individual plots for: (b) Gfap (Likelihood-ratio test, LRT statistic = 106.32, 

log2 fold change (2-8 months) = 2.75, FDR = 1.28E-18), (c) Cd68 (Likelihood-ratio test, LRT 

statistic = 103.77, log2 fold change (2-8 months) = 1.85, FDR = 2.26E-18), (d) Itgax (Likelihood-

ratio test, LRT statistic = 86.85, log2 fold change (2-8 months) = 4.42, FDR = 6.54E-15), and (e) 

Clec7a (Likelihood-ratio test, LRT statistic = 83.20, log2 fold change (2-8 months) = 5.37, FDR = 

2.97E-14). Normalized RNA-seq read counts were obtained using DESeq2. Dashed lines 

represent mean paths for each time point. rTg4510 transgenic (TG, blue) female mice compared to 

wild type (WT, black) littermate control mice. Total n = 59 animals (6-8 animals per group). 
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Figure 4. Effect sizes at differentially expressed transcripts associated with the progression 

of tau in rTg4510 mice are correlated with those in another transgenic model of tau. (a) 

Positive correlation for effect size (Log2 fold change from latest time point compared to baseline) 

for significant transcripts in rTg4510 mice (Pearson correlation, r = 0.46, P = 1.50E-92; exact 

binomial test, n = 1762 transcripts, P = 1.97e-05). (b) Two transcripts (Cst7 and Itgax) were 

significantly associated with the progression of both tau (Tg4510) and amyloid (J20) pathology 

(Pearson correlation, r = 0.77, P = 0.13; exact binomial test, n = 5 transcripts, P = 0.13). (c) Cst7 

gene expression in rTg4510 mice (Total n = 59 animals, 6-8 animals per group, Likelihood-ratio 

test, LRT statistic = 36.10, log2 fold change (2-8 months) = 6.59, FDR = 7.71E-06). rTg4510 

transgenic (TG, blue) female mice compared to wild type (WT, black) littermate control mice. (d) 

Cst7 gene expression in the J20 mice (Total n = 62 animals, 6-8 animals per group, Likelihood-

ratio test, LRT statistic = 37.37, log2 fold change (6-12 months) = 2.42, FDR = 0.00072). J20 

transgenic (TG, red) female mice compared to wild type (WT, black) littermate control mice. Itgax 

gene expression in rTg4510 and J20 mice is show in Figure 3d and Supplementary Figure 11, 

respectively. Normalized counts were obtained using DESeq2. Dashed lines represent mean paths 

for each time point.  

 

Figure 5. Variation in three entorhinal cortex co-expression modules parallels the 

accumulation of tau pathology in rTg4510 mice. Shown are module eigengene values for each 

individual mouse at four time-points for (a) the turquoise module (n = 3091 transcripts, linear 

regression, F(3,50) = 12.18, β = 0.28, P = 4.23E-06), (b) the yellow module (n = 1102 transcripts, 

linear regression, F(3,50) =5.79, β = -0.29, P = 0.0018), and (c) the red module (n = 726 

transcripts, linear regression, F(3,50) = 5.58, β = -0.21, P = 0.0022). Total n = 59 animals (6-8 

animals per group). The same three modules are correlated with levels of tau pathology quantified 

using immunohistochemistry in the same individuals. Shown are scatter-plots highlighting the (d) 

positive correlation between module eigengene in the turquoise module and tau pathology in the 

hippocampus (Pearson correlation, r = 0.85, P = 5.00E-17), (e) negative correlation between 

module eigengene in the yellow module and tau pathology in the hippocampus (Pearson 

correlation, r = -0.63, P = 1.00E-07), and (f) negative correlation between module eigengene in the 

red module and tau pathology in the hippocampus (Pearson correlation, r = -0.79, P = 2.00E-13). 

Coloured circles represent rTg4510 TG mice and white circles represent WT control mice. Each 

circle represents a single individual. Dashed lines represent mean paths for each time point. Total 

n = 58 animals (6-8 animals per group).  

