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Abstract 

 

Neuronal oscillations underlie temporal coordination of neuronal processing and their synchronization 

enables neuronal communication across distributed brain areas to serve a variety of sensory, motor, and 

cognitive functions. The regulation and integration of neuronal processing between oscillating 

assemblies at distinct frequencies, and thereby the coordination of distinct computational functions, is 

thought to be achieved via cross-frequency coupling (CFC). Although many studies have observed CFC 

locally within a brain region during cognitive processing, the large-scale networks of CFC have 

remained largely uncharted. Critically, also the validity of prior CFC observations and the presence of 

true neuronal CFC has been recently questioned because non-sinusoidal or non-zero-mean waveforms 

that are commonplace in electrophysiological data cause filtering artefacts that lead to false positive 

CFC findings. We used a unique dataset of stereo-electroencephalography (SEEG) and source-

reconstructed magnetoencephalography (MEG) data to chart whole-brain CFC networks from human 

resting-state brain dynamics. Using a novel graph theoretical method to distinguish true inter-areal CFC 

from potentially false positive CFC, we show that the resting state is characterized by two separable 

forms of true inter-areal CFC: phase-amplitude coupling (PAC) and n:m-cross-frequency phase 

synchrony (CFS). PAC and CFS large-scale networks coupled prefrontal, visual and sensorimotor 

cortices, but with opposing anatomical architectures. Crucially also directionalities between low- and 

high-frequency oscillations were opposite between CFS and PAC. We also found CFC to decay as a 

function of distance and to be stronger in the superficial than deep layers of the cortex. In conclusion, 

these results provide conclusive evidence for the presence of two forms of genuine inter-areal CFC and 

elucidate the large-scale organization of CFC resting-state networks. 

 

Keywords: Cross-frequency synchrony, MEG, SEEG, oscillations, phase synchrony, spurious connections  
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Introduction 

 

Human electrophysiological activity is characterized by neuronal oscillations, i.e., rhythmic excitability 

fluctuations at wide range of frequencies from 0.01 to over 100 Hz. Synchronization of these oscillations across 

brain areas coordinates provides a mechanism for regulating anatomically distributed neuronal processing (1-

3). In humans, large-scale oscillatory networks of phase synchrony (PS) characterize magnetoencephalography 

(MEG) and stereo-electroencephalography (SEEG) data during resting state (RS) activity (4-7) and in many 

cognitive functions (4,7-15) at several frequencies. Oscillatory electrophysiological resting-state networks 

(RSNs) recorded with MEG are organized partially in a similar fashion as the RSNs observed with fMRI (16-

18), these correlations being largest in the alpha (8-15 Hz,  and beta (15-30 Hz, ) (18,19) bands. During 

task performance,  and  oscillations are thought to regulate through inter-areal synchronization the top-down 

or feed-back modulation of bottom-up sensory processing achieved in the gamma-band (, 30100Hz) rhythms 

(20-24).  

The interplay and coordination between multiple neuronal oscillations at distinct frequencies is thought to be 

regulated via cross-frequency coupling (CFC): phase-amplitude coupling (PAC) (25-34) and cross-frequency 

phase synchrony (CFS) (4,35-39), also known as n:m-phase synchrony (35). PAC indicates the correlation 

between the amplitude envelope of a faster oscillation and the phase of a slower oscillation, whereas CFS is a 

form of phase synchronization defined by a stable phase-difference between oscillations having an integer n:m 

frequency ratio (Figure 1a). PAC is thought to reflect the regulation of sensory information processing 

achieved in -frequencies by excitability fluctuations imposed by  and  oscillations (40-47). On other hand, 

CFS can be exploited to achieve temporally precise coordination of processing and to establish spike-timing 

relationships among functionally distinct oscillations and networks (43,47,48). A large number of studies have 

identified local PAC, i.e., PAC observed between different frequencies of the same signal, between the phases 

of ,  and  oscillations and the amplitude of gamma oscillations in local field potentials (LFPs) in rats (49-

55) and in human intracranial EEG (27,28,34,56,57) and MEG data (33,46,58). Similarly to PAC, local CFS 

has been observed in human MEG and EEG data during rest (4,8,37,59) and attentional and working memory 

(WM) tasks (4,36,60,61) as well as in LFPs in the rat hippocampus (52,54,62).  
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Despite extensive literature on local CFC, only a few studies have identified inter-areal PAC or CFS in M/EEG 

data between sensors (4,36,63) or between brain regions in source-reconstructed data (31,32,39,64) or 

intracranial recordings (38,65). Overall, the large-scale organization of CFC networks has remained largely 

uncharted and the roles that CFC play in linking within-frequency phase-coupled or amplitude-correlated 

networks have remained unknown. Furthermore, several lines of recent research have raised concerns over the 

possibility that estimates of CFC may be inflated by false positive couplings. Such spurious observations are 

readily caused by the higher-frequency filter artefacts arising from non-sinusoidal signal components (66-72) 

as well as by amplitude fluctuations of oscillations with non-zero-mean waveforms that lead to artificial lower-

frequency oscillations during filtering (73). Both non-sinusoidal and non-zero-mean waveforms are ubiquitous 

in electrophysiological signals and thus the artificially generated high- and low-frequency, respectively, signal 

components constitute a significant confounder to CFS and PAC estimation. Hence, the validity of prior CFC 

observations has been questioned and therefore it is not established whether neuronal activity is characterized 

by true neuronal CFC rather than by spurious CFC connections. Since CFC is thought to be a central 

mechanism of coordinating processing across oscillations at distinct frequencies specifically during cognitive 

tasks and behaviors, it is crucial to establish if true neuronal CFC can be observed in neuronal activity.  

In this study, we used both human SEEG and source-reconstructed MEG data to characterize the large-scale 

CFC networks during RS. To this end, we estimated the whole-brain connectomes of CFS and PAC and 

mapped their anatomical and topological structures as well as the laminar structure from SEEG data. To 

remove the putatively false positive CFC connections, we advanced a novel graph-theory based approach. The 

core tenet of CFC is that it indicates an interaction between two distinct neuronal processes. Conversely, 

analyses of non-sinusoidal signal properties rely on the assumption that a single underlying process generates 

the signal. Filter-artefact-caused spurious cross-frequency coupling cannot be dissociated from true cross-

frequency coupling of two neuronal processes by an inspection or analysis of the waveform shape of any single 

signal in isolation (8), which essentially excludes the usage of local CFC estimates in this research. However, 

CFC is necessarily true when there is evidence for two processes, such as when CFC is found between two 

separable sources and the contributions of local CFC can be excluded. Building on this notion, we developed 

a conservative test for whether CFC is true, which is based on connection-by-connection testing of whether 

CFC can unambiguously be attributed to two separable processes.  
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Using this approach, we identified the fractions of true inter-areal CFS and PAC observable in human resting-

state activity in SEEG and source-reconstructed MEG data and assessed the large-scale structures of these 

true-CFC connectomes. We found that two distinct forms of true inter-areal CFC, CFS and PAC characterize 

the human RS. CFS and PAC RSNs showed similarities to resting-state PS networks, and directional coupling 

in large-scale networks of the prefrontal, medial, visual and sensorimotor cortices, but crucially with distinct 

spectral profiles and opposing directionalities. These results support the assumptions that CFS and PAC are 

distinct processes for the integration of neuronal oscillatory activity across frequencies.  

 

Results 

True neuronal CFS and PAC characterize resting-activity in SEEG and MEG 

Our objectives were to assess the presence of CFC in human resting-state brain activity and to characterize the 

putative large-scale CFC networks measured at meso-scale resolution with SEEG and at macro-scale with 

source-reconstructed MEG data. Large-scale CFC networks were derived from contact-to-contact (SEEG) or 

parcel-to-parcel (MEG) connectivity matrices where the pairwise CFC was estimated between the low-

frequency (LF) time series from the one contact/parcel and the high-frequency time series from the other. 

In order to systematically address the possibility that observations of CFC might be spuriously caused by 

filtering artefacts stemming from non-sinusoidal or non-zero-mean waveforms, we advance here a new method 

to control for the spurious connections. The core assumption behind CFC is that the interaction is observed 

between two distinct processes whereas spurious CFC is a property of a single signal with signal components 

distributed to the two studied frequency bands as filter-artefacts from non-sinusoidal or non-zero-mean signal 

properties. We set out to dissociate the two-separable-signals vs. one-signal hypotheses through a conservative 

network-motif test that assesses whether the two CF-coupled signals are also coupled via local CFC and inter-

areal within-frequency coupling. The presence of such a “secondary connection” implies the possibility of the 

inter-areal CFC being spurious while a lack of such a connection indicates that the CFC cannot be attributable 

to a single source and is hence true.  
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Figure 1. Schematics of true and spurious observations of inter-areal cross-frequency coupling  

a) Schematic illustration of phase synchrony (PS), n:m cross-frequency phase synchrony (CFS) and phase-amplitude 

coupling (PAC). In PS, two spatially distant processes oscillating at the same frequency exhibit a constant phase 

relationship. In CFS, a constant n:m phase relationship exists between two processes at frequencies f1, f2 where f1: = m:n. 

