

Title: Variation in filamentous growth and response to quorum-sensing compounds in environmental isolates of *Saccharomyces cerevisiae*

Authors: B. Adam Lenhart¹, Brianna Meeks¹, and Helen A. Murphy^{1,2}

Contact Information:

- 1- The College of William and Mary, P.O. Box 8795, Williamsburg, VA 23187-8795
- 2- Corresponding author: hamurphy@wm.edu

Running Title (70 characters): Variation in filamentous growth and quorum sensing in budding yeast

Keywords: phenylethanol, tryptophol, pseudohyphal growth, filamentous growth, invasive growth, *Saccharomyces cerevisiae*

1 **Abstract**

2 In fungi, filamentous growth is a major developmental transition that occurs in response
3 to environmental cues. In diploid *Saccharomyces cerevisiae*, it is known as
4 pseudohyphal growth and presumed to be a foraging mechanism. Rather than normal
5 unicellular growth, multicellular filaments composed of elongated, attached cells spread
6 over and into surfaces. This morphogenetic switch can be induced through quorum
7 sensing with the aromatic alcohols phenylethanol and tryptophol. Most research
8 investigating pseudohyphal growth has been conducted in a single lab background,
9 Σ1278b. To investigate the natural variation in this phenotype and its induction, we
10 assayed the diverse 100-genomes collection of environmental *S. cerevisiae* isolates.
11 Using computational image analysis, we quantified the production of pseudohyphae and
12 observed a large amount of variation. Unlike ecological niche, population membership
13 was associated with pseudohyphal growth, with the West African population having the
14 most. Surprisingly, most strains showed little or no response to exogenous
15 phenylethanol or tryptophol. We also investigated the amount of natural genetic variation
16 in pseudohyphal growth using a mapping population derived from a single, highly-
17 heterozygous clinical isolate that contained as much phenotypic variation as the
18 environmental panel. A bulk-segregant analysis uncovered five major peaks with
19 candidate loci that have been implicated in the Σ1278b background. Our results indicate
20 that the filamentous growth response is a generalized, highly variable phenotype in
21 natural populations, while response to quorum sensing molecules is surprisingly rare.
22 These findings highlight the importance of coupling studies in tractable lab strains with
23 natural isolates in order to understand the relevance and distribution of well-studied
24 traits.

25 **Introduction**

26 The budding yeast, *Saccharomyces cerevisiae*, can respond to environmental cues with
27 numerous morphological switches and developmental phenotypes that likely increase
28 fitness in naturally occurring conditions (Zaman et al. 2008). One such phenotype,
29 filamentous growth, is thought to be a foraging strategy in response to nutrient stress. It
30 is characterized by elongated cell morphology, unipolar budding, incomplete separation
31 of mother-daughter cells, and substrate invasion (Gimeno et al. 1992). In diploid cells it
32 is primarily induced by nitrogen limitation and known as pseudohyphal growth (Figure 1),
33 while a similar though distinct response is triggered by carbon source limitation in
34 haploid cells and is known as haploid invasive growth (Cullen and Sprague 2000, Cullen
35 and Sprague 2012).

36

37 In a lab strain, Σ 1278b, haploid and diploid filamentous growth were shown to occur in
38 response to the aromatic alcohols phenylethanol and tryptophol (Chen and Fink 2006).
39 Production of these compounds is dependent on cell density and regulated through
40 positive feedback, suggesting they may function as auto-inducing, quorum-sensing (QS)
41 molecules. The human commensal and opportunistic pathogen, *Candida albicans*, can
42 also undergo a morphological switch to a form of filamentous growth in response to QS
43 molecules, which may be related to its ability to be pathogenic (Hornby et al. 2001,
44 Leberer et al. 2001, Rocha et al. 2001, Chen et al. 2004, Biswas et al. 2007, Mallick and
45 Bennett 2013). Parts of the signaling pathway are evolutionarily conserved (Lo et al.
46 1997, Cain et al. 2012); thus, filamentous growth may represent a general, social, yeast
47 survival strategy in the natural environment (Wuster and Babu 2010).

48

49 In *S. cerevisiae*, filamentous growth is regulated by multiple evolutionarily conserved,
50 pleiotropic signaling networks, including the glucose-sensing RAS/cAMP-PKA and SNF

51 pathways, the nutrient-sensing TOR pathway, and the filamentous growth MAPK
52 pathway (reviewed in (Granek et al. 2011, Cullen et al. 2012)). These signaling
53 pathways converge to regulate the transcription of *FLO11*, which encodes a cell wall
54 flocculin required for multiple *S. cerevisiae* developmental phenotypes, including
55 filamentous growth (Lambrechts et al. 1996, Lo and Dranginis 1998, Pan and Heitman
56 1999, Rupp et al. 1999, Braus et al. 2003, Chen and Thorner 2010). In lab backgrounds,
57 deletion (Jin et al. 2008, Ryan et al. 2012) and overexpression collections (Shively et al.
58 2013), as well as QTL mapping of genetic crosses (Song et al. 2014, Matsui et al. 2015),
59 have identified hundreds of genes contributing to the phenotype.

60

61 The extent of phenotypic and genetic variation in filamentous growth in natural
62 populations is still under-explored, as studies of this phenotype are dominated by the lab
63 strain Σ 1278b. Previous work has shown that in comparison to natural isolates, lab
64 strains are often genetically and phenotypically atypical (Warringer et al. 2011). Thus,
65 incorporating environmental isolates into genetic research broadens the scope of our
66 understanding, both in how genetic variation modulates traits and how phenotypic
67 variation manifests in natural populations (Gasch et al. 2016). The present study makes
68 use of the 100-genomes collection, a panel of yeasts from subpopulations around the
69 world and from a broad diversity of ecological niches, including fermentation reactions,
70 clinical patients, and soil, plant and insect samples (Strope, et al., 2015), to explore
71 natural variation in filamentous growth and response to QS compounds.

72

73 *Saccharomyces* yeasts are presumed diploid in nature (Replansky et al. 2008);
74 therefore, the focus of the present study is the diploid filamentous growth response,
75 pseudohyphal growth (psh). Most studies of psh use agar invasion as a quantitative
76 metric for the phenotype, while the appearance of "pseudohyphae" around a colony

77 (Figure 1) is assessed qualitatively. Using these metrics, (Magwene et al. 2011) found
78 variation in a sample of environmental isolates, and Hope and Dunham (2014) found
79 variation in the SGRP collection (Liti et al. 2009). Less is known about variation in psh
80 response to QS molecules, and to our knowledge, no systematic surveys have been
81 done.

82

83 Using a quantitative measure of the amount of pseudohyphae to estimate psh, which we
84 call the "filamentous index", we found a large amount of variation in the 100-genomes
85 collection. When the strains were classified by the niche from which they were isolated,
86 fermentation isolates exhibited a slightly elevated filamentous index compared to other
87 ecological niches; however, this result appeared driven by a single isolate. When strains
88 were classified by their subpopulation membership (Figure 2), which took phylogenetic
89 history into consideration, isolates from the West African subpopulation had an elevated
90 filamentous index compared to other subpopulations. Surprisingly, we find that in most
91 isolates, addition of either phenylethanol or tryptophol to the medium had a negligible
92 effect on psh, with a few strain-specific exceptions.

93

94 As most genomic studies focus on Σ 1278b, the present study also examined the amount
95 of naturally occurring, segregating genetic variation for psh using a mapping population
96 of segregants from YJM311 as a proxy. This strain is a highly-heterozygous clinical
97 isolate (Granek et al. 2013) belonging to the "mosaic" subpopulation that contains
98 genetic variation associated with each of the other major *S. cerevisiae* subpopulations
99 (Figure 2). As such, it represents an ideal representative genetic background to
100 investigate. We find that this single background contains enough genetic variation to
101 recapitulate the range of phenotypes found in the 100-genomes panel. Using a bulk-
102 segregant analysis, we find 5 genomic regions with major peaks significantly associated

103 with the traits. Numerous genes that have been shown to influence the trait in Σ1278b
104 are located within the peaks, and could therefore plausibly harbor the causative alleles.
105
106 Overall, our results indicate that there is an extensive amount of phenotypic and genetic
107 variation in a well-studied developmental phenotype in environmental isolates, and that
108 the response to aromatic alcohols may be a more limited, strain-specific effect. The
109 relevance of this phenotype in the natural environment remains unknown, as no single
110 ecological niche appeared to be strongly associated with the trait, while subpopulation
111 membership did seem to be associated with psh ability. Our results highlight the
112 importance of complementing studies in lab strains with numerous genetic backgrounds
113 isolated from the environment.

114

115 **Methods and Materials**

116 *Strains*

117 96 strains from the 100-genomes collection (Strope et al. 2015) were phenotyped for psh
118 (Table S1); these diploid strains are derived from single spores from original
119 environmental isolates. Three of the strains, wells H8, H9, and H10 are not *S.*
120 *cerevisiae*, and were not included the downstream analyses. YJM311, a homothallic,
121 clinical isolate (Granek et al. 2013), was used to conduct a bulk segregant analysis
122 (BSA). For a different study in our lab, the original diploid isolate was transformed to
123 express a *PGK1-mCherry-KanMX* fusion (HMY7) and used to generate an F5 mapping
124 population. This mapping population was used in the present study.

125

126 *Media*

127 Yeast were grown in liquid YPD (1% yeast extract, 2% peptone, and 2% dextrose). Psh
128 was induced on 4X synthetic low-ammonium dextrose (SLAD; 0.68% yeast nitrogen

129 base w/o amino acids or ammonium sulfate, 2% dextrose, 50 μ mol ammonium sulfate,
130 and 2% agar) (Chen et al. 2006) and when appropriate, supplemented with
131 phenylethanol (PheOH; Sigma-Aldrich, 77861) or Tryptophol (TrpOH; Sigma-Aldrich,
132 T90301) dissolved in DMSO, added to a final concentration of 100 μ mol. OmniTrays
133 were poured two days before use in an assay. Sporulation of the mapping population
134 was induced on sporulation medium (2% potassium acetate, 2% agar).

135

136 *Generation of an F5 Mapping Population*

137 HMY7 was cycled through 4 rounds of sporulation, digestion, mating and growth
138 (Supplementary Text). At the end of the last cycle, spores were plated to a density of
139 ~100 colonies per plate and 360 segregants were isolated and phenotyped. Each colony
140 was presumed diploid due to self-mating.

141

142 *Sequencing and Bulk Segregant Analysis*

143 Segregants with the highest and lowest filamentous indices, as well as lowest variance
144 among replicate measurements, were chosen for further analysis. After re-assaying to
145 verify psh, 22 segregants were identified for each pool. Segregants were grown to
146 saturation in YPD in a 96-well plate, then combined for total genomic DNA extraction
147 with the MasterPure Yeast DNA Purification Kit. Bulk pools were sent to the University of
148 Georgia Genomics and Bioinformatics core for KAPA library prep and paired-end 150bp
149 sequencing on an Illumina MiSeq Micro platform for an average coverage of ~55-fold.
150 DNA from HMY7 was previously sequenced at the Duke Genome Sequencing Core on
151 an Illumina HiSeq 2000 instrument with single-end 50bp reads to an average coverage
152 of 110-fold.

153

154 Reads from the bulk pools were aligned to the HMY7 genome (Supplementary Text)
155 using BWA (Li and Durbin 2009), and SNPs were called using Freebayes (Garrison and
156 Marth 2012) with settings for a pooled population. SNPs were filtered for quality and
157 coverage. Bulk pools were compared using the R-package QTLseqr (Mansfeld and
158 Grumet 2018), which implements the smoothed-G statistics of (Magwene et al. 2011).

