

1 **Title: Wildebeest migration in East Africa: Status, threats and**
2 **conservation measures**

3 **Running head: Status of wildebeest migration in East Africa**

4 Fortunata U. Msoffe^{1,7,9†}, Joseph O. Ongut^{1,2*†}, Mohammed Y. Said^{1,3,4}, Shem C.
5 Kifugo^{1,5}, Jan de Leeuw^{1,6}, Paul Van Gardingen⁷, Robin S. Reid^{1,8}, JA Stabach¹⁰,
6 Randall B. Boone¹¹

7

8 ¹International Livestock Research Institute, P.O. Box 30709-00100, Nairobi, Kenya

9

10 ²University of Hohenheim, Institute for Crop Science-340, 70599 Stuttgart, Germany

11

12 ³Kenya Market Trust, 14 Riverside, Cavendish Block 3rd Floor, Suite B, Riverside
13 Drive P.O. Box 44817 – 00100, Nairobi, Kenya

14

15 ⁴Institute for Climate Change and Adaptation, University of Nairobi, P.O. Box 30197,
16 00100, Nairobi, Kenya.

17

18 ⁵Northern Rangelands Trust, Private Bag, Isiolo 60300, Kenya.

19

20 ⁶ International Soil Reference and Information Centre (ISRIC) P.O. Box 353 6700 AJ
21 Wageningen, The Netherlands.

22

23 ⁷Centre for the Study of Environmental Change and Sustainability, School of
24 Geosciences, University of Edinburgh, Edinburgh, Scotland, UK
25
26 ⁸Centre for Collaborative Conservation and Department of Ecosystem Science and
27 Sustainability, Colorado State University, Fort Collins, CO, USA
28
29 ⁹Tanzania National Parks Authority, P.O. Box 3134, Arusha, Tanzania
30
31 ¹⁰Conservation Ecology Center, National Zoological Park, Smithsonian Conservation
32 Biology Institute, Front Royal, VA, USA
33
34 ¹¹Natural Resource Ecology Laboratory Colorado State University Fort Collins, CO
35 80523-1499
36 †Joint first authors
37 Fortunate Msoffe: fortu2_2@yahoo.com
38 Joseph Ogutu: jogutu2007@gmail.com
39 Mohammed Said: msaid362@gmail.com
40 Shem Kifugo: ckifugo2014@gmail.com
41 Jan de Leeuw jan.deleeuw@wur.nl
42 Paul van Gardingen p.vangardingen@gmail.com
43 Robin Reid Robin.Reid@colostate.edu
44 Jared Stabach stabachj@si.edu
45 Randall Boone Randall.Boone@colostate.edu
46
47 *Corresponding author:

48 Current Address: Institute for Crop Science-340, 70599 Stuttgart, Germany;

49 Tel: +49-711-459 23022; Fax: +49-711-459-24345;

50 E-mail: jogutu2007@gmail.com

51

52 **Abstract**

53 Migration of ungulates is under pressure worldwide from range contraction, habitat

54 loss and degradation, anthropogenic barriers and poaching. Here, we synthesize and

55 compare the extent of historical migrations of the white-bearded wildebeest

56 (*Connochaetes taurinus*) to their contemporary status, in five premier East African

57 ecosystems, namely the Serengeti-Mara, Masai Mara, Athi-Kaputiei, Amboseli and

58 Tarangire-Manyara. The current status, threats to migration, migratory ranges and

59 routes for wildebeest were characterized using colonial-era maps, literature reviews,

60 GIS and aerial survey databases, GPS collared animals and interviews with long-term

61 researchers. Interference with wildebeest migratory routes and dispersal ranges has

62 stopped or severely threatens continuation of the historical migration patterns in all

63 but the Serengeti-Mara ecosystem where the threat level is relatively lower.

64 Wildebeest migration has collapsed in Athi-Kaputiei ecosystem and is facing

65 enormous pressures from land subdivision, settlements and fences in Amboseli and

66 Mara ecosystems and from cultivation in Tarangire-Manyara ecosystem. Land use

67 change, primarily expansion in agriculture, roads, settlements and fencing,

68 increasingly restrict migratory wildebeest from accessing traditional grazing resources

69 in unprotected lands. Privatization of land tenure in group ranches in Kenya and

70 settlement policy (villagization) in Tanzania have accelerated land subdivision,

71 fencing and growth in permanent settlements, leading to loss of key wildebeest

72 habitats including their migratory routes and wet season calving and feeding grounds.

