

1 **Transposable elements contribute to dynamic genome content in maize**

2
3 Sarah N Anderson^{1*}, Michelle C Stitzer^{2*}, Alex B. Brohammer^{3*}, Peng Zhou¹, Jaclyn M
4 Noshay¹, Cory D. Hirsch⁴, Jeffrey Ross-Ibarra^{2,5}, Candice N. Hirsch³, Nathan M Springer¹

5
6 **Author affiliations**

7 ¹ Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota
8 55108

9 ² Department of Plant Sciences and Center for Population Biology, University of California,
10 Davis, California 95616

11 ³ Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota
12 55108

13 ⁴ Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108

14 ⁵ Genome Center, University of California, Davis, California 95616

15 * co-first authors

16
17 Corresponding author: Nathan M Springer (springer@umn.edu)

18
19 **ORCID**

20 0000-0002-1671-2286 (S.N.A.); 0000-0003-4140-3765 (M.C.S.); 0000-0002-4639-4119 (A.B.B.);
21 0000-0001-5684-2256 (P.Z.); 0000-0002-7438-193X (J.M.N.); 0000-0002-3409-758X (C.D.H.);
22 0000-0003-1656-4954 (J.R.I.); 0000-0002-8833-3023 (C.N.H.); 0000-0002-7301-4759 (N.M.S.)

23
24 **Abstract**

25 Transposable elements (TEs) are ubiquitous components of eukaryotic genomes and can
26 create variation in genomic organization. The majority of maize genomes are composed of TEs.
27 We developed an approach to define shared and variable TE insertions across genome
28 assemblies and applied this method to four maize genomes (B73, W22, Mo17, and PH207).
29 Among these genomes we identified 1.6 Gb of variable TE sequence representing a
30 combination of recent TE movement and deletion of previously existing TEs. Although recent TE
31 movement only accounted for a portion of the TE variability, we identified 4,737 TEs unique to
32 one genome with defined insertion sites in all other genomes. Variable TEs are found for all
33 superfamilies and are distributed across the genome, including in regions of recent shared
34 ancestry among individuals. There are 2,380 genes annotated in the B73 genome located within
35 variable TEs, providing evidence for the role of TEs in contributing to the substantial differences
36 in gene content among these genotypes. The large scope of TE variation present in this limited
37 sample of temperate maize genomes highlights the major contribution of TEs in driving variation
38 in genome organization and gene content.

39
40 **Significance Statement**

41 The majority of the maize genome is comprised of transposable elements (TEs) that have the
42 potential to create genomic variation within species. We developed a method to identify shared
43 and non-shared TEs using whole genome assemblies of four maize inbred lines. Variable TEs
44 are found throughout the maize genome and in comparisons of any two genomes we find ~20%

45 of the genome is due to non-shared TEs. Several thousand maize genes are found within TEs
46 that are variable across lines, highlighting the contribution of TEs to gene content variation. This
47 study creates a comprehensive resource for genomic studies of TE variability among four maize
48 genomes, which will enable studies on the consequences of variable TEs on genome function.
49

50 **Introduction**

51 In many eukaryotic genomes, genes comprise less than 5% of the genome. The remaining
52 sequence includes low-copy intergenic sequences as well as repetitive sequences including
53 tandem repeats and transposable elements (TEs). TEs were first identified in maize through
54 Barbara McClintock's studies (1). Since then, they have been widely used as tools for genetic
55 analysis (2–4) and have been shown to contribute to phenotypic variation. Depending on the
56 method used to annotate TEs, 65% (structurally intact TEs) or 85% (all TE fragments) of the
57 ~2.3Gb reference B73 maize genome is annotated as TEs (5, 6). TEs include several distinct
58 classes of elements that have different structural features and mechanisms for replication (7).
59 Retrotransposons (class I) replicate through an RNA intermediate and can be separated into
60 long terminal repeat (LTR) retrotransposons and non-LTR retrotransposons (long interspersed
61 elements (LINEs) and short interspersed elements (SINEs)). DNA transposons (class II)
62 replicate through a DNA intermediate and can be divided into two orders: terminal inverted
63 repeat (TIR) transposons and Helitrons. Within each of these orders there are families of
64 elements that are classified based on sequence similarity, and the members of a family are
65 likely mobilized by the same factors. These families can vary in size from a single member to
66 >10,000 members (6).
67

68 TEs can have a variety of influences on gene function (8–11). These can include insertional
69 mutagenesis as well as complex influences on gene expression through insertion into regulatory
70 sequences or by influencing local chromatin (8, 11, 12). The transposon content of different
71 individuals of the same species can vary substantially (13–15). Researchers have used PCR
72 based techniques, such as TE display, to amplify fragments from the ends of TEs to
73 demonstrate that TEs can be used as polymorphic markers in many species (16–19). Targeted
74 sequencing of BAC clones for multiple haplotypes at several maize loci revealed that while gene
75 content is largely conserved there are very different locus-specific TE insertions (20–22). At the
76 *Bz* locus only 25–84% of the region includes alignable sequence when multiple haplotypes were
77 compared. The non-alignable sequences were largely distinct TE insertions among the
78 haplotypes (20, 21). Studies of TE variability in plants on a genome-wide scale have largely
79 focused on using short-read resequencing data to map new insertions (23–27), however this
80 approach can be complicated by non-alignable sequences and the repetitive nature of TEs.
81

82 The analysis of genic and other low-copy regions of the maize pan-genome has revealed
83 extensive structural variation (28–33). The availability of multiple *de novo* genome assemblies
84 for maize (6, 29, 34, 35) provides new opportunities to characterize the shared and polymorphic
85 nature of TEs in the maize genome. Here, we implement a novel method to compare shared
86 and variable TEs across homologous and co-linear blocks of maize genome assemblies to
87 identify extensive TE variation among inbred lines. This variation represents all orders of TEs
88 and is found throughout the genome, including in regions of recent shared ancestry.

89 Remarkably, we find that over half of B73 genes are near TEs that are variable across these
90 lines. We present evidence for a substantial contribution of variable TEs to gene content
91 differences among lines, with over 2,000 genes annotated in TEs present in B73, but absent in
92 another line. Together, this highlights the important role of TEs in creating genome content
93 variation in maize as well as potential impacts on transcriptional and phenotypic variation.
94

95 **Results**

96 **Comparable structural annotations reveal similar TE content among genomes**

97 Whole-genome assemblies of maize genotypes B73, W22, PH207, and Mo17 are available (6,
98 29, 34, 35). In order to compare the TE content in these genomes it is important to have a set of
100 consistent structural annotations of TEs and TE families in each genome. Consistent
101 annotations were performed with nesTEd (see methods for details), which is a modified version
102 of the structural annotation approach previously used for annotation of TEs in the B73v4 and
103 W22 reference genome assemblies (6, 34) that has been updated for improved annotation of
104 TIR elements. Transposable elements are classified into families based on sequence similarity,
105 superfamilies based on structural similarities, orders based on replication mechanism, and
106 classes based on presence or absence of an RNA intermediate (7). In these annotations,
107 nomenclature is consistent across the genome assemblies down to the TE family level, however
108 individual elements do not have consistent unique IDs across genomes. The majority of DNA
109 sequence (56% - 62%) for all genome assemblies are composed of LTR retrotransposons, with
110 Helitrons and TIRs contributing approximately 4% and 3% of genomic sequence, respectively
111 (Figure S1A, Table 1). The size of TE families varies, with some families containing only a
112 single element per genome while others have > 1,000 insertions (Table S1). These annotations
113 served as the basis for studying TE insertion variability across the four genomes.
114

115 It is important to note that a comparison of the TE content among the genomes solely based
116 upon the annotations of intact elements will contain a number of false-positive calls of
117 polymorphisms. The nesTEd annotation defines TEs based on the structural features specific to
118 each superfamily. Given the reliance on short sequence signatures and the choice to only
119 include structurally intact elements, annotated elements represent a subset of the true TE-
120 derived sequences of the genome as evident by the genomic space that is RepeatMasked but
121 not annotated as TEs (Figure S1). The stringent requirement for intact structural features can
122 result in missed annotations resulting from biological noise such as single nucleotide changes in
123 the target site duplications (TSD) or from technical noise such as N's in the assembly. This
124 results in many examples where a TE is present in two genotypes based on the homology of the
125 region, but the TE is only annotated in one of the genomes (Figure S1). Therefore, we
126 developed an approach to utilize the TE annotations as a starting point to document shared and
127 non-shared TE insertions relative to other genomes, but that does not require the element to be
128 annotated in both genomes.
129

130 **Substantial TE variation is found across genomes**

131 Classification of specific TE insertions as shared (present in both genotypes at a specific
132 location) or non-shared (polymorphic) between genotypes is complicated by the highly repetitive

133 nature of TEs. In order to reduce the complexity of the problem we developed a robust two step
134 approach to search for shared/non-shared TE insertions within windows anchored by collinear
135 genes (Figure 1). Alignments of windows were parsed to classify shared (TE.1), non-shared
136 (TE.2), and unresolved (TE.3) elements based on homology of sequences annotated as
137 transposable elements. For a subset of elements, homology for the flanking sequences (200bp)
138 can be used to define coordinates for shared elements (hereafter referred to as shared site
139 defined, TE.4) and TE empty sites (hereafter referred to as non-shared site defined, TE.5). This
140 results in the classification of shared and non-shared elements throughout the genome with a
141 subset of these with highly similar flanking sequence that can be site-defined. The non-shared
142 site defined elements represent recent insertions in shared sequences or precise excision
143 events while the remaining non-shared elements for which the flanking sequences are not
144 similar reflect large deletions or insertions into non-shared sequences. This approach was
145 implemented to compare annotated TEs in each of the four genomes to the other three
146 genomes in a pairwise fashion in order to classify shared or non-shared TE insertions.
147 Importantly, we noted that across all contrasts, 5.1% of shared elements did not overlap any TE
148 annotation in the target genome, highlighting the importance of using more nuanced homology
149 based approaches beyond simple comparison of annotations.

