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Abstract

While sequencing ancient DNA from archaeological material is now commonplace, very few attempts to
sequence ancient transcriptomes have been made, even from typically stable deposition environments such
as permafrost. This is presumably due to assumptions that RNA completely degrades relatively quickly,
particularly when dealing with autolytic, nuclease-rich mammalian tissues. However, given the recent
successes in sequencing ancient RNA (aRNA) from various sources including plants and animals, we
suspect that these assumptions may be incorrect or exaggerated. To challenge the underlying dogma, we
generated shotgun RNA data from sources that might normally be dismissed for such study. Here we
present aRNA data generated from two historical wolf skins, and permafrost-preserved liver tissue of a
14,300-year-old Pleistocene canid. Not only is the latter the oldest RNA ever to be sequenced, but also
shows evidence of biologically relevant tissue-specificity and close similarity to equivalent data derived from
modern-day control tissue. Other hallmarks of RNA-seq data such as exon-exon junction presence and high
endogenous ribosomal RNA content confirms our data’s authenticity. By performing independent technical
replicates using two high-throughput sequencing platforms, we show not only that aRNA can survive for
extended periods in mammalian tissues, but also that it has potential for tissue identification, and possibly

further uses such as in vivo genome activity and adaptation, when sequenced using this technology.

Introduction

The recent revolution in the sequencing of ancient biomolecules has allowed multiple layers of -omic
information — including genomic [1], epigenomic [2, 3], metagenomic [4, 5], and proteomic [6, 7] — can be
gleaned from ancient and archaeological material. This raft of evolutionary information almost all derives
from either DNA or protein, biomolecules both traditionally thought to be considerably more stable than RNA.
This is unfortunate, since transcriptome data has the potential to access deeper layers of information than
genome sequencing alone. Most notably these include assessments of the in vivo activity of the genome,
and assessing other aspects of ancient bio-assemblages such as biotic colonisation / microbiomes [8], host-
pathogen interactions [9], and the level of post-mortem molecular movement within remains and surrounding

media [10] .
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Despite the dominance of DNA, in recent years several studies have begun to explore whether or not RNA
survives in archaeological substrates, particularly in the context of plant materials. Next-generation
sequencing (NGS) approaches have uncovered viral RNA genomes in barley grains and fecal matter [11,
12], environmentally-induced differential regulation patterns of microRNA and RNA-induced genome
modifications in barley grain [13, 14], and general transcriptomics in maize kernels [15] . All but one of these
datasets however has been derived from plant seed endosperm, which often facilitates exceptional
preservation [16, 17] and is known to be predisposed to nucleic acid compartmentalisation [18], thus allowing
for reasonable expectations of such preservation. The conjecture that ribonucleases released during soft
tissue autolysis would virtually annihilate RNA had, until recently, discouraged researchers from attempting
such sequencing in animal tissues in favour of more stable molecules. This is exemplified by the fact that to
date, ancient RNA data has been generated directly from ancient animal (human) soft tissues in only one
example [19], and this was without utilising NGS technology. Instead, a targeted qPCR approach was used,
presumably intended to bypass extraneous noise that might be expected in ancient NGS datasets. The
recent qPCR-based approach to microRNA identification demonstrated persisting specificity in permafrost-
preserved human tissues [19] and thus opened the possibility of a more complete reconstruction of ancient
transcripts in soft tissues when preserved under favourable conditions. While complexities surrounding the
survival of purified RNA within a long-term laboratory storage setting are well documented [20, 21], the
complex thermodynamics of RNA lability and enzymatic interactions are themselves not well understood,
especially within long-term post-mortem diagenesis scenarios [22]. Evidence exists that suggests that the
survival of purified (modern) RNA is influenced by the specific tissue from where it originated [23],
suggesting co-extraction of tissue-specific RNases is a significant problem. Others have suggested that the
chemical structure of RNA is such that its theoretical propensity for spontaneous depurination is less than
that of DNA [24]. Although strand breakage should occur more often, the observable depletion of purified
RNA within a laboratory setting has often been attributed to contamination from RNases which are often
active in purified samples even when frozen. Because chemical and enzymatic interactions in archaeological
or paleontological assemblages are generally unpredictable at the molecular level, it is possible that the
activity of RNAses, and the susceptibility of RNA to those enzymes within a complex matrix of biomatter,
could be slowed or arrested through uncharacterised chemical interactions. As such, it is possible that under

environmental conditions such as desiccation or permafrost, ancient RNA may indeed persist over millennia.
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Exceptionally-well preserved remains provide an opportunity to test this hypothesis. Given this, we decided
to take advantage of some recently recovered samples exhibiting a range of ages and DNA preservation
[25]. We felt these were ideal animal candidates to test for both the persistence of ancient RNA in such
contexts. The results presented here describe the oldest directly sequenced RNA, by a significant margin,
alongside younger tissues which still may be seen as novel substrates given the prevailing RNA dogma. To
confirm the absence of platform-specific biases, we sequenced each sample using the lllumina HiSeq-2500
platform and performed a technical replicate (library and sequencing) on the BGISEQ-500 platform. For
clarity, the biological results and interpretations shown in the main text refer to HiSeq-2500 data since
lllumina sequencing platforms are the most often used for sequencing ancient DNA, with BGISEQ-
500comparisons referenced directly where necessary and in the supplementary materials. From the results
presented here, we propose that the range of aRNA sources now extends to both animals and plants, thus
opening up the possibility of routinely using ancient RNA as a valuable biomolecular resource for future

research.

Results

RNA recovery and sequence data from ancient tissues

From between 47mg and 665mg of tissues including skin, cartilage, liver, and skeletal muscle, we recovered
between 100ng and 461ng RNA (see Table 1). Unsurprisingly, there was a marked difference between the
ancient Tumat and historical samples: while the historical skin samples gave between 3.4ug and 6.7ug RNA
per gram tissue, the ancient Tumat samples only gave between 0.28ug and 0.57ug per gram. After
sequencing and mapping, we calculated the endogenous RNA content of the tissues to be between 7.4% -

80.0% using the HiSeq-2500 platform (Table 2).

RNA enrichment
For each sample, we took frequencies of individual reads mapping to the entire genome, and similarly the
frequencies of individual reads mapping to only the transcribed regions of the genome (mRNA, rRNA and

tRNA). We then divided the RNA read frequency with the whole-genome read frequency for each sample to
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give an enrichment factor (Table 2). We found between 7.4-fold and 15.6-fold enrichment for transcripts from

HiSeq-2500 data. We found no significant age- or tissue-related correlation to enrichment level.

We subjected earlier DNA sequencing data from the same samples used in this paper [25] to the same
transcriptome mapping pipeline as our RNA data, in order to confirm that the enrichment of transcriptomic
reads we saw in the RNA data was not spurious or the result of DNA contamination. As with the RNA data,
we calculated the RNA enrichment factor for each sample. Whereas we saw at least 7.4-fold transcript
enrichment for the RNA data, we saw only between 0.2- and 1.2-fold enrichment for the equivalent DNA
data. Further, while the RNA data showed that a large proportion of the endogenous content for each sample
(between 5.7% and 37%) was of ribosomal origin, the ribosomal content of the endogenous DNA was
significantly lower, between 0.09% and 0.15%, and we suspect more likely a representation of rRNA genes
than their transcripts. Considering this, and the known high abundance of rRNA as a proportion of cellular
RNA, this strongly suggests that the RNA-seq dataset represents authentic RNA, with minimal, if any, DNA

contamination.