 

Figure 6. Network plots highlighting core members of gene co-expression modules 

associated with the development of tau pathology. Shown are the top 50 nodes (i.e. genes) 

with the strongest edges (representing individual connections with other genes) for each module. 
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(a) Turquoise module (all upregulated genes – log2 fold change for latest time point against 

baseline). (b) Yellow module (downregulated genes in yellow, and upregulated genes in grey). (c) 

Red module (all downregulated genes). Stronger colours reflect higher absolute log2 fold change 

(8 months against 2 months). Total n = 58 animals (6-8 animals per group).  
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Figure 1. Transgenic models expressing mutant human MAPT and APP 
exhibit progressive neuropathology across the hippocampus and cortex. 
(a) Representative immunohistochemistry images from the hippocampus (CA1 
subregion) showing the dramatic accumulation of tau pathology (PG-5) in 
rTg4510 transgenic (TG) mice compared to wild type (WT) control mice at 2, 4, 6 
and 8 months of age. (b) The quantification of PG-5 immunoreactivity 
highlighted a striking increase in hippocampal tau in the TG animals (blue) but 
not WT animals (black) (total n = 73 animals, 8-10 animals per group, factorial 
ANOVA, F(3,66) = 69.76, P = 1.96E-20). (c) Representative 
immunohistochemistry images from the hippocampus showing the dramatic 
accumulation of amyloid pathology (b3D6) in J20 TG mice compared to WT 
control mice at 6, 8, 10 and 12 months of age. (d) The quantification of b3D6 
immunoreactivity highlighted a striking increase in hippocampal amyloid in the 
TG mice (red) but not WT mice (black) (total n = 77 animals, 9-10 animals per 
group, factorial ANOVA, F(3,68) = 66.85, P = 3.00E-20). Dashed lines represent 
mean paths of pathological burden across the four age groups.		
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Figure 2. Genotype-associated transcriptional 
variation robustly discriminates between transgenic 
and wild type mice. (a) Hierarchical clustering of each 
individual mouse based on expression levels for 
differentially expressed genes (DEGs) associated with 
rTg4510 genotype (n = 59 mice (29 TG, 30 WT), 147 
transcripts). (b) Hierarchical clustering of each individual 
mouse based on expression levels for differentially 
expressed genes (DEGs) associated with J20 genotype 
(n = 62 mice (30 TG, 32 WT), 5 transcripts). Direction of 
normalized DESeq2 read counts, relative to mean levels 
of expression across all individual mice (“relative gene 
expression”), is represented in the heatmaps (scaled) 
from high (red) to low (blue). 
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Figure 3. Transcriptional trajectories associated with the 
accumulation of tau pathology in rTg4510 mice. (a) Violin plot 
showing increasing absolute effect size (Log2 fold change) across age 
groups for transcripts characterized by significant (FDR < 0.05, n = 
1,762 transcripts) temporal changes in gene expression associated with 
genotype (Mann-Whitney U test, W (4-6 months) = 1182700, P (4-6 
months) < 2.20e-16, W (6-8 months) = 1031000, P (6-8 months) < 
2.20e-16, W (4-8 months) = 679520, P (4-8 months) < 2.20e-16). White 
dots represent the median absolute fold-change. Shown are individual 
plots for: (b) Gfap (Likelihood-ratio test, LRT statistic = 106.32, log2 fold 
change (2-8 months) = 2.75, FDR = 1.28E-18), (c) Cd68 (Likelihood-
ratio test, LRT statistic = 103.77, log2 fold change (2-8 months) = 1.85, 
FDR = 2.26E-18), (d) Itgax (Likelihood-ratio test, LRT statistic = 86.85, 
log2 fold change (2-8 months) = 4.42, FDR = 6.54E-15), and (e) Clec7a 
(Likelihood-ratio test, LRT statistic = 83.20, log2 fold change (2-8 
months) = 5.37, FDR = 2.97E-14). Normalized RNA-seq read counts 
were obtained using DESeq2. Dashed lines represent mean paths for 