159

160 *YJM311 Subpopulation Membership*

161 In order to assign YJM311 to an *S. cerevisiae* subpopulation, the fixed SNPs from its
162 genome were included in the dataset from the 100-genomes collection and analyzed
163 using the program *structure* V 2.3.4 (Pritchard et al. 2000) following the specifications of
164 Strope et al. (2015). Briefly, the large set of SNPs found across the complete strain
165 panel was filtered and sampled to create four independent sets of ~1,200 SNPs in low
166 linkage disequilibrium and representing the distribution of minor allele frequencies
167 (generously provided by D. Skelley). Once YJM311 was incorporated, each of the four
168 data sets was run three times using the linkage model (Falush et al. 2003) with a burn-in
169 of 200,000 iterations and 1,000,000 iterations of MCMC, and K=6 groups. The results
170 from the 12 independent runs were compared using *CLUMPP* V 1.1.2 (Jakobsson and
171 Rosenberg 2007) and visualized using *distruct* V 1.1 (Rosenberg 2004).

172

173 *Pseudohyphal Growth*

174 For the 100-genomes strains, YPD cultures were grown to saturation (~24 hours) in a
175 96-well plate and ~2 μ l per well was transferred to OmniTrays (Nunc 264728) using a
176 96-pin multi-blot replicator (V&P Scientific no. VP408FP6). For a given assay, a single
177 96-well plate was pinned to four replicates of three different media types (SLAD, SLAD +
178 PheOH, SLAD + TrpOH). OmniTrays were wrapped with parafilm to prevent drying and
179 incubated at 30C for one week. After incubation, trays were scanned on an Epson

180 Expression 11000 XL scanner, which produced RGB color images with 1200 dpi. For the
181 F5 mapping population, the same procedure was implemented for the 360 segregants,
182 but only SLAD + PheOH medium was used and with only two replicates per assay. For
183 both the 100-genomes panel and the mapping population, the entire assay was repeated
184 three times.

185

186 Follow-up experiments required streaking freezer cultures onto YPD agar, then streaking
187 isolated colonies onto SLAD agar (+ PheOH or TrpOH, when appropriate) and
188 incubating at 30C for 5 days before imaging.

189

190 *Image Analysis*

191 The scanned images were processed using a custom Python script (referred to here as
192 "Eclipse"; Supplementary Material) that utilized the skimage package (van der Walt et al.
193 2014) to read the color qualities of individual pixels. Eclipse discriminated between
194 outer-colony filamentous growth and the inner colony, and reported the ratio of the two,
195 a metric inspired by (Tronnolone et al. 2017).

196

197 *Image Processing*

198 It was necessary to identify the color thresholds that designated the colony ring
199 exclusively as white, the filamentous growth as gray, and the background as a separate
200 entity. The image of the entire OmniTray was used to establish the values that best
201 separated the parts of the colony; these values were then used to process the 96
202 cropped images representing individual colonies. Cracks, smudges, light reflection, and
203 localized contamination interfered with image processing. In these cases, the individual
204 colony images were examined and cropped to exclude trouble spots or dropped from
205 analysis. For YJM311, only segregants that were consistently high-psh and low-psh

206 were of interest for pooling in the bulk segregant analysis. We therefore manually
207 inspected all images and dropped measurements that did not appear to accurately
208 reflect the level of filamentation in the image (assessed qualitatively). This was not done
209 for the panel of environmental isolates because we did not want to introduce bias and
210 because variation in the measurements was of interest for the downstream analysis.

211

212 *Statistics*

213 The data from the 100-genomes panel was analyzed in JMP 11.2.0 using an ANOVA
214 framework with three different models. First, no group identity was assigned to the
215 strains. The following model was fitted to the data: $Y = \mu + \text{Treatment} + \text{Strain} + \text{Strain}^*$
216 $\text{Treatment} + \text{Assay} + \text{Assay}^* \text{Treatment} + \text{Strain}^* \text{Assay} + \text{Strain}^* \text{Assay}^* \text{Treatment}$.
217 Strain and treatment were considered fixed effects, while assay was considered a
218 random effect. Next, strains were assigned to an ecological niche, which was considered
219 a fixed effect, and the following model was fitted to the data: $Y = \mu + \text{Niche} + \text{Treatment}$
220 $+ \text{Strain}[\text{Niche}] + \text{Assay} + \text{Niche}^* \text{Treatment} + \text{Strain}^* \text{Treatment}[\text{Niche}] + \text{Assay}^*$
221 $\text{Treatment} + \text{Assay}^* \text{Niche} + \text{Strain}^* \text{Assay}[\text{Niche}] + \text{Strain}^* \text{Assay}^* \text{Treatment}[\text{Niche}]$.
222 Brackets denote nested effects. Finally, strains were assigned to a subpopulation and
223 the data were fitted to a model similar to the previous one. The data from the YJM311
224 segregants were transformed into z-scores for each plate; these values were used to
225 help identify the strains with highest and lowest filamentous index.

226

227 *Data Availability*

228 Environmental strains from the 100-genomes collection are available upon request, as
229 well as from the authors of the original study (Strope et al. 2015). Table S1 lists all the
230 isolates along with the filamentous indices extracted from the images. HMY7 and all its

231 segregants are available upon request; table S2 lists all the filamentous indices. Text of
232 the Python program is available as a supplementary file.
233 All supplementary files are available on figshare. Raw reads for HMY7 and the bulk
234 pools will be deposited in SRA.

235

236 **Results**

237 In order to investigate natural variation in psh and its induction by the QS compounds
238 PheOH and TrpOH, the first 96 strains of the 100-genomes panel were plated on
239 nitrogen-limiting medium using a pinning tool. Figure 3 shows the typical structure of a
240 psh colony formed from pinning. Such colonies contain a white “ring” around the inner
241 part where the pinner left cells; this ring separates the grey filamentous growth from the
242 rest of the colony. Our image analysis pipeline located the highest and lowest values of
243 the white ring on both the vertical and horizontal axes, which established a major and
244 minor axis for the ring, and thus mapped out its location as an ellipse. This ellipse was
245 used to “eclipse” all pixels inside of it, demarcating the inner colony. These eclipsed
246 pixels were separated from the non-eclipsed pixels and the ratio of the two was
247 calculated. The ratio, or “filamentous index”, represents a rough quantitative measure of
248 the filamentous growth of the colony; sample values are shown in Figure 3.

249

250 Across 29 agar trays in three independent assays, 2516 colonies were scored for psh. In
251 the complete data set, the mean filamentous index was 13.01 and the median was 12.
252 These data were analyzed using three linear models. The first did not assign any group
253 identity to the strains and was used to investigate the variation among strains. The
254 second model assigned an ecological niche to the strains and tested for an effect of
255 niche. The third and final model assigned subpopulation membership to the strains and
256 tested for an effect of this phylogenetic history.

257

258 *Variation in Pseudohyphal Growth*

259 Of the ~2500 colonies that were imaged and scored, 895 were grown without the
260 addition of quorum sensing compounds and represent the base level of psh for the
261 strains; the mean filamentous index was 13.29. Overall, there was a wide range of
262 variation in the panel (black data points and distribution in Figure 4A-B) with a maximum
263 average filamentous index of 33.3 for YJM1439 (derived from NCYC110), a ginger beer
264 strain from West Africa, and a minimum average filamentous index of 7.5 for YJM1433
265 (derived from Yllc17_E5), a wine strain from France.

266

267 In all three linear models fitted to the data, the strain effect was significant (Table 1).
268 Individual strains with significant parameter estimates (both above and below the mean)
269 are listed in Table 2; strains that were significant in all three models are bolded. While
270 the filamentous index only provides an approximate measure of psh, the behavior of
271 individual strains appears to have been captured well, as the random effects in the
272 model that were associated with replicate assays contributed little of the variation (a total
273 of ~15% among all the random effects).

274

275 In the second linear model, strains were divided into four ecological categories based on
276 where they were isolated: fermentation, clinical, plant, and lab environments. The lab
277 category represents strains that have been propagated in the lab environment for many
278 years and may no longer represent the characteristics of the niche from which they were
279 isolated, and includes the model strain Σ1278b. Each of the niche categories contained
280 a wide range of variation in psh (Figure S2). The effect of niche was on the margin of
281 significance in the linear model ($p=0.056$); a *post hoc* Tukey's Honestly Significant
282 Difference test found fermentation to be higher than the other categories (mean

283 filamentous index of 14.29 compared to 13.01, 12.83, and 12.52 for lab, clinical, and
284 plant, respectively). However, if the strain with the most abundant pseudohyphae,
285 YJM1439, is removed from the analysis, the niche effect is no longer significant
286 ($p=0.185$; fermentation mean = 13.50), suggesting the effect is tenuous.

287

288 In the third and final linear model, strains were assigned membership to a subpopulation
289 (based on the *structure* analysis) (Figures 4A,B). Most of the strains fell in the
290 European/wine and mosaic categories, with the Malaysian subpopulation represented by
291 a single strain; therefore the results for this analysis should be interpreted with caution.
292 The effect of population was significant in the model ($p=0.0003$). A *post hoc* Tukey's
293 Honestly Significant Difference test found the West African subpopulation to have a
294 higher filamentous index than the other categories (Figure 4B, last panel). The West
295 African subpopulation contained YJM1439, the strain with the highest filamentous index.
296 When this strain was removed, the West African subpopulation remained significantly
297 higher than the others (mean=14.77 compared to 18.47 with YJM1439). Thus, for at
298 least one subpopulation, membership may be an important predictor for psh.

299

300 *Variation in Response to Quorum Sensing Compounds*

301 Of the colonies that were imaged and scored, 670 were grown in medium supplemented
302 with PheOH and 951 were grown in medium supplemented with TrpOH; these produced
303 a mean filamentous index of 14.20 and 11.89 respectively. Surprisingly, there was no
304 overall effect of the addition of QS compounds ($p=0.2473$ in the model with no group
305 identity, $p=0.2478$ in the niche model, and $p=0.2857$ in the population model). Two
306 strains significantly increased psh in response to PheOH in all three models and a
307 different two strains increased in response to TrpOH. However, two strains also
308 significantly *decreased* psh in the presence of one or both of the compounds (Table 3).

309 Even for the strains that appeared to respond significantly, the effect sizes were small
310 (on the order of 2-3 in the filamentous index). Mostly, PheOH and TrpOH appeared to
311 have little to no effect on psh.

312

313 *Comparison to Streaked Colonies*

314 In order to verify the results from the high throughput assay, a selection of 10 strains that
315 appeared to respond significantly to the QS molecules were streaked on SLAD, SLAD +
316 PheOH, and SLAD + TrpOH agar plates (Figure S3). We qualitatively assessed whether
317 there appeared to be more filamentation in the different treatments (Table 3) in a manner
318 similar to the study that originally reported the effects of the QS molecules on Σ1278b
319 (Chen et al. 2006). We found that 4 of the 10 strains appeared to respond in the
320 direction predicted, as best as could be detected from visual inspection, but all
321 responses were subtle.

322

323 The colonies arising from the streaks on SLAD agar were also compared to the images
324 of the pinned colonies on the SLAD OmniTrays in order to verify that the high throughput
325 method was correctly assessing the overall status of psh ability. While more psh was
326 induced via streaking than pinning, there was clear agreement between the methods:
327 strains with strong psh in one method exhibited strong psh in the other, while non-psh
328 strains did not produce filamentation in either method (Figure S3). However, it is also
329 clear that filamentous index is a rough measurement, as strains that had similar psh
330 induction did not have precisely the same index values. This is likely because all
331 colonies stemming from one OmniTray were analyzed with the same color thresholds.
332 This approach was taken in order to avoid bias, but future work analyzing each colony
333 with its own optimized thresholds could potentially make the filamentous index more

334 accurate. As it is currently being implemented, it appears to be appropriate for assessing
335 general relative psh ability in a large panel.