73 These processes, coupled with increasing human population pressures and climatic
74 variability, are exerting tremendous pressures on wildebeest migrations. Urgent
75 conservation interventions are necessary to conserve and protect the critical
76 wildebeest habitats and migration routes in East Africa.

77

78 *Keywords:* Wildebeest; population declines; migration; migratory routes, migratory
79 corridors, land use change; land tenure change; wildlife conservancies; agriculture;
80 settlements; fences; human population growth; poaching; Kenya; Tanzania; Serengeti-
81 Mara Ecosystem; Masai Mara Ecosystem; Loita Plains; Athi-Kaputiei Ecosystem;
82 Athi-Kaputiei Plains; Amboseli Ecosystem, Western Kajiado Ecosystem, Ngorongoro
83 Conservation Area; Tarangire-Manyara Ecosystem

84 **Introduction**

85 Large mammal migrations are among the most-awe inspiring of all migrations [1].
86 These migrations, the seasonal and round-trip movement of large herbivores between
87 discrete areas, are under increasing pressures worldwide. Globally, migrations of 6
88 out of 24 species of ungulates are either already extinct or their status is unknown [2].
89 Of the remaining ungulate mass migrations, most occur in six locations in Africa,
90 including the white-bearded wildebeest (*Connochaetes taurinus* Burchell, 1823)
91 migration in the Serengeti-Mara ecosystem of Kenya and Tanzania [2]. Range
92 restriction and alteration, degradation and loss of habitat due to agriculture, poaching
93 and barriers that block migration, such as fences, roads, railroads, pipelines and
94 settlements have progressively disrupted historical migratory routes and decimated or
95 driven rapid population declines of many of the once spectacular migratory herds over
96 the 20th century [1,3-5].

97

98 Because migration enables populations to grow to large abundances, its disruption
99 leads to restricted ranges and consequent population declines [1,6,7]. The preservation
100 of the phenomenon of migration requires conservation of both the migratory species
101 and the habitats along their routes. It also requires a sound understanding of the
102 factors and processes underlying the degradation and loss of migratory routes and
103 declines of populations to devise effective strategies for protecting migratory routes,
104 habitats and populations [1]. Although causes of ungulate migrations are not yet fully
105 understood [8], the temporal regularity of migrations suggests that they are a response
106 to seasonal fluctuations in spatial patterns of resource availability and quality [9,10].
107 Thus, in the Serengeti-Mara ecosystem, rainfall through its effect on food supply and
108 salinity of drinking surface water has been suggested as a trigger for the northward
109 migration [11] whereas high nutrient availability on the short grass plains is thought
110 to attract lactating female wildebeest southwards [12]. This migration results in the
111 movement of wildebeest from the open, highly nutritive grasslands with low biomass
112 in the wet season, to wooded grasslands with high biomass of lesser nutritive quality
113 during the dry season [13].

114

115 We focus on populations of wildebeest sub-species in East Africa because they (1) are
116 taxonomically closely related, (2) represent some of the most important remaining
117 large mammal migrations on earth, (3) share similar conservation problems, (4) all
118 have ranges within and outside protected areas, and (5) have a range of current and
119 potential pathways to protection. The threats facing wildebeest migrations involve the
120 interplay of multiple factors and processes [1-3,14]. In the Masailand of Kenya and
121 Tanzania, ungulate population declines, particularly of wildebeest, are linked to

122 habitat loss due to land use change or habitat degradation caused mainly by expansion
123 of cultivation [9,15,16]. Illegal hunting might, however, have contributed more to
124 dwindling populations of migratory ungulates in some areas, including the Tarangire-
125 Manyara ecosystem of Tanzania [17-19]. Wildebeest also cause problems for
126 livestock, including competition for forage and transfer of the deadly malignant
127 catarrhal fever virus from wildebeest calves to cattle [20,21]. The type and intensity
128 of these factors and processes vary among migratory species and across their meta-
129 populations or ecosystems. Effective wildlife conservation and protection thus
130 requires clear prioritization of the factors leading to population declines both in the
131 short-and long- term. Integral to this process is reviewing the history, status, trends
132 and threats facing populations of particular migratory species across a range of
133 ecosystems along the entirety of their migratory routes to extract general insights into
134 the threats they face as a basis for developing approaches likely to succeed in
135 conserving their populations and migrations.