Junction analysis

To further establish that we had sequenced RNA, as opposed to contaminant single-stranded DNA (ssDNA),
we assessed the frequencies of reads straddling intron-exon (splice) junctions and those straddling exon-
exon junctions. With RNA-seq data, we would expect to observe a high proportion of exon-exon reads to
demonstrate that precursor mRNA processing has taken place in active transcripts, but we would also
expect to see a degree of intron/exon reads representing precursor mRNA themselves. We found that in all
cases, the number of reads mapping to exon/exon junctions was greater, often by orders of magnitude, than
those mapping to splice junctions (Table S1). In particular, the Skin #2 and Tumat liver samples respectively
showed 186-fold and 68.5-fold more reads mapping to exon-exon junctions than splice junctions. We then
repeated this analysis using DNA data generated from the same samples, as a negative control [25]. We
found the DNA data showed the opposite trend to RNA-seq data, with exon-exon junctions being significantly
under-represented compared to splice junctions in all cases. These analyses further suggest that our primary

data represents authentic aRNA.
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Damage profiles

Damage profiles were not consistent with typical ancient DNA profiles, although the expectations for
comparing RNA and DNA in this manner are unknown due to a general lack of aRNA NGS data.
mapDamage analysis of earlier DNA sequencing of the same samples showed profiles that were typical of
ancient DNA, although at low levels for samples as old as the Tumat canid. Unsurprisingly, the two samples
with the lowest levels of damage were the historical skin tissues. Interestingly, the liver sample, which
showed the greatest affinity to its modern counterpart in transcriptome analysis, had the lowest damage

levels of all tissues from the Tumat canid, further suggesting its exceptional preservation.

The RNA profiles themselves showed either low-levels of damage throughout when de-duplicated, and some
elevated C > U transitions towards the centre of the molecule (supplementary Figure S1). Interestingly, the
damage appears at lower levels than the equivalent DNA samples. The damage was generally limited to C >
U misincorporations as opposed to G > A misincorporations, which is consistent with data deriving from a
single-stranded library construct. Damage patterns were more pronounced when duplicates were retained,
which is unsurprising considering the level of sequence duplication. We also note that the damage in general

is more pronounced in data from the HiSeq-2500 platform.

Statistical inter- and intra-tissue comparisons of ancient transcriptomes (method 1)

Over the entire dataset ordination and clustering revealed that the ancient samples were globally more
similar to each other than to the control samples and vice versa (Supplementary Figures S2 and S3).
However, when considering individual ancient / historical samples against all control samples, we found that
the ancient Tumat liver and historical Skin 2 samples were most similar to their modern counterparts.
Clustering also revealed a set of 71 genes with relatively highly abundant transcripts across all, or most

ancient samples in comparison to the control samples (Supplementary Table 2).

Considering the most highly expressed genes (i.e. 95" percentile) in each control tissue, there were some
relationships of note between control and ancient samples. There was a significant relationship between
control liver and ancient liver, with control liver expression explaining 16% (Adjusted R? values) of the

variation in ancient liver transcript abundance (Supplementary Data S1; Figure 1). Control liver gene
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expression was more similar to ancient liver transcript abundance in comparison to any of the other ancient
samples or any of the other control samples (Supplementary Data S1). Similarly, there was a significant
relationship between control skin gene expression and transcript abundance in the historical Skin 2 sample,
with control skin expression explaining 8% of the variation in historical Skin 2 transcript abundance
(Supplementary Data S1; Supplementary Figure 4). There was also a marginally significant relationship
between control skin and historical Skin 1 (P = 0.012, a = 0.01), however it explained only a very small
amount of the variation in Skin 1 transcript abundance (0.4%; Supplementary Data S1). Control skin gene
expression was more similar to both historical skin sample transcript abundance(s) in comparison to any of
the other ancient samples, however there were also significant relationships with all other control tissues
(Supplementary Data S1). There was no relationship between control cartilage gene expression and ancient
cartilage transcript abundance, although there was a relationship with Skin 2 transcript abundance, control
liver and control skin gene expression (Supplementary Data S1). There were no significant relationships
between control muscle gene expression and any of the ancient samples or the other control samples. All

pairwise regression parameters and details are provided in Supplementary Data S1.

Tissue specificity when compared to the Canine Normal Tissue Database (method 2)

Like our observations from Method 1, we found that the historical Skin 2 and the ancient Tumat liver tissues
showed significantly more similarity to their modern control counterparts than the other historical / ancient
tissues. Of the 14,300 years old Tumat samples, we found virtually no correlation between ancient and
control data when compared to the canine normal tissue array (method 2) using muscle (r* = 0.07) and
cartilage (r2 = 0.01). However, we observed a high degree of similarity with liver tissue, when similarly
compared to modern data (r2 = 0.94, Figure 3). We immediately noted that several highly-expressed genes
in the ancient liver tissue are associated with liver function including apolipoproteins, fetuins, and retinol-

binding proteins.

A high level of similarity between historical and modern skin tissues (rz = 0.70 for Skin 1 and 0.87 for Skin 2)
was also observed using method 2 (Figure 3). We noted that highly-expressed genes in both ancient and
controls are associated with skin and connective tissue, including collagen and several keratin-producing

genes (supplementary Table S2).
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GC content and read duplication

The GC content of full reference transcripts falling within the 95" percentile of abundance was between 51%
and 57% (Supplementary Table S3). We noted that the GC content of reads mapping to those transcript sets
exhibited higher GC content than the transcripts themselves, which is not unexpected considering previous
aRNA results [13, 15, 19]. On average, the de-duplicated datasets had 4.6% greater GC content than the
references, and the redundant (i.e. duplicates retained) datasets showed on average 7.3% higher GC
content. This suggests a slight bias towards high-GC fragments being preserved, which is again not
unexpected in RNA-seq data, given that transcribed regions of the genome are generally GC-rich [26].
However, the uniquely short nature of read fragments, compared to a modern RNA dataset, combined with
non-uniform GC content across a given transcript, suggests that the GC bias observed here does not skew

the resulting transcription profiles.

Due to the high number of PCR cycles (20) required to build libraries, it is unsurprising that we observed
significant duplicate reads in all ancient samples, between 80.9% and 87.1%. However at least some of this
variance can be explained by ‘true’ transcript abundance, exemplified by the control data from modern

material being between 20.9% and 39.4% duplicate reads.

Metagenomic analysis

To explore microorganism presence, and further validate the authenticity of our RNA reads, we performed
two metagenomic analyses. First, on the tRNA fraction, to validate the origin of the data as being canine due
to the relatively high interspecies sequence divergence of tRNA; we found that in all cases, the vast majority
(> 86.5%) of reads were assigned either directly or directly basal to canine tRNA, further suggesting the

authenticity of our data.

Secondly, we looked for evidence of viral infection from RNA viruses (both ssSRNA and dsRNA) in all the
sequenced tissues, noting that previous aRNA work has revealed RNA viral genomes in ancient material [11,

27]. We found no evidence of viral sequences in our RNA data.
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Discussion

Our results show the proof-of-principle that under permafrost conditions, tissue-specific transcriptome
profiles are potentially recoverable from mammalian soft tissues preserved over thousands of years. Since
the survival of RNA for such long periods of time is unexpected, verification of the data’s authenticity is
important. By comparing the RNA data to equivalent DNA data and assessing key characteristic differences
between RNA and DNA data such as reads mapping splice junctions versus exon-exon junctions, the
quantity of ribosomal RNA in the samples, and overall transcriptome enrichment, we have shown the
expected differences to be present and thus believe the data presented here is truly representative of

ancient RNA.

We suggest that in contexts conducive to biomolecular preservation, ancient RNA (or ‘palaeotranscriptome’)
analysis could provide a number of standard additional facets to the biomolecular archaeological toolkit. With
further research, we anticipate these could be expanded to include tissue identification, metagenomic
palaeopathology of RNA viruses, and identifying specific in vivo processes concerned with individual

genomes and their underlying causes, such as climate, diet, trauma, and disease.