150
151 In total, pairwise contrasts between genomes reveals an average of ~500 Mb of non-shared TE
152 sequences, representing ~20% of the genome content that is variable between any combination
153 of these inbred lines (Figure 1B). The vast majority of shared elements are site-defined,
154 indicating high sequence similarity at the flanking region in addition to the TE. In contrast, only
155 ~5% of non-shared calls are site defined. Across all four genomes, we found 46,122 LTR,
156 19,744 TIR, and 2,529 Helitron non-shared site defined calls (Table S2). We evaluated several
157 loci that correspond to sequenced and manually annotated BACs (20, 21). We found our
158 genome-wide approach was consistent with prior calls for those TEs that are annotated in both
159 approaches (Figure S2). We predicted that non-shared site defined TEs often represent new
160 insertions in otherwise shared haplotypes, while the non-shared TEs defined by lack of
161 homology would include a larger range of TE ages since this pattern could result from a
162 combination of new insertions, deletions, and haplotype diversity. To support this, we assessed
163 TE age of LTR retrotransposons, which have identical LTR sequences upon insertion that
164 diverge over time. We found that non-shared site defined TEs unique to one genome were
165 enriched for younger insertions than shared TEs or those unique but not site defined (Figure
166 1C).
167

168 **Monitoring levels of TE variability across superfamilies and families**

169 A non-redundant set of TEs was developed from the subset of TEs that could be resolved as
170 shared or non-shared across all contrasts. Across all four assembled genomes 457 Mb of TEs
171 (110,643 elements) are shared in all genomes. Another 1.6 Gb (399,890 elements or 78% of
172 assessed TEs) are variable TEs missing in at least one of the genomes. On average each
173 genome has 207 Mb (49,571 elements) that are unique to that genome (Figure 2A). Different
174 superfamilies of TEs show subtle differences in distributions across these four genomes,
175 particularly among TIRs which range from 75.5% variable (DTT, Mariner) to 86.4% variable
176 (DTM, Mutator) (Figure S3A). In all cases, there are fewer elements that are unique to PH207

177 relative to other inbreds, which likely reflects variable assembly quality rather than biological
178 differences.
179
180 While the level of TE variability among the four genomes is similar across orders and
181 superfamilies of TEs, there are many specific TE families that show highly biased distributions.
182 The analysis of TIR and LTR families with at least 20 members across the four inbreds reveals
183 that some families are highly conserved, while others have >75% variable members (Figure 2B,
184 S3B). The highly variable TE families include examples in which there are members of the
185 family in each genome at different loci as well as cases in which one genome has many more
186 family members than the others (Figure S4A). In many cases, the non-shared copies are
187 distributed throughout the genome rather than clustered (Figure S4B). TE families that are
188 unique to one of the four genomes represent the most extreme type of variation. There are
189 7,576 TE families that are unique to one of the four genomes. The vast majority (96%) of these
190 families contain a single element. However, there were 15 examples of inbred-specific TE
191 families with at least 4 members in the resolved TE set (Table S3). These unique families likely
192 represent a combination of new TE movement in one lineage and dying TE families that have
193 been lost from most haplotypes.
194

195 **Variable TE insertions in maize are found genome-wide**

196 The genomic distribution of TE variability was investigated by looking at the distribution of B73
197 TEs that are shared and variable (Figure 3A, S5A). Variable TEs are found across
198 chromosomes, with regions of high and low variability located on chromosome arms and in
199 paracentromeric regions (Figure 3, S5). The analysis of gene density within 1 Mb windows of
200 the genome reveals a relationship between local gene density and TE variation levels (Figure
201 3B). The regions of the genome with the lowest gene density exhibit a wide range of TE
202 variation levels while regions with higher gene density tend to have higher levels of TE variation
203 (Figure 3B). Similarly, local levels of CHG methylation are related to TE variability such that the
204 most highly methylated regions of the genome include regions with the least TE variability
205 (Figure S5C). Prior studies have found evidence for biased gene fractionation in the two sub-
206 genomes of maize that resulted from an allopolyploid fusion event (36–38). However, there was
207 no difference in the level of variable TEs within the two sub-genomes of maize (Figure S5D).
208

209 The four genotypes used in this study are all temperate maize germplasm that contain regions
210 of identity by state (IBS). These regions provide a unique opportunity to look for new
211 transposition events as indicated by their variation within regions of otherwise complete
212 sequence similarity (Figure 4). In total there are 235.25 Mb of IBS regions between B73 and the
213 other three genomes across 37.64 cM (Tables S4, S5) and, as expected, these regions largely
214 include shared TEs (Table S4). However, there are a set of non-shared TEs in these regions
215 that reflect new insertion events, deletions that remove the TEs, or gaps in the assemblies.
216 There are 29 examples of site-defined polymorphic TEs in 19 families, including 8 TIR elements
217 and 21 LTR elements that likely represent new TE insertion events in these IBS regions. Since
218 TEs require expression for movement, we assessed the level of expression for these TE
219 families across 23 B73 tissues (39). Expression was detected for 14 of these families (74%,
220 while only 13% of all families are expressed), with some showing expression across all tissues

221 and others showing higher expression in reproductive tissues (Figure S6A). The ability to
222 estimate ages for LTR elements provided the opportunity to investigate the ages for the LTR
223 elements and families within IBS regions. Many (79%) of these LTR elements are very young
224 (have LTR similarity > 99%) (Table S6). The non-shared LTR elements in these IBS regions are
225 from 12 LTR families that include several very large families as well as 4 families with <10
226 members (Figure S6B). The small families include only elements with highly similar LTRs while
227 the larger families often include older members (diverged LTRs) as well as a subset with highly
228 similar LTRs, which may suggest the potential for on-going movement in these families.
229

230 **Variation in TE content contributes to the extensive gene content variation within maize**

231 While TEs have the potential to influence plant traits through the expression of TE encoded
232 proteins (40, 41), it is largely expected that TEs will influence traits through their effects on
233 genes. Several approaches were used to assess the potential impact of this high level of TE
234 variation on maize genes. We first looked at the proximity of TEs to genes. Over 78% of maize
235 genes have a TE located within the gene or nearby (Figure 5, Table S7). Many of these genes
236 are located near a TE that shows variable presence among the four genomes. Over 7% of
237 maize genes have a variable TE within the annotated transcribed regions, including 1,118
238 genes containing variable LTRs, 2,384 genes containing variable TIRs, and 176 genes
239 containing variable Helitrons. Surprisingly, over half of all genes have a variable TE within 5 kb
240 upstream of the gene, with 31% near variable LTRs, 30% near variable TIRs, and 10% near
241 variable Helitrons.
242

243 As we examined the relationship between polymorphic TEs and genes we noted that a
244 substantial number of the polymorphic TEs actually include an annotated gene within the TE.
245 Maize genes (B73v4) were classified as syntenic or non-syntenic based on whether they
246 contained co-linear orthologs in sorghum and other species (37). One of the filters used for the
247 TE annotations included rejecting putative TEs that included a syntenic gene so this analysis
248 was focused on the non-syntenic genes. There are 4,344 non-syntenic B73 genes located
249 within TEs (Figure 5B, Table S8) and 54.8% of these TEs are variable among genotypes. The
250 vast majority of these variable genes were contributed by Helitrons (1,543 genes) and LTRs
251 (754 genes). Presence-absence variation for B73 genes has been noted in all other assembled
252 genomes (29, 32, 34, 35, 42, 43). A comparison of the B73 and W22 genomes identified 6,440
253 non-syntenic genes that are present in B73 but missing in W22 (34). We find that 20% of these
254 are within non-shared TEs. This highlights the potential for TEs to drive variation in gene
255 content among maize genomes.
256

257 The non-syntenic genes located within these variable TEs were further assessed for putative
258 functions and expression. Only a subset (1,277 of 2,380) of the genes have Gramene functional
259 annotations and as expected, some of these were annotated as retrotransposon-like (36
260 genes), polymerases (27 genes) or helicases (22 genes). However, there were also examples
261 of many annotations that were not related to putative transposon functions such as
262 phytochromes or sucrose synthases. In many cases, the same functional annotation is assigned
263 to multiple genes contributed by the same Helitron family, consistent with one gene capture
264 event preceding TE amplification (Table S8). Additionally, non-syntenic genes located in

265 variable TEs were expressed at low levels and in few tissues. The non-syntenic genes that are
266 located within shared TEs or not within TEs show similarly low levels of expression, which
267 contrasts with syntenic genes which are often expressed in all tissues surveyed. The majority
268 (60%) of the genes in variable TEs are never expressed, show clear reductions in maximum
269 expression values across libraries, and show high levels of CG and CHG methylation (Figure
270 S7). However, the non-syntenic genes not located within TEs tend to have lower levels of CG
271 and CHG methylation. Although the majority of variable genes carried by TEs likely represent
272 inactive pseudogenes or gene fragments, a subset are expressed and have the potential to
273 contribute to phenotypic differences among these lines.

274

275 **Discussion**

276 Maize has been a model system for the study of TEs since they were first discovered in the
277 species by Barbra McClintock (1, 44). Active TEs have been used as insertional mutagens to
278 generate functional genomics resources (2, 3, 45), but there are also many examples in which
279 naturally occurring TE polymorphisms have been shown to alter phenotypes. For example, in
280 maize, molecular analyses of QTL involved in domestication or movement from tropical to
281 temperate environments have revealed that TE polymorphisms are responsible for regulatory
282 changes at key loci (26, 46–49).