These processes can either take place in the same region (local CFS) or in distinct regions (inter-areal CFS). In PAC, the 

amplitude of the high-frequency signal is correlated with the phase of the low-frequency signal. Like CFS, PAC can be 

either local or inter-areal. b) Observations of local cross-frequency coupling (CFC) can be either true or spurious. A 

measured signal from a single sensor or electrode can either be the sum of two sinusoidal processes oscillating at distinct 

frequencies or a single non-sinusoidal process. Local CFC can be observed either when there is a true coupling between 

two sinusoidal processes, or from a single non-sinusoidal signal. 
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c) True inter-areal CFC between two spatially distant sinusoidal processes A and B. d) Example of spurious observation 

of inter-areal CFC. Process A is sinusoidal, but B is non-sinusoidal and spurious local CFC will be observed at location 

B, as shown in b). If A and B are connected by low-frequency PS, also spurious inter-areal CFC will be observed between 

A and B. e) Example of spurious observation of inter-areal CFC. Process B is sinusoidal, but A is non-zero-mean and 

spurious local CFC will be observed at location A. If A and B are connected by high-frequency PS, also spurious inter-

areal CFC will be observed between A and B. f) Possible observations of inter-areal CFC between A and B leading to the 

observation of true or spurious inter-areal CFC. In cases where inter-areal CFC is not part of a full triangle motif, it is 

unambiguously true (green box). In cases where inter-areal CFC is spurious (red box), it is part of a full triangle motif of 

PS, local CFC and inter-areal CFC. However, there may also be ambiguous cases where inter-areal CFC is true, but still 

a full triangle motif exists (purple box).  

 

Figure 1 shows schematically the generation of true and spurious observations of CFC as well as our approach 

for identifying the true and for discarding the putatively spurious observations. For local CFC, that is measured 

between different frequency components at one location, it is impossible to distinguish between true and 

spurious observations (Figure 1b), whereas this is possible for inter-areal CFC that is true if it is found between 

signals that unambiguously originate from separable neuronal processes (Figure 1c). We thus begin with all 

observations of inter-areal CFC and to safeguard against indirect leakage of local CFC into the estimates of 

inter-areal CFC, we exclude observations of inter-areal CFC between sources that are also connected by both 

local CFC and inter-areal 1:1 PS (or amplitude correlation in the case of the high-frequency signal in PAC) 

(see Figure 1d, e). It is notable that true neuronal CFS might also be present under these conditions (see Figure 

1f, purple box) but cannot be distinguished from actual spurious CFS connections (Figure 1f, red box). Thus, 

the proposed method gives a conservative estimate of the presence of true neuronal CFS (Figure 1f, green 

box). 

We mapped the connectomes of CFC and used this approach to identify and discard all putatively spurious 

CFC observations. We estimated the local and inter-areal cross-frequency coupling (CFC), as well as inter-

areal 1:1 phase synchrony (PS) and amplitude envelope correlations (AC) using eyes-open resting-state MEG 

recordings (10 min) from 23 healthy controls and eyes-closed resting-state SEEG recordings (10 min) from 59 

epileptic patients (see S1 Figure and S2 Figure for the analysis workflow). During preprocessing, we excluded 

artefacts and SEEG electrode contacts located in the epileptic zone, and filtered broadband time series into 

narrow frequency bands from 1 to 315 Hz (see Methods I-IV). MEG data were source-reconstructed (see 

Methods V-VI) and collapsed onto 200 cortical parcels of a parcellation based on the Destrieux atlas (74), of 

which the least reliably parcels and connections were excluded (see Methods VII-VIII). Visual inspection of 
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raw ongoing SEEG and MEG data between regions and frequencies that showed high coupling on average 

over the whole time period revealed intermittent periods of strong interareal CFS (S3 Figure) and PAC (S4 

Figure) between signals that were not significantly 1:1 coupled and did not exhibit local CFS.  

Inter-areal CFC for low frequencies 195 Hz and ratios 1:21:7, as well as PS and AC were estimated pair-

wise between electrode contacts or parcels (see Methods IX-XI). 

In order to first quantify the prevalence of these connections in the present data, for both SEEG and MEG, we 

compared the estimates of CFC, PS, and AC against surrogate data to evaluate their statistical significance (see 

Methods XII). The proportion of significant (p < 0.01) CFS, PS, and AC connections from all possible 

connections was denoted as the connection density, K, and plotted with 95% confidence limits estimated by 

bootstrapping over the cohort. We observed inter-areal CFS in both SEEG data (Fig. 2a,b) and in MEG data 

(Fig. 2c,d) at small CF ratios (1:2 and 1:3) with a LF peak in the alpha (8-12 Hz,  band, which indicates the 

presence of robust alpha-beta ( and alpha-gamma ( CFS. In SEEG data, the LF peak was found in the 

range 7–12 Hz while in MEG data the peak frequency was slightly higher, in the range 8–15 Hz. We also 

observed -band peaks in the corresponding frequencies in analyses of inter-areal PS (S5 Figure) and of local 

CFS (S6 Figure), as well as when the strength per se of inter-areal CFS was estimated (S7 Figure). In SEEG 

data, we also observed another LF peak in the - (delta-theta, 2–5 Hz) band at CFS ratios 1:2 and 1:3 

indicating the presence of and  coupling. Notably, no - peak was found in PS analyses (S5 Figure). 

In MEG data, interestingly, we found CFS also among  and high- (H) bands (between LF = 30–100 Hz and 

HF = 60–315Hz) at ratios 1:2 and 1:3 in a number of subjects, although the wide confidence limits indicate 

large inter-individual variability (Figure 2c). In SEEG data, small :H and :H peaks were found in higher 

ratios in individual subjects but not in group-averaged data (Figure 2a). Finally, in both MEG and SEEG, local 

CFS had a much greater connection density than inter-areal CFS (S6 Figure). 
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Figure 2. Inter-areal CFS and PAC are reduced but not abolished by removing spurious connections. 

a) Connection density (K) i.e. the proportion of significant connections of all possible connections, of inter-areal CFS in 

SEEG data before (left) and after correcting for possible spurious connections (Kcorr, right) for ratio 1:2 (top row) and 

ratios 1:21:7 (bottom row). The x-axis shows the low frequency f1. K and Kcorr are plotted with 95% confidence limits.  

b) The same data as in A), but with each frequency ratio presented as a rectangle in a matrix of the whole spectral 

connectome. K is presented before (left) and after removal of possibly spurious connections (right). c-d) Inter-areal CFS 

in MEG data before and after removing possibly spurious connections. Both in SEEG and in MEG data, K is reduced by 

removing the putatively spurious edges but 1:2  and 1:3  CFS remain significantly above confidence limits. e-f) 

Inter-areal PAC in SEEG data and g-h) in MEG data before and after removing spurious connections. K for PAC is 

reduced by removing putatively spurious connections but remains significant for the coupling of -oscillations with 

 oscillations across ratios. 
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To remove all potentially spurious connections that could have been generated by only one signal, we discarded 

observations of inter-areal CFC between any two signals that were also connected by both inter-areal 1:1 PS 

(or AC for PAC) and local CFC at one or both of the locations (see Methods XIII). 

After controlling for spurious connections this way, in both MEG and SEEG, the K values remained 

significantly different from zero (as indicated by the 95% confidence limits) for all observed major peaks. In 

MEG, the corrected K was a larger fraction (>50%) of the uncorrected K than in SEEG data (<50%). A 

particularly large reduction, essentially to zero-coupling levels, was observed for the :H CFS in MEG, which 

suggests that this phenomenon was overall spurious, which in turn is in line with the notion of signals in this 

frequency range are readily contaminated by muscle artefacts (75). One possible limitation in these results so 

far was that for measuring 1:1 PS, we used the weighted phase lag index (wPLI) (76) that is not inflated by the 

linear mixing caused by signal leakage but also is insensitive to true zero-lag neuronal couplings, and may thus 

underestimate the true extent of PS. To eliminate this confounder, we also performed the spurious-CFC 

correction using the phase-locking value (PLV) as PS metric. PLV is not markedly sensitive to variation in 

phase difference (77) but it is inflated by linear mixing, and to account for this, we excluded the signal-leakage-

dominated short-range connections from analyses of MEG data by thresholding for cross-patch PLV (see 

Methods VIII). Even with this limitation to medium- and long-range connectivity, we found a much greater 

connection density for PS measured with PLV than with wPLI in MEG (S5 Figure). Correspondingly, the 

correction led to a greater reduction of K in MEG CFS (S8 Figure) but, importantly, the main peaks of CFS 

remained significantly different from zero. In SEEG data, K values for PS were more similar across metrics, 

in line with the fact that in properly referenced SEEG, volume conduction is well controlled (7). In SEEG, the 

corrected K values for CFS obtained using PLV were very similar to those where wPLI was used (S8 Figure). 