Tissue specificity in ancient tissues

Of the 2 historical skin samples and 3 ancient tissue samples, 2 samples (Skin #2 and Tumat liver) exhibited
signals strongly associated with their modern counterparts. The ancient liver sample in particular, despite
being the oldest of the three individuals, showed the greatest similarity to its control sample. Of particular
note is that when compared to the reference Affymetrix array using method 2, prior to comparative analysis
with the control sample, 80% of the 10 most abundant transcripts and 50% of the 50 most abundant
transcripts are biologically sensible, i.e. are genes primarily associated with liver tissue. Within those 50, 5
were class A and C apolipoprotein isoforms involved in lipid transport and, crucially, synthesised within the
liver [28]. Three different isoforms of alpha-2 glycoprotein, associated with liver function in mammals [29]
were present, as were several fibrinogen and fetuin-B genes which are also liver-derived [30, 31]. While
simple identifications such as these are by no means conclusive, we took them as a starting point to perform
more detailed statistical analyses. However, we noted that far from being an isolated incident, other, different

tissues exhibited similar superficial equivalence to their controls. The skin 2 sample contained 19 keratin-
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associated isoforms within the most abundant 50 transcripts, alongside several proline-rich proteins, both of
which are associated with dermal tissue. Several microRNA genes were also highly represented, although a
reference set for canine microRNA tissue-specificity does not include skin [32] and so concrete conclusions

about those transcripts cannot be made.

In addition to tissue differentiation, it was encouraging to note that in all tissues, the most highly-expressed
gene without tissue-specific assignment in our scoring matrix was the RN7SL1 cytoplasmic RNA, which
forms part of the ribosomal nucleosome complex. In highly degraded tissues, the significant presence of
ribosomal RNA (rRNA) is expected [15] and therefore is further evidence of RNA enrichment. Ribosomal
RNA (rRNA) itself accounted for between 5.7% and 39.4% of the reads, again with no obvious correlation to
tissue type or age, but again with similar results between sequencing platforms (r2 = 0.90). Similarly, all
ostensibly connective tissues included a predicted collagen alpha-like gene (LOC102152155) as the second-
or third-most expressed locus, although a specific named homologue could not be identified for downstream

statistical analysis.

Ancient RNA preservation in permafrost and historical tissues

While the sample set is small, we noted that the ostensibly best-preserved tissue in the Tumat #2 individual
is the deepest (liver), and the least well-preserved is the most superficial (cartilage). The muscle tissue, while
intermediate, was closer in quality to the cartilage. Although we cannot make a confident assertion, we
suspect that, at least concerning a small animal preserved in permafrost, the deepest tissues might have a
higher proportion of endogenous DNA / RNA because of the fact that external microbial or other
environmental activity would be initially present on the outer tissues. This is reflected in the lesser
endogenous content of the outer tissues. Microbial activity on surface tissues being arrested by rapid
freezing before reaching deeper tissues would also explain the higher endogenous content of the liver. It is
also logical that a transcriptionally active tissue such as liver would exhibit greater specificity through time
due to the absolute (as opposed to proportional) levels of nucleic acids in the tissue itself. We hypothesise
that degradative enzymes in liver tissue would have no effect on the proportion of endogenous RNA given

the overall rapid freezing of the animal as discussed above. With regards to historical samples, it is

10
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unsurprising that the older of the two skin tissues shows weaker RNA preservation, although this may have

been affected by hitherto unknown and different preservation methods and individual post-mortem histories.

As with any extraordinary claim, the veracity of our results is hugely important. Therefore we analysed our
RNA-seq data in conjunction with equivalent DNA data to eliminate the possibility of DNA contamination, by
looking at exon-exon junctions, overall mapping proportions, biologically-relevant tissue-specific
transcriptome activity, and ribosomal RNA content. The results of these analyses all show compelling
evidence of the authenticity of the RNA data, reinforcing once more the exceptional character of these
remains for palaeobiological and palaeophysiological research on extinct mammals or ancient

representatives of still extant species.

RNA damage profiles

RNA Damage profiles, while generally low-level and consistent with the equivalent DNA damage profiles
(Figure S9), are less consistent with earlier observations of ancient RNA damage which show consistent
high-level damage across reads with elevated C>U misincorporations at both ends [11]. However, the
equivalent DNA profiles are likely to be a better proxy on which to compare these damage profiles, because
the source of the other RNA (in this case, desiccated seeds from southern Egypt) is wildly different in terms
of tissue (plant seed endosperm) and burial context (extreme changes in temperature including highs in
excess of 40°C). Additionally, these data are some of the only available NGS data derived from aRNA
available. The earlier model proposed that RNAs propensity to form secondary structure by self-folding
protects mid-sequence cytosines from hydrolytic attack, whereas terminal bases are more exposed and thus
more likely to become deaminated. This characteristic is also seen in single-stranded ancient DNA libraries
[33], and the different profiles seen in the RNA data suggest that there is little or no DNA contamination in
the canine RNA libraries. This being said, we stress that because NGS data derived from aRNA are
generally rare, there are very few expectations as to what a ‘typical’ aRNA damage profile would look like.
Previous transcriptome data from ancient maize kernels shows consistent, low-level damage across the
strand, similar to that observed in the historical skin samples shown here [15] although less pronounced than
our Pleistocene canid data. We postulate that secondary structure formation, while routinely

thermodynamically predictable as in-situ transcripts [34], could result in inconsistent or unpredictable

11


https://doi.org/10.1101/546820
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/546820; this version posted February 12, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

(dynamic) de- or re-exposure of cytosine molecules during RNA diagenesis and would thus be,
unsurprisingly, a time-dependent diagenetic process. This may be compounded by stochastic fragmentation
of RNA molecules, resulting in re-folding or the creation of RNA pseudoknots, the structures of which are
less predictable [35]. Further data from a range of sources is needed to crystallise these expectations, and

develop models to more accurately predict secondary structure formation in diagenetic assemblages.

Sequence duplication in ancient RNA-seq data

The question of whether to de-duplicate RNA-seq data is much debated [36]; potential issues surrounding
type | and type Il errors, the effect of greater or fewer PCR cycles, and difficulties in distinguishing a
transcript duplicate from a PCR duplicate all contribute to a general uncertainty. In practice, the prevailing
opinion appears to be that decisions should be based on individual samples. Some recent developments
however suggest that distinguishing duplicate types may be viable under certain circumstances, either
computationally [37], or through a molecular-indexing approach [38]. The data presented here however is
unique in its age and origin, generated from small starting amounts of RNA and thus prone to type | errors
introduced during PCR. On the other hand, random survival of short sequences over long time periods, the
effect of secondary structure formation, and other biological processes may lend themselves to type Il errors.
On balance however, we decided that the most parsimonious approach, considering the high numbers of
PCR cycles required and the shorter than usual nature of the fragments, would be to treat the de-duplicated

dataset as the most informative.

GC content of ancient RNA data

We noted that the GC content of reads was slightly higher than those of the transcripts to which they were
mapped, and further increased when accounting for duplicate reads (Figure S5). We believe that a
combination of excess duplicates arising from the high number of PCR cycles necessary for NGS library
construction (as opposed to ‘true’ transcript duplicates), the trend of transcribed regions of mammalian
genomes being generally GC-rich [26] and the greater survivability of GC-rich fragments of ancient
biomolecules, is responsible for this observation. We therefore suggest that in this instance, the de-
duplicated datasets are more likely to be accurate approximations of the ‘true’ transcripts from these

samples. We observed in both our statistical methods applied to read coverage that the de-duplicated

12
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ancient datasets showed significantly greater similarity to control dataset, regardless of de-duplication of the
controls. This is likely due to the fact that duplicates in the control samples were significantly lower, and
where present, representative of actual in vivo transcript expression as opposed to PCR biases. In all cases,
the GC content was elevated in datasets with duplicates retained; however the BGISEQ-500data showed
that this trend was slightly less pronounced, despite library protocols being identical apart from the platform-

specific adapters used and the sequencing platform itself.