283

284 The variation among individuals within a species is a key aspect of genetics. In the genomics
285 era, researchers typically start from a reference genome and later consider the variable
286 components, often utilizing short-read based resequencing data. This has led to many fruitful
287 studies of genetic variation. However, this approach can be difficult to implement for
288 transposable elements and other repetitive sequences. Prior studies of several loci had
289 suggested high levels of variation in TE content among maize haplotypes (21, 22, 50), but this
290 has not been characterized at the genomic level using whole genome assemblies. In this study
291 we used a novel approach to assess the shared and non-shared nature of TEs within collinear
292 homologous blocks of four assembled maize genomes. The four maize genomes compared in
293 this study represent temperate-adapted maize inbreds (6, 29, 34, 35) and only represent a small
294 fraction of maize diversity (51). These four assemblies are each ~2 Gb in size and we find ~0.45
295 Gb of TEs that are shared among all four lines. There is another 1.6 Gb of variable TEs that are
296 present in some lines and missing in others. This highlights the massive variability in genome
297 structure of these individuals in a relatively narrow germplasm pool within the same species that
298 is revealed by comparisons of whole-genome assemblies.

299

300 Prior studies of TE variation across rice (24) and Arabidopsis (23) accessions used short-read
301 data to identify non-reference TEs with defined insertion sites, which are comparable to our non-
302 shared site defined calls. The analysis of 3,000 rice genomes identified 53,262 non-reference
303 TE insertions (24) and in Arabidopsis 2,835 insertions were identified in a panel of 211
304 accessions (13). In this study of just four maize genotypes we found 12,620 site-defined TEs
305 present in at least one of three genotypes (W22, Mo17, and PH207), but absent in B73, and a
306 total of 208,535 non-B73 TEs (site defined and non site defined) identified in our full method.
307 Importantly, discovery of these TE polymorphisms lacking homologous flanking sequences

308 requires genome assemblies or long reads as short-read data is not sufficient for the discovery
309 and proper placement of these polymorphisms.

310
311 The finding that the majority of non-shared TEs could not be resolved to a specific insertion site
312 due to a lack of homology for flanking sequence was surprising and points to the variety of
313 mechanisms that could result in variable TEs. In some cases these represent TE insertions into
314 a sequence that is not shared between the genomes. In other cases, these represent ancestral
315 TE insertions that have been removed by a larger deletion from one haplotype. This could be
316 due to imprecise TE excision events for some TIR elements or due to larger deletions, which
317 are common and allow for genomes to eliminate intergenic TE sequences (52, 53). This
318 observation that many non-shared TEs also lack homology for flanking sequences creates
319 challenges for studying the consequences of TE polymorphisms on surrounding chromatin,
320 although the subset of site defined TE polymorphisms can be used to study many of the impacts
321 of TE insertions.

322
323 The vast majority of previously detected transposition events in maize are due to activity for a
324 small set of TIR families in very specific germplasm (4, 54). On-going movement of LTR
325 transposons has not been detected in maize, although several recent transposition events were
326 detected in large genetic screens (55). The frequency of transposition events in modern maize
327 inbreds appears to be quite low as very few novel mutations due to transposon insertions have
328 been identified. It is likely that the majority of TE variation noted in this study is due to
329 transposition events that have occurred over thousands to millions of years (56, 57). However,
330 the identification of variable TEs in several large IBS blocks does suggest potential for low
331 levels of transpositional activity in the last few hundred generations for some TIR and LTR
332 families in modern maize inbreds. Importantly, these novel insertions will create novel variation
333 that is not tagged by SNPs and could represent functional variation that is not well captured in
334 GWAS approaches.

335
336 Variable TEs have likely driven differences in annotated gene content among maize lines. One
337 of the first studies of haplotype diversity in maize revealed the presence of several non-shared
338 genes, as well as numerous non-shared TEs (22). These non-shared genes were later revealed
339 to be gene fragments contained within a Helitron element (58). Several studies have suggested
340 that Helitrons could be a significant source of transposed gene fragments (35, 59, 60). More
341 broadly, a number of studies have found evidence for widespread presence-absence variation
342 (PAV) of gene sequences among maize inbreds (29, 31, 32, 34, 35, 37, 42). We noted >4,000
343 non-syntenic maize genes located within annotated TEs, including many Helitrons and LTRs.
344 Over half of these represent TE insertions that are variable among the four haplotypes, which
345 will lead to PAV for the genic sequence contained within the TE. The dynamic landscape of TEs
346 among maize genomes leads to high levels of variation for content of gene-like sequences that
347 could have function themselves or could affect the level of expression of related genomic
348 sequences through sRNA mediated influences (61).

349
350 The careful classification of shared and variable TEs in maize will create new opportunities to
351 assess the functional consequences that TEs have on genes and genomes. This will enable

352 population level analyses of TE polymorphisms, evaluation of the interplay between TEs and
353 chromatin modifications, and detailed studies of the impact of TE insertions on the expression of
354 nearby genes.

355

356 **Methods**

357

358 **Genome Versions**

359 Results in this manuscript compares whole genome assemblies for four maize genomes: B73
360 (6), W22 (34), Mo17 (35), and PH207 (29). Analysis was restricted to the assemblies of
361 chromosomes 1 - 10, omitting sequences and annotations assigned to scaffolds.

362

363 **TE annotation by nesTEd**

364 NesTEd utilizes several separate programs to annotate different orders of TEs. Briefly, LTR
365 retrotransposons were annotated with a combination of LTRharvest (62) and LTRdigest (63),
366 with iterative removal of identified elements in order to access the often-nested architecture of
367 LTR retrotransposons in maize genomes. TIR and LINE elements were annotated by further
368 refining boundaries of TARGEt searches (64) that used the MTEC TE database (5, 65) as
369 queries. This refinement searched for TIRs and TSDs of an appropriate length for the TE
370 superfamily within 200 bp of either end of the subject match in the reference genome of interest.
371 Helitron elements were annotated using HelitronScanner (66), and SINE elements were
372 annotated using SineFinder (67). As each program searches for different criteria, there is the
373 possibility of individual regions of the genome being annotated as arising from different TEs. To
374 resolve this, we allowed fully-nested copies, where both the start and end positions were found
375 within another annotated TE, but further filtered copies where the span of a TE overlaps the
376 start or end coordinate of another TE. This filtration removed first Helitron, next SINE/LINE, next
377 TIR, and finally LTR, roughly in order of the number and length of structural features used to
378 define each TE order.

379

380 Annotation files are available at https://mcstitzer.github.io/maize_TEs. The TE annotation files
381 include metadata including LTR similarity scores for full-length LTR retrotransposons as output
382 by LTRharvest, terminal inverted repeat (TIR) lengths and number of mismatches for TIR
383 elements, and target site duplication (TSD) lengths for TIRs, LINEs, SINEs, and soloLTRs. This
384 metadata was used to assess TE age for LTRs (Figure 1).

385

386 The TE annotation file was disjoined to resolve nested TE insertions and to create a file where
387 each bp of the genome is assigned to only the element contributing the DNA sequence of that
388 region. This file was used to calculate the length of each TE and the proportion of the genome
389 contributed by each TE order.

390

391 TIR elements were filtered to remove annotations which were nested within another TIR
392 element when the disjoined length of the outer element was less than twice the outer element's
393 TSD length since in many cases this pattern resulted from ambiguity between 2 bp TIR/TSD
394 patterns. The TE annotation was further filtered to remove ~1,800 TEs from each genome
395 where the TE coordinates completely overlapped a gene with synteny to rice or sorghum,

396 suggesting a false positive annotation. Filtered annotation files are available at
397 https://github.com/SNAnderson/maizeTE_variation.

398

399 **Identification of collinear and homologous genes**

400 A cross-reference of homologous maize genes between assemblies was produced using
401 multiple complementary approaches used in an iterative fashion. First, a local version of the
402 SynMap pipeline (68), was used in order to identify stretches of collinear genes in pairwise
403 comparisons of genomes. This pipeline used the LAST aligner version 963 (69) to identify hits
404 between CDS sequence from each genome and then incorporates DAGchainer to identify
405 “chains” of collinear hits. The Lastal algorithm was run using default parameters, however hits
406 were later filtered to have a c-score of 0.10 before being supplied to DAGchainer (70).
407 DAGchainer was ran using an e-value cutoff of 0.05, allowing a maximum distance of 10 genes
408 between matches (-D), requiring a minimum of 12 aligned pairs per chain (-A), and a gap
409 distance of 7 (-g).

410

411 The Nucmer alignment algorithm within MUMmer version 3.32 (71) was then used to perform
412 whole-genome alignments between homologous chromosomes of each assembly in pairwise
413 fashion (-c 5,000). The ‘show-coords’ command was used to filter any alignments not included
414 in the longest ascending subset (-g flag) and structural gene annotation files are used to identify
415 genic positions in the alignments. The Nucmer-based gene assignments were cross-referenced
416 with the assignments obtained using the SynMap pipeline. Any gene assignment unique to
417 Nucmer was required to be no further than 3 genes upstream and downstream from the nearest
418 SynMap based gene assignment. This allowed genes that are split across multiple gene
419 models, genes affected by local rearrangements, and genes missed by the SynMap approach to
420 be recovered.

421

422 A third approach using the OrthoFinder clustering algorithm version 2.2.7 (72) was used to
423 identify homologous genes. OrthoFinder was run in manual mode by first performing blastp (73)
424 searches across genomes requiring an e-value of 1e-3. The clustering algorithm was then run
425 with the ‘-og’ option to output groups. Each orthogroup cluster was scanned to identify genes
426 from different genotypes that were located on homologous chromosomes. Similar to the
427 nucmer-based gene assignments, collinearity between genes meeting these criteria was
428 assessed using the SynMap and Nucmer assignments. Any assignment unique to this method
429 was required to be no further than 8 genes upstream and downstream from the nearest
430 assignment.

431

432 **Identification of shared and non-shared TE insertions**

433 Classification of shared and non-shared elements was performed in a pairwise manner for all
434 contrasts by comparing a TE annotation from one genome assembly (query genome) to the
435 sequence of another genome assembly (target genome). The search window for each TE was
436 defined by the closest, non-overlapping genes in the query genome on either side of the TE that
437 has a unique syntelog in the target genome. In cases of multiple syntelogs or ambiguous
438 syntelog assignment (from one of three methods described above), the outermost gene (relative
439 to the TE) with a unique syntelog assignment was used to define the search window.