136

137 We describe and compare the extent of historical migrations of the western (*C.t.*
138 *mearnsi*) and eastern (*C.t. albojubatus*) white-bearded wildebeest with the current
139 status of these migrations and migratory routes in five ecosystems of East Africa. We
140 evaluate long-term wildebeest population trends, putative drivers of change and their
141 impacts on the critical habitat and migratory ranges of wildebeest in each of the five
142 ecosystems. We suggest potential strategies for conserving these migrations, some of
143 which rank among the Earth's most spectacular remaining terrestrial migrations (Fig
144 1). Lastly, we evaluate causes of wildebeest population declines and range
145 contraction, including human population expansion, land-use change, poaching, land
146 uses incompatible with wildlife conservation, deficiencies in existing wildlife

147 policies, institutions and markets in Kenya and Tanzania and suggest conservation
148 strategies to alleviate the population declines.

149

150 -----Fig 1 about here -----.

151

152 **Materials and methods**

153 **Study Area**

154 This study covers the five ecosystems in East Africa with migratory wildebeest
155 populations (Fig. 2). These include the Serengeti-Mara, Loita Plains, Athi-Kaputiei
156 Plains, Amboseli Basin, and Tarangire-Manyara ecosystems. Across these five
157 ecosystems, we focus on eight populations of either the western (Serengeti-Mara,
158 Ngorongoro, Loita Plains, Narok County) or the eastern (Athi-Kaputiei, Machakos
159 County, Amboseli, West Kajiado, Tarangire-Manyara) subspecies of the white
160 bearded wildebeest [22]. We consider three (Ngorongoro, Narok County and
161 Machakos) of the eight populations only superficially because they are part of at least
162 one of the other populations considered in detail. We do not consider small, resident
163 wildebeest populations occupying the western corridor in Serengeti and the Loliondo
164 Game Controlled Area (LGCA) in north-eastern Tanzania [14].

165

166 The Serengeti-Mara Ecosystem covers about 40,000 km² in Tanzania and Kenya
167 [14,23]. The ecosystem encompasses the Serengeti National Park, Ngorongoro
168 Conservation Area, Maswa, Grumeti, Ikorongo and Kijereshi Game Reserves,
169 Loliondo Game Controlled Area, Ikona and Makao Wildlife Management Areas in

170 Tanzania and the Masai Mara National Reserve and adjoining wildlife conservancies
171 and pastoral ranches in Kenya.

172 The Ngorongoro Conservation Area (NCA, 8,292 km²) is part of the Greater
173 Serengeti-Mara ecosystem. It includes the Ngorongoro Crater (310 km²) and is
174 bordered to the north by the Loliondo Game Controlled Area (4000 km²). Lake
175 Natron Game Controlled Area (LNGCA, 3000 km²) borders the LGCA to the
176 southeast and the NCA to the northeast (Fig. 2).

177

178 The Narok County (17,814 km²) encompasses the Loita Plains and the Masai Mara
179 Ecosystem in Kenya. The Athi-Kaputiei ecosystem (2,200 km²) covers the Nairobi
180 National Park (117 km²) and the adjacent Athi-Kaputiei Plains in Kenya. Machakos
181 County (14,225 km²) is contiguous with the Athi-Kaputiei ecosystem. The Greater
182 Amboseli ecosystem of Kenya (7730.32 km²) covers the Amboseli National Park (392
183 km²) and surrounding dispersal areas on pastoral rangelands, covering some 3,000
184 km² [24-26]. Western Kajiado (11388.54 km²) is bounded by the Greater Amboseli
185 Ecosystem to the East. Both ecosystems are found in Kajiado County of Kenya.

186

187 The Tarangire-Manyara ecosystem of Tanzania covers the Tarangire (2,850 km²) and
188 Lake Manyara (649 km²) National Parks and Manyara Ranch (177 km²), a private
189 conservancy that supports livestock rearing, wildlife conservation and tourism. This
190 ecosystem is adjoined by rangelands managed primarily for cultivation, livestock
191 grazing, legal game hunting, and tourism on community land designated as Open
192 Areas, Game Controlled Areas or Wildlife Management Areas [15]. These include the
193 Simanjiro Plains, the Mkungunero Game Reserve (800 km²) and Lolakisale Game

194 Controlled Area (1500 km²). Altogether, the range for the migratory wildebeest
195 covers about 35,000 km² [17,27-30].