336

337 *Natural Genetic Variation in Pseudoxyphal Growth*

338 In order to investigate the amount of natural segregating genetic variation for psh, an F5
339 mapping population of YJM311 was phenotyped, and high and low segregants were
340 pooled for sequencing and analysis. Across 24 agar trays, 360 segregants produced
341 1823 colonies that were scored. The range of phenotypic variation within the mapping
342 population was comparable to that of the 100-genomes collection of environmental
343 strains (Figure 4B,D): the segregants had an overall mean filamentous index of 13.03
344 with a median of 11, and the maximum and minimum average filamentous index values
345 were 49.8 and 5, respectively. The pools of segregants used in the sequencing analysis
346 had distinct phenotypic distributions with a high pool mean of 30.32, (standard
347 deviation= 6.45), and a low pool mean of 9.13 (standard deviation = 1.96) (Figure 3D,
348 insert).

349

350 *Bulk Segregant Analysis*

351 The allele frequencies of the bulk pools were compared using a smoothed-G statistic in
352 order to find chromosomal regions that contain variation associated with psh (Magwene
353 et al. 2011, Mansfeld et al. 2018). Different window sizes for the smoothing function
354 generated a variable number of significant mapping peaks, with windows of 60KB, 40KB,
355 and 20KB producing 4, 26, and 29 significant peaks, respectively, at a false discovery
356 rate of 0.01 (Figure 5). While a smaller window size is likely to be appropriate for an F5
357 mapping population, we highlighted candidate genes in the four peaks stemming from
358 the 60KB window, as well as one more on chromosome 14 which just missed the cut-off,
359 as these peaks likely represent major effect loci (Table 4). In all five peaks, there were

360 numerous genes that have been shown to either increase or decrease pseudohyphal or
361 invasive growth in the Σ1278b background.

362

363 **Discussion**

364

365 Microbes can engage in a myriad of social phenotypes that provide fitness benefits to
366 individuals and genetic lineages (West et al. 2006). The model yeast, *S. cerevisiae*,
367 exhibits multiple social phenotypes in the lab, including filamentous growth and quorum
368 sensing. The filamentous growth phenotype appears to be conserved among other
369 *Saccharomyces* spp (Kayikci and Magwene 2018) and among medically relevant yeasts,
370 including *Candida albicans* (Cutler 1991), other *Candida* spp (Silva et al. 2011),
371 *Aspergillus fumigatus* (Mowat et al. 2009) and *Trichosporon asahii* (Di Bonaventura et
372 al. 2006), with filamentation ranging from pseudohyphae to true hyphae. Thus,
373 filamentous growth is likely an important fungal response to environmental cues. This
374 phenotype can be induced via QS in both *S. cerevisiae* (Chen et al. 2006) and *C.*
375 *albicans* (Hornby et al. 2001, Chen et al. 2004), though the QS molecules are not
376 shared.

377

378 The goal of this study was to assess the extent of variation in psh and response to
379 external QS molecules in a range of isolates of *S. cerevisiae* in order to understand how
380 the traits vary in natural populations. As such, we were interested in a strong response
381 that is robust to slight environmental fluctuations. Our experimental protocol differed
382 from those used in other studies of psh: we did not use Noble agar (highly purified) or
383 wash cells before plating, and we attempted to quantify the amount of pseudohyphae
384 rather than agar invasion. We also pinned from culture, transferring thousands of cells,
385 rather than streaking to generate colonies from a single cell; our observation is that psh

386 is more extensive when a colony is generated from a single cell (Figure S3). The relative
387 consistency among methods, assays, and replicate plates suggests our results captured
388 the phenotype well, and represents an estimate of the general filamentous response in
389 these environmental strains.

390

391 *Phenotypic Variation in Pseudohyphal Growth*

392 There was a surprising amount of phenotypic variation in the 100-genomes collection,
393 with some strains exhibiting long, pronounced pseudohyphae and some strains having
394 little to no pseudohyphal growth. The image analysis counted a small amount of the
395 white ring of the colony; therefore, values below 10% represent no, or very little, psh. It is
396 possible that if these low strains were assayed in a different manner (i.e., streaked on
397 highly processed medium) more psh would be observed; however, our goal was to
398 assay a general, robust psh response and these strains lacked one.

399

400 We hypothesized that clinical strains would exhibit a stronger phenotype due to the
401 association of filamentous growth with biofilm formation and virulence in other yeasts
402 (Fanning and Mitchell 2012). However, when the strains were divided into their
403 ecological niche of origin, there did not appear to be a particular niche that had more psh
404 than others. Filamentous growth is likely a more general response and the perceived
405 association with virulence may simply be due to a bias in the organisms in which
406 research is conducted. Another possibility, which is not mutually exclusive, is that *S.*
407 *cerevisiae* is not adapted to specific ecological niches with regard to this phenotype.
408 Rather, as was previously proposed by (Goddard and Greig 2015), it is a "nomad"
409 dispersed among many habitats due to its association with humans. Our analysis that
410 divided strains by their population of origin suggested that certain subpopulations are
411 associated with increased psh, specifically, the West African subpopulation. This

412 supports the idea that there is a signal based on phylogeny rather than ecology for this
413 trait.

414

415 *Phenotypic Variation in Response to QS Molecules*

416 Based on research in Σ 1278b, we hypothesized that some of the low-psh strains would
417 be induced when PheOH and TrpOH were added exogenously. We also hypothesized
418 that fermentation strains would be most sensitive to the QS compounds, as the
419 molecules could disperse further in more viscous environments where QS could be
420 beneficial in synchronizing populations. Furthermore, a recent study investigated the
421 effect of compounds produced during aromatic amino acid metabolism on different wine
422 yeast (González et al. 2018). Non-*Saccharomyces* yeast growth was negatively affected
423 by the presence of TrpOH and PheOH, suggesting that these compounds could be
424 particularly important in inter-species interactions in fermentation environments.

425 Surprisingly, most strains in the 100-genomes collection did not respond to the addition
426 of QS molecules to the medium. It is still possible that many of these strains use PheOH
427 and TrpOH for communication, but that the response is too subtle to be detected in our
428 assay (see below). However, if cells do indeed carefully regulate both the production of
429 and the response to QS compounds, it is improbable that exogenous application would
430 have so little detectable effect across a wide panel. At the very least, one would expect a
431 slight change in the same direction in most strains, which is not what we observed.
432 Instead, it is more likely that certain strains respond strongly to PheOH and TrpOH, but
433 most simply do not.

434

435 *Comparison to Σ 1278b*

436 The majority of research on filamentous growth and QS in *S. cerevisiae* has been done
437 on strains derived from Σ 1278b, which has proved an invaluable model for

438 understanding the genetic basis of the trait and for generating a robust map of the
439 genetic pathways controlling it (Cullen et al. 2012). Homologs of some of the genes
440 implicated in the Σ 1278b background have been shown to be important for filamentous
441 growth in other yeast species (Lo et al. 1997, Cain et al. 2012). And in the present study,
442 genes uncovered in Σ 1278b potentially harbor causative allelic variation in the clinical
443 isolate YJM311.

444

445 Chen and Fink (2006) demonstrated changes in the amount of pseudohyphae produced
446 when Σ 1278b was exposed to dilute treatments of PheOH, TrpOH, and both in
447 combination. This strain was included in our panel (well E4), and while it appeared to
448 somewhat respond to one of the autoinducing chemicals (PheOH), our results were not
449 as dramatic as theirs. This is likely because our phenotypic assay was not as sensitive:
450 our analysis measures "fuzziness" around a large colony, so the difference between
451 treatments has to be striking to be detected. When we streaked, rather than pinned,
452 Σ 1278b, our results were similar to the previously published results (Figure S4), but the
453 amount of change induced is small compared to the range of variation found among
454 environmental isolates. In our assay, we did find individual strains that significantly
455 responded to both chemicals, as was expected. However, in the majority of strains, the
456 results were not as anticipated, and in some cases, were actually the opposite of
457 Σ 1278b. It is possible that other strains in our panel could also have a subtle response to
458 the QS compounds, but it is clear that in most strains, the molecules do not induce a
459 dramatic phenotypic change. The difference in inducibility between Σ 1278b and the
460 majority of strains in the panel indicates a disparity in behavior between this popular
461 model strain and environmental strains of *Saccharomyces cerevisiae*. Thus, when it
462 comes to QS, the results from the model laboratory strain may not translate smoothly to

463 the broader population of *Saccharomyces* yeasts and how they behave in the
464 environment.

465

466 *Genetic Variation*

467 The present study aimed to determine whether and how much natural allelic variation
468 existed in psh by using in a heterozygous clinical isolate from the mosaic subpopulation
469 as a proxy. The phenotypic variation in the mapping population recapitulated the
470 variation in the environmental panel, and five major and many minor peaks were
471 associated with the trait, suggesting an abundance of segregating variation for psh in the
472 environment. Complex phenotypes can be strongly influenced by SNPs at non-
473 synonymous, synonymous, and regulatory locations (She and Jarosz 2018); all these
474 types of genetic variation were identified in the major mapping peaks of YJM311. We
475 mostly highlighted candidate genes in the peaks that have been implicated in psh in the
476 Σ1278b background, but it is not clear whether or not they contain the causative alleles.
477 These loci influence numerous cellular processes such as cell wall biosynthesis,
478 mitochondrial function (Kang and Jiang 2005), cell polarity (Song et al. 2014),
479 progression through the cell cycle (Zhu et al. 2000), and ammonium uptake (Lorenz and
480 Heitman 1998). While investigating the functional effect of various alleles was beyond
481 the scope of this study, we anticipate future studies could harness the power of this
482 approach.

483

484 It is worth noting that a recent study comparing psh in *S. cerevisiae* and *S. bayanus*
485 found that the cyclic AMP-Protein Kinase A pathway plays an important regulatory role in
486 both. However, the manner in which the genetic network regulates the phenotype has
487 diverged: increasing levels of cAMP has the opposite effect on the induction of the
488 phenotype in the two species (Kayikci et al. 2018). This suggests selection to maintain

489 filamentous growth over a long time scale, but also the ability of the complex genetic
490 network underlying the trait to adapt and change. Future work identifying the genetic
491 basis of some of the phenotypic variation observed in this study could shed light on the
492 components of the genetic network that currently harbor segregating allelic variation,
493 and upon which selection could ultimately act.

494

495

496 **Acknowledgements:** We thank Paul Magwene for strains, Daniel Skelley for genomic
497 data files, Rachel Rambadt for computational assistance, and the University of Georgia
498 Genomics and Bioinformatics core for sequencing the samples. The research was
499 funded by National Institutes of Health grant R15GM122032 to H.A.M. and a William &
500 Mary Biology DeFontes Fellowship to B.A.L.

501

502 **Conflict of Interest Statement:** The authors declare no conflicts of interest.