Comparison of lllumina HiSeq-2500 and BGISEQ-500 sequencing platforms

Following the comparison of lllumina and BGISEQ-500platforms on aDNA, which showed little difference in
standard quantitative metrics between them [25], we decided to use both platforms in this study to a)
compare the two when using aRNA instead of aDNA, and b) treat one as a technical replicate for proof-of-
concept purposes. Overall, we found very little difference between platforms in terms of sequence quality,
GC bias and overall analytical outcomes between HiSeq-2500 and BGISEQ-500platforms (Figure S7), in
keeping with previous comparisons of these platforms using DNA data [25]. The most noticeable difference
was the fragment size distribution after adapter removal; we noted that the HiSeq-2500 gives a higher
proportion of small fragments than BGISEQ-500 (Figure S8), likely due to preferential clustering of small
fragments as noted previously by lllumina. Crucially however, we noted that comparisons following
biologically meaningful analyses retained strong correlation. In particular, we found that the calculated
endogenous content and RNA enrichment factors were almost identical for both following linear regression
(r2 = 0.98 and 0.96 respectively, Figure S7 panels A and D, Table 2). The relationships between control and
ancient tissues using Method 1 were also very similar, with BGISEQ-500slightly outperforming HiSeq-2500
explaining 20% of the variance (compared with 16% explained with HiSeq). The standardised individual
gene expression metrics and similarity between individual samples were likewise similar between the two

platforms (Figure S2).

In terms of GC content of mapped reads, we did note slightly higher discrepancies between the two
sequencing platforms: Of the reads mapping to transcripts in the top 95" percentile of coverage depth, we
found lesser but significant correlation (r2 = 0.78), and GC of all reads following duplicate removal at a similar

correlation (r2 = 0.75). A better correlation was observed in GC content of all reads prior to duplicate removal
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(r2 = 0.85), suggesting that both platforms gave data slightly biased towards GC retention. This is not to say
the platforms themselves exhibit bias, but is more likely to be a function of long-term preservation favouring
GC-rich molecules as previously noted [39]. We did however notice this bias to be slightly increased overall
in the BGISEQ-500 platform (Figure S5, Figure S7 panel C), although this effect appears to be negligible in
downstream analysis. We also note that the recommended library input requirements into pre-sequencing

treatment are higher for BGISEQ, which is not an insignificant point considering the generally much smaller

quantities of DNA / RNA available to palaeogenomic study.

In terms of read duplication, we found that the BGISEQ-500 platform slightly outperformed HiSeq-2500 by
having a lower proportion of duplicated reads in all samples except Tumat liver. However, we noted that
while higher, duplication levels from the HiSeq-2500 platform were more consistent with each other, varying
between samples by 6.2% versus the BGISEQ-500 platform at 20.1%. Since our primary analyses and
conclusions are based on de-duplicated reads, this result makes no difference to our conclusions. For the
analysis of reads straddling splice or exon-exon junctions, we again found little difference between platforms,
although again the BGISEQ-500 slightly outperformed HiSeq-2500 in identifying a higher proportion of exon-
exon junction reads compared to splice junction reads in the RNA data. The relative proportions of the same
analysis performed on the previously-sequenced DNA data showed negligible differences between the two
platforms (Table S1). While both platforms are broadly similar in terms of all metrics of the data returned, we
suggest that researchers, particularly those working with low-yield ancient samples, should consider issues

such as data output, cost-per-read, and library input mass, to decide on the best fit for individual projects.

The future of ancient RNA

Research using ancient biomolecules is moving in leaps and bounds, breaking barriers particularly in terms
of throughput, sample age, starting material, and the range of biomolecules at our disposal. Ancient RNA,
although touched upon in very recent literature, is still relatively unstudied. Perceptions about what aRNA
can inform us about, that DNA or proteins cannot, and a more general instability, lead many to dismiss it as
unlikely and unnecessary. These data represent the oldest ancient RNA from any source to be sequenced,

by a significant margin, and show that under a range of conditions, aRNA can remain intact well enough to
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identify specific transcriptomic profiles approximately 9,000 years earlier than the current oldest sequenced
aRNA. Previous research in plants has identified the potential to uncover aRNA viruses, and monitor in vivo
activity in long-dead organisms, although these were exceptionally well preserved and not prone to typical
enzymatic or autolytic process that occur in mammalian decomposition. This research confirms that these
processes are sufficiently arrested in permafrost animal remains, and as such, in vivo processes can now be
identified in samples of great interest to current research themes. This potential need not be limited to
permafrost samples, but extending to other low-temperature climates such as Greenland, Alaska, Canada
and Antarctica. Equally, source material need not be limited to soft tissues; as previous research has shown,
a variety of organic materials are potential sources of aRNA (most notably seed endosperm) and so there is
potential to explore aRNA preservation in bone, keratin, or even sediments from such environs. Further, we
anticipate that other biomolecular analysis may be used to complement and cement our understanding of in
vivo processes; for example, quantitative palaeoproteomic approaches, still in their infancy, could be
enhanced using relative transcriptome data. Additionally, stable isotope data could further be complemented
by these data; nitrogen isotopic analysis of different tissues indicate that Tumat puppy#2 was still sucking its
mother’s milk when it died, and so it may be possible, with more samples, to establish individual

developmental stage through transcriptomic and isotopic complementary data.

In conclusion, we suggest that as an untapped biomolecular resource, ancient RNA has great potential in
enrich the current body of palaeogenomic study. Not only has it the potential to provide verification for tissue
identification, but also to enhance or validate other areas of biomolecular archaeological research such as
epigenomics, palaeoproteomics, and stable isotope analysis. Continuing the palaeopathological perspective,
we note that several viruses of importance historically and in modernity such as HIV, rabies, hepatitis B,
influenza, and measles all have RNA genomes. The potential value in establishing their evolutionary

trajectories, along with the aforementioned in vivo processes, makes clear the future utility of ancient RNA.

Methods
Samples
To explore the viability of ancient RNA survival, we chose samples considered to have varying potential for

success given endogenous DNA content from previous genome analysis [25] but with at least two with a
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subjectively high potential. Three of the samples represent different tissues (cartilage, liver and muscle) from
the same individual: a remarkably well-preserved large canid puppy, with a radiocarbon age of 14,233+34
yBP (ETH-73412; 12,297-12,047 cal BC; 95.4% probability using OxCal v4.2.4 [40], from the village of
Tumat in Siberia, Russia. Two puppies were found at the Tumat site, and these analyses concern only
puppy #2. (see Table 1). Full descriptions of the samples can be found in Mak et al., 2017 [25]. The three
tissue samples from the Tumat puppy were ideal, since they represent varying degrees of preservation from
the same individual of advanced "*C age. The other two samples, CN214 and CN1921, are both historical
skins (hides) from Greenlandic wolves, shot in 1925, and prior to 1869 respectively. Both are currently

housed within the Greenland collection at the Natural History Museum of Denmark.

Laboratory work

All pre-PCR steps of laboratory work including RNA extraction, oligonucleotide processing, and library
construction were performed in dedicated ancient DNA facilities equipped with anteroom, and positive air
pressure. The ancient DNA facility is physically isolated from PCR areas. All standard approaches to working
with ancient biomolecules (PPE clothing, double-layered gloves, deep cleaning, facemasks etc) were

followed.