Thus, regardless of the choice of the connectivity metric for PS estimation, true CFS was robust in resting-

state brain activity. 

We next assessed inter-areal phase-amplitude coupling (PAC) and found it highly significant in both SEEG 

(Fig. 2e,f) and MEG data (Fig. 2g,h). Similarly to CFS, LF peaks characterized SEEG PAC in the 5–12 Hz 

range and MEG PAC in the 7–15Hz range. Unlike in CFS, however, these peaks were found at all frequency 

ratios in SEEG data and at ratios 1:2–1:4 in MEG data. Interestingly, the peak LF in SEEG decreased with 

increasing ratio, although the effect was significant only before spurious CFC correction (r = –0.91, p = 0.013 
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for uncorrected and r = –0.58, p = 0.23 for corrected data; Pearson’s correlation test on interpolated data, see 

Methods XIV). We also found PAC among and high- bands in MEG, as for CFS. Similarly to CFS, local 

PAC exhibited higher K values than inter-areal PAC (S6 Figure). Notably, in inter-areal PAC, we found no LF 

peak in the  band indicating that the observed  coupling in SEEG was specific to CFS. We also applied 

our correction method to PAC, with the notable difference that for possible triangle motifs HF interactions 

were estimated as correlations of amplitude envelopes, instead of PS (see Methods XIII). In SEEG, these 

correlations were most pronounced at very high frequencies (>200 Hz) with no preference for a specific 

modulation frequency (S9 Figure), at low frequencies (<10 Hz) with a preference for high modulation ratios, 

and at beta and low-gamma frequencies (15-40Hz) modulated by theta and low alpha frequencies (5-10Hz) of 

which the peak decreased similarly to LF peak in PAC (r = -0.98, p < 0.001, Pearson's test on interpolated 

data). Similarly trends were observable in MEG, but less pronounced, with overall larger K values than in 

SEEG. After applying the correction method, the K values again remained significantly above zero, this time 

also for the:HPAC. Similar results were obtained using PLV as PS metric (S8 Figure). Together, these 

results show that true inter-areal CFS and PAC between separable sources can be observed in both SEEG and 

MEG data. 

 

Inter-areal CFC is dependent on distance and cortical layer 

By using a conservative approach to remove all putative false positive CFC connections, our results so far 

strongly supported the existence of true inter-areal CFC in resting-state brain dynamics. We next set out to 

investigate whether, similarly to PS, CFC was dependent on the distance between the two sources and their 

depth along the cortical laminae in SEEG data. We divided the electrode pairs in SEEG and parcel pairs in 

MEG into three distance bins containing equal numbers of connections each and computed mean 1:2 and 1:3 

CFS and PAC in each of these bins (see Methods XV). In both SEEG and MEG data, CFS and PAC were 

observed in all distance bins (Figure 3) and the greatest PLV and K values were found for the shortest distances 

(blue lines) and smallest values for the longest distances (green lines) both before and after removing possibly 
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spurious connections (Wilcoxon test, p < 0.05, corrected for multiple comparisons with Benjamini-Hochberg, 

  

Figure 3. Inter-areal CFS and PAC decrease as a function of distance  

a) Mean strength of n:m CFS (PLV, left), K (middle), and Kcorr (right) of inter-areal CFS in SEEG data estimated 

separately in three distance bins containing equal numbers of connections for 1:2 (top row) and 1:3 (bottom row) inter-

areal CFS. All values are plotted with 95% confidence limits as shades. Grey bars and stars indicate where the 1st and 3rd 

bin had been found to be significantly different from each other (Wilcoxon test, p = 0.05, corrected). b) Mean strength 

(left), K (middle), and Kcorr (right) of inter-areal PAC in SEEG data in three distance bins. c-d) Mean strength, K, and 

Kcorr of inter-areal CFS and PAC in MEG data. All measures, strength, K and Kcorr were larger for the shortest than the 

longest distance bins for 1:2 CFS and for 1:2 and 1:3 PAC in both SEEG and in MEG data across most of the frequency 

spectrum. 
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exact values in S1 Table). For 1:2 CFS and 1:2 PAC, the coupling at shortest and longest distance was 

significantly different for almost all LFs in both uncorrected and corrected data. In 1:3 CFS, significant 

differences were sparser, mostly found at the main LF peaks in uncorrected data, and not present in corrected 

data except for two single frequencies in MEG data. In 1:3 PAC, differences were significant for LFs up to 

50Hz in SEEG, and for the whole frequency range in MEG both before and after K correction. Similar profiles 

were also found for PS (S5 Figure). 

 

We then investigated whether inter-areal 1:2 and 1:3 CFS and PAC in SEEG data would vary with the location 

of the electrodes in superficial or deep cortical layers (see Methods XVI), as has earlier been found for PS (7). 

Both CFS and PAC were more prominent between electrodes in superficial layers (red lines) than between 

those in deep layers (blue lines) at the main LF peaks in uncorrected data (Figure 4). Values for CFS 

connections between electrodes in superficial and deep layers (green and purple lines) lay between those 

located to either deep or superficial layers. We then tested whether CFC between electrodes both located in 

superficial layers was statistically significantly different from CFC between electrodes both in deep layers, 

which was confirmed for 1:2 CFS and both 1:2 and 1:3 PAC (Wilcoxon test, p < 0.05, corrected for multiple 

comparisons, exact values in S2 Table). After correction for possibly spurious connections however, these 

differences were less pronounced and not significant. In fact, in PAC, connections with the LF electrode in a 

deep and the HF electrode in a superficial layer were now strongest and those with the inverse relationship 

weakest. This difference was significant (Wilcoxon test, p < 0.05, corrected for multiple comparisons, exact 

values in S2 Table) for a number of frequencies, mainly in the  range. Thus, while CFC showed a clear 

consistent relationship with distance between signal sources, further research is needed to clarify the 

localization of CFC in cortical layers and its dependence on inter-areal PS and local CFC in the correction 

approach. 
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Figure 4. CFS and PAC differ between cortical layers in SEEG data  

a) The mean n:m CFS strength (PLV, left), K (middle), and Kcorr (right) of inter-areal 1:2 (top row) and 1:3 (bottom row) 

CFS in SEEG data. CFS connections are shown among electrode pairs that were either both in superficial layers (red), 

both in deep layers (blue), where the low-frequency (LF, f1) electrode was in a superficial layer and the high-frequency 

(HF, f2) electrode in a deep layer (green) and where LF electrode was in a deep layer and HF electrode in a superficial 

layer (purple). Grey bars and stars indicate where the strongest and weakest values (red and blue in left and middle column 

and purple and green in right column were significantly different (Wilcoxon test, p = 0.05, corrected) in consecutive or 

single frequencies. b) The same as in (a) for the inter-areal PAC in SEEG data. In both CFS and PAC, strength and K are 

stronger for connections which are within superficial than within deep layers while the CFS and PAC between deep and 

superficial layers have intermediate strengths. 