503 **References Cited**

- 504
- 505 Biswas, S., P. Van Dijck and A. Datta (2007). Environmental Sensing and Signal
506 Transduction Pathways Regulating Morphopathogenic Determinants of
507 Candida albicans. *Microbiology and Molecular Biology Reviews*
508 **71**(2): 348.
- 509
- 510 Braus, G. H., O. Grundmann, S. Bruckner and H. U. Mosch (2003). Amino acid
511 starvation and Gcn4p regulate adhesive growth and FLO11 gene expression in
512 *Saccharomyces cerevisiae*. *Mol Biol Cell* **14**(10): 4272-4284.
- 513
- 514 Cain, C. W., M. B. Lohse, O. R. Homann, A. Sil and A. D. Johnson (2012). A Conserved
515 Transcriptional Regulator Governs Fungal Morphology in Widely Diverged Species.
516 *Genetics* **190**(2): 511-521.
- 517
- 518 Chen, H. and G. R. Fink (2006). Feedback control of morphogenesis in fungi by aromatic
519 alcohols. *Genes Dev* **20**(9): 1150-1161.
- 520
- 521 Chen, H., M. Fujita, Q. Feng, J. Clardy and G. R. Fink (2004). Tyrosol is a quorum-
522 sensing molecule in *Candida albicans*. *Proceedings of the National Academy of
523 Sciences of the United States of America* **101**(14): 5048.
- 524
- 525 Chen, R. E. and J. Thorner (2010). Systematic Epistasis Analysis of the Contributions of
526 Protein Kinase A- and Mitogen-Activated Protein Kinase-Dependent Signaling to
527 Nutrient Limitation-Evoked Responses in the Yeast *Saccharomyces cerevisiae*. *Genetics*
528 **185**(3): 855-870.
- 529
- 530 Cullen, P. J. and G. F. Sprague (2012). The Regulation of Filamentous Growth in Yeast.
531 *Genetics* **190**(1): 23-49.
- 532
- 533 Cullen, P. J. and G. F. Sprague, Jr. (2000). Glucose depletion causes haploid invasive
534 growth in yeast. *Proc Natl Acad Sci U S A* **97**(25): 13619-13624.
- 535
- 536 Cutler, J. E. (1991). Putative Virulence Factors of *Candida Albicans*. *Annual Review of
537 Microbiology* **45**(1): 187-218.
- 538
- 539 Di Bonaventura, G., A. Pompilio, C. Picciani, M. Iezzi, D. D'Antonio and R. Piccolomini
540 (2006). Biofilm formation by the emerging fungal pathogen *Trichosporon asahii*:
541 development, architecture, and antifungal resistance. *Antimicrob Agents Chemother*
542 **50**(10): 3269-3276.
- 543
- 544 Falush, D., M. Stephens and J. K. Pritchard (2003). Inference of population structure:
545 Extensions to linked loci and correlated allele frequencies. *Genetics* **164**: 1567-1587.
- 546
- 547 Fanning, S. and A. P. Mitchell (2012). Fungal Biofilms. *PLoS Pathog* **8**(4): e1002585.
- 548
- 549 Garrison, E. and G. Marth (2012). Haplotype-based variant detection from short-read
550 sequencing. *arXiv* **1207.3907**.
- 551
- 552 Gasch, A. P., B. A. Payseur and J. E. Pool (2016). The power of natural variation for
553 model organism biology. *Trends in Genetics* **32**: 146-154.

- 554
- 555 Gimeno, C. J., P. O. Ljungdahl, C. A. Styles and G. R. Fink (1992). Unipolar cell
556 divisions in the yeast *S. cerevisiae* lead to filamentous growth: regulation by starvation
557 and RAS. *Cell* **68**(6): 1077-1090.
- 558
- 559 Goddard, M. R. and D. Greig (2015). *Saccharomyces cerevisiae*: a nomadic yeast with
560 no niche? *FEMS Yeast Research* **15**(3): fov009-fov009.
- 561
- 562 González, B., J. Vázquez, P. J. Cullen, A. Mas, G. Beltran and M.-J. Torija (2018).
563 Aromatic Amino Acid-Derived Compounds Induce Morphological Changes and Modulate
564 the Cell Growth of Wine Yeast Species. *Frontiers in Microbiology* **9**(670).
- 565
- 566 Granek, J. A., Ö. Kayikçi and P. M. Magwene (2011). Pleiotropic signaling pathways
567 orchestrate yeast development. *Current Opinion in Microbiology* **14**(6): 676-681.
- 568
- 569 Granek, J. A., D. Murray, Ö. Kayikçi and P. M. Magwene (2013). The Genetic
570 Architecture of Biofilm Formation in a Clinical Isolate of *Saccharomyces cerevisiae*.
571 *Genetics* **193**(2): 587-600.
- 572
- 573 Guo, B., C. A. Styles, Q. Feng and G. R. Fink (2000). A *Saccharomyces* gene family
574 involved in invasive growth, cell-cell adhesion, and mating. *Proc Natl Acad Sci U S A*
575 **97**(22): 12158-12163.
- 576
- 577 Hornby, J. M., E. C. Jensen, A. D. Liseć, J. J. Tasto, B. Jahnke, R. Shoemaker, et al.
578 (2001). Quorum Sensing in the Dimorphic Fungus *Candida albicans* Is Mediated by
579 Farnesol. *Applied and Environmental Microbiology* **67**(7): 2982.
- 580
- 581 Jakobsson, M. and N. Rosenberg (2007). CLUMMP: a cluster matching and permutation
582 program for dealing with label switching and multimodality in analysis of population
583 structure. *Bioinformatics* **23**: 1801-1806.
- 584
- 585 Jin, R., C. J. Dobry, P. J. McCown and A. Kumar (2008). Large-scale analysis of yeast
586 filamentous growth by systematic gene disruption and overexpression. *Mol Biol Cell*
587 **19**(1): 284-296.
- 588
- 589 Kang, C. M. and Y. W. Jiang (2005). Genome-wide survey of non-essential genes
590 required for slowed DNA synthesis-induced filamentous growth in yeast. *Yeast* **22**(2):
591 79-90.
- 592
- 593 Kayikçi, Ö. and P. M. Magwene (2018). Divergent Roles for cAMP–PKA Signaling in the
594 Regulation of Filamentous Growth in *Saccharomyces cerevisiae*;
595 and *Saccharomyces bayanus*. *G3: Genes|Genomes|Genetics*
596 **8**(11): 3529.
- 597
- 598 Lambrechts, M. G., F. F. Bauer, J. Marmur and I. S. Pretorius (1996). Muc1, a mucin-like
599 protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast.
600 *Proc Natl Acad Sci U S A* **93**(16): 8419-8424.
- 601
- 602 Laxman, S. and B. P. Tu (2011). Multiple TORC1-associated proteins regulate nitrogen
603 starvation-dependent cellular differentiation in *Saccharomyces cerevisiae*. *PLoS One*
604 **6**(10): e26081.

- 605
606 Leberer, E., D. Harcus, D. Dignard, L. Johnson, S. Ushinsky, D. Y. Thomas, et al.
607 (2001). Ras links cellular morphogenesis to virulence by regulation of the MAP kinase
608 and cAMP signalling pathways in the pathogenic fungus *Candida albicans*. *Molecular*
609 *Microbiology* **42**(3): 673-687.
- 610
611 Li, H. and R. Durbin (2009). Fast and accurate long-read alignment with Burrows-
612 Wheeler Transform. *Bioinformatics* **25**: 1754-1760.
- 613
614 Liti, G., D. M. Carter, A. M. Moses, J. Warringer, L. Parts, S. A. James, et al. (2009).
615 Population genomics of domestic and wild yeasts. *Nature* **458**: 337-341.
- 616
617 Lo, H. J., J. R. Kohler, B. DiDomenico, D. Loebenberg, A. Cacciapuoti and G. R. Fink
618 (1997). Nonfilamentous *C. albicans* mutants are avirulent. *Cell* **90**(5): 939-949.
- 619
620 Lo, W.-S. and A. M. Dranginis (1998). The Cell Surface Flocculin Flo11 Is Required for
621 Pseudohyphae Formation and Invasion by *Saccharomyces cerevisiae*. *Molecular*
622 *Biology of the Cell* **9**(1): 161-171.
- 623
624 Lorenz, M. C. and J. Heitman (1998). Regulators of pseudohyphal differentiation in
625 *Saccharomyces cerevisiae* identified through multicopy suppressor analysis in
626 ammonium permease mutant strains. *Genetics* **150**(4): 1443-1457.
- 627
628 Magwene, P. M., Ö. Kayıkçı, J. A. Granek, J. M. Reininga, Z. Scholl and D. Murray
629 (2011). Outcrossing, mitotic recombination, and life-history trade-offs shape genome
630 evolution in *Saccharomyces cerevisiae*. *Proceedings of the National Academy of*
631 *Sciences of the USA* **108**(5): 1987-1992.
- 632
633 Magwene, P. M., J. H. Willis and J. K. Kelly (2011). The Statistics of Bulk Segregant
634 Analysis Using Next Generation Sequencing. *PLoS Comput Biol* **7**(11): e1002255.
- 635
636 Mallick, E. M. and R. J. Bennett (2013). Sensing of the Microbial Neighborhood by
637 <italic>Candida albicans</italic>. *PLoS Pathog* **9**(10): e1003661.
- 638
639 Mansfeld, B. N. and R. Grumet (2018). QTLseqR: An R Package for Bulk Segregant
640 Analysis with Next-Generation Sequencing. *The Plant Genome* **11**(2).
- 641
642 Matsui, T., R. Linder, J. Phan, F. Seidl and I. M. Ehrenreich (2015). Regulatory Rewiring
643 in a Cross Causes Extensive Genetic Heterogeneity. *Genetics* **201**(2): 769.
- 644
645 Mosch, H. U. and G. R. Fink (1997). Dissection of filamentous growth by transposon
646 mutagenesis in *Saccharomyces cerevisiae*. *Genetics* **145**(3): 671-684.
- 647
648 Mowat, E., C. Williams, B. Jones, S. McChlery and G. Ramage (2009). The
649 characteristics of *Aspergillus fumigatus* mycetoma development: is this a biofilm? *Med*
650 *Mycol* **47 Suppl** 1: S120-126.
- 651
652 Pan, X. and J. Heitman (1999). Cyclic AMP-dependent protein kinase regulates
653 pseudohyphal differentiation in *Saccharomyces cerevisiae*. *Mol Cell Biol* **19**(7): 4874-
654 4887.
- 655

- 656 Pritchard, J., M. Stephens and P. Donnelly (2000). Inference of population structure
657 using multilocus genotypes. *Genetics* **155**: 945-959.
- 658
- 659 Replansky, T., V. Koufopanou, D. Greig and G. Bell (2008). *Saccharomyces sensu*
660 *stricto* as a model system for evolution and ecology. *Trends in Ecology and Evolution*
661 **23**(9): 494-501.
- 662
- 663 Rocha, C. R., K. Schroppel, D. Harcus, A. Marcil, D. Dignard, B. N. Taylor, et al. (2001).
664 Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the
665 pathogenic fungus *Candida albicans*. *Mol Biol Cell* **12**(11): 3631-3643.
- 666
- 667 Rosenberg, N. (2004). *Distruct*: a program for the graphical display of population
668 structure. *Molecular Ecology Notes* **4**: 137-138.
- 669
- 670 Rupp, S., E. Summers, H. J. Lo, H. Madhani and G. Fink (1999). MAP kinase and cAMP
671 filamentation signaling pathways converge on the unusually large promoter of the yeast
672 *FLO11* gene. *Embo Journal* **18**(5): 1257-1269.
- 673
- 674 Ryan, O., R. S. Shapiro, C. F. Kurat, D. Mayhew, A. Baryshnikova, B. Chin, et al. (2012).
675 Global gene deletion analysis exploring yeast filamentous growth. *Science* **337**(6100):
676 1353-1356.
- 677
- 678 Scherz, K., Andersen, R. Bojsen, L. Gro, Rejkjaer, Sorensen, et al. (2014). Genetic basis
679 for *Saccharomyces cerevisiae* biofilm in liquid medium. *G3 (Bethesda)* **4**(9): 1671-1680.
- 680
- 681 She, R. and D. F. Jarosz (2018). Mapping Causal Variants with Single-Nucleotide
682 Resolution Reveals Biochemical Drivers of Phenotypic Change. *Cell* **172**(3): 478-
683 490.e415.
- 684
- 685 Shively, C. A., M. J. Eckwahl, C. J. Dobry, D. Mellacheruvu, A. Nesvizhskii and A. Kumar
686 (2013). Genetic Networks Inducing Invasive Growth in *Saccharomyces cerevisiae*
687 Identified Through Systematic Genome-Wide Overexpression. *Genetics* **193**(4): 1297-
688 1310.
- 689
- 690 Silva, S., M. Negri, M. Henriques, R. Oliveira, D. W. Williams and J. Azeredo (2011).
691 Adherence and biofilm formation of non-*Candida albicans* *Candida* species. *Trends in*
692 *Microbiology* **19**(5): 241-247.
- 693
- 694 Song, Q., C. Johnson, T. E. Wilson and A. Kumar (2014). Pooled Segregant Sequencing
695 Reveals Genetic Determinants of Yeast Pseudohyphal Growth. *PLoS Genet* **10**(8):
696 e1004570.
- 697
- 698 Strope, P. K., D. A. Skelly, S. G. Kozmin, G. Mahadevan, E. A. Stone, P. M. Magwene,
699 et al. (2015). The 100-genomes strains, an *S. cerevisiae* resource that illuminates its
700 natural phenotypic and genotypic variation and emergence as an opportunistic
701 pathogen. *Genome Research* **25**(5): 762-774.
- 702
- 703 Tronolone, H., J. M. Gardner, J. F. Sundstrom, V. Jiranek, S. G. Oliver and B. J. Binder
704 (2017). Quantifying the dominant growth mechanisms of dimorphic yeast using a lattice-
705 based model. *Journal of The Royal Society Interface* **14**(134).
- 706