440
441 For step 1 of the comparison method, a left 400 bp flank tag centered at the start coordinate and
442 a right 400 bp flank tag centering at the end coordinate were first extracted for each TE in one
443 genome (i.e., query genome). These flank tags were then mapped to the another genome (i.e.,
444 target genome) using BWA-MEM (74) in paired-end mode. Only cases where the flank tags
445 mapped completely within the search window defined by homologous collinear genes were kept
446 for further characterization. TEs were defined as shared site defined (TE.4, blue in Figure 1A)
447 when at least one flank tag aligned uniquely in the search window with > 90% sequence identity
448 over 90% of the length of the flank tag. TEs were called non shared site defined (TE.5, red)
449 when both flank tags mapped uniquely to the window but both were soft-clipped to the region
450 corresponding to the sequence outside of the TE insertion (with the absolute distance between
451 the left and right outer sequence less than twice the TSD length for the superfamily). TEs
452 nested inside of non shared site defined elements were classified as non shared. In many cases
453 where we called non shared site defined insertions, the left and right flank tags overlapped by
454 the expected TSD length. For 73% of cases in the B73 to W22 contrast, identical sequences
455 were found flanking the B73 TE and at the predicted insertion site in W22, providing further
456 support of a B73-specific insertion (Table S9).

457
458 Step 2 of our method utilized full alignment of sequences extracted from query and target
459 windows. LASTZ version 1.03.02 (75) was used to align query and target sequences for each
460 window, with homology blocks defined when sequences shared >80% identity with the '--
461 gffextend', '--chain' and '--gapped' options used. Overlapping alignment blocks were merged and
462 the proportion of each TE that could be aligned between the query and target windows was
463 determined. Elements which were not previously called as site defined (shared or non-shared)
464 were defined as shared (TE.1, dark blue) when coverage was > 90% and non shared (TE.2,
465 dark red) when coverage was < 10%. Elements with intermediate coverage remained
466 unresolved (TE.3, gray).

467
468 **Identifying missing TE annotations**
469 In many cases, we found that our method identified shared TEs that were annotated in only one
470 genome due to our strict filtering of structurally intact TEs (Figure S1). In order to capture high-
471 confidence missing annotations, BEDTools intersect (76) was used to compare inferred
472 coordinates for shared site defined elements from each contrast to the TE annotation file.
473 Missing annotations were defined in cases where the inferred coordinates did not intersect with
474 any annotated TE but where the absolute difference between the length of the annotated TE in
475 the query genome and the distance between inferred coordinates in the target genome was less
476 than 1% of the annotated TE's length.

477
478 **Non-redundant TE set**
479 A non-redundant TE set was created for all elements that could be resolved as shared or non-
480 shared compared to all other genome assemblies. This set was created in an iterative manner,
481 starting with all B73 TEs that could be resolved compared to W22, Mo17, and PH207. Resolved
482 W22 TEs that were non-shared with B73 and those that were defined as missing annotations in
483 B73 were then added. Mo17 TEs called non-shared with both B73 and W22 and those that were

484 shared with either B73 or W22 but were defined as missing annotations where shared were
485 added. Finally, fully resolved TEs unique to PH207 and those that were shared with any
486 combination of B73, W22, and Mo17 but were defined as missing annotations where present
487 were added. This resulted in a set of 510,533 TEs present in at least one genome
488 (Supplemental dataset X). The source of each TE annotation can be determined by the genome
489 identifier in the TE name, labeled as Zm00001d for B73, Zm00004b for W22, Zm00014a for
490 Mo17, and Zm00008a for PH207. Disjoined TE length and LTR similarity for the non-redundant
491 TE set were extracted from the genome which was the source of the annotation. TEs were
492 defined as shared when present in all four genomes and as variable when called non-shared
493 with at least one other genome. For family and superfamily-level analyses, the non-redundant
494 TE set was used to summarize TE variability across genomes. This means that in many cases
495 the number of members analyzed for a given family is often less than the total number of
496 annotated elements. Families unique to one genome were required to have annotated copies in
497 only one genome and resolved members in only one genome. Resolved and annotated
498 members in these families are listed in Table S3.

499

500 **Characterization of IBS regions**

501 SNPs between B73 and the other three genomes were identified by first aligning these
502 genomes using minimap2 (77). BLAT (78) chain/net tools were then used to process alignment
503 results and build synteny chains and nets. Final SNP and Indel calling was done using Bcftools
504 (79). SNP density for each 1 Mb bin was determined by dividing the total number of SNPs in the
505 window by the number of base pairs in syntenic alignments in the window. Regions with SNP
506 density lower than 0.0005 over at least 5 Mb window were defined as IBS regions. For each
507 comparison between B73 and a contrasting genome (W22, Mo17, or PH207), the inferred
508 coordinates for the outermost shared site defined B73 TEs completely within each IBS block
509 were used to mark the boundary of the IBS region in the contrasting genome.

510

511 Genetic distances of IBS regions were calculated using B73 coordinates, a 0.2 cM genetic map
512 (80), and interpolated using a monotonic polynomial function in the R package MonoPoly (81).

513

514 **Chromosomal distributions**

515 The distribution of genes and TEs were calculated for 2,106 1 Mb bins across the B73 genome.
516 Exons for isoform 1 were used for calculating gene density and the disjoined TE file was used
517 for TE density. Each feature was assigned to the bin containing the start coordinate from the
518 corresponding gff file. Relative density for annotations was calculated by dividing each bin value
519 by the max bin value across all chromosomes. To calculate TE variability per bin, the full B73
520 TE annotation file was used to assign TEs to bins based on start coordinates, and TEs were
521 defined as variable when called non-shared in contrast to any other genome.

522

523 To assess DNA methylation of the maize genome, B73 was grown and after approximately 6
524 days shoot tissue was harvested and frozen in liquid nitrogen for use in DNA isolation. Genomic
525 DNA (1 μ g) was sheared to a size of 200-300bp and the KAPA library preparation kit (KK8232)
526 was used to construct a whole-genome bisulfite sequencing library. The resulting library, which
527 has a size between 250bp and 450bp, was treated with bisulfite sodium so that unmethylated

528 cytosine could be converted to uracil using Zymo EZ DNA methylation lightning kit (D5031). The
529 KAPA HiFi HotStart Uracil + (KK2801) was used in the PCR reaction with the following program:
530 95°C/2min, 8 cycles of 98°C/30s, 60°C/30s, 72°C/4min, and a final extension step at 72°C for 10
531 min. The library was sequenced using Illumina HiSeq2000 in paired-end mode with 100 cycles.
532 The WGBS data set has been deposited into NCBI under accession numbers XX.
533

534 Trim_galore was used to trim adapter sequences and read quality was assessed with the
535 default parameters and paired-end reads mode. Reads that passed quality control were aligned
536 to B73v4 assembly using BSMAP-2.90 (82), allowing up to 5 mismatches and a quality
537 threshold of 20 (-v 5 -q 20). Duplicate reads were detected and removed using picard-tools-
538 1.102 and bamtools. The methylation level for each cytosine using BSMAP tools was
539 determined. The methylation ratio for 1 Mb non-overlapping sliding windows across the B73v4
540 genome in all three sequence contexts (CG, CHG, and CHH) was calculated (#C/(#C+#T)).
541
542 Chromosomal bins were assigned to quartiles based on gene density and CHG methylation
543 levels and assessed for TE variability among those bins. To assess sub-genome bias in TE
544 variability, bedtools intersect was used to find TEs completely within regions previously
545 assigned as maize1 and maize2 (37). TEs outside of these syntenic blocks are shown as NA.
546

547 **Relationship between genes and TEs**

548 B73 genes not present in W22 or sorghum were obtained from previously published results (34).
549 All genome-wide comparisons between genes and TEs were performed using B73 gene and TE
550 annotations. Gene annotations were extracted from the full B73 gff file (6), and coordinates
551 include UTR sequences for the longest defined isoform of each gene. Bedtools intersect
552 (version 2.17.0) was used to find TE-gene overlaps, and bedtools closest was used to find the
553 closest TE of each category. The comparison of genes in TEs included only genes where the
554 full annotated sequence was within the coordinates of a TE, and in cases where a gene was
555 annotated within a nested TE, only the inner-most TE that fully contained the gene was used for
556 analysis. The functional annotations for B73 genes was downloaded from Gramene
557 (ftp://ftp.gramene.org/pub/gramene/CURRENT_RELEASE/gff3/zea_mays/gene_function/B73v4.gene_function.txt) on 8-Nov-2018.
558

559 **Expression analysis**

560 To assess expression of genes and TE families across tissues, RNA-seq data from a previous
561 study including 23 tissues of B73 plants were analyzed (39). Gene expression values were
562 downloaded from maizegdb.org (walley_fpkm.txt uploaded 20-Jun-2018) on 19-Jan-2019.
563 Genes were considered expressed in every tissue with an fpkm value of at least 1. Per-family
564 TE expression as assessed from the raw reads as in (83). Briefly, reads were trimmed using
565 cutadapt v.1.8.1, mapped to the B73 genome using bowtie2 using the options -g 20 -i 5 -l
566 60,000. A modified disjoined TE annotation file was created by using bedtools subtract to mask
567 exons from annotated TEs and then gene annotations were added to the gff file. HTseq-count
568 was used to intersect mapped reads with TE and gene annotations and the SAM output was
569 parsed using a custom script where TE family counts include both reads that map uniquely to a
570 single TE or when multi-mapped but hit only a single TE family. Any read mapped to an
571

572 annotated gene was not counted towards any TE. Since the length of the expressed fragment
573 cannot be easily estimated for TE families, expression was summarized as reads per million
574 where total reads includes TE family reads and reads mapping uniquely to a gene. TE families
575 are considered expressed when at least one library has an RPM value greater than 1. Per-
576 family expression was plotted as $\log_2(1 + \text{Reads Per Million mapped reads})$.