RNA extraction and purification

Extraction and library construction were performed around protocols designed towards microRNA, due to
presumption that it would be necessary to isolate and sequence ultrashort fragments from ancient
assemblages given that RNA fragmentation is a time-dependent diagenetic process [11, 15]. RNA was
isolated from tissues using an Ambion miRvana kit, following the protocol for total RNA isolation, with the
following modifications: prior to digestion, tissues were flash frozen in liquid nitrogen and ground to powder
using a mortar and pestle. Tissue powder was then incubated in 1ml of Lysis / Binding buffer for 65 hours at
37°C. Organic extraction with acidic pH 4.2 phenol:chloroform was done to enable phase separation of RNA
and DNA [41]. We opted for this method over DNase treatment, because we have previously observed
significant inefficiencies of DNase when using ancient DNA as a substrate, often resulting in partial digestion
of RNA [42]. We performed organic extraction twice to ensure the purity of RNA, as described [43]. All other

steps were performed according to the manufacturer’s instructions; briefly, salt-based precipitation was
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initiated using a proprietary salt mixture, and consolidated with excess ethanol. RNA was then isolated on a
spin-column-attached silica membrane, which was then washed three times using included buffers. RNA
was eluted in 50ul, applied at 95°C as per the recommended protocol. The quantity of purified RNA was
measured using the Qubit RNA HS assay. Due to known and suspected issues in fluorescence quantification
in degraded or fragmented nucleic acid extractions [44], a DNA measurement was not taken using Qubit. We
instead opted to measure the level of DNA carryover by quantifying the level of mapping to untranscribed
regions of the genome. We subsequently elected to build platform-specific RNA libraries and sequence on
two different platforms, the lllumina HiSeg-2500 and the BGISEQ-500, to allow us to explore platform-

dependent biases in data generation alongside establishing the survival of ancient RNA.

llumina library construction

cDNA libraries were constructed using a NEBNext Multiplex Small RNA Library Prep Set for lllumina
according to the manufacturer’s instructions. We opted for this method over other RNA library preparations
because of the increased specificity of RNA molecules being incorporated into the library and proven
sequence recovery of ultrashort molecules [45]. Briefly, a pre-adenylated 3’ adapter is first ligated to the 5°
end of the RNA molecule. This ATP-free ligation step is facilitated by an RNA ligase mutant, which is
truncated to prevent RNA adenylation and thus ligation, unless pre-adenylation of the donor molecule has
already occurred [46]. This takes advantage of the 3’ hydroxyl group unique to RNA and thus facilitates
enrichment of RNA over potential contaminant DNA. Next, a reverse transcription primer is annealed to the
3’ adapter. Then a standard ssRNA ligation step allows ligation of the 5’ adapter to the RNA molecule to be
amplified. Reverse transcription to create single-indexed cDNA libraries based on the RT primer is followed
by indexing PCR. Libraries were amplified with between 16 and 20 cycles of PCR using the included

polymerase mastermix, and submitted directly for sequencing.

BGISEQ-500 library construction

For BGISEQ-500 libraries, we utilised the same NEBNext kit with modified adapters and primer oligos
appropriate to the BGISEQ-500 platform. We based oligo sequences on those published previously [25] and
utilised indexing primers over indexing adapters to reduce costs and improve protocol simplicity, opting for a

single 5’ phosphorylated 5’ adapter and adenylated 3’ adapter. Since 5’ adenylation of the 3’ adapter is
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necessary to RNA-specific library construction as detailed above, the custom BGISEQ-500 3’ adapter was
adenylated at the 5’ end using a NEB 5’ Adenylation kit. Libraries were similarly amplified with between 16
and 20 cycles of PCR. With the BGISEQ-500 libraries only, post-PCR products were circularised to form

DNB (DNA nanoballs) based on the standard protocol for the platform [25]. DNB production was performed

by BGI Europe immediately prior to sequencing.

Sequencing

lllumina libraries were pooled at equimolar concentrations and sequenced as SE100 on the HiSeg-2500
platform at the Danish National High-Throughput Sequencing Centre. BGI libraries were equally pooled to
equimolar concentrations, circularised, and sequenced as SE100 using the BGISEQ-500 platform at BGI
Europe, Copenhagen. Demultiplexing was performed in-house and resulting FastQ files were delivered

electronically.

Adapter removal
lllumina and BGI adapters were removed from their respective datasets using cutadapt v.1.11 [47], using

default parameters for single-end reads, 10% allowed mismatch, and minimum size retention of 15 nt.

Read alignment

Sequencing reads from the ancient samples were initially aligned to the CanFam3.1 genome using bowtie2
[48], under default parameters for single-end data. This was done to assess the overall endogenous content
including potential DNA contaminants and in relation to previous estimates of endogenous content of the
samples [25]. Resulting SAM files were converted to sorted BAM files and filtered by mapping quality score
(minimum g=20). The analysis was then repeated using identical parameters, only instead using the
CanFam3.1 transcriptome as the reference, and again using canine rRNA and tRNA reference sequences
from which to calculate the RNA enrichment factors. Mapping files were de-duplicated, although mapping
files with duplicates retained were kept for comparative analyses. Control data was aligned to the
CamFam3.1 transcriptome, using default parameters for paired-end data in bowtie2. We performed identical
analysis on our extraction blank library and ran any mapped reads through ncbi BLAST+, using default

parameters to the nt database, followed with metagenomic analysis using MEGAN to ensure no
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contamination. All mapped extraction blank reads returned primarily basal or highly conserved assignments,
and negligible read numbers were assigned to canids for both lllumina and BGI platforms (2 reads and 39

reads) respectively.

Junction analysis

We used tophat v2.1.2 [49] to generate an index of exon-exon junctions from the CanFam3.1 genome
annotation, and also to map raw, trimmed, de-duplicated RNA-seq reads back to that index. We then
collated the frequency of reads straddling exon-exon junctions from the tophat output. We generated intron
and exon bedfiles from the CanFam3.1 genome annotation, and used the bedtools intersect function to
assess the frequency of reads straddling splice junctions. First, we created a bamfile of reads overlapping
exon junctions from our original mapping bamfiles, and fed that output back into bedtools intersect to repeat
the analysis, using the intron bedfile instead of the exon bedfile. We used the output from this second round
of bedtools intersect to collate read frequencies. We then repeated this analysis using raw, trimmed DNA

reads generated previously [25] to compare the two types of data.

Damage pattern analysis

Cytosine deamination patterns of reads aligned to the CanFam3.1 transcriptome were assessed using
mapDamage 2.06 [50]. While the samples had previously showed expected damage patterns from genome
sequencing [25], the expectations of similar analysis for RNA are largely unknown due to factors such as
single-strandedness and sequence-specific secondary structure formation. We assessed damage profiles on

BAM files resulting from both genomic and transcriptomic mapping.

Control and reference data

For direct transcriptomic comparison, we analysed equivalent, modern NGS data deriving from the same
four dog tissue types (skin, cartilage, liver and skeletal muscle). Appropriate data for all tissues was found at
the ENA Short Read Archive bioproject accession PRINA396033, experiment accessions SRX3055179
(cartilage), SRX3055151 (liver), SRX3055143 (skin), and SRX3055142 (muscle). For reference data on
relative expression levels between dog tissues, we used Affymetrix array data collated from the Canine

Normal Tissue Database, bioproject accession PRINA124245 [51].
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Expression analysis

Since gene-specific expression analysis has not been performed on ancient material, we attempted two
forms of analysis. Method 1 is a direct comparison of control NGS data (see ‘Control and reference data’) to
ancient sequencing data. Method 2 was achieved by employing an independent, non-NGS expression array
reference [51] to which both modern control NGS and ancient / historical NGS datasets would be compared.

Both modern and ancient / historical data was subject to the same analysis.

Both analyses relied on first calculating a relative measure of expression for individual genes within each
sample. To generate this, we used the samtools depth function to describe the coverage depth for each
position of each transcript, and divided the total coverage for all positions by the length of the transcript to
generate a mean coverage value for each. The unique nature of these data creates uncertainties regarding
duplicate removal considering excess PCR cycles and short fragments, so we therefore opted to perform
analyses using combinations of de-duplicated and duplicates-retained mapping between ancient and control
samples. We found that de-duplication, in particular applied to the ancient samples, is more appropriate for

these kinds of data (see discussion).