- 707 van der Walt, S., J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N.
708 Yager, et al. (2014). scikit-image: image processing in Python. *PeerJ* **2**: e453.
709
710 Warringer, J., E. Zörgö, F. A. Cubillos, A. Zia, A. Gjuvsland, J. T. Simpson, et al. (2011).
711 Trait Variation in Yeast Is Defined by Population History. *PLOS Genetics* **7**(6):
712 e1002111.
713
714 West, S. A., A. S. Griffin, A. Gardner and S. P. Diggle (2006). Social evolution theory for
715 microorganisms. *Nat Rev Micro* **4**(8): 597-607.
716
717 Wuster, A. and M. M. Babu (2010). Transcriptional control of the quorum sensing
718 response in yeast. *Mol Biosyst* **6**(1): 134-141.
719
720 Zaman, S., S. I. Lippman, X. Zhao and J. R. Broach (2008). How *Saccharomyces*
721 responds to nutrients. *Annu Rev Genet* **42**: 27-81.
722
723 Zhu, G., P. T. Spellman, T. Volpe, P. O. Brown, D. Botstein, T. N. Davis, et al. (2000).
724 Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. *Nature*
725 **406**(6791): 90-94.
726
727
728

Model 1: No Group Membership				729
Source	DF	F-ratio	p-value	
Treatment	2, 4.03	2.016	0.247	730
Strain	92, 176.7	10.850	<0.0001	731
Treatment*Strain	184, 343.4	0.8994	0.788	732
				733
Random Effects	% Total Variance			734
Assay	0.0			735
Treatment*Assay	8.9			736
Strain*Assay	5.4			737
Strain*Assay*Treatment	0			738
Residual	85.7			739

Model 2: Niche Membership				740
Source	DF	F-ratio	p-value	
Niche	3, 6.33	4.35	0.0562	741
Treatment	2, 4.41	1.946	0.2478	
Strain[Niche]	89, 170.2	11.38	<0.0001	742
Treatment*Niche	6, 358.7	0.482	0.8217	
Strain*Treatment[Niche]	178, 343.3	0.911	0.7574	743
Random Effects	% Total Variance			744
Assay	0.0			
Treatment*Assay	8.8			745
Niche*Assay	1.0			
Strain*Assay[Niche]	5.2			
Strain*Assay*Treatment[Niche]	0			746
Residual	85.0			

Model 3: Population Membership				747
Source	DF	F-ratio	p-value	
Population	5, 6.93	23.73	0.0003	748
Treatment	2, 5.13	1.17	0.2857	
Strain[Population]	87, 167.3	9.74	<0.0001	749
Treatment*Population	10, 360.5	0.438	0.9274	
Strain*Treatment[Pop]	174, 344.1	0.926	0.7147	750
Random Effects	% Total Variance			751
Assay	0.0			
Treatment*Assay	8.86			752
Population*Assay	0.03			
Strain*Assay[Population]	5.92			753
Strain*Assay*Treatment[Pop]	0			
Residual	85.19			754

755 **Table 1:** Results of the 100 Genomes pseudohyphal and quorum sensing analyses.

756 Degrees of freedom are estimates due to different numbers of samples in each category

757 and to incomplete samples for some strains (i.e., images dropped from analysis).

Individual Strains

Well	Genetic Background	Effect Estimate	p-value	Niche	Effect Estimate	p-value	Population	Effect Estimate	p-value
G10	NCYC110	20.21	<.0001	Ferment	19.08	<.0001	West African	11.43	<.0001
D2	NRRL Y-10988	9.38	<.0001	Clinical	9.72	<.0001	Mosaic	9.47	<.0001
F1	NRRL Y-12637	9.15	<.0001	Ferment	8.02	<.0001	European	9.30	<.0001
B11	R93-1871	8.20	<.0001	Clinical	8.52	<.0001	Mosaic	8.30	<.0001
E11	M28s2	6.51	<.0001	Ferment	5.38	<.0001	European	6.66	<.0001
A1	YJM128	6.02	<.0001	Clinical	6.36	<.0001	Mosaic	6.11	<.0001
D10	NRRL Y-1532	4.55	<.0001	Plant	5.17	<.0001	European	4.69	<.0001
C12	SK1	4.17	0.0003	Lab	4.32	<.0001	West African	-1.14	0.2653
A2	NCYC 431	4.17	0.001	Ferment	3.04	0.0127	European	4.31	0.0006
H4	DBVPG1853	3.57	0.0018	Ferment	2.44	0.0255	European	3.72	0.0011
H5	NRRL Y-581	3.55	0.0016	Ferment	2.41	0.0249	European	3.69	0.001
A5	CBS 1227	2.98	0.0083	Clinical	3.31	0.0025	European	3.12	0.0053
D11	NRRL Y-1546	2.98	0.0086	Ferment	1.84	0.0895	West African	-2.34	0.0223
A3	NCYC 914	2.89	0.0178	Ferment	1.78	0.1284	European	3.032	0.0123
F7	NRRL Y-11857	2.58	0.0421	Plant	3.22	0.0084	Mosaic	2.68	0.0336
D4	MMRL 125	2.45	0.0398	Clinical	2.74	0.0177	Mosaic	2.54	0.0314
F6	NRRL Y-5511	2.40	0.0309	Plant	3.02	0.0049	European	2.55	0.0213
D9	NRRL Y-35	2.40	0.0312	Plant	3.02	0.0049	European	2.55	0.0215
G1	NRRL YB-4081	2.25	0.0532	Plant	2.89	0.0100	Mosaic	2.35	0.0425
B1	B70302(b)	2.05	0.0828	Clinical	2.38	0.0387	Mosaic	2.15	0.0673
A4	NCYC 762	1.50	0.2336	Ferment	0.39	0.7461	West African	-3.81	0.0007
G4	NRRL Y-268	-1.09	0.3258	Ferment	-2.23	0.037	European	-0.94	0.3903
E10	M1-2	-1.19	0.2852	Ferment	-2.34	0.0302	European	-1.05	0.3437
G5	NRRL YB-2541	-1.63	0.1426	Ferment	-2.78	0.0098	European	-1.48	0.178
H3	Y12	-1.97	0.0766	Ferment	-3.12	0.0038	Sake	0.29	0.7452
A6	CBS 2910	-2.24	0.0443	Clinical	-1.91	0.0769	European	-2.09	0.0578
B12	R93-1017	-2.25	0.0447	Clinical	-1.91	0.0792	Mosaic	-2.16	0.053
C4	96-101	-2.26	0.0424	Clinical	-1.92	0.0743	European	-2.11	0.0555
F11	NRRL Y-17447	-2.28	0.0405	Plant	-1.66	0.1193	Sake	-0.02	0.9851
G7	NRRL YB-2625	-2.29	0.0416	Plant	-1.68	0.1175	Mosaic	-2.19	0.0494
E4	Sigma1278b	-2.29	0.0394	Lab	-2.15	0.0169	Mosaic	-2.20	0.0469
A7	CBS 2807	-2.30	0.0777	Ferment	-3.41	0.007	European	-2.16	0.0951
B8	Y55	-2.31	0.0431	Lab	-2.17	0.0172	West African	-7.62	<.0001
E2	YPS134	-2.34	0.036	Plant	-1.72	0.1067	North American	-0.41	0.653

E5	RM11	-2.38	0.0324	Ferment	-3.53	0.0011	European	-2.24	0.0427
G12	UWOPS83-787.3	-2.38	0.0323	Plant	-1.76	0.0978	Mosaic	-2.29	0.0387
D12	NRRL Y-6673	-2.40	0.0309	Plant	-1.79	0.0932	European	-2.26	0.0409
F4	NRRL Y-747	-2.43	0.029	Ferment	-3.58	0.0010	European	-2.29	0.0384
F5	NRRL YB-427	-2.45	0.0277	Ferment	-3.60	0.0009	Mosaic	-2.36	0.0332
C5	96-109	-2.50	0.0248	Clinical	-2.16	0.0449	European	-2.36	0.033
F10	NRRL Y-12769	-2.54	0.0238	Ferment	-3.68	0.0008	Sake	-0.28	0.7605
H2	273614N	-2.57	0.0312	Clinical	-2.22	0.0551	European	-2.42	0.0403
E8	UM400	-2.65	0.0174	Clinical	-2.32	0.0319	Mosaic	-2.56	0.021
E7	NRRL Y-961	-2.85	0.0106	Clinical	-2.52	0.0198	Mosaic	-2.76	0.0129
G3	NRRL YB-4449	-3.11	0.0055	Plant	-2.50	0.0197	Mosaic	-3.01	0.0067
D7	UCD-FST 08-200	-3.13	0.0052	Clinical	-2.79	0.0100	Mosaic	-3.04	0.0064
F9	NRRL Y-12758	-3.19	0.0044	Ferment	-4.34	<.0001	European	-3.05	0.0061
C7	96-112	-3.29	0.0034	Clinical	-2.94	0.0066	European	-3.14	0.0047
C3	96-100	-3.37	0.0026	Clinical	-3.03	0.0052	European	-3.23	0.0037
F3	NRRL Y-234	-3.40	0.0024	Ferment	-4.55	<.0001	European	-3.26	0.0034
B9	YJM653	-3.76	0.0012	Clinical	-3.44	0.0022	Mosaic	-3.66	0.0015
H1	UWOPS05-227.2	-4.30	0.0003	Plant	-3.68	0.0012	Malaysian	na	na
D6	UCD-FST 08-199	-4.38	0.0001	Clinical	-4.04	0.0003	Mosaic	-4.28	0.0002
B2	B68019c	-5.13	<.0001	Clinical	-4.79	<.0001	European	-4.98	<.0001
G8	YIIC17_E5	-9.18	<.0001	Ferment	-10.33	<.0001	European	-9.04	<.0001

Group Effects

	Niche	Effect Estimate	p-value	Population	Effect Estimate	p-value	
Ferment	Clinical	-0.328519	0.3636	North American	0.4255585	0.1938	
	Ferment	1.1219714	0.0151		Malaysian	-3.732617	0.0002
	Lab	-0.155135	0.7775		Mosaic	0.4744595	0.1495
	Plant	-0.638317	0.111		Sake	-1.693082	0.005
					West African	5.8804544	<.0001

758

759 **Table 2:** Parameter estimates for strains that were significant in at least one of the linear models. A p-value of less than 0.05

760 indicates a significant difference from 0; strains that were significant in all three models are in bold. The parameter estimates are

761 from a linear model and indicate the amount a given strain is above or below the estimate of the intercept. The intercepts for the
762 models are as follows: no group membership- 13.16, niche- 13.17, population- 12.59. In the models with either a niche or population
763 classification, the strains were nested within their group. The estimate for a strain is therefore the combination of the intercept, the
764 strain parameter, and the group parameter.