577

578 Acknowledgements

579 We are grateful to Peter Crisp for helpful suggestions on this manuscript. S.N.A., C.D.H, and
580 N.M.S. are supported by a grant from USDA-NIFA (2016-67013-24747). Research on this
581 project was supported by grants from the NSF Plant Genome Research Program (IOS-1238014
582 for J.R.I and M.C.S.; IOS-1546727 for A.B.B. and C.N.H.; IOS-1546899 for P.Z. and N.M.S.)
583 J.M.N. is supported by a Hatch grant from the Minnesota Agricultural Experiment Station (MIN
584 71-068). A.B.B. is supported by the DuPont Pioneer Bill Kuhn Honorary Fellowship and the
585 University of Minnesota MnDRIVE Global Food Ventures Graduate Fellowship. The Minnesota
586 Supercomputing Institute (MSI) at the University of Minnesota provided computational resources
587 that contributed to this research.

588

589 References

- 590 1. McClintock B (1950) The origin and behavior of mutable loci in maize. *Proc Natl Acad Sci U S A* 36(6):344–355.
- 591 2. Vollbrecht E, et al. (2010) Genome-wide distribution of transposed Dissociation elements in maize. *Plant Cell* 22(6):1667–1685.
- 592 3. McCarty DR, et al. (2005) Steady-state transposon mutagenesis in inbred maize. *Plant J* 44(1):52–61.
- 593 4. Candela H, Hake S (2008) The art and design of genetic screens: maize. *Nat Rev Genet* 9(3):192–203.
- 594 5. Schnable PS, et al. (2009) The B73 maize genome: complexity, diversity, and dynamics. *Science* 326(5956):1112–1115.
- 595 6. Jiao Y, et al. (2017) Improved maize reference genome with single-molecule technologies. *Nature* 546(7659):524–527.
- 596 7. Wicker T, et al. (2007) A unified classification system for eukaryotic transposable elements. *Nature reviews Genetics* 8(12):973–982.
- 597 8. Lisch D (2013) How important are transposons for plant evolution? *Nature reviews Genetics* 14(1):49–61.
- 598 9. Bennetzen J (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. *Curr Opin Genet Dev* 15(6):621–627.
- 599 10. Bennetzen JL, Wang H (2014) The contributions of transposable elements to the structure, function, and evolution of plant genomes. *Annu Rev Plant Biol* 65:505–530.

610 11. Chuong EB, Elde NC, Feschotte C (2017) Regulatory activities of transposable elements:
611 from conflicts to benefits. *Nat Rev Genet* 18(2):71–86.

612 12. Hirsch CD, Springer NM (2017) Transposable element influences on gene expression in
613 plants. *Biochim Biophys Acta* 1860(1):157–165.

614 13. Quadrana L, et al. (2016) The *Arabidopsis thaliana* mobilome and its impact at the species
615 level. *eLife* 5. doi:10.7554/eLife.15716.

616 14. Stuart T, et al. (2016) Population scale mapping of transposable element diversity reveals
617 links to gene regulation and epigenomic variation. *eLife* 5:10.7554/eLife.20777.

618 15. Mirouze M, Vitte C (2014) Transposable elements, a treasure trove to decipher epigenetic
619 variation: insights from *Arabidopsis* and crop epigenomes. *J Exp Bot* 65(10):2801–2812.

620 16. Van den Broeck D, et al. (1998) Transposon Display identifies individual transposable
621 elements in high copy number lines. *Plant J* 13(1):121–129.

622 17. Zhang Q, Arbuckle J, Wessler SR (2000) Recent, extensive and preferential insertion of
623 members of the MITE family Heartbreaker (Hbr) into genic regions of maize. *Proc Natl
624 Acad Sci U S A*.

625 18. Zerjal T, et al. (2012) Maize genetic diversity and association mapping using transposable
626 element insertion polymorphisms. *Theor Appl Genet* 124(8):1521–1537.

627 19. Huang X, Lu G, Zhao Q, Liu X, Han B (2008) Genome-wide analysis of transposon
628 insertion polymorphisms reveals intraspecific variation in cultivated rice. *Plant Physiol*
629 148(1):25–40.

630 20. Wang Q, Dooner HK (2006) Remarkable variation in maize genome structure inferred from
631 haplotype diversity at the bz locus. *Proc Natl Acad Sci U S A* 103(47):17644–17649.

632 21. Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A (2005) Evolution of DNA sequence
633 nonhomologies among maize inbreds. *Plant Cell* 17(2):343–360.

634 22. Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in
635 maize. *Proc Natl Acad Sci U S A* 99(14):9573–9578.

636 23. Quadrana L, et al. (2016) The *Arabidopsis thaliana* mobilome and its impact at the species
637 level. *eLife* 5:e15716.

638 24. Carpentier M-C, et al. (2019) Retrotranspositional landscape of Asian rice revealed by 3000
639 genomes. *Nat Commun* 10(1):24.

640 25. Tian Z, et al. (2012) Genome-wide characterization of nonreference transposons reveals
641 evolutionary propensities of transposons in soybean. *Plant Cell* 24(11):4422–4436.

642 26. Lai X, et al. (2017) Genome-wide characterization of non-reference transposable element
643 insertion polymorphisms reveals genetic diversity in tropical and temperate maize. *BMC
644 Genomics* 18(1):702.

645 27. Stuart T, et al. (2016) Population scale mapping of transposable element diversity reveals
646 links to gene regulation and epigenomic variation. *eLife* 5. doi:10.7554/eLife.20777.

647 28. Springer NM, et al. (2009) Maize inbreds exhibit high levels of copy number variation (CNV)
648 and presence/absence variation (PAV) in genome content. *PLoS Genet* 5(11):e1000734.

649 29. Hirsch CN, et al. (2016) Draft Assembly of Elite Inbred Line PH207 Provides Insights into
650 Genomic and Transcriptome Diversity in Maize. *Plant Cell* 28(11):2700–2714.

651 30. Darracq A, et al. (2018) Sequence analysis of European maize inbred line F2 provides new
652 insights into molecular and chromosomal characteristics of presence/absence variants.
653 *BMC Genomics* 19(1):119.

654 31. Chia JM, et al. (2012) Maize HapMap2 identifies extant variation from a genome in flux. *Nat
655 Genet* 44(7):803–807.

656 32. Swanson-Wagner RA, et al. (2010) Pervasive gene content variation and copy number
657 variation in maize and its undomesticated progenitor. *Genome Res* 20(12):1689–1699.

658 33. Hirsch CN, et al. (2014) Insights into the maize pan-genome and pan-transcriptome. *Plant
659 Cell* 26(1):121–135.

660 34. Springer NM, et al. (2018) The maize W22 genome provides a foundation for functional
661 genomics and transposon biology. *Nat Genet*. doi:10.1038/s41588-018-0158-0.

662 35. Sun S, et al. (2018) Extensive intraspecific gene order and gene structural variations
663 between Mo17 and other maize genomes. *Nat Genet* 50(9):1289–1295.

664 36. Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by
665 genome dominance and both ancient and ongoing gene loss. *Proc Natl Acad Sci U S A*
666 108(10):4069–4074.

667 37. Brohammer AB, Kono T, Springer NM, McGaugh SE, Hirsch CN (2018) The limited role
668 of differential fractionation in genome content variation and function in maize (*Zea mays* L.)
669 inbred lines. *Plant J* 93(1):131–141.

670 38. Swigonova Z, et al. (2004) Close split of sorghum and maize genome progenitors. *Genome
671 Res* 14(10A):1916–1923.

672 39. Walley JW, et al. (2016) Integration of omic networks in a developmental atlas of maize.
673 *Science* 353(6301):814–818.

674 40. Cui X, Cao X (2014) Epigenetic regulation and functional exaptation of transposable
675 elements in higher plants. *Curr Opin Plant Biol* 21:83–88.

676 41. Joly-Lopez Z, Forczek E, Hoen DR, Juretic N, Bureau TE (2012) A gene family derived
677 from transposable elements during early angiosperm evolution has reproductive fitness
678 benefits in *Arabidopsis thaliana*. *PLoS Genet* 8(9):e1002931.

679 42. Lai J, et al. (2010) Genome-wide patterns of genetic variation among elite maize inbred
680 lines. *Nat Genet* 42(11):1027–1030.

681 43. Liu S, et al. (2012) Changes in genome content generated via segregation of non-allelic
682 homologs: Segregation of non-allelic homologs. *Plant J* 72(3):390–399.

683 44. McClintock B (1984) The significance of responses of the genome to challenge. *Science*

684 226(4676):792–801.

685 45. Brutnell TP, Conrad LJ (2003) Transposon tagging using Activator (Ac) in maize. *Methods Mol Biol* 236:157–176.

687 46. Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon 688 insertion in the maize domestication gene tb1. *Nat Genet* 43(11):1160–1163.

689 47. Castelletti S, Tuberosa R, Pindo M, Salvi S (2014) A MITE transposon insertion is 690 associated with differential methylation at the maize flowering time QTL Vgt1.

691 48. Huang C, et al. (2018) ZmCCT9 enhances maize adaptation to higher latitudes. *Proc Natl 692 Acad Sci U S A* 115(2):E334–E341.

693 49. Yang Q, et al. (2013) CACTA-like transposable element in ZmCCT attenuated photoperiod 694 sensitivity and accelerated the postdomestication spread of maize. *Proc Natl Acad Sci U S 695 A* 110(42):16969–16974.

696 50. Yao H, et al. (2002) Molecular characterization of meiotic recombination across the 140-kb 697 multigenic a1-sh2 interval of maize. *Proc Natl Acad Sci U S A* 99(9):6157–6162.

698 51. Hufford MB, et al. (2012) Comparative population genomics of maize domestication and 699 improvement. *Nat Genet* 44(7):808–811.