The direct comparison method (method 1) involved firstly performing a variance stabilizing transformation on
transcript raw count data, using the Varistran R package (incorporating the edgeR package) [52, 53].
Varistran employs library size normalization using edgeR’s TMM normalization, then applies Anscombe's
[54] variance stabilizing transformation for the negative binomial distribution [52]. Because no replicates were
available for each of the ancient samples or controls, dispersion was estimated across the entire dataset
(blindly). These normalized data were used for comparison between samples across the entire dataset using
Varistran package functions producing ordination biplots and a distance-based heatmap with hierarchal
clustering. Biplots were produced by centering rows (genes) by subtracting their global means, performing
singular value decomposition and these data plotted where the expression level of a gene in a particular
sample, relative to the average expression level of that gene, is approximated by the dot product of the
sample position and the gene position (P. Harrison. Pers. Comm). Heatmaps were produced by calculating

cosine distance, performing hierarchical clustering with hclust() and refining clustering using the ‘optimal leaf
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ordering’ algorithm from the seriation package [55] in order to minimise sharp changes between neighbours

without otherwise changing the tree.

To directly compare expression levels between control and ancient/historic samples within and between
tissue types, the transformed data for each tissue type were filtered for transcripts within and above the
upper 95" percentile of expression levels (i.e. the most highly expressed genes for each tissue type in a
given sample). Data below the 95" percentile were discarded, to compensate for noise associated with low-
level transcripts [56]. Pairwise linear regression analyses were then performed comparing control tissue
expression (explanatory variable) to expression in all ancient /historic tissues (response variable(s)). We
corrected for multiple testing [56] using Bonferroni corrections: For each control tissue there were 5
comparisons with ancient / historic samples, so linear models were considered significant at o of 0.01. When
comparing control tissues to other control tissues there were 3 comparisons, so linear models were
considered significant at o of 0.0166. Linear models between control samples and both ancient and other

control samples were only considered relevant if their slope was positive.

For method 2, we first created a simple reference set from the Affymetrix array deriving from the Canine
Normal Tissue Database [51]. This was used to describe the tissue to which each annotated gene was most
associated with, resulting in a simple gene name to tissue pairing matrix. We then created a second matrix
from the CanFam3.1 transcriptome, describing the specific gene name in relation to the gene description (i.e.
predicted homology or confirmed). For each sample, we then took transcripts within and above the 95"
percentile of expression levels (as calculated earlier using samtools depth) [52, 55, 56] in the sample, we
cumulatively scored each of the 10 tissues listed in the Affymetrix array, according to the gene / tissue
pairing described in matrix 1. We performed this analysis for all ancient and modern sequencing data, and
compared like-for-like sample tissues using a linear regression. We used these analyses to assess the
similarity of the modern and ancient datasets based on their appearance when compared to the limited

tissue set represented from the Affymetrix array.
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GC content analysis

We assessed the GC content on a per-transcript basis of the CanFam3.1 transcriptome, using a Perl script.
We then isolated the transcripts from within the 95" percentile of expression levels as described earlier for
consistency. Then, the GC content of individual short reads mapping to those transcripts was calculated on a

per-sample basis, from de-duplicated and duplicates-retained bam files (Table S3).

Metagenomic analysis

For viral infection analysis, we downloaded complete genomes for all available ssRNA and dsRNA viruses
known to infect vertebrates from the NCBI Genome resource. Then we mapped all raw reads to the virus
dataset using bowtie2, and extracted the mapped reads into fasta format. We then subjected these reads to
a full metagenomic BLAST to confirm their viral origin. For tRNA species authentication, we extracted all
reads previously mapped to known canine tRNA sequences, and performed a full metagenomic BLAST
against the entire nucleotide (nt) database. All BLAST analyses were performed using the NCBI blast+

v.2.6.0 suite, on a standalone high-performance cluster.

Accession numbers
Control data: Control SRA data for modern transciptomes were taken from the EBI SRA archive, under
bioproject PRINA396033 (see methods).

Our data: All our ancient raw read data was uploaded to the NCBI SRA archive, Accession PRINA497993.
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Figure 1: Regressions of ancient liver and historical skin samples, method 1: relationships between 95%
percentile of expressed genes in each control tissue sample (x-axis, graph title) and each ancient sample or
control samples from other tissues (y-axis, graph title). Black points in graphs comparing ancient samples
are the relationship between the control tissue and the same ancient tissue, red points overlaid are the
relationship between the control tissue and other ancient tissues (in graph title — one per graph). Yellow lines
are least squares linear regression fit for black points and green lines are least squares linear regression fit
for red points. Filled lines indicate a significant linear regression, dashed lines indicate a non-significant
linear regression. A) BGISEQ-500 data, de-duplicated; B) HiSeq-2500 data, de-duplicated; C) BGISEQ-500
data, duplicates retained; D) HiSeq-2500 data, duplicates retained.
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Figure 2: Comparison of ancient and control tissues using Method 2. Coverage scores (Y-axis) were
calculated based on the mean coverage of reads to each named gene in the CanFam3.1 transcriptome,
followed by filtering to the 95" percentile of all genes represented. Each gene was then assigned a most-
associated tissue based on data Affymetrix array derived from 10 canine tissues (X- ams?} Each tissue was

then assigned a cumulative score based on the coverage scores of each gene in the 95" percentile. Orange
bars represent modern control tissues and blue bars represent ancient / historical tissues. Panel A: historical

Skin 2 versus control skin. Panel B: ancient Tumat liver versus control liver.
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Figure 3: Regressions of all samples, method 2: Relationships between 95% percentile of expressed genes
in ancient tissues (x-axis) versus control samples (y-axis). Values are calculated based per-tissue scores
(see methods) having removed duplicate reads from mapping data. Black data points and trendline refer to
BGISEQ-500 data, while orange data points and trendline refer to lllumina HiSeq-2500 data. A) Skin 1; B)
Skin 2; C) Tumat cartilage; D) Tumat liver; E) Tumat muscle
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Sample ID Species |Tissue Age Location Mass tissue (mg)|RNA (ng / ul) Total (100 ul) [RNA from tissue (ug/ g)

Skin 1 Wolf Skin Before 1869 AD|Uummannaq, Greenland 47.9 3.1 310 6.47

Skin 2 Wolf Skin 1925 AD Rosenvinge Bugt, Greenland  [134.7 4.61 461 3.42

Tumat cartilage |Canid Cartilage ca. 14122 YBP |Tumat, Siberia 665.3 3.19 319 0.48

Tumat liver Canid Liver ca. 14122 YBP | Tumat, Siberia 612.9 3.54 354 0.58

Tumat muscle Canid Muscle ca. 14122 YBP | Tumat, Siberia 351.9 1 100 0.28

Blank BLANK n/a n/a n/a 0 0 0 0.00

Table 1: Basic sample details including age, tissue, and RNA extraction statistics.
Sample # Species Tissue Age Total read-s pos-t- Genome mRNA rRNA Proportion tRNA RNA Enrichment Endogenous %

adapter trimming rRNA factor
Skin 1 Wolf Skin Before 1869 AD (69,053,233 26,043,866 6,858,947 16,714,271 31.03% 4,243,690 14.69 37.72%
Skin 2 Wolf Skin 1925 AD 6,675,338 5,581,322 1,288,462 4,696,537 39.40% 354,381 15.62 83.61%
BGiseq  |TumatC Canid Cartilage ca. 14122 YBP _[44,765,013 2,244,289 783,522 401,982 11.61% 32,077 7.46 5.01%
Tumat L Canid Liver ca. 14122 YBP (27,626,403 16,509,691 5,038,336 3,570,007 10.91% 7,617,698 13.52 59.76%
TumatM ___|Canid Muscle ca. 14122 YBP__ (66,780,343 3,815,483 1,057,959 1,357,348 20.73% 317,792 9.85 5.71%
Blank BLANK n/a n/a 1,701,272 56,822 20,808 126,467 55.43% 24,069 41.47 3.34%
Skin 1 Wolf Skin Before 1869 AD (23,258,645 11,366,481 3,493,902 7,612,932 31.83% 1,441,633 15.18 48.87%
Skin 2 Wolf Skin 1925 AD 32,927,602 26,320,301 5,618,346 19,883,788 36.95% 1,990,974 14.36 79.93%
Hiseq  JLumatC Canid Cartilage ca. 14122 YBP__ [20,915,948 2,354,199 1,064,732 209,067 5.71% 31,676 7.63 11.26%