765

Individual Strain x Treatment Effects											
Well	Verified	Treatment	Effect Estimate	p-value	Niche	Effect Estimate	p-value	Population	Effect Estimate	p-value	
D11	yes	Control	4.08	0.0008	Ferment	4.23	0.0005	West African	3.64	0.001	
G8	–	Control	3.48	0.0049	Ferment	3.65	0.0029	European	3.31	0.0071	
D10	no	Control	2.37	0.0429	Plant	2.21	0.0554	European	2.20	0.0588	
F6	–	Control	2.34	0.0454	Plant	2.18	0.0588	European	2.17	0.0622	
E9	–	Control	2.28	0.051	Clinical	2.24	0.0539	Mosaic	2.48	0.0335	
G12	no	Control	-2.12	0.0694	Plant	-2.29	0.0472	Mosaic	-1.93	0.0963	
H5	yes	Control	-2.24	0.0559	Ferment	-2.09	0.0709	European	-2.41	0.038	
A9	yes	Phe	5.34	0.0009	Clinical	5.15	0.0012	Mosaic	5.20	0.0011	
F1	no	Phe	3.62	0.0046	Ferment	3.66	0.0039	European	3.76	0.0031	
D1	no	Phe	2.63	0.0474	Clinical	2.52	0.056	European	2.76	0.0359	
G12	no	Phe	2.35	0.0591	Plant	2.63	0.0321	Mosaic	2.20	0.0754	
G8	–	Phe	-3.27	0.0106	Ferment	-3.26	0.0099	European	-3.14	0.0135	
A2	yes	Trp	3.08	0.0236	Ferment	2.89	0.0306	European	3.13	0.0206	
H3	no	Trp	2.75	0.016	Ferment	2.57	0.023	Sake	2.36	0.0124	
G11	no	Trp	2.29	0.0452	Plant	2.17	0.0536	Mosaic	2.24	0.0481	
F1	no	Trp	-3.00	0.0154	Ferment	-3.18	0.0092	European	-2.95	0.0161	
D11	yes	Trp	-3.34	0.0039	Ferment	-3.53	0.002	West African	-3.17	0.0026	
Treatment Effects											
Treatment		Effect Estimate	p-value	Treatment		Effect Estimate	p-value	Treatment		Effect Estimate	p-value
Control		0.095	0.9034	Control		0.023	0.9773	Control		0.040	0.9608
Phe		1.223	0.1694	Phe		1.268	0.1588	Phe		1.194	0.1854
Trp		-1.318	0.1455	Trp		-1.290	0.1526	Trp		-1.234	0.171

766

767 **Table 3:** Parameter estimates for response to the QS treatments. A p-value of less than 0.05 indicates a significant difference from 0;
 768 strains that were significant in all three models are in bold. Strains whose phenotypic response was investigated via streaking have a
 769 yes or no to indicate whether the predicted response was detectable; “-” indicates the strain was not streaked.

Chr	Gene	Function	Association in Σ1278b	Syn.	Non-Syn.	Reg. (±300bp)
3	ABP1	transcription factor	Yes ^{1,2}	2	1	2
	FIG2	cell adhesin	Yes ³	11	18	7
	CDC39	transcriptional regulator	Yes ⁴	24	10	3
5	PEA2	polarisome subunit	Yes ^{1,5,6}	2	0	1
	SPI1	cell wall protein	Yes ⁵	2	0	12
13	AIM33	protein of unknown function	No	3	0	6
	ALO1	catalytic enzyme	Yes ²	5	0	3
	YML083C	protein of unknown function	No	2	1	1
	YML082W	putative protein	No	2	3	0
	WAR1	transcription factor	Yes ²	0	5	0
14	APJ1	chaperone	Yes ^{2,5}	0	5	3
	MKS1	transcriptional regulator	Yes ^{2,5,7}	0	0	1
	MSK1	mito. tRNA synthetase	Yes ⁵	1	7	4
	FKH2	transcription factor	Yes ⁸	1	8	5
	SUN4	cell wall protein	Yes ^{2,5}	0	5	11
	GCD10	tRNA methyltransferase	Yes ⁵	0	2	16
16	RPS23B	ribosomal protein	No, but see ¹	1	0	8*
	TOM5	outer membrane translocase	Yes ⁹	0	0	6
	MEP3	ammonium permease	Yes ¹⁰	3	0	3
	KAR3	microtubule motor	Yes ²	2	3	1
	ASN1	Asparagine synthetase	No	16	3	6
	YPR148C	protein of unknown function	Yes ²	8	3	2

770

771

772 **Table 4:** Candidate genes from the bulk segregant analysis listed with chromosome,

773 general function, and whether or not there is published data linking the gene to

774 filamentous growth in Σ1278b. For each gene, variation separating the high and low

775 bulks in YJM311 is listed by the number of SNPs in the coding region (synonymous or

776 non-synonymous), and the number of SNPs occurring 300 base pairs upstream and/or

777 downstream of the coding region (possible regulatory variation). 1-(Kang et al. 2005), 2-

778 (Shively et al. 2013), 3-(Guo et al. 2000), 4-(Mosch and Fink 1997), 5-(Jin et al. 2008), 6-

779 (Song et al. 2014), 7-(Laxman and Tu 2011), 8-(Zhu et al. 2000), 9-(Scherz et al. 2014),

780 10-(Lorenz et al. 1998), *-includes SNPs in intron.

781

782 **Figure Legends**

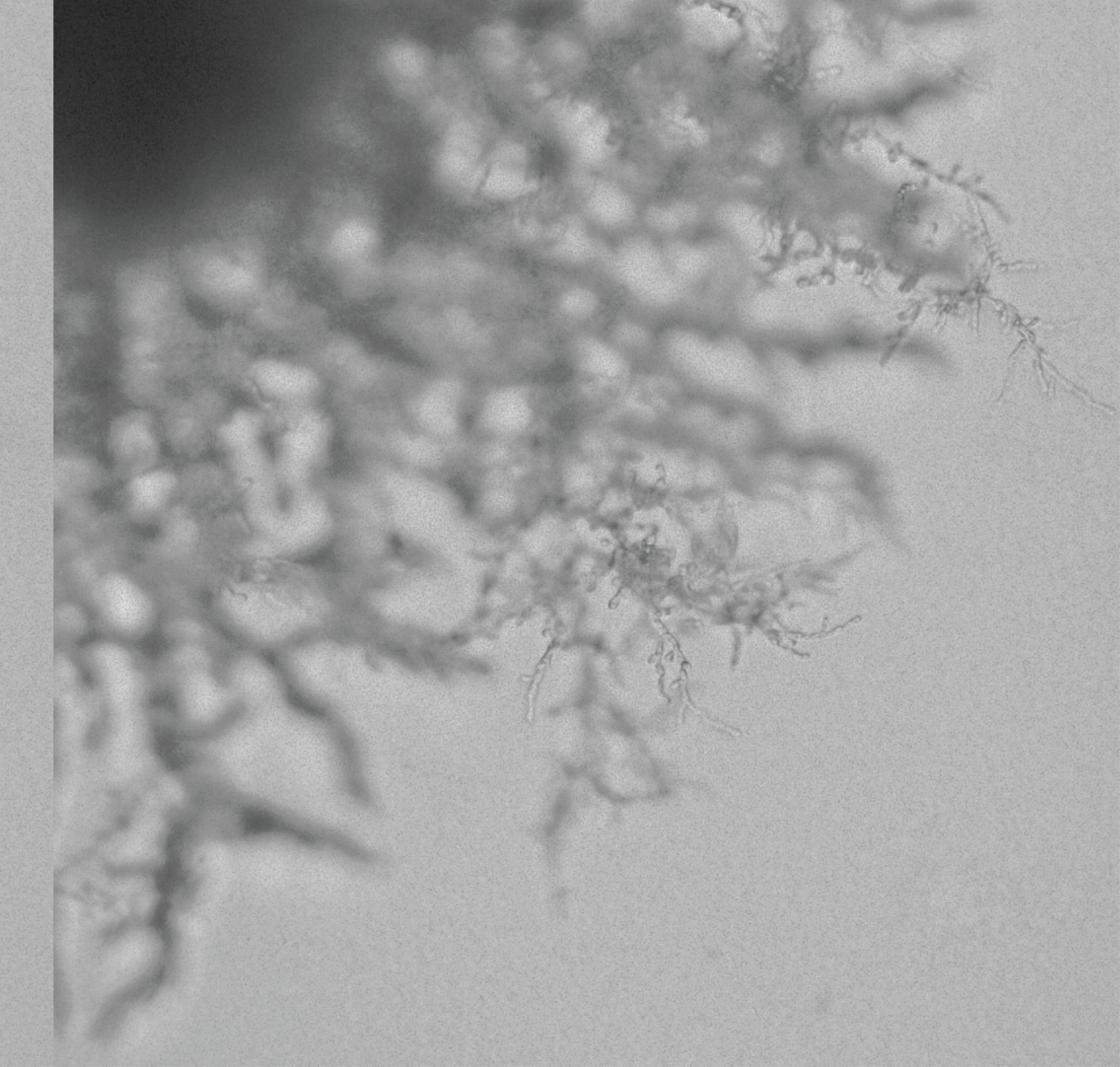
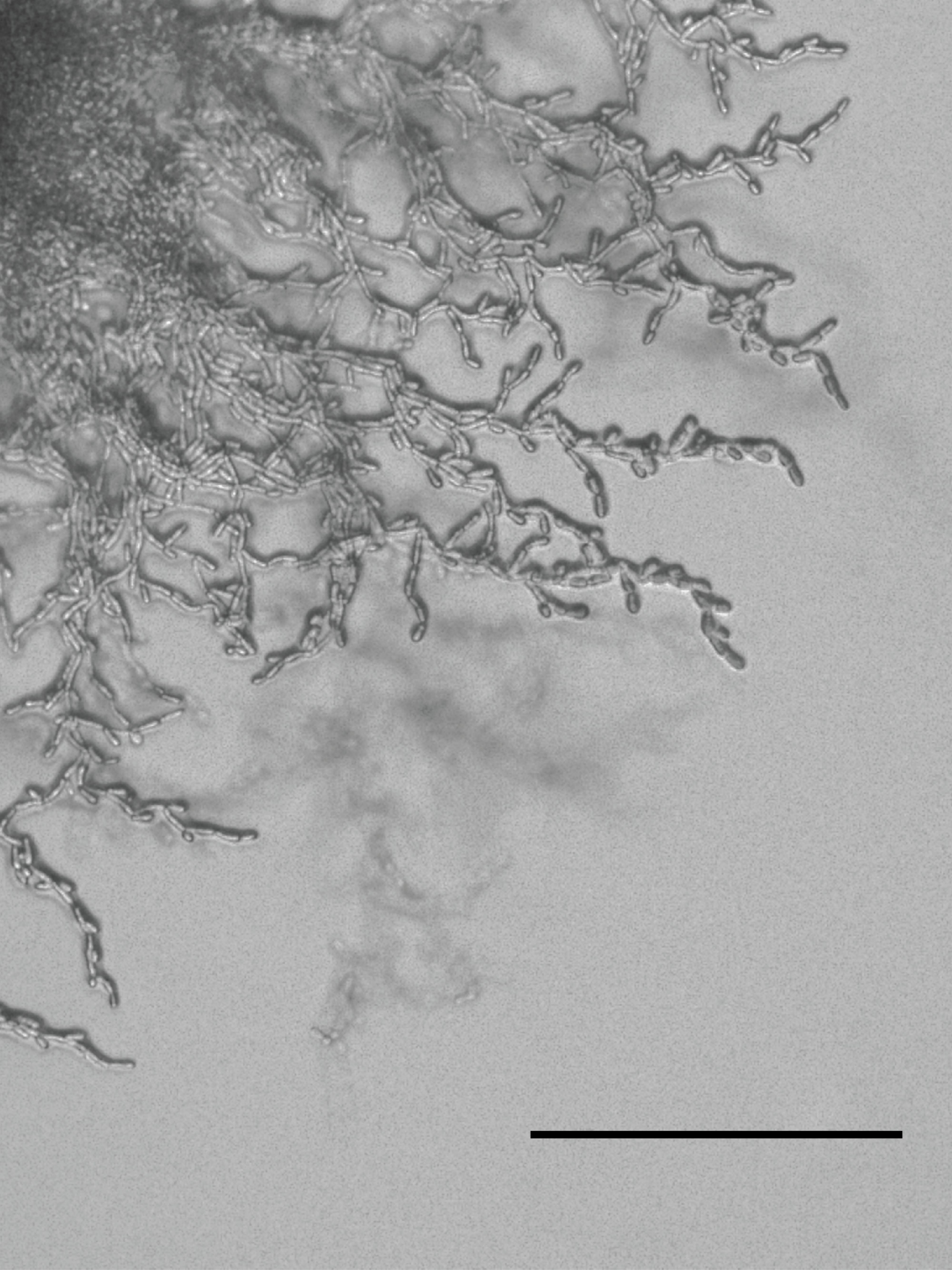
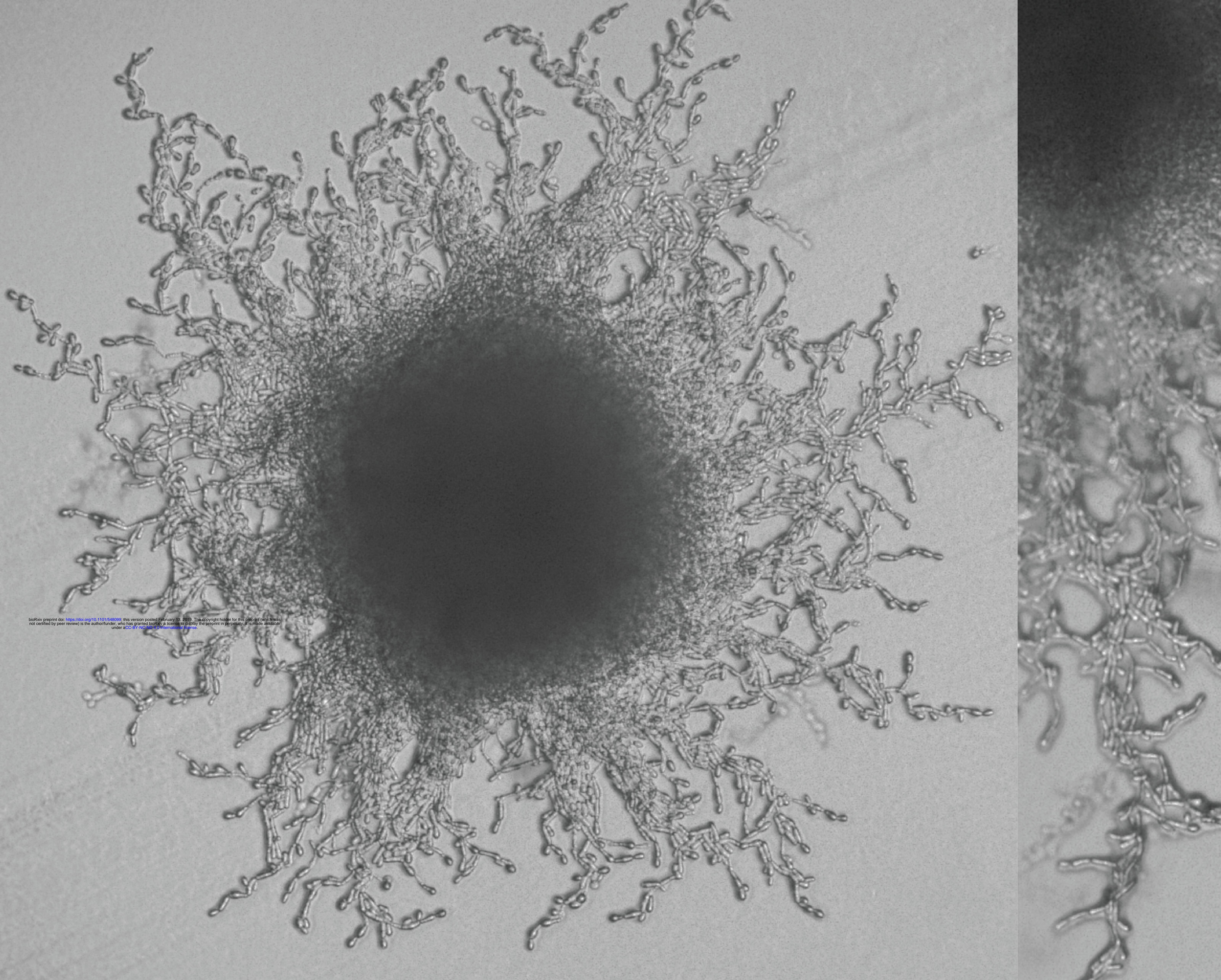
783 **Figure 1:** Pseudohyphal growth. Images depict: a small colony with pseudohyphae
784 surrounding it (A), a close-up of a colony perimeter (B), and an image of the same
785 perimeter in a different focal plane showing the pseudohyphae growing into the agar (C).
786 Scale bar represents 200 um. To obtain images, strain YJM1439 was streaked on a
787 SLAD plate and grown for 6 days.