700 52. Woodhouse MR, et al. (2010) Following tetraploidy in maize, a short deletion mechanism 701 removed genes preferentially from one of the two homologs. *PLoS Biol* 8(6):e1000409.

702 53. Bennetzen JL, Kellogg EA (1997) Do Plants Have a One-Way Ticket to Genomic Obesity? 703 *Plant Cell* 9(9):1509–1514.

704 54. Nannas NJ, Dawe RK (2015) Genetic and genomic toolbox of Zea mays. *Genetics* 705 199(3):655–669.

706 55. Varagona MJ, Purugganan M, Wessler SR (1992) Alternative splicing induced by insertion 707 of retrotransposons into the maize waxy gene. *Plant Cell* 4(7):811–820.

708 56. SanMiguel P, et al. (1996) Nested retrotransposons in the intergenic regions of the maize 709 genome. *Science* 274(5288):765–768.

710 57. Clark RM, Tavaré S, Doebley J (2005) Estimating a nucleotide substitution rate for maize 711 from polymorphism at a major domestication locus. *Mol Biol Evol* 22(11):2304–2312.

712 58. Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement by Helitron transposons 713 contributes to the haplotype variability of maize. *Proc Natl Acad Sci U S A* 102(25):9068– 714 9073.

715 59. Morgante M, et al. (2005) Gene duplication and exon shuffling by helitron-like transposons 716 generate intraspecies diversity in maize. *Nat Genet* 37(9):997–1002.

717 60. Du C, Fefelova N, Caronna J, He L, Dooner HK (2009) The polychromatic Helitron 718 landscape of the maize genome. *Proc Natl Acad Sci U S A* 106(47):19916–19921.

719 61. McCue AD, Nuthikattu S, Reeder SH, Slotkin RK (2012) Gene expression and stress

720 response mediated by the epigenetic regulation of a transposable element small RNA.
721 *PLoS Genet* 8(2):e1002474.

722 62. Ellinghaus D, Kurtz S, Willhoeft U (2008) LTRharvest, an efficient and flexible software for
723 de novo detection of LTR retrotransposons. *BMC Bioinformatics* 9:18.

724 63. Steinbiss S, Willhoeft U, Gremme G, Kurtz S (2009) Fine-grained annotation and
725 classification of de novo predicted LTR retrotransposons. *Nucleic Acids Res* 37(21):7002–
726 7013.

727 64. Han Y, Burnette JM 3rd, Wessler SR (2009) TARGeT: a web-based pipeline for retrieving
728 and characterizing gene and transposable element families from genomic sequences.
729 *Nucleic Acids Res* 37(11):e78.

730 65. Baucom RS, et al. (2009) Exceptional diversity, non-random distribution, and rapid
731 evolution of retroelements in the B73 maize genome. *PLoS Genet* 5(11):e1000732.

732 66. Xiong W, He L, Lai J, Dooner HK, Du C (2014) HelitronScanner uncovers a large
733 overlooked cache of Helitron transposons in many plant genomes. *Proc Natl Acad Sci U S*
734 A 111(28):10263–10268.

735 67. Wenke T, et al. (2011) Targeted identification of short interspersed nuclear element families
736 shows their widespread existence and extreme heterogeneity in plant genomes. *Plant Cell*
737 23(9):3117–3128.

738 68. Lyons E, Pedersen B, Kane J, Freeling M (2008) The Value of Nonmodel Genomes and an
739 Example Using SynMap Within CoGe to Dissect the Hexaploidy that Predates the Rosids.
740 *Trop Plant Biol* 1(3):181–190.

741 69. Kielbasa SM, Wan R, Sato K, Horton P, Frith MC (2011) Adaptive seeds tame genomic
742 sequence comparison. *Genome Res* 21(3):487–493.

743 70. Haas BJ, Delcher AL, Wortman JR, Salzberg SL (2004) DAGchainer: a tool for mining
744 segmental genome duplications and synteny. *Bioinformatics* 20(18):3643–3646.

745 71. Kurtz S, et al. (2004) Versatile and open software for comparing large genomes. *Genome*
746 *Biol* 5(2):R12.

747 72. Emms DM, Kelly S (2015) OrthoFinder: solving fundamental biases in whole genome
748 comparisons dramatically improves orthogroup inference accuracy. *Genome Biol* 16:157.

749 73. Altschul SF, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein
750 database search programs. *Nucleic Acids Res* 25(17):3389–3402.

751 74. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler
752 transform. *Bioinformatics* 26(5):589–595.

753 75. Harris RS (2007) Improved Pairwise Alignmnet of Genomic DNA. Available at:
754 <https://etda.libraries.psu.edu/catalog/7971> [Accessed January 27, 2019].

755 76. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic
756 features. *Bioinformatics* 26(6):841–842.

757 77. Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*
758 34(18):3094–3100.

759 78. Kent WJ (2002) BLAT--the BLAST-like alignment tool. *Genome Res* 12(4):656–664.

760 79. Li H (2011) A statistical framework for SNP calling, mutation discovery, association
761 mapping and population genetical parameter estimation from sequencing data.
762 *Bioinformatics* 27(21):2987–2993.

763 80. O gut F, Bian Y, Bradbury PJ, Holland JB (2015) Joint-multiple family linkage analysis
764 predicts within-family variation better than single-family analysis of the maize nested
765 association mapping population.

766 81. Murray K, Müller S, Turlach BA (2016) Fast and flexible methods for monotone polynomial
767 fitting. *J Stat Comput Simul* 86(15):2946–2966.

768 82. Xi Y, Li W (2009) BSMAP: whole genome bisulfite sequence MAPping program. *BMC*
769 *Bioinformatics* 10:232.

770 83. Anderson SN, et al. (2018) Subtle Perturbations of the Maize Methylome Reveal Genes
771 and Transposons Silenced by Chromomethylase or RNA-Directed DNA Methylation
772 Pathways.

773

774 **Table and Figure Legends**

775 **Table 1:** Annotated elements of each TE superfamily in maize genomes

776

777 **Figure 1:** Comparison of shared and variable TE insertions from whole genome assemblies. A.
778 Schematic representation of our method to define shared and variable TEs between assembled
779 genomes. The TE homology search parses alignments to define shared (dark blue), non-shared
780 (dark red), and unresolved (gray) TEs and the flaking homology search utilizes alignments of
781 200 bp flanking sequences to define coordinates for site-defined shared (blue) and non-shared
782 (red) TEs. B. The average genomic space of TEs with each assignment across all 12 pairwise
783 contrasts is shown (error bars represent +/- the standard deviation). C. The distribution of LTR
784 similarity for LTRs shared across all four genomes (blue) as well as TEs unique to one genome.
785 The non-shared elements that are unique to only one genome were separated into TEs that are
786 site defined in every contrast (red) and TEs that are classified as missing based on lack of
787 homology for the TE region in at least one contrast (dark red). LTR similarity is used as an
788 approximation for TE age, with high similarity for young insertions and low similarity denoting old
789 insertions. The number of LTR elements in each category are listed in parenthesis, and the
790 median value is marked with a white point.

791

792 **Figure 2:** Shared and non-shared TE content among four maize inbred lines. A. All non-
793 redundant TEs that could be fully resolved as shared or non-shared in all contrasts were
794 classified based on the number of genomes containing the elements. The amount genome
795 sequence shared in each combination of genotypes is listed. B. For families with at least 20
796 members in the non-redundant TE set the proportion of members that exhibit polymorphic
797 presence in the four genomes was determined. Within each superfamily the proportion of

798 elements that are polymorphic were used to generate a rank order from the most to least
799 variable.

800
801 **Figure 3:** Genomic distribution of shared and variable TEs. A. The distribution of gene density,
802 TE variability and DNA methylation in 1 Mb bins along B73 chromosome 1. Tracks a-d show the
803 relative gene density and TE density for LTRs, TIRs, and Helitron. Tracks e-g show the
804 proportion of B73 TEs that are variable in each bin for LTRs, TIRs and Helitrons, and tracks h-j
805 show the rank order of methylation in the CG, CHG, and CHH context. B. The gene density in
806 each 1 Mb bin was used to splits the bins into four quartiles from lowest to highest gene density.
807 The proportion of variable TEs within each bin were determined for each superfamily.
808

809
810 **Figure 4:** Variable TEs in IBS regions. A. For each contrast against B73, the scaled SNP
811 density and the proportion of variable TEs per 1 Mb bin are plotted. Regions of IBS are shown in
812 gray. B. B73 TEs that are shared and non-shared site defined relative to W22 are plotted for the
813 IBS region and the surrounding 10 Mb. C. There is one new insertion in B73 relative to W22 in
814 the IBS region on chromosome 8, and the region surrounding this insertion is shown.
815

816
817 **Figure 5:** TE contributions to variable gene content in the B73 genome. A. The number of all
818 genes (and syntenic genes) that are overlapping or downstream of any TE (top) or a variable
819 B73 TE (bottom), with the number of syntenic genes listed in parenthesis. TE orders
contributing to this distribution are listed in Table S6. B. The 4,344 cases where a non-syntenic
gene is completely within a TE are classified based on the TE order and TE variability status.