 

Low- and high-frequency hubs differ between CFS and PAC 

Lastly, we identified the anatomical-topological architectures of CFS and PAC connectomes. We first used a 

conventional in- and out-degree-based graph theoretical approach (78) to estimate LF and HF “hubness” (see 

Methods XVII). We estimated, for each frequency pair of the main peaks, for each of the 148 parcels, the 

relative directed degree as a measure of whether the parcel was predominantly a HF or LF hub. For CFS 

networks, in both SEEG and MEG data, for 1:2  and 1:3 CFS, HF hubs (red) were observed in 

somatomotor (SM) regions, posterior parietal cortex (PPC), and temporal cortex (Figure 5). LF hubs (blue) 

were localized to regions lateral prefrontal cortex (lPFC) and medial parietal cortex (MPC) in both SEEG and 

MEG, that belong to default mode, control and salience networks in the functional parcellation (see S10 Figure) 
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based on fMRI BOLD signal fluctuations (79) and also in occipital cortex in 1:2 in MEG. However, for 

PAC, we observed the opposite localization of LF and HF hubs in most cortical regions except the occipital 

pole. We found the LF hubs for 1:2  and 1:3  PAC to be consistently localized in SM, PPC and occipito-

temporal regions in both SEEG and MEG, and the HF hubs mainly localized in frontal regions and MPC. In 

1:2 and 1:3 CFS, which were specific to SEEG, patterns were similar to 1:2  and 1:3 CFS. In 

order to confirm the similarity between SEEG and MEG data and the dissimilarity between CFS and PAC, we 

computed the correlation of relative directed degree values across parcels using Spearman’s test. A significant 

(p < 0.05) positive correlation between SEEG and MEG was found for PAC, and a non-significant one for 1:2 

CFS (Table 1). We found values for CFS and PAC to be significantly anti-correlated (p < 0.05) for 1:2 and 1:3 

SEEG and 1:2 MEG, and non-significantly anti-correlated for 1:3 MEG (Table 2).  

Secondly, we estimated the directionality of CFC connections between parcels, i.e. if some parcels would be 

involved in CFC connections as predominantly the site of either the LF or HF oscillation. We estimated the 

low-vs.-high directionality for each parcel pair and each frequency pair of the main peaks across subjects (see 

Methods XVIII). Significant directionality between the two parcels was established if the absolute value of 

directionality was higher than in 95% of permutations. We then averaged for each parcel the significant 

directionality values, again yielding a positive value for parcels that can be interpreted as HF hubs and a 

negative value for parcels that can be interpreted as LF hubs. Results were remarkably similar to those of the 

degree-based hubness analysis, showing the same dissociation between CFS and PAC (Figure 6). Taken 

together, these results provide strong evidence that the anatomy and structure of CFS and PAC connectomes 

are distinct, demonstrating the presence of two different forms of CFC RSNs with particular directional 

patterns. Again, we computed the similarity between SEEG and MEG and dissimilarity between CFS and PAC 

using the Spearman’s test, yielding similar results as for directed degree (Tables 1,2). 
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Table 1: Parcel values are correlated between SEEG and MEG data 

 
Rel. dir. degree Directionality 

 
r p r p 

1:2 CFS 0.136 0.101 0.094 0.254 

1:2 PAC 0.233 0.004 0.259 0.002 

1:3 CFS -0.052 0.531 0.130 0.114 

1:3 PAC 0.203 0.013 0.314 <10-4 

Values obtained with Spearman’s test. Significant correlations (p < 0.05) in bold. 

 

Table 2: Parcel values are anticorrelated between CFS and PAC 

 Rel. dir. degree Directionality 

 r p r p 

1:2 SEEG -0.254 0.002 -0.277 0.001 

1:2 MEG -0.114 0.168 -0.106 0.200 

1:3 SEEG -0.241 0.003 0.018 0.831 

1:3 MEG -0.240 0.003 -0.252 0.002 

Values obtained with Spearman’s test. Significant correlations (p < 0.05) in bold. 
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Figure 5.  CFC networks have an asymmetric low- and high-frequency hub architecture 

Relative low (f1) vs. high (f2) degree of each brain region (parcel) for CFS and PAC networks.  Relative degree values 

indicate whether parcel is primarily a hub for the low frequency (f1, red) or high frequency (f2 , blue) in inter-areal CFC. 

Top row: Brain anatomy of CFS and PAC at ratio 1:2 connecting  and  frequencies. Bottom row: Brain anatomy 

of CFS and PAC networks at ratio 1:3 connecting  and  frequencies. CFS and PAC networks show saliently 

opposing anatomical structures connecting anterior and posterior brain regions.   

 

 

 

Figure 6. Asymmetric directional connectivity in CFC networks  

Averaged low (f1) vs. high (f2) -directionality values for each parcel. The values indicate whether parcel is a directional 

hub for f1 (red) or for f2 (blue) in inter-areal CFC networks. Top row: Directionality for CFS and PAC networks at ratio 

1:2 connecting  and  frequencies. Bottom row: Directionality for CFS and PAC at ratio 1:3 connecting  and  

frequencies. Directional connections of CFS and PAC networks reflect their structure in brain anatomy and show similar 

opposite directional connections connecting anterior and posterior brain regions as seen in degree hub analysis.  
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Discussion  

Human brain activity during rest, as revealed originally by fMRI, is characterized by intrinsically correlated 

fluctuations among constellations of brain regions, known as RSNs (16,80,81). Also in human 

electrophysiological measurements, PS and amplitude correlations of neuronal oscillations characterize 

resting-state activity in a wide range of frequencies in anatomically well delineated and modular structures 

(82). In this study, we have used a novel approach to investigate two forms of large-scale neuronal cross-

frequency coupling (CFC) in human resting state activity. We identified the networks that connected neuronal 

oscillations of different frequencies across brain regions with both SEEG and MEG data by using a novel 

method for dissecting true from potentially spurious observations of CFC. We found that two distinct types of 

true CFC, cross-frequency synchrony (CFS) and phase-amplitude coupling (PAC), to characterize human 

resting-state activity. CFS and PAC networks showed distinct spectral profiles, anatomical architectures, and 

coupling directions among brain regions.  

 

Large-scale CFC networks characterize human resting state activity 

A number of studies have previously reported local PAC (27-29,33,34,56-58,65,83) and CFS (4,8,36,37,59-

61) in human M/EEG and intracranial data. Both PAC (26,40-42,42,45-47) and CFS (4,43,47,48) have been 

proposed to be central mechanisms for coordinating spectrally distributed neuronal processing and thereby 

regulating the communication in multi-scale oscillatory networks. Despite extensive research, only few prior 

studies have also examined inter-areal CFC (4,36,39,63,64). One study has found initial evidence for the 

presence of PAC networks between theta and gamma oscillations, but not between other frequencies, during 

resting state activity (64) and the resting-state connectomes of CFS have not been charted in any of the prior 

studies save for a MEG-sensor-level analysis (4). 

We found both inter-areal PAC and CFS to characterize both MEG and SEEG data during RS activity. Robust 

increases in local  oscillations have been known to be a marker of resting human brain for several decades 

(20,84-87). Here we show that  oscillations are also cross-frequency coupled with the faster  and  frequency 

oscillations in both MEG and SEEG data. These CFC couplings were similar to those observed in task states 
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(4,39), which is in line with suggestions of RSNs forming the underlying core of task-state networks (88). The 

presence of both PAC and CFS during human RS indicates that the phase of  oscillations both couples with 

the amplitude of  and  oscillations through PAC and is also aligned with  and  oscillation phases via CFS 

spontaneously during intrinsic activity fluctuations.  

Inter-areal CFS connected  oscillations with and oscillations only at small frequency ratios of 1:2 and 

1:3, while PAC of  and  oscillations with higher frequencies was robust throughout ratios from 1:2 up to 1:7 

in SEEG data and up to 1:4 in MEG data. Hence, in contrast to CFS, PAC in the  and  bands were found 

also at high ratios in SEEG data, demonstrating that excitability fluctuations reflected in slow oscillations are 

coupled to the strength of fast oscillations over a wide frequency range, either through slow modulation of fast 

activity or as the temporally summed postsynaptic impact of intermittent fast activity per se. This is in line 

with the previous findings of  PAC at high ratios in the rat hippocampus (49,51-53) and in human 

intracranial recordings (27,28,34,38,65). The lack of high frequency ratios in CFS is not surprising as in CFS, 

stable phase-difference between coupled oscillations is associated with consistent spike-time relationships 

between the neuronal assemblies in different frequency bands and these are unlikely to be present over wide 

frequency ratios due to the conceivably limited temporal accuracy in the mechanisms of the slower oscillation.   

Although in MEG and EEG data resting-state activity usually peaks at  frequencies, this peak is typically 

lower in epileptic patients (89). Accordingly, we found the main  peak in SEEG to be observable at around 

7-8 Hz. Interestingly, in SEEG data, also  oscillations were coupled with  band oscillations by CFS. 

Crucially, no peak in within-frequency PS or in PAC was observed in the  band, indicating that 

coupling was a CFS-specific phenomenon.  