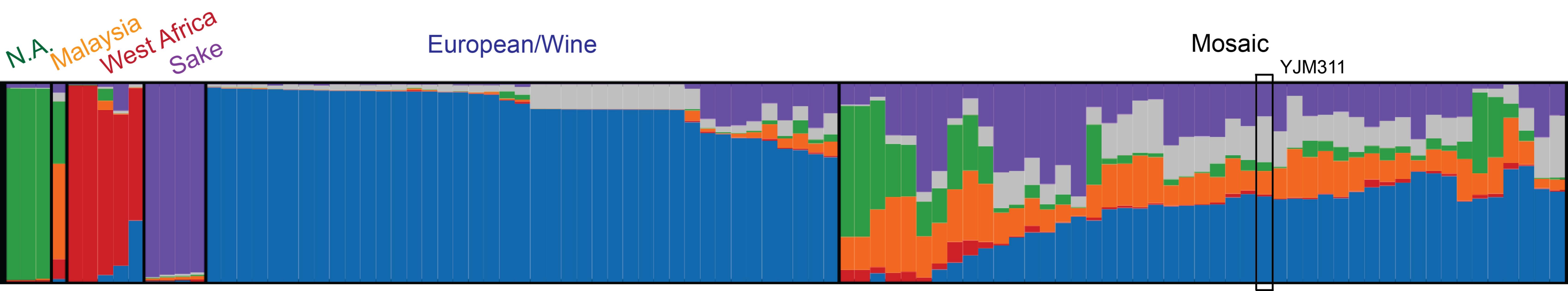
788

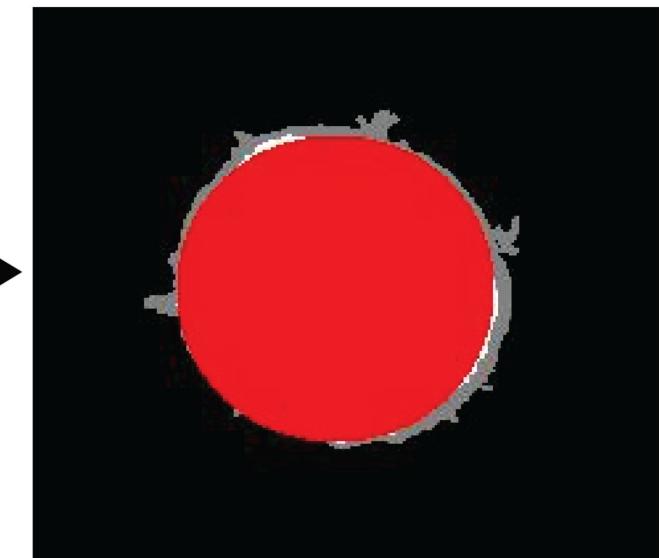
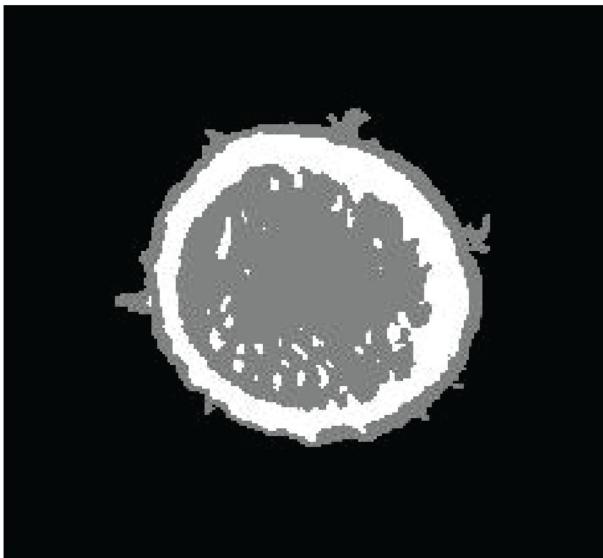
789 **Figure 2:** Population structure of the 100-genomes panel supplemented with strain
790 YJM311, as inferred by the program *structure* (Pritchard et al. 2000) and following the
791 analysis of Strope et al. (2015). Each vertical line represents an individual strain with its
792 fractional ancestry of K=6 subpopulations represented by colors: green (North
793 American), orange (Malaysian), red (West African), purple (Sake), blue (European/wine),
794 and gray (human associated). Strains were assigned membership based on a threshold
795 of >60% ancestry in a subpopulation, except for mosaic strains which had less than 60%
796 ancestry in any other subpopulation.

797

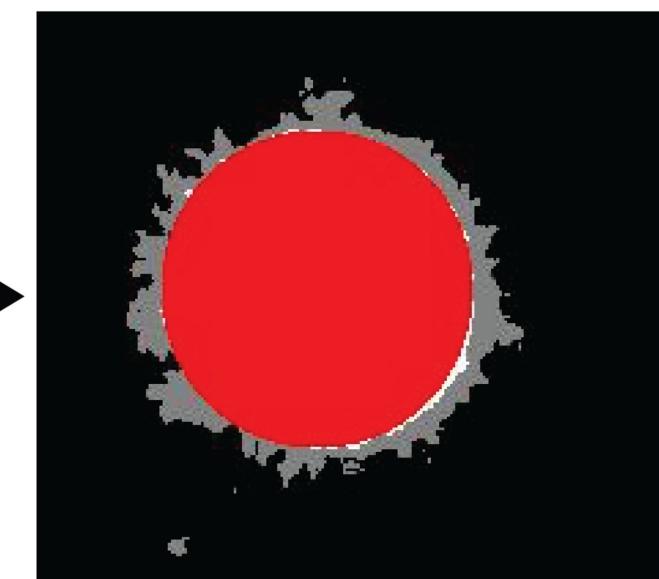
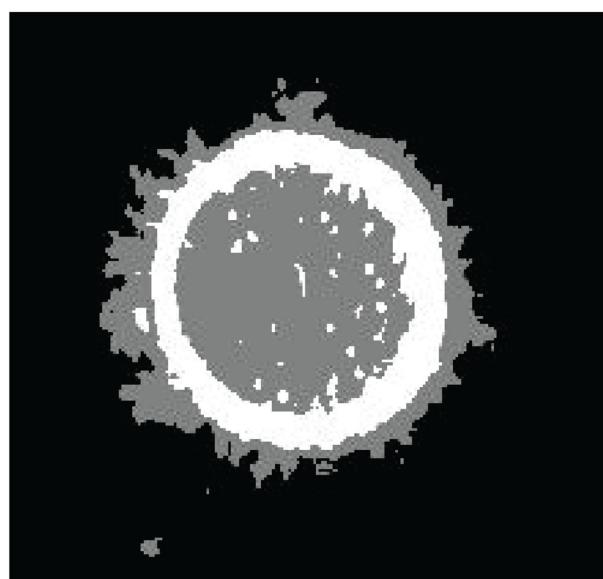
798 **Figure 3:** Image processing pipeline. First column: three sample colonies from an
799 Omnitray, which was blotted with 1.58 mm pins; in order, strains YJM984, YJM1336, and
800 YJM1341, derived from 96-112, a clinical strain, M28s2, a European wine strain, and
801 NRRL Y-12637, a South African wine strain, respectively. Second column: original
802 images processed to differentiate white ring, filamentous growth, and background. Third
803 column: inner part of the colony separated and pseudohyphal pixels counted to generate
804 the filamentous index listed on the right.