Table 1: Annotated elements of each TE superfamily in maize genomes

	TE Orders (Code)	Superfamily (Code)	B73	W22	Mo17	PH207
Class I	LTR retrotransposons (RL)	Copia (RLC)	46,257	45,701	44,315	26,753
Retrotransposons		Gypsy (RLG)	75,503	71,774	70,144	48,561
		Unclassified LTR (RLX)	20,430	18,958	23,303	18,210
	LINES (RI)	L1 (RIL)	477	459	439	436
		RTE (RIT)	296	284	295	243
	SINES (RS)	(RST)	892	907	830	654
Class II	TIR transposons (DT)	hAT (DTA)	5,087	5,099	5,153	2,225
DNA transposons		CACTA (DTC)	2,768	2,553	2,776	718
		Pif/Harbinger (DTH)	63,201	57,879	46,020	49,837
		Mutator (DTM)	927	885	950	677
		Tc1/Mariner (DTT)	66,168	60,073	57,559	55,623
		Unclassified TIR (DTX)	34,689	28,425	27,681	22,563
	Helitrons (DH)	Helitron (DHH)	21,529	21,416	22,257	17,517

Figure 1

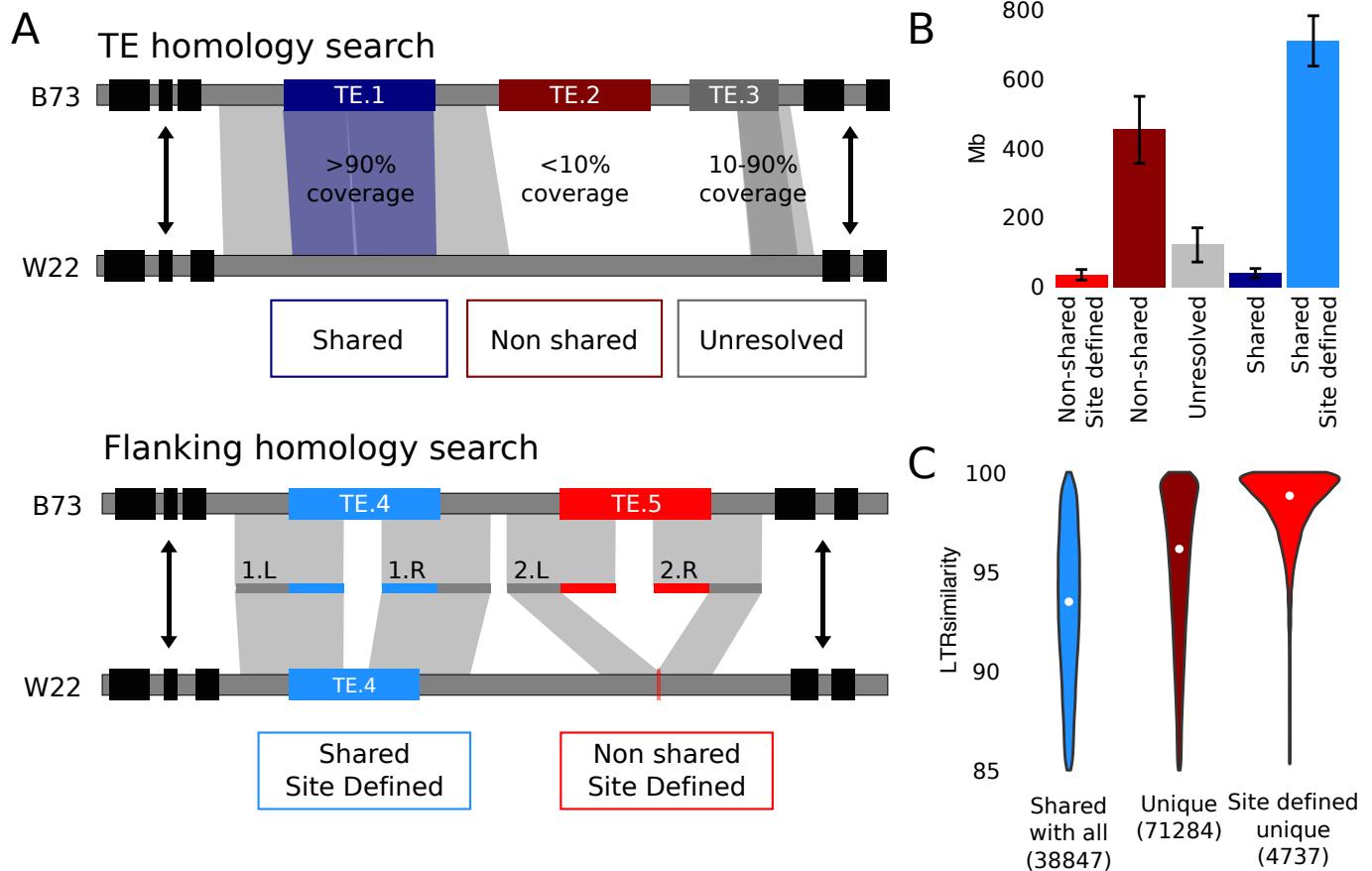
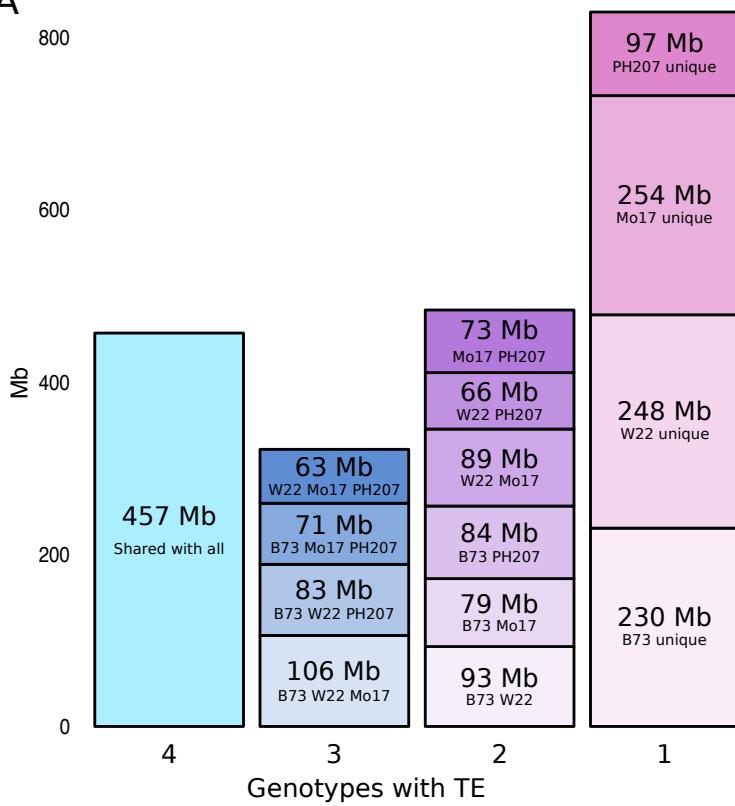



Figure 1: Comparison of shared and variable TE insertions from whole genome assemblies. A. Schematic representation of our method to define shared and variable TEs between assembled genomes. The TE homology search parses alignments to define shared (dark blue), non-shared (dark red), and unresolved (gray) TEs and the flaking homology search utilizes alignments of 200 bp flanking sequences to define coordinates for site-defined shared (blue) and non-shared (red) TEs. B. The average genomic space of TEs with each assignment across all 12 pairwise contrasts is shown (error bars represent +/- the standard deviation). C. The distribution of LTR similarity for LTRs shared across all four genomes (blue) as well as TEs unique to one genome. The non-shared elements that are unique to only one genome were separated into TEs that are site defined in every contrast (red) and TEs that are classified as missing based on lack of homology for the TE region in at least one contrast (dark red). LTR similarity is used as an approximation for TE age, with high similarity for young insertions and low similarity denoting old insertions. The number of LTR elements in each category are listed in parenthesis, and the median value is marked with a white point.

Figure 2

A

B

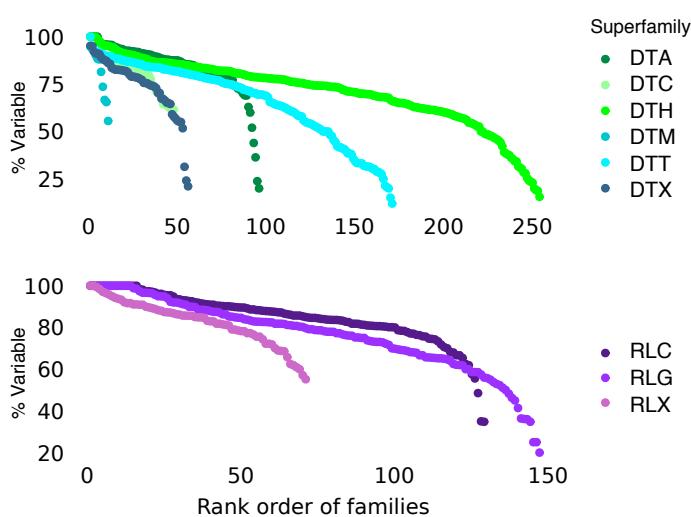


Figure 2: Shared and non-shared TE content among four maize inbred lines. A. All non-redundant TEs that could be fully resolved as shared or non-shared in all contrasts were classified based on the number of genomes containing the elements. The amount genome sequence shared in each combination of genotypes is listed. B. For families with at least 20 members in the non-redundant TE set the proportion of members that exhibit polymorphic presence in the four genomes was determined. Within each superfamily the proportion of elements that are polymorphic were used to generate a rank order from the most to least variable.