 

Characteristics of CFC networks in the resting human brain  

Central unresolved questions are whether CFC RSNs can be observed in the resting human brain activity with 

consistent large-scale architectures and whether they exhibit characteristics are similar to those observed in 

within-frequency coupled RSNs. Prior studies have found 1:1 PS in SEEG (7) and in MEG data (4,14,82,90) 

to decrease as a function of distance. In this study, we found salient inter-areal CFC to characterize resting-
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state brain activity so that the connection density of CFS and PAC decreased with distance between cortical 

parcels (MEG) or electrode contacts (SEEG) similarly to that of inter-areal PS, which is in line with previous 

results of CFS in MEG sensor space data (4).  

Intracortical recordings have shown that oscillations of different frequencies are generated differentially across 

cortical layers (91-94). Here we identified the cortical depth of each SEEG electrode (7,95) and found that 

before the exclusion of potentially spurious connections,  CFS as well as ,  and  PAC were 

significantly stronger among electrode pairs that were both located in superficial layers than between pairs 

both located in deep layers. However, in corrected PAC data, we found the largest connection density values 

for connections where the slow oscillation was located in the deep layers and the fast oscillation in the 

superficial layers, and conversely the lowest values for those where it was vice-versa. These findings are in 

line with previous results that reported  synchrony to be strongest in superficial layers, whereas  synchrony 

was found in deep and superficial layers (92,93,96). One should however note that due to lack of current source 

density analyses, for which the SEEG electrode-contact separation is too large, and because of complex current 

source geometries in cortical circuitry and the volume conduction between layers (93), further studies are 

required to investigate the localization of CFC in different cortical layers.  

  

Distinct large-scale organization of CFS and PAC RSNs 

To assess the large-scale architecture of the cortical CFC networks, we used two strategies for identifying LF 

and HF hubs, i.e., brain regions where predominantly the slower or the faster oscillations of the CFC 

connection are observed. Both approaches converged on showing robust anatomical asymmetries in LF and 

HF hubs of  and  inter-areal CFC. In both SEEG and MEG, CFC RSNs coupled anterior and 

posterior brain regions. The localization of hubs was similar between SEEG and MEG data, which corroborates 

the validity of our findings. Importantly, however, we observed distinct and partially opposing localization of 

the LF/HF hubs for CFS and PAC. In and CFS, the  LF hubs were observed in PFC and medial 

regions that belong to the default mode network (16,81) or to control and salience networks in the functional 

parcellation based on fMRI BOLD signal fluctuations (18,79,97). Many previous studies have found  

oscillations in these regions to be correlated with attentional and executive functions (20,23,24,87,98). In 
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contrast, the  and  HF hubs were found in more posterior regions such as sensorimotor region (SM) and the 

occipital and temporal cortices where  and  oscillations are often associated with sensory processing (99-

102). 

In contrast to CFS, the  LF hubs of and PAC were found in occipital, temporal, and posterior parietal 

cortex whereas the  and  HF hubs in prefrontal and medial parietal cortex, which was essentially opposite to 

the anatomical structure observed for CFS. Hence, both CFS and PAC RSNs coordinated cross-frequency 

coupling of oscillations along the anterior-posterior, or higher-to-lower-order, brain systems, which suggests 

that they reflect the network interactions for the coordination among attentional and executive networks and 

task-positive sensory networks. In addition, the spectral differences and distinct large-scale structures of CFS 

and PAC demonstrate that CFS and PAC are separable computational and neurophysiological mechanisms 

rather than operationalizations of a hypothetical shared underlying “CFC” construct. This conclusion is in line 

with prior findings during task performance (39). The localization of CFS and PAC showed that both are, 

nevertheless, likely to coordinate intrinsic interactions among attention, control and default-mode networks on 

the one hand and sensory processing systems on the other, and therefore are likely to regulate the interactions 

between intrinsic and extrinsic processing. Overall, our data extends the scarce previous findings of inter-areal 

:,: and  CFS and PACobserved earlier in source-reconstructed MEG/EEG data during VWM 

(39) in fronto-parietal and visual systems, and of inter-areal  CFS between hippocampus and prefrontal 

cortex in human intracranial EEG data (38).  

 

True positive inter-areal CFC not explained by spurious connections characterize resting 

state activity 

Multiple concerns have been raised about the validity of previous observations of CFC (66,67,69-72,103). A 

common point of critique is that non-sinusoidal waveforms or linear fast components (67) lead to observations 

of spurious CFC by causing higher-frequency filtering artefacts that are locked to the waveform. Although 

most of these critiques relate to PAC (66,103), and critique is raised mostly against local CFC (70,72), the 

confounding effects of non-sinusoidal waveforms apply to CFS as well and may also lead to spurious inter-
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areal CFC through a combination of local CFC and inter-areal within-frequency coupling. Furthermore, 

another family of possible confounders is posed by amplitude fluctuations of oscillations or activities with a 

non-zero mean (73), which lead to spurious observations of lower-frequency oscillations by filtering and 

thereby to spurious observations of CFC or PAC in particular. 

In this study, we mapped human CFC RSNs from SEEG and source-reconstructed MEG data. To identify true 

neuronal CFC from amongst the spurious connections, we took advantage of the fact that inter-areal CFC can 

only be spurious when the two signals are connected also via within-frequency (1:1) PS, or amplitude 

correlations in the case of PAC, and local CFC. Thus, if this is not the case, the two signals can be assumed to 

be from separable processes and an observation of inter-areal CFC between these signals are true. We used 

this rationale in a novel graph-based analytical approach to control for possibly spurious CFC connections by 

discarding those CFC observations between two signals that were also connected by inter-areal 1:1 phase 

synchronization (PS) of oscillations or of their amplitude envelopes (for the high frequency in PAC) and local 

CFC. Since this approach also may discard some true instances of inter-areal CFC, it gives a conservative 

estimate of the presence of true neuronal inter-areal CFC. We used this approach to show that true neuronal 

CFC characterizes human brain activity in both MEG and SEEG datasets. Our results demonstrate that true 

neuronal CFC characterizes human resting state activity and couples  and  oscillations with faster 

oscillations in the - and -frequency bands. The number of significant connections was reduced by exclusion 

of the potentially spurious corrections, indicating that part of the commonly observed CFC in MEEG and 

SEEG data may indeed be caused by higher-frequency filter artefacts arising from non-sinusoidal signal 

components (66,67,69-72), or by amplitude fluctuations of non-zero-mean waveforms (73). However, our 

results clearly indicate that in addition to possibly spurious CFC, also true neuronal CFC that cannot be 

explained by such artefacts is observable in MEG and SEEG data.  

We observed also local CFS and PAC to showed similar spectral distributions to inter-areal CFS and PAC, 

respectively but with a greater fraction of significant observations. However, for local CFS and PAC, there is 

no way to unequivocally distinguish between true and artefactual observations and hence the functional 

significance of local CFC remains an open question. Moderately divergent findings between SEEG and MEG 

may partially be explained by larger source-mixing in MEG, but also are in line with the fact that MEG and 

SEEG are partially sensitive to distinct aspects of neuronal processes.  
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Methodological considerations 

We used in this study a novel approach to identify true inter-areal CFC and discard putatively spurious 

connections by evaluating in multi-site recording data whether there is evidence for separable neuronal 

oscillations. Given the accuracy of SEEG data and the fact that findings were similar between SEEG and MEG, 

our observations establish the presence of true neuronal CFC to be a prominent feature of human resting state 

electrophysiological activity. True neuronal CFC, by definition, is a coupling between two separate neuronal 

processes while spurious CFC can be caused by filter artefacts in higher harmonic frequencies of a non-

sinusoidal process, or by filter artefacts in lower frequencies stemming from amplitude fluctuations of non-

zero-mean oscillations. We hence removed inter-areal CFC observations between oscillations that were also 

be connected by local CFC and PS and thus could not be safely assumed to be independent processes. The 

number of removed connections hence depends on the connection density of PS, which will differ between 

different metrics of PS. In MEG, observation of artificial connections in PS can arise due to volume conduction 

when using metrics such as the phase-locking value (PLV) (44,77,104). Artificial PS from volume conduction 

has zero phase lag and can be avoided using the weighted Phase-Lag Index, wPLI (76) that is insensitive to  

near-zero-lag connections. Therefore, the wPLI is much less likely to report false positives, but also discards 

actual connections with zero phase lag, and can thus lead to some false negatives. In MEG data, PS was indeed 

higher when using PLV than wPLI which led to a larger reduction of CFS in MEG during correction, 

nevertheless, the connection density of corrected CFS and PAC still remained significantly different from zero. 

In SEEG data, where there the effect of volume conduction is negligible with proper referencing, there were 

no major differences in PS between the two metrics and the true CFS estimated with these approaches were 

similar. These complementing results further strengthen the evidence for the presence of true inter-areal CFC. 