196

197 Human population growth drives sedentarization, expansion of settlements, fences
198 and other land use developments in the study ecosystems [4,5]. These changes
199 promote land use intensification and illegal livestock incursions into protected areas
200 to the detriment of migratory wildebeest [31,32]. In Kenya, human population size
201 increased in Narok County by 673% from 110,100 in 1962 to 850,920 in 2009; in
202 Kajiado County by 905% from 68,400 in 1962 to 687,312 in 2009 and in Machakos
203 County by 247% from 571,600 in 1962 to 1,983,111 in 2009 [33]. Similarly, in
204 Tanzania human population size increased in the Serengeti District by 11.6% from
205 249,420 in 2012 to 282,080 in 2017 and in Monduli and Simanjiro Districts,
206 containing the Tarangire-Manyara Ecosystem, by 13.5% from 460,775 people in 2012
207 to 532,939 in 2017 (www.nbs.go.tz).

208

209 Across the Serengeti-Mara ecosystem, Narok County, Masai Mara ecosystem and the
210 Loita Plains, rainfall is markedly bimodal and increases steeply along a southeast–
211 northwest gradient, from east to west, south to north and over time [34]. Notably,
212 rainfall increases from 500 mm on the Serengeti Plains to the Southeast to 1400 mm
213 to the north-west of Masai Mara National Reserve. Across the Kajiado County in
214 which the Amboseli, Athi-Kaputiei and Western Kajiado Ecosystems are found,
215 rainfall is low, bimodal and highly variable, and total annual rainfall averages 685
216 mm (range 327-1576 mm). The short rains fall from November to December (30.97 ±
217 27.85% of the annual total) and the long rains from March to May (47.5 ± 15.06% of
218 the annual total). The dry season rains fall during June- September. Rainfall is

219 markedly variable in space and increases with elevation such that it averages 300
220 mm/yr in the low-lying Amboseli basin and rises to 1250 mm/yr on the slopes of Mt.
221 Kilimanjaro and Chyulu Hills in the southeast of the County to 800 mm in Nairobi
222 National Park and 971 mm at Ngong hills in the northwest of the County [26].
223 Rainfall increases from under 500 mm in the extreme southeast of the Athi-Kaputiei
224 Plains to over 800 mm in northern Nairobi Park [35]. In the Tarangire-Manyara
225 ecosystem, rainfall is bimodal and averages 650 mm per annum. The short rains span
226 from October to December and the long rains from March to May. The rains are
227 unreliable and frequently fail, especially the short rains [15]. Land use patterns in the
228 study ecosystems are described comprehensively elsewhere [15,26,34-36].

229

230 -----Fig. 2 about here -----.

231

232 **Historical wildebeest migrations in East Africa**

233 Information on the migratory wildebeest range, routes and status was compiled from
234 literature reviews, colonial-era records, maps, GIS databases, Global Positioning
235 System (GPS) collared wildebeest and interviews with local residents and researchers
236 knowledgeable about the study ecosystems. We reviewed historical records to provide
237 a context for assessing changes in wildebeest migrations in East Africa.

238 **Mapping contemporary wildebeest migratory routes and ranges**

239 To obtain information on contemporary wildebeest movements, we placed GPS
240 collars on 15 wildebeest in the Loita Plains in the Mara Ecosystem in May 2010, 12 in
241 the Athi-Kaputiei Plains and 9 in the Amboseli Basin in October 2010. The collars

242 were programmed to collect the position of each wildebeest 16 times each day (every
243 hour from 6:00 AM to 6:00 PM and every three hours from 6:00 PM to 6:00 AM) for
244 a 2-year study period. Data are available on Movebank (www.movebank.org)

245

246 In the Tarangire-Manyara ecosystem, OIKOS and Tanzania National Parks [37]
247 tracked movements of radio collared wildebeest and zebra and GPS collared elephants
248 (*Loxodonta africana*) during 1995-2002 to establish if they still used the main
249 migratory routes identified earlier [38]. OIKOS also established the presence or
250 absence of migratory routes and assessed wildlife species abundance in the ecosystem
251 during 1995-2002 by interviewing local communities, hunting operators, employees
252 and residents and conducting multiple aerial reconnaissance and systematic
253 reconnaissance flights. Several studies later mapped and analysed land use changes
254 along the migratory corridors [36,39]. We did additional unstructured interviews on
255 the status of the migration routes in the ecosystem during 2006-2007. Our interviews
256 targeted long-term local residents and researchers and were carried out during ground
257 truthing work for imagery analysis on historical land use and cover changes in the
258 ecosystem from 1984 through 2000 to 2006-2007. Local Masai elders who knew the
259 history of the ecosystem well helped with the ground truthing and interviewing local
260 residents about land use and cover changes. The field data form used for our
261 interviews is provided in Table S1.

262

263 **Wildebeest population trends**

264 Wildebeest population estimates were compiled from aerial surveys conducted in
265