Figure 3

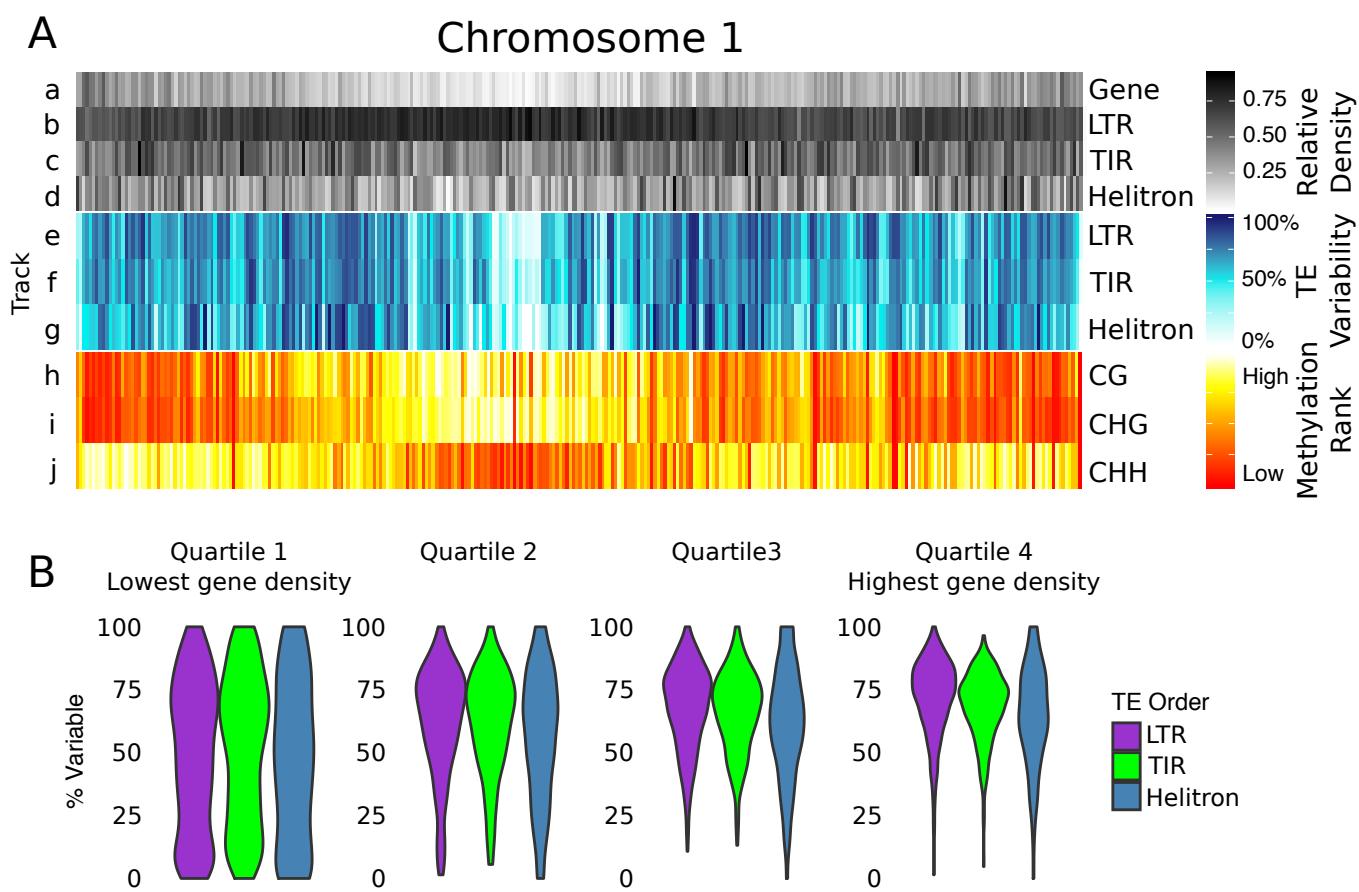


Figure 3: Genomic distribution of shared and variable TEs. A. The distribution of gene density, TE variability and DNA methylation in 1 Mb bins along B73 chromosome 1. Tracks a-d show the relative gene density and TE density for LTRs, TIRs, and Helitron. Tracks e-g show the proportion of B73 TEs that are variable in each bin for LTRs, TIRs and Helitrons, and tracks h-j show the rank order of methylation in the CG, CHG, and CHH context. B. The gene density in each 1 Mb bin was used to splits the bins into four quartiles from lowest to highest gene density. The proportion of variable TEs within each bin were determined for each superfamily.

Figure 4

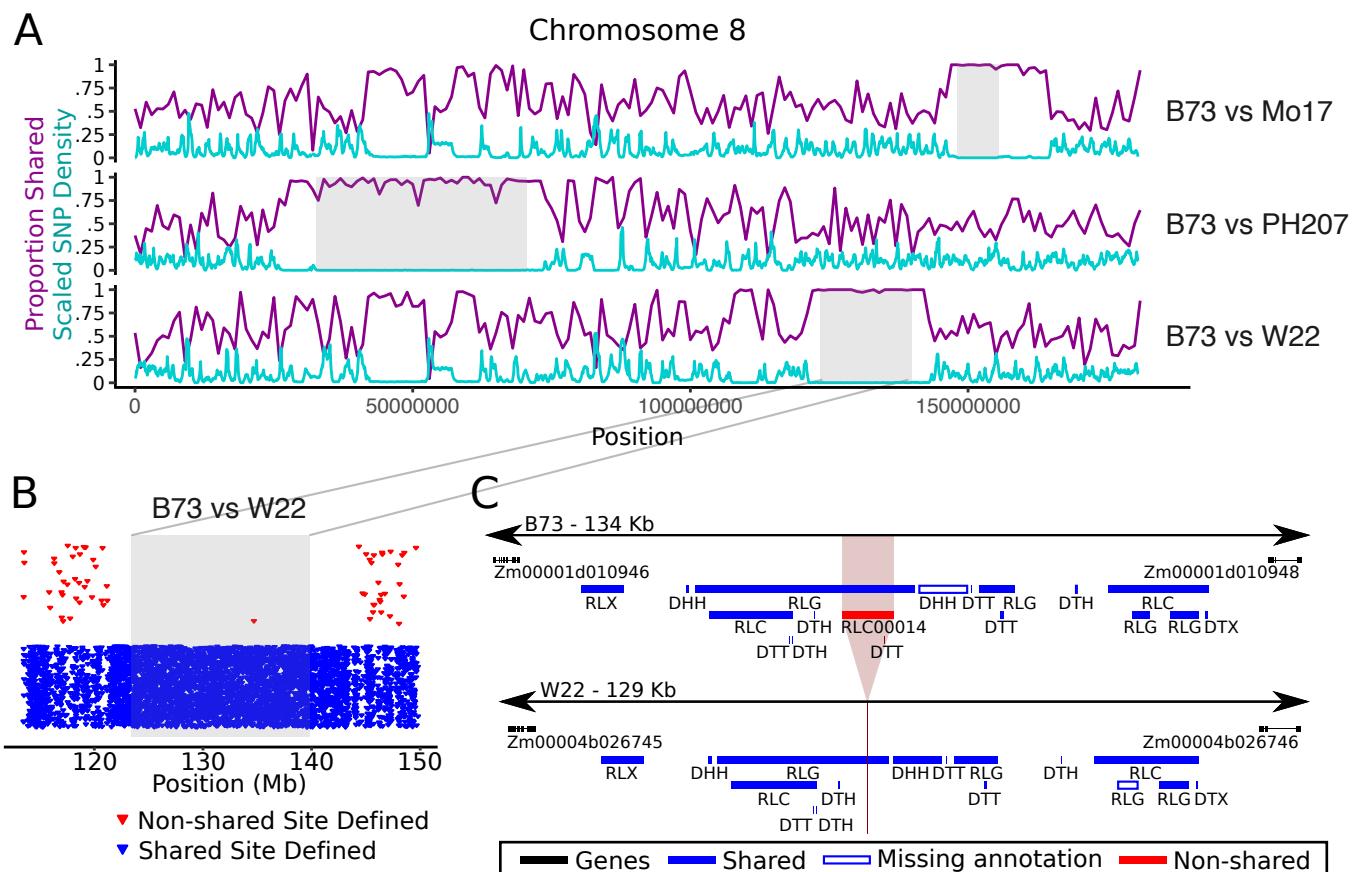


Figure 4: Variable TEs in IBS regions. A. For each contrast against B73, the scaled SNP density and the proportion of variable TEs per 1 Mb bin are plotted. Regions of IBS are shown in gray. B. B73 TEs that are shared and non-shared site defined relative to W22 are plotted for the IBS region and the surrounding 10 Mb. C. There is one new insertion in B73 relative to W22 in the IBS region on chromosome 8, and the region surrounding this insertion is shown.

Figure 5

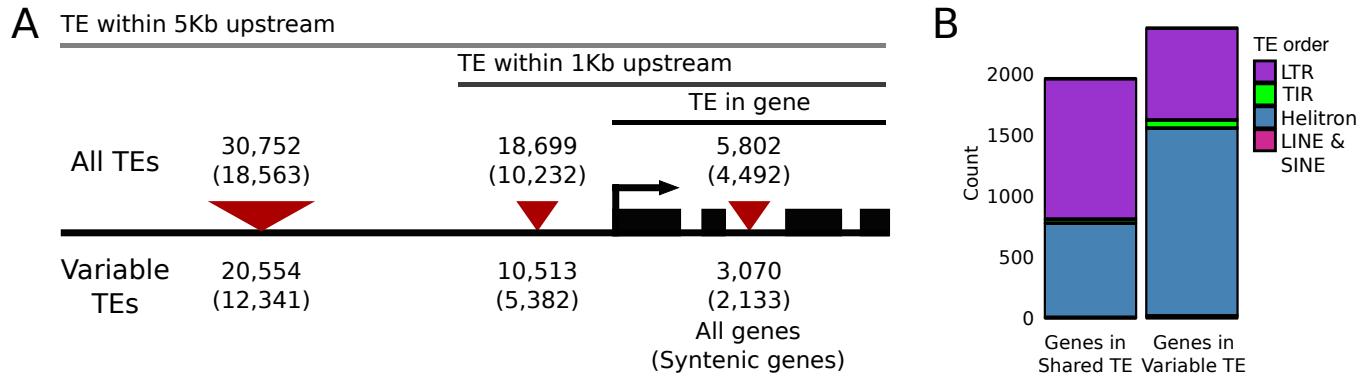


Figure 5: TE contributions to variable gene content in the B73 genome. A. The number of all genes (and syntenic genes) that are overlapping or downstream of any TE (top) or a variable B73 TE (bottom), with the number of syntenic genes listed in parenthesis. TE orders contributing to this distribution are listed in Table S6. B. The 4,344 cases where a non-syntenic gene is completely within a TE are classified based on the TE order and TE variability status.