 

Conclusions 

We show here that large-scale networks of true neuronal CFS and PAC characterize human resting-state brain 

activity in SEEG and in MEG data. Using a new graph theoretic approach, we validated that the observations 
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of CFC were not explainable by filter artefacts. The CFC RSNs were akin both to known RSNs of phase 

synchrony and fMRI BOLD correlations. CFC RSNs had a large-scale structure connecting slow and fast 

oscillations between anterior and posterior parts of the brain. Salient differences in brain anatomy and spectral 

properties demonstrated CFS and PAC RSNs were distinct and can be assumed to serve different 

computational functions. Altogether, converging results from meso- and macroscale electrophysiological 

recordings and two different populations provide strong evidence for the existence of two forms of true 

neuronal CFC during human resting state and reveal their large-scale network organization. 

 

Data and code availability statement 

The connectomes underlying all results presented in Figures 2-6 and S3-S9 are available on DataDryad 

(https://datadryad.org/review?doi=doi:10.5061/dryad.0k86k80). These files contain pairwise inter-areal 

CFC and PS interactions between all parcels or electrode contacts, and local CFC interactions, for each 

subject. Also included are  support files containing such information as filtering parameters, cortical 

parcellations, location of electrode contacts. Raw data cannot be made available due to data privacy 

regulations set by the ethical committee. All quantitative results presented in the manuscript are based on this 

data. The code used to obtain these results can be found on GitHub 

(https://github.com/palvalab/Resting_State_CFC). 
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Methods 

 

I. SEEG Data acquisition  

Stereo-electroencephalography (SEEG) data were recorded from 59 subjects affected by drug resistant focal 

epilepsy undergoing pre-surgical clinical assessment at "Claudio Munari” Epilepsy Surgery Centre, Niguarda 

Hospital, Milan. “Monopolar”, i.e. bipolar with a single shared reference in the white matter, local field 

potentials (LFPs) were recorded from brain tissue with platinum–iridium, multi-lead electrodes with 8-15 

contacts each. These contacts were 2 mm long, 0.8 mm thick, and had an inter-contact border-to-border 

distance of 1.5 mm (DIXI medical, Besancon, France). Anatomical positions and numbers of electrodes varied 

according to surgical requirements (105).  

From each subject, one 10-minute set of eyes-closed resting state data was recorded with a 192-channel SEEG 

amplifier system (NIHON-KOHDEN NEUROFAX-110) at a sampling rate of 1000 Hz. Electrode positions 

were assessed with computer-tomographic (CT) scans after implantation using the SEEGA tool (106). 

Structural MRIs were also recorded prior to the electrode insertion and a rigid-body coregistration was used to 

co-localize MRIs and post-implant CT scans (105). Based on this, electrode contacts were assigned to one of 

148 parcels of the Destrieux atlas (74). 

Subjects gave written informed consent for participation in research studies. The recording of this data was 

approved by the ethical committee (ID 939) of the Niguarda “Ca’ Granda” Hospital, Milan, and was performed 

according to the Declaration of Helsinki.  

II. SEEG Data preprocessing and filtering  

Defective electrode contacts were identified by clearly non–physiological activity and excluded from analysis. 

For referencing, we used the closest-white matter referencing scheme (95) where each contact in cortical grey 

matter is referenced to the nearest contact in white matter. The seizure onset and propagation zone were 

identified by clinical experts in visual analysis and contacts in these areas were excluded from analysis, as 

were contacts from subcortical regions. We excluded from connectivity analyses those contact pairs that shared 
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the same reference or had a contact-to-contact distance < 2 cm in order to avoid spurious connectivity due to 

volume conduction.  

Due to possible filtering artefacts around epileptic spikes, periods of 500 ms duration containing Interictal 

Epileptic (IIE) events were discarded, where at least 10% of contacts in narrow-band time series demonstrated 

abnormal concurrent sharp peaks in more than half of frequency bands. To identify such periods, we first 

searched for “spiky” periods in amplitude envelops for each contact with 500 ms non-overlapping time 

windows along the whole recording. A 500 ms time window was tagged as “spiky” when any of its samples 

was greater than the contact mean amplitude plus 5 times the contact‘s standard deviation. Band-stop filters 

were applied at 50 Hz and 100 Hz to filter out line noise. Time series were then filtered with Morlet wavelets 

with m = 5 (107) using 49 center frequencies from 1.2 to 315 Hz.  

III. MEG and MRI Data acquisition  

306 channel MEG (204 planar gradiometers and 102 magnetometers) was recorded with a Vectorview-Triux 

(Elekta-Neuromag) at the BioMag Laboratory, HUS Medical Imaging Center from 19 healthy participants 

during 10 minutes eyes-open resting state session. Overall 27 sets of resting state MEG data were obtained, 

with 4 participants contributing 2 sets and 2 participants contributing 3 sets. Subjects were instructed to focus 

on a cross on the screen in front of them. EOG (horizontal and vertical channels) were recorded for the 

detection of ocular artefacts. MEG and EOG were recorded at 1000 Hz sampling rate. T1-weighted anatomical 

MRI scans were obtained for cortical surface reconstruction models at a resolution of 1x1x1 mm with a 1.5 T 

MRI scanner (Siemens, Germany) at Helsinki University Central Hospital. This study was approved by the 

ethical committee of Helsinki University Central hospital and was performed according to the Declaration of 

Helsinki. Written informed consent was obtained from each subject prior to the experiment.  

IV. MEG data preprocessing and filtering Maxfilter with temporal signal space separation (tSSS) (108)  

(Elekta Neuromag Ltd., Finland) was used to suppress extra-cranial noise from MEG sensors and to interpolate 

bad channels. Using independent component analysis (ICA, Matlab toolbox Fieldtrip, 

http://fieldtrip.fcdonders.nl, (109)) we extracted and identified components that were correlated with ocular 

artefacts (identified using the EOG signal), heart-beat artefacts (identified using the magnetometer signal as a 

reference) or muscle artefacts. Time series data were then filtered into narrow-band time series using a bank 
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of 53 Morlet filters with m = 5 and approximately log-linearly spaced center frequencies ranging from 1.1 to 

315 Hz. The time-series data were down-sampled after filtering to a sampling rate approx. 5 times the center 

frequency to minimize data size. 

V. MEG source reconstruction: preparation of forward and inverse operators 

FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/) was used for volumetric segmentation of MRI data, 

flattening, cortical parcellation, and neuroanatomical labeling with the Destrieux atlas. ((74,110,111). We 

obtained a cortical parcellation of 200 parcels by iteratively splitting the largest parcels of the Destrieux atlas 

along their most elongated axis at the group-level (10,100,112). All analyses were carried out using this 

parcellation, except the directionality analysis (see below), for which the data were collapsed back to the 148-

parcel Destrieux atlas to facilitate the comparison with SEEG data. MNE software 

(http://martinos.org/mne/stable/index.html) (113,114) was used to create cortically constrained source models, 

a MEG-MRI co-localization and for the preparation of the forward and inverse operators. The source models 

had dipole orientations fixed to pial surface normals and a 5 mm inter-dipole separation throughout the cortex, 

yielding 5086–7857 source vertices per hemisphere.  

 

VI. MEG source reconstruction: inverse transform  

We computed Noise Covariance Matrices (NCMs) using preprocessed broadband filtered (151-249 Hz) MEG 

resting-state data time series, evaluated in 60 time windows of 10 s. The frequency band used for creating 

NCMs comprises environmental, sensor, and biological noise components, but less neuronal activity than the 

lower frequency bands. These NCMs were then used for creating inverse operators. A single inverse operator 

created as described above was used for all wavelet frequencies. To reconstruct ongoing cortical phase-time 

series, the filtered single-trial MEG time-series were inverse transformed.  

VII. MEG Source collapsing  

The source-vertex narrowband complex time-series were then collapsed into cortical parcel time-series in 200 

of the split Destrieux atlas. To obtain optimal source-reconstruction accuracy, single source vertex time series 

were collapsed into parcel time series after weighting with fidelity-optimized collapse operator (112). Using 
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the neuroanatomical parcellation as a coordinate system allows the inter-subject representation of the MEG 

data for the group level analysis without morphing the data from individual subjects.  