Tumat L Canid Liver ca. 14122 YBP__ (6,811,527 4,114,476 1,882,220 1,192,800 14.94% 796,571 12.94 60.40%
TumatM ___|Canid Muscle ca. 14122 YBP__ (39,878,232 2,932,798 1,099,000 818,537 16.44% 127,563 9.59 7.35%
Blank BLANK n/a n/a 1,339,288 75,612 91,929 9,498 5.33% 1,029 18.63 5.65%

Table 2: NGS data and mapping summary, with calculations of endogenous content and RNA enrichment

factors.
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Figure S1A: mapDamage profiles of ancient tissues mapped to the CanFam3.1 transcriptome showing
nucleotide misincorporations at relative positions from the centre towards the terminal ends of the
sequencing read. Red lines indicate C > U misincorporations, blue lines indicate G > A misincorporations,
and grey lined indicate others. A) Skin 1, de-duplicated; B) Skin 1, duplicates retained; C) Skin 2, de-
duplicated; D) Skin 2, duplicates retained; E) Tumat cartilage, de-duplicated; F) Tumat cartilage, duplicates
retained; G) Tumat liver, de-duplicated; H) Tumat liver, duplicated retained; I) Tumat muscle, de-duplicated;
J) Tumat muscle, duplicates retained. S1A derived from BGISEG-500 data.
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Figure S1B: mapDamage profiles of ancient tissues mapped to the CanFam3.1 transcriptome showing
nucleotide misincorporations at relative positions from the centre towards the terminal ends of the
sequencing read. Red lines indicate C > U misincorporations, blue lines indicate G > A misincorporations,
and grey lined indicate others. A) Skin 1, de-duplicated; B) Skin 1, duplicates retained; C) Skin 2, de-
duplicated; D) Skin 2, duplicates retained; E) Tumat cartilage, de-duplicated; F) Tumat cartilage, duplicates
retained; G) Tumat liver, de-duplicated; H) Tumat liver, duplicated retained; I) Tumat muscle, de-duplicated;
J) Tumat muscle, duplicates retained. S1B from HiSeq-2500 data.
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Figure S2: Biplot ordination of standardized individual gene expression (blue points) and similarity between

individual samples (red points) along two dimensions (see methods for details). A) BGISEQ-500 data, de-
duplicated; B) HiSeq-2500 data, de-duplicated; C) BGISEQ-500 data, duplicates retained; D) HiSeq-2500

data, duplicates retained.
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Figure S3: Hierarchical clustering heatmap of similarity between samples (see methods for details) for the
top 500 genes with the most differences between samples. A) BGISEQ-500 data, de-duplicated; B) HiSeq-
2500 data, de-duplicated; C) BGISEQ-500 data, duplicates retained; D) HiSeq-2500 data, duplicates

retained.
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Figure S4: Regressions for all remaining samples, method 1. See legend for Figure 1 for details. A-H,
BGISEQ-500; I-P, HiSeq-2500. A-D and I-L, de-duplicated; E-H and M-P, duplicates retained. A, E, | and M,
comparison to skin; B, F, J and N, comparison to cartilage; C, G, K and O, comparisons to liver; D, H, L and
P, comparisons to muscle.
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Figure S5: GC content histograms according to sequencing platform and duplicate removal. For all panels:
blue line, skin 1; red line, skin 2; grey line, Tumat cartilage; yellow line, Tumat liver; black line, Tumat
muscle. A) BGISEQ-500, duplicated removed; B) HiSeq-2500, duplicated removed; C) BGISEQ-500,
duplicates retained; D) HiSeq-2500, duplicates retained.
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Figure S6: Regressions of all samples, method 2: Relationships between 95% percentile of expressed genes
in ancient tissues (x-axis) versus control samples (y-axis). Values are calculated based per-tissue scores
(see methods), only retaining duplicate reads. We note here in comparison to duplicate-removed samples
that the correlation disintegrates and so suggest for highly amplified libraries, duplicates should be removed.
Black data points and trendline refer to BGISEQ-500 data, while orange data points and trendline refer to
lllumina HiSeq-2500 data. A) Skin 1; B) Skin 2; C) Tumat cartilage; D) Tumat liver; E) Tumat muscle
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Figure S7: comparison of data generated by BGISEQ-500 and HiSeq-2500 platforms. A) endogenous
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content of sequencing reads by tissue (see Table S2). B) Regressions of method 2 between platforms. Red
circles, Skin 1; white circles, Tumat cartilage; blue circles, Skin 2; black circles, Tumat liver; grey triangles,

Tumat muscle. C) Mean GC content of reads by tissue, depending on duplication. Red circles, reads

mapping to the 95" percentile and above of expression after mapping and deduplication. White circles, all
mapped reads with deduplication. Grey circles, all mapped reads without deduplication. D) RNA enrichment

factor by tissue type.
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Figure S8A: length distribution plots of BGISEQ-500 RNA-seq. A) Skin 1; B) Skin 2; C) Tumat cartilage; D)

Tumat liver; E) Tumat muscle.
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Figure S8A: length distribution plots of HiSeq-2500 RNA-seq. A) Skin 1; B) Skin 2; C) Tumat cartilage; D)
Tumat liver; E) Tumat muscle.
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Figure S9A: mapDamage plots of DNA data from Mak et al 2018 sequenced on the BGISEQ-500 plaform. A)
Skin 1; B) Skin 2; C) Tumat cartilage; D) Tumat liver; E) Tumat muscle.
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Figure S9A: mapDamage plots of DNA data from Mak et al 2018 sequenced on the HiSeq-2500 plaform. A)
Skin 1; B) Skin 2; C) Tumat cartilage; D) Tumat liver; E) Tumat muscle.
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RNA DNA
Sample Splice junction |Exon/Exon [Enrichment factor [Splice junction [Exon/Exon [Enrichment factor
Skin 1 BGI 2,560 219,511 85.75 239,562 169,698 0.71
Skin 2 BGI 1,491 158,582 106.36 12,765,554 369,114 0.03
Tumat cartilage BGI 498 1,831 3.68 588,823 14,259 0.02
Tumat liver BGI 2,164 270,239 124.88 24,981 422 0.02
Tumat muscle BGI 969 4,289 4.43 1,841,006 49,364 0.03
Skin 1 HiSeq 1,765 112,064 63.49 172,280 90,753 0.53
Skin 2 HiSeq 4,066 756,268 186.00 91,479 20,184 0.22
Tumat cartilage HiSeq  |641 3,405 5.31 277,720 1,768 0.01
Tumat liver HiSeq 1,495 102,469 68.54 3,069 476 0.16
Tumat muscle HiSeq 786 7,304 9.29 508,984 27,548 0.05

Table S1: Junction analysis of RNA-seq and DNA data derived from the same samples. Reads mapping
over splice junctions and exon-exon junctions were collated for each sample and molecule type, and
enrichment factors calculated. In all cases, RNA-seq data shows significantly more exon-exon junction
coverage than splice junctions, highlighting it's authenticity. Conversely, the opposite trend is seen for DNA

data.
Tissue
Brain Heart Jejunum Kidney Liver Lung Lymphnode [Pancreas Skel_muscle [Spleen