each time point. rTg4510 transgenic (TG, blue) female mice compared 
to wild type (WT, black) littermate control mice. Total n = 59 animals (6-8 
animals per group). 
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Figure 4. Effect sizes at differentially expressed transcripts associated 
with the progression of tau in rTg4510 mice are correlated with those in 
another transgenic model of tau. (a) Positive correlation for effect size (Log2 
fold change from latest time point compared to baseline) for significant 
transcripts in rTg4510 mice (Pearson correlation, r = 0.46, P = 1.50E-92; exact 
binomial test, n = 1762 transcripts, P = 1.97e-05). (b) Two transcripts (Cst7 
and Itgax) were significantly associated with the progression of both tau 
(Tg4510) and amyloid (J20) pathology (Pearson correlation, r = 0.77, P = 0.13; 
exact binomial test, n = 5 transcripts, P = 0.13). (c) Cst7 gene expression in 
rTg4510 mice (Total n = 59 animals, 6-8 animals per group, Likelihood-ratio 
test, LRT statistic = 36.10, log2 fold change (2-8 months) = 6.59, FDR = 
7.71E-06). rTg4510 transgenic (TG, blue) female mice compared to wild type 
(WT, black) littermate control mice. (d) Cst7 gene expression in the J20 mice 
(Total n = 62 animals, 6-8 animals per group, Likelihood-ratio test, LRT statistic 
= 37.37, log2 fold change (6-12 months) = 2.42, FDR = 0.00072). J20 
transgenic (TG, red) female mice compared to wild type (WT, black) littermate 
control mice. Itgax gene expression in rTg4510 and J20 mice is show in 
Figure 3d and Supplementary Figure 11, respectively. Normalized counts 
were obtained using DESeq2. Dashed lines represent mean paths for each 
time point. 
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Figure 5. Variation in three entorhinal cortex co-expression modules 
parallels the accumulation of tau pathology in rTg4510 mice. Shown are 
module eigengene values for each individual mouse at four time-points for (a) 
the turquoise module (n = 3091 transcripts, linear regression, F(3,50) = 12.18, 
β = 0.28, P = 4.23E-06), (b) the yellow module (n = 1102 transcripts, linear 
regression, F(3,50) =5.79, β = -0.29, P = 0.0018), and (c) the red module (n = 
726 transcripts, linear regression, F(3,50) = 5.58, β = -0.21, P = 0.0022). Total 
n = 59 animals (6-8 animals per group). The same three modules are 
correlated with levels of tau pathology quantified using immunohistochemistry 
in the same individuals. Shown are scatter-plots highlighting the (d) positive 
correlation between module eigengene in the turquoise module and tau 
pathology in the hippocampus (Pearson correlation, r = 0.85, P = 5.00E-17), 
(e) negative correlation between module eigengene in the yellow module and 
tau pathology in the hippocampus (Pearson correlation, r = -0.63, P = 
1.00E-07), and (f) negative correlation between module eigengene in the red 
module and tau pathology in the hippocampus (Pearson correlation, r = -0.79, 
P = 2.00E-13). Coloured circles represent rTg4510 TG mice and white circles 
represent WT control mice. Each circle represents a single individual. Dashed 
lines represent mean paths for each time point. Total n = 58 animals (6-8 
animals per group).  
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Figure 6. Network plots highlighting core members of gene co-
expression modules associated with the development of tau pathology. 
Shown are the top 50 nodes (i.e. genes) with the strongest edges 
(representing individual connections with other genes) for each associated 
module. (a) Turquoise module (all upregulated genes – log2 fold change for 
latest time point against baseline). (b) Yellow module (downregulated genes 
in yellow, and upregulated genes in grey). (c) Red module (all downregulated 
genes). Stronger colors reflect higher absolute log2 fold change (8 months 
against 2 months). Total n = 58 animals (6-8 animals per group).  
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