VIII. Removal of low-fidelity parcels from MEG connectivity analysis 

In phase-synchrony analyses of parcel time-series data, one of the major confounding factors is spurious edges 

resulting from signal mixing between neighboring brain regions in data-acquisition and source-reconstruction 

(44,104). We assessed the reliability of data based on phase-correlations between real and simulated data. We 

estimated parcel fidelity, the phase correlation between the original simulated true parcel and the corresponding 

forward-andinverse modelled parcel time series, for all 200 parcels and cross-patch mixing, phase correlation 

between the original simulated true parcel and the corresponding forward-and-inverse modelled parcel time 

series of all other parcels, for all parcel pairs (112). To decrease the probability of spurious synchronization, 

for wPLI analysis, we excluded parcels with a fidelity <0.1, retaining 187 of parcels and 34782 or 87.4% of 

connections. For PLV analysis, which is affected by signal mixing, we additionally excluded parcel pairs with 

cross-patch PLV > 0.2143, which are thought to be affected strongly by mixing, so that in these analyses we 

retained 28416 or 71.4% of connections. This threshold for cross-patch PLV was obtained as 1.95 times the 

mean value in the simulations, which roughly corresponds to p < 0.05 significance level. The removed parcels 

and connections were located mostly to deep and / or inferior sources, which generate the least detectable 

signals in MEG and which are hence most likely to generate spurious connections.  

IX. Analysis of inter-areal phase-synchronization (PS) 

To identify cortex-wide phase-synchrony (PS) networks, we first computed individual parcel-to-parcel (MEG 

data) or contact-contact (SEEG data) interaction matrices.  Phase synchrony (PS) was estimated using the 

weighted phase-lag index (wPLI) (76) as well as the phase-locking value (PLV) (4,35). Because of source 

leakage, the use of PLV leads to the detection of zero-phase lag artificial interactions, while wPLI is insensitive 

to zero-phase lag interactions and hence less affected by artificial interactions (44,115).  

We computed PS across the whole time series for each frequency, and each contact pair or parcel pair i, j as:  
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𝑤𝑃𝐿𝐼𝑖,𝑗 =
|𝐸{𝑖𝑚(𝑋𝑖𝑗)}|

𝐸{|𝑖𝑚(𝑋𝑖𝑗)|}
   (1)  

, where im(Xij) is the imaginary part of the cross-spectrum of the complex time series Zi and Zj, and E{ } is the 

expectancy value operator, and:  

𝑃𝐿𝑉𝑖,𝑗 =
1

𝑁
|∑ exp {𝑖(𝜃𝑖 − 𝜃𝑗)}𝑡 |   (2)  

where 𝜃 is the phase of the complex filtered time series Z and N the number of samples t. We also calculated 

for each contact or parcel pair one surrogate PS value where Zj had been time-shifted by a random number of 

samples between 0 and N. For wPLI, we rejected connections with a z-score below 2, corresponding to  level 

0.01. The PLV of uncorrelated and uniformly distributed phases can be described by the Rayleigh distribution. 

We used the Rayleigh distribution to estimate a confidence limit of 2.42 for the ratio of PSmeas/PSsurr at  level 

0.01 (4), where PSmeas is the measured value and PSsurr  is the mean over the surrogate values from all valid 

contact pairs or parcel pairs. Connections for which that ratio exceeded 2.42 were deemed significant. 

X. Analysis of local and inter-areal of cross-frequency coupling (CFC): PAC and CFS 

CFS and PAC were computed between all low-frequency (LF) at f1 and high-frequency (HF) at f2 combinations 

for each frequency ratio 1:m from 1:2 to 1:7 and for each contact -pair i,j  in SEEG data and for each parcel-

pair i,j in MEG data. CFS was computed as: 

 𝑃𝐿𝑉𝑖,𝑗,𝑚 =
1

𝑁
|∑ exp [i ∙ (𝑚 ∙ 𝜃𝑖,𝐿𝐹 − 𝜃𝑗,𝐻𝐹)]𝑡 | (3) 

where 𝜃𝑖,𝐿𝐹 and 𝜃𝑗,𝐻𝐹 are the phases of the time series of contact /parcels i,j and 𝜃𝑖,𝐿𝐹 has been upsampled to 

match the sampling rate of the HF signal (4,39). Local CFS (CFSloc) was obtained where i=j, inter-areal CFS 

where i≠j. 

PAC was computed as: 

 𝑃𝐴𝐶𝑖,𝑗,𝑚 =
1

𝑁
|∑ exp [i ∙ (𝜃𝑖,𝐿𝐹 − 𝜃𝑗

𝑒𝑛𝑣)]𝑡 |  (4) 
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, where 𝜃𝑗,𝐻𝐹,𝐿𝐹
𝑒𝑛𝑣  is the phase of the amplitude envelope of the HF signal filtered with a Morlet filter at LF, and 

downsampled to match the LF signal’s sampling rate. Local PAC was obtained where i=j, inter-areal PAC 

where i≠j (25). 

XI. Analysis of amplitude-amplitude coupling  

To estimate within-frequency amplitude correlations (AC), and as a pre-requisite to removal of potentially 

spurious PAC (see next section), we also computed pairwise phase correlations of LF-modulated amplitude 

envelopes of the HF signals. This was done by computing within-frequency phase synchrony between the 

phases of the LF-filtered amplitude envelopes 𝜃𝑗,𝐻𝐹,𝐿𝐹
𝑒𝑛𝑣  for all contact pairs or parcel pairs i≠j using all 

frequency pairs LF, HF that were used for PAC computations. 

XII. Group-level statistics 

For the group-level statistics of PS, AC, CFS, PAC, CFSlocal and PAClocal, we computed upper and lower 

confidence limits (2.5% and 97.5%) with bootstrapping approach using N = 1000. We pooled significant edges 

across subjects to obtain the mean strength and the group-level connection density over all channels (in SEEG) 

or parcels (MEG). Since it can be expected that in the absence of any true interactions, 1% of edges would be 

reported as significant anyways as statistical false positives, we subtracted 0.01 from all reported/plotted K 

values. 

XIII. Removal of potentially spurious CFC connections 

The core tenet of CFC is that it indicates an interaction between two distinct neuronal processes and hence 

CFC is true when there is evidence for the presence of two separate signals. Conversely, CFC may be spurious 

if evidence of the presence of two separate signals is not obtained and it remains a possibility that a single 

leaked non-sinusoidal signal or two inter-areally within-frequency coupled, non-sinusoidal signals may 

account for the observation of inter-areal cross-frequency coupling. We developed a conservative connection-

by-connection test of whether inter-areal CFC can unambiguously be attributed to two separable signals.  In 

this test, observations of inter-areal CFC are discarded between any two such signals that are also connected 

by both inter-areal 1:1 PS/AC and local CFC at one or both of the locations. In effect, this implies that all inter-

areal CFC connections are removed that are observed with one of the triangle motifs shown in Figure 1f for 
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spurious inter-areal CFC (right panel) or for true inter-areal CFC that was ambiguous (middle panel). Whether 

1:1 PS or AC is used depends on the form of CFC so that inter-areal CFS was removed when there was a 

triangle motif of local CFS at the parcel/contact of the low frequency (LF) oscillation and high-frequency (HF) 

PS between the parcels/contacts or vice versa when there was local CFS at the parcel/contact of the HF 

oscillation and low-frequency PS between the parcels/contacts.   

Inter-areal PAC was removed when there was a triangle motif of either local PAC at the parcel/contact of the 

HF oscillation and low-frequency PS between the parcels/contacts or vice versa when there was local PAC at 

the parcel of the LF oscillation and AC of the HF time series.  

To assess the fractions of excluded edges, we computed Kcorr as the fraction of the remaining significant edges 

divided by number of possible connections after removing all putatively spurious connections. 

XIV. Estimation of peak alpha frequency and correlation with the cross-frequency ratio in SEEG data 

In order to determine the peak alpha frequency in SEEG phase-amplitude, of SEEG PAC, we interpolated the 

values of group-level connection density K in the range 6-20 Hz with a cubic function, using the Python 

package scipy, at a resolution of 0.1 Hz and located the frequency at which the interpolated K value was largest. 

We then computed Pearson’s r as a metric of correlation between CF ratio and peak alpha frequency. 

XV. Computation of CFC in distance bins 

For both SEEG and MEG data, we divided all channel/parcel pairs into three distance bins containing the same 

amount of edges. For SEEG data, the distance bins were 2cm – 4cm, 4cm – 5.6cm and 5.6cm – 13.7cm and 

for MEG data these were 0cm – 6.3cm, 6.3cm – 9.1cm and 9.1cm – 17.7cm. We then computed the K values 

separately in these distance bins as described above.  We tested for significant differences between the first 

and third bin with a Wilcoxon signed-rank test (p < 0.05, corrected for multiple comparisons with Benjamini-

Hochberg). 