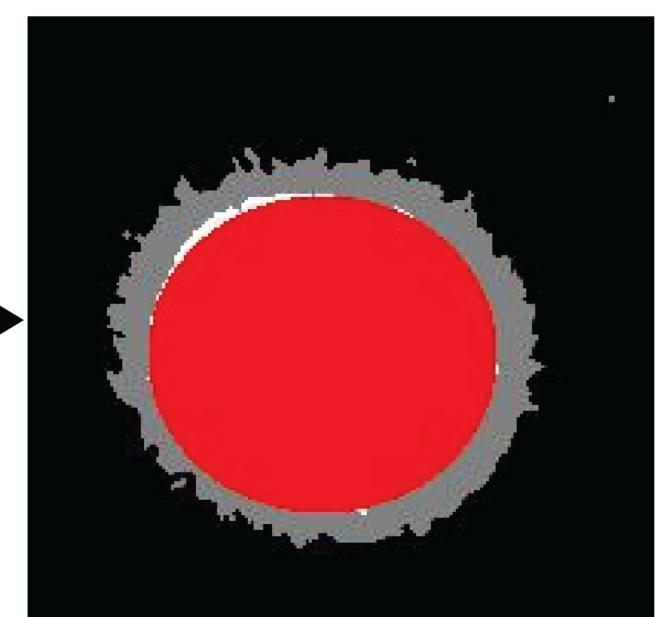
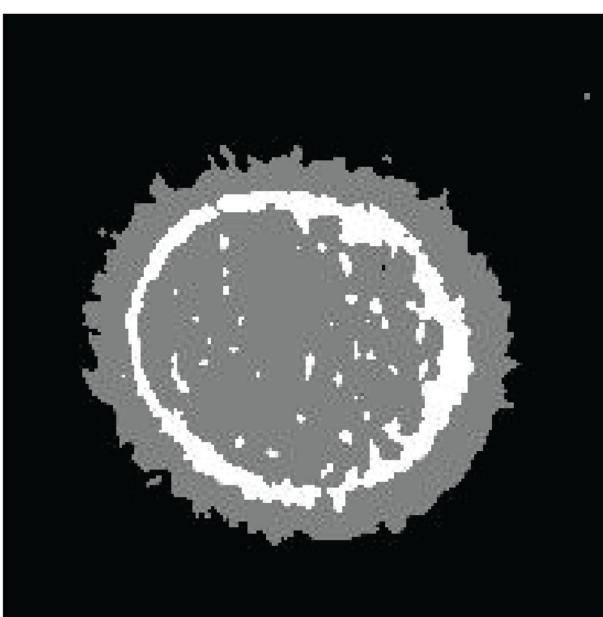



805

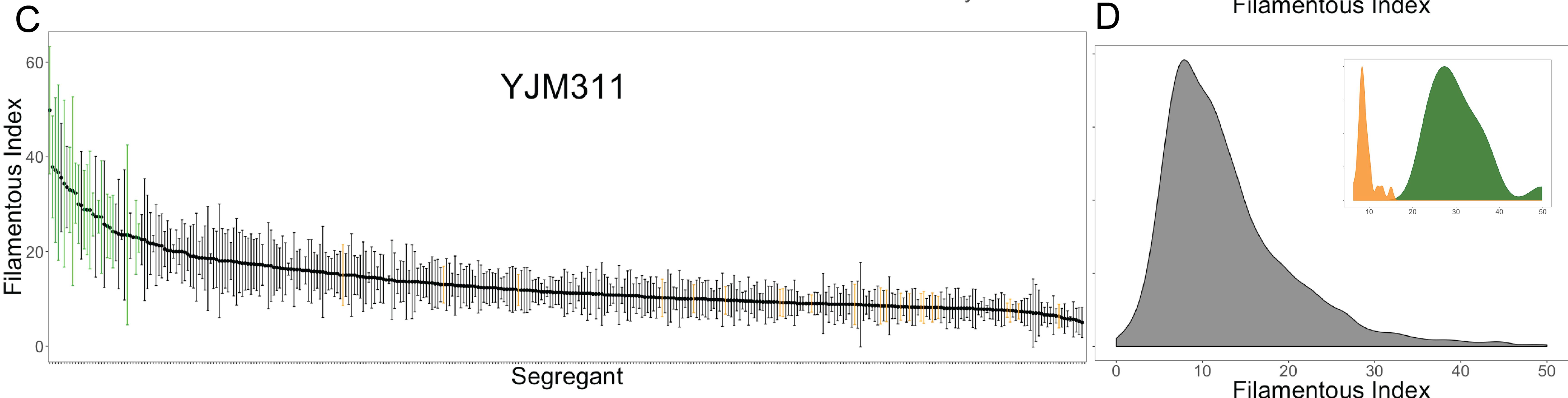
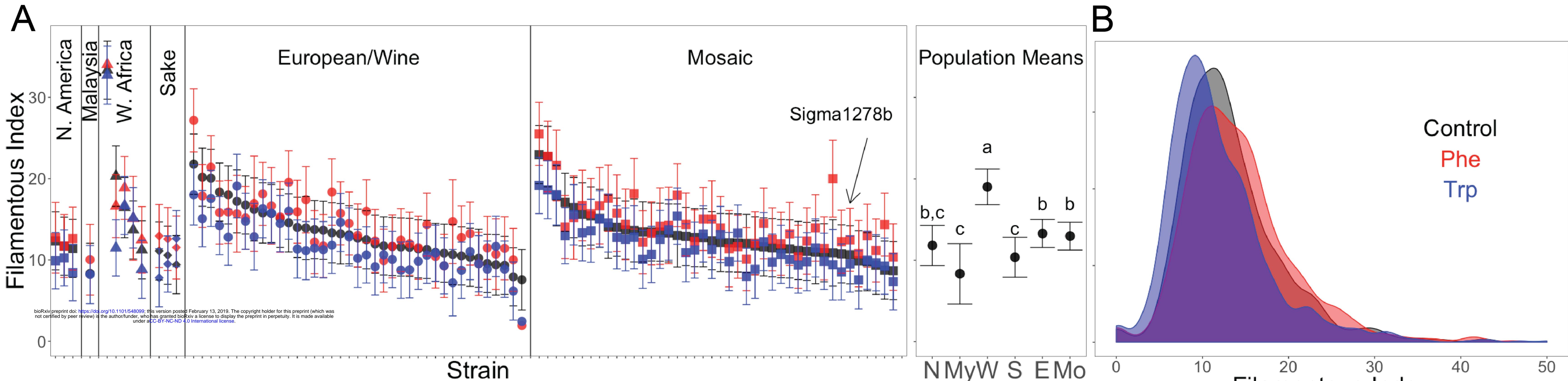

806 **Figure 4:** Psh for the 100-genomes panel (A-B), and the YJM311 mapping population
807 (C-D). A and C plot average filamentous index for individual strains or segregants (+/- 2

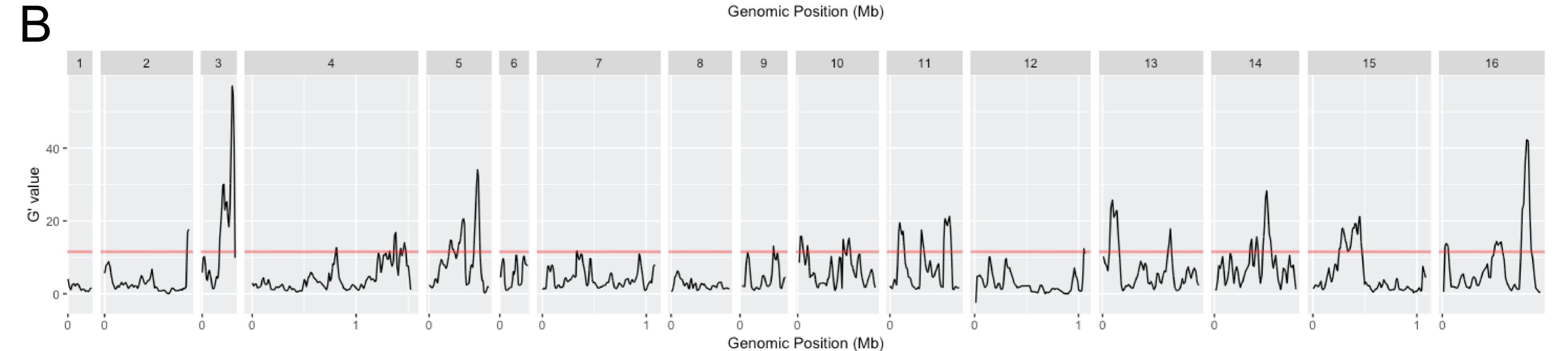
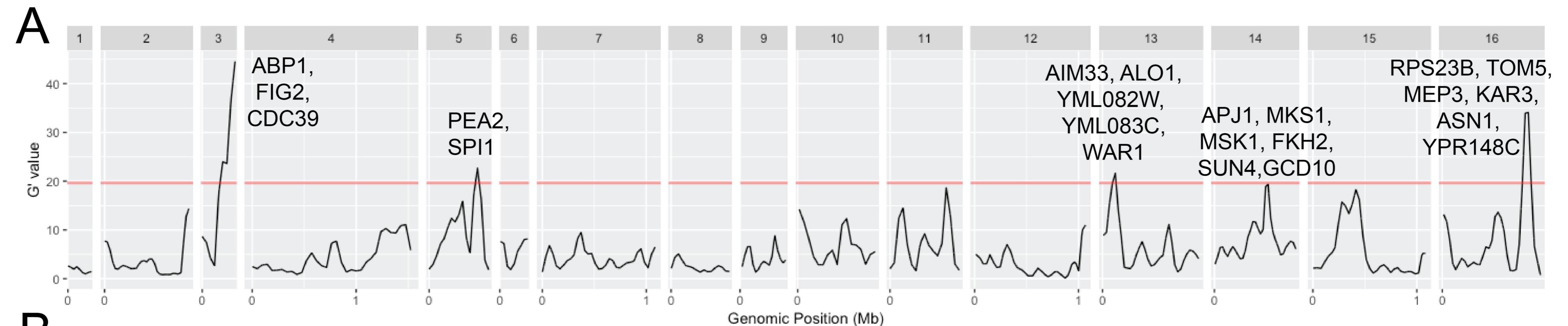


808 s.e.m.) and were ordered based on their filamentous index. Panel A also contains the
809 means for the subpopulations; points not connected by the same letter are significantly
810 different. Panels B and D represent population distributions. In A-B, black is control, red
811 is PheOH treatment, and blue is tryptophol treatment. In C-D, green is the high pool and
812 orange is the low pool.

813



814 **Figure 5:** Genome-wide comparison of the allele frequencies in the high and low psh
815 pools of YJM311 F5 segregants. The G-prime statistic was calculated with a sliding
816 window size of 60,000 bp (A) and 20,000 bp (B). Red line represents the cut-off for
817 significance at a false discovery rate of 0.01. Candidate loci are listed above major,
818 significant peaks.



12%

29%

44%