Skin 1 BGI 7.369512 9.224989 5.976252 6.06709 5.788138 12.711885 22.262183 14.300985 10.964448 3.526031
- Skin 2 BGI 4.703452 6.649602 6.497142 8.674943 3.252891 14.391111 48.378053 11.058813 4.697513 2.944075
9 Tumat cartilage BGI 0.6524631 0.4191422 0.8122769 0.7963115 0.347326 0.6237626 1.5482203 1.8898358 0.7800282 0.1445928
g Tumat liver BGI 5.867459 10.052321 6.673093 9.534536 56.858722 4.42351 17.627531 16.918639 8.540282 3.965165
5 Tumat muscle BGI 1.4682131 1.008993 1.2243416 1.5066447 1.1267399 1.6271386 1.4323754 2.8535713 1.9912942 0.5152724
@ Skin 1 HiSeq 4.502981 3.257765 2.945736 2.025289 2.246489 7.007347 11.993489 5.869402 4.173192 0.633882
E Skin 2 HiSeq 20.837246 29.993212 26.340306 26.351402 11.292727 59.382402 140.366709  |40.869815 17.477253 14.142799
3 Tumat cartilage HiSeq 0.9120192 0.7508219 1.0398841 0.9746833 0.9679512 0.684925 1.6248867 2.574598 1.7789093 0.3543757
3 Tumat liver HiSeq 2.952995 3.015451 2.740994 4.73437 31.771138 1.163108 5.040153 10.595909 2.663559 1.860064
g Tumat muscle HiSeq 1.2044026 1.01611 0.7344993 1.4796762 0.7128224 1.2645689 1.5379421 2.5229572 2.0718783 0.4429613
E' skin_ctrl 45415.554 50561.467 30482.011 40899.5 26136.132 104940.71 167978.585  140188.386 35487.522 28793.465
3 liver_ctrl 30122.055 59834.033 27707.201 79697.661 374555.123  [20205.328 107564.365  |38311.08 18638.103 22270.378

muscle_ctrl 41331.829 203341.122  [12626.31 27125.846 11126.786 12401.362 108659.232  |24176.597 210645.542  |13996.461

cart_ctrl 72084.93 48243.49 36999.322 53199.036 25481.206 101362.97 188636.671 47892.239 42075.641 72851.855

Brain Heart Jejunum Kidney Liver Lung Lymphnode [Pancreas Skel le [Spleen

Skin 1 BGI 230.804808  [265.141447  |155.092406  |133.99913 308.581048  [187.204974  [278.045287  |643.430022 |231.321085  |87.978841
- Skin 2 BGI 13.408641 41.460159 12.134565 64.229466 36.629826 42.227093 89.674146 116.653709  |23.490457 14.965661
2 Tumat cartilage BGI 37.445289 11.365473 19.945933 19.373542 18.559948 23.404146 98.726107 123.02492 45.598856 4.045317
® Tumat liver BGI 157.97178 112.81358 140.34369 193.27382 346.1022 134.3815 232.51709 867.15393 216.46818 64.93643
2 Tumat muscle BGI 79.413814 35.918867 30.175458 62.279461 36.953227 22.080463 104.534059 250.856177 129.572004 18.72993
3 Skin 1 HiSeq 182.49211 95.13863 127.08658 100.47759 112.55379 53.95795 222.97553 259.54267 131.5064 41.83447
E Skin 2 HiSeq 171.95332 111.24421 126.00464 163.85154 168.81874 99.18516 455.93314 354.99892 104.96765 50.92724
S Tumat cartilage HiSeq 39.717703 25.174315 19.145569 51.30038 33.601261 27.438784 99.677509 135.633345  |291.15729 13.595632
3 Tumat liver HiSeq 73.421856 42.600503 49.515499 88.649362 131.68405 52.394247 103.138827  |108.894429  |57.308926 27.586459
) Tumat muscle HiSeq 46.617127 34.137448 27.737057 65.530679 99.727602 18.514318 95.543809 188.81023 263.027508 18.130081
E‘ skin_ctrl 97570.01 109034.171 66239.344 83640.604 53400.6 210011.027 333949.46 75736.27 69766.985 65994.027
S liver_ctrl 37598.592 85657.563 36832.959 99082.865 490673.756 27588.329 184312.883 49950.749 24389.728 32640.816

muscle_ctrl 50403.683 278563.469  [15797.42 34023.955 13444.188 15634.505 180908.049  |29621.29 267055.102  |19846.433

cart_ctrl 103660.907  |74625.811 57230.311 80891.516 41995.311 155869.564  |329032.457  [71605.872 59867.114 112521.816

Table S2: Method 2 final scores according to Affymetrix array tissue derived from modern and ancient NGS
datasets. Top half, scores following deduplication. Lower half, scores with duplicate reads retained.
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. Overall Read GC, Overall Read GC,

Sample 95 %ile GC duplicates removed |duplicates retained
Skin 1 BGI 54 1 59.1 59.9

Skin 2 BGI 55.6 63.3 64.9

Tumat cartilage BGI 52.7 52.1 55.7

Tumat liver BGI 55.7 64.1 65.3

Tumat muscle BGI 54.7 61.6 61.6

Skin 1 HiSeq 55.1 59.4 63

Skin 2 HiSeq 56.4 60.4 63.9

Tumat cartilage HiSeq |52.2 52.8 55

Tumat liver HiSeq 56.2 63 67.3

Tumat muscle HiSeq |53.6 56.5 62.3

Table S3: Mean GC content of mapped reads depending on selection and (de)duplication.

. . Proportion RNA Enrichment
Sample # Species Tissue Age Genome mRNA rRNA tRNA
rRNA factor
Skin 1 Wolf Skin Before 1869 AD (88,606,127 3,400,335 138,318 0.15% 198,399 0.58
Skin 2 Wolf Skin 1925 AD 19,539,088 1,499,806 34,885 0.16% 183,823 1.21
BGISEQ |TumatC Canid Cartilage ca. 14122 YBP 28,894,255 486,848 19,637 0.07% 939 0.24
Tumat L Canid Liver ca. 14122 YBP 1,252,563 37,439 1,934 0.15% 674 0.44
Tumat M Canid Muscle ca. 14122 YBP_ 89,229,030 1,504,208 61,956 0.07% 3,125 0.24
Skin 1 Wolf Skin Before 1869 AD |7,006,239 304,201 12,334 0.17% 25,443 0.67
Skin 2 Wolf Skin 1925 AD 14,216,858 966,092 26,558 0.17% 143,140 1.10
HiSeq Tumat C Canid Cartilage ca. 14122 YBP 11,622,174 34,365 1,552 0.09% 208 0.31
Tumat L Canid Liver ca. 14122 YBP 201,084 7,820 285 0.14% 203 0.57
Tumat M Canid Muscle ca. 14122 YBP_ 29,592,985 632,765 30,098 0.10% 4,750 0.31

Table S4: Basic NGS statistics of DNA data, subjected to the same analysis as the RNA-seq data of the
same samples. Note that the ribosomal RNA proportion and overall RNA enrichment factors are significantly
less than those of the RNA-seq data.

Supplementary Data 1 (see supplementary data excel file Supp_Data_1.xlsx): Regression table of Method 1.
Details of linear regression analysis of the 95th percentile of genes expressed in each control tissue,
compared with each ancient tissue and other control tissues. Models marked in bold have the slope in the
expected direction (positive) and are significant at bonferroni alphas adjusted for multiple comparisons
(ancient tissues alpha = 0.01, control tissues alpha = 0.0166).

Supplementary Data 2 (see supplementary data files Supp_Data_2_dupsRemoved.xlsx and
Supp_Data_2_dupsRetained.xlsx on Google Drive at
https://drive.google.com/open?id=1cO88r8RriLRGONA80hdy6 TGVH-eUppH4): Scoring matrix for method 2
arranged in tabs by tissue and sequencing platform. Briefly: columns A and B are the static tissue/gene pairs
generated from the Canine Normal Tissue Database (CNTD) Affymetrix array. Column D is the NCBI
reference for each gene found on the CanFama3.1 transcriptome, column F the full gene description, and
column G the derived gene name / loc ID. Column E is the mean coverage depth of that gene after mapping.
Column H is a lookup formula to assign each gene a most-related tissue from the 10 listed on CNTD.
Column | is the 95™ percentile value of coverage. Columns J-S are the total cumulative scores assigned to
each of the 10 tissues following associated-gene / score pairing. One data file is for analysis with de-
duplicated data (dupsRemoved), the other with duplicates retained (dupsRetained).
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