XVI. Estimation of CFC in distinct cortical layers in SEEG data 

We assigned SEEG electrode contacts to layers based on the Grey Matter Proximity Index (GMPI) which is 

the distance between contact position and the nearest vertex of the white-grey surface, normalized by the 
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cortical thickness in that point (7). Contacts with 0.5 < GMPI < 1.2 were marked as “superficial” and -0.3 < 

GMPI < 0 as “deep”. We analyzed inter-areal CFC among electrode pairs in four groups: 1) where both 

electrode contacts were in a superficial layer; 2) where both contacts were in a deep layer; 3) where the LF 

contact was in a superficial and the HF contact in a deep layer; and 4) where the LF contact was in a deep and 

the HF one in a superficial layer. We tested for significant difference between the group with the largest and 

the group with the smallest values (groups 1&2 in uncorrected and 3&4 in corrected data) with a Wilcoxon 

signed-rank test (p < 0.05, corrected for multiple comparisons with Benjamini-Hochberg). 

XVII. Estimation of relative directed degree 

We defined the relative degree per parcel for the 148-parcel Destrieux atlas as the fraction of significant edges 

NE connected to a parcel over the total possible number of possible edges NE,pot  for that parcel.  In SEEG data, 

NE,pot was obtained by pooling possible CFS or PAC edges over all subjects; for each subject, NE,pot,S was the 

sum of possible, i.e. not excluded, connections from contacts assigned to that parcel to other electrodes. Parcels 

with a degree lower than eight were excluded. The relative directed degree was estimated as the difference 

between in- and out degree, where in-degree was associated with the HF end of a CFC connection, and out-

degree with the LF end, so that a positive value indicated a HF hub and a negative value a LF hub. Values 

were collapsed over all frequencies belonging to the frequency bands of interest.  

XVIII. Estimation of CFC directionality 

We estimated LF-HF directionality for frequency pairs LF, HF and all parcel pairs (p1≠p2) in the 148-parcel 

Destrieux atlas.  

We defined LF-HF directionality DirLH as:  

𝐷𝑖𝑟𝐿𝐻 (𝐿𝐹, 𝐻𝐹, 𝑝1, 𝑝2) =  
1

𝑀
(∑ 𝑃𝐿𝑉𝐶𝐹(𝐿𝐹, 𝐻𝐹, 𝑝1, 𝑝2) − ∑ 𝑃𝐿𝑉𝐶𝐹(𝐿𝐹, 𝐻𝐹, 𝑝2, 𝑝1)𝑀𝑀 )                 (5) 

, where M is the number of connections between the two parcels. In SEEG, where several contacts can be 

located in one parcel, M for a parcel pair p1,p2 is equal to the total number of contact pairs c1,c2 in all subjects 

where c1 is located in p1 and c2 located in p2. Values for M in SEEG ranged from 0 to 1690. For all pairs (p1,p2) 

in SEEG where M<8, DirLH was set to 0. 
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In MEG, where there is exactly one connection between any two parcels in a given set, M was equal to the 

number of sets.  

We then tested for significance for each DirLH (LF,HF,p1,p2) value using a permutation test (N = 1000). 

In each permutation, the strengths of all connections PLVCF (p1,p2) and PLVCF (p2,p1) between two parcels p1,p2  

were pooled and randomly assigned to two groups G1,G2. The permutated directionality DirLH value was then 

computed as  

𝐷𝑖𝑟𝐿𝐻,𝑝𝑒𝑟𝑚 (𝐿𝐹, 𝐻𝐹, 𝑝1, 𝑝2) =  
1

𝑀
(∑ 𝑃𝐿𝑉𝐶𝐹(𝐿𝐹, 𝐻𝐹, 𝐺1) − ∑ 𝑃𝐿𝑉𝐶𝐹(𝐿𝐹, 𝐻𝐹, 𝐺2)

𝑀𝑀

) 

If the the true DirLH value was larger than DirLH, perm in 95% of permutations, the connection was deemed 

significant. A significant value DirLH < 0 thus indicated that parcel p1 was dominantly the place of the LF 

oscillation and p2 the place of the HF oscillation, and vice versa for DirLH > 0.  

The overall directionality DirLH(p)of a parcel p was computed as the number of its significantly positive DLH 

values with other parcels minus the number of its significantly negative DLH values with other parcels, divided 

by the number of possible connections with other parcels. Thus, similar to the degree-based hubness, a positive 

or negative value of DirLH(p) indicated a parcel dominated by the HF or LF oscillations, respectively, in inter-

areal CFC. Values were collapsed over all frequencies belonging to the frequency bands of interest.  
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 Suppl. Figure Legends 

 

S1 Figure. Workflow for SEEG data 

Workflow for the processing and analysis of SEEG data, flowing from top to bottom.  

S2 Figure. Workflow for MEG data 

Workflow for the processing and analysis of MEG data, flowing from top to bottom.  

S3 Figure.  Example of CFS in SEEG data 

Cross-frequency phase synchrony (CFS) between two electrode contacts, whose location is indicated by big 

blue and red circles on the anatomical image of a participant’s brain (left). The small circles indicates the 

positions of closest white matter contacts. Top row: Broadband signal (black line) recorded from a contact in 

the medial frontal gyrus (MFG), and the narrow-band signal (blue) at 9Hz. 2nd row: Broadband signal (black) 

recorded from a contact in the intraparietal sulcus (IPS), and the narrowband signal (red) at 27Hz. 3rd row: 

The instantaneous phases of the narrowband MfG 9Hz signal (top), the same phase multiplied with 3 (middle) 

and of the IPS 27Hz signal. Bottom row: The 1:3 PLV (purple), indicating the strength of CFS coupling 

between the 9Hz and the 27Hz signal, and the 95th %ile of 1:3 PLV values for surrogate data (grey dashed 

line). 

S4 Figure. Example of PAC in MEG data 

Phase-amplitude coupling (PAC) between source-reconstructed signals in the postcentral gyrus (poCG) and 

superior temporal sulcus (sTS), as shown on a template brain pial surface (left). Top row: Broadband signal 

(black line) and 10Hz narrowband signal (blue) at poCG. Second row: Broadband signal (black) and 40Hz 

narrowband signal (red) at sTS. Third row: Narrowband signals at 10 Hz and 40 Hz with the frequency ratio 

of 1:4. Starting at around 200ms, the amplitude of the HF signal at 40 Hz starts being modulated by the phase 

of the 10 Hz LF signal. Bottom row: Strength of 1:4 PAC coupling (purple) and the 95th %ile of surrogate 

values obtained by phase shifting (grey dashed line). 
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S5 Figure. 1:1 phase synchrony in SEEG and MEG  

a) Phase synchrony mean strength (top) and connection density K (bottom) in SEEG data with 95% confidence 

limits estimated with the weighted Phase-Lag Index (wPLI) overall (left) and separately in three  distance bins 

containing equal numbers of connections (right). b) Phase synchrony in SEEG data estimated with the Phase-

Locking Value (PLV). c-d) Phase synchrony in MEG data estimated with wPLI and PLV, respectively. 

 

S6 Figure.  Local CFS and PAC in SEEG and MEG data.  

a) The mean PLV strength and fraction of significant parcels (K) with 95% confidence limits (shaded) of local 

CFS in SEEG data for coupling ratios 1:2 (top) and 1:3 – 1:7 (bottom). Values are shown with 95% confidence 

limits. b) The mean PLV strength and fraction of significant parcels K for local CFS in MEG data. c) Same 

for local PAC in SEEG data. d) Same for local PAC in MEG data. e)-h) The same K values as shown in a-d 

plotted in matrices for the whole spectral connectome. 

 

S7 Figure. Strength of inter-areal CFS and PAC  

The mean strength of inter-areal CFC with 95% confidence limits for ratio 1:2 (top row) and ratios 1:21:7 

(bottom row), as estimated by the n:m PLV for CFS, or for PAC by the PLV of the LF signal and the phase of 

the LF-filtered amplitude envelopes of the HF signal. 

 

S8 Figure. Inter-areal CFS and PAC when PLV is used for removing spurious connections  

a) Connection density K of inter-areal CFS in SEEG data before (left) and after removing possible spurious 

connections (Kcorr, right) using the PLV as a metric for phase synchrony. b) Same for inter-areal PAC in SEEG 

data. c)-d) Same for inter-areal CFS and PAC in MEG data. 
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S9 Figure: Amplitude envelope correlations  

Mean strength and K of synchronization between amplitude envelopes that were modulated by the phase of a 

lower frequency at a ratio from 1:2 to 1:7. The same data is plotted as a function of the envelope frequency 

(top row) and the modulating frequency (bottom row). 

 

S10 Figure: Functional Networks 

Functional networks of the Yeo parcellation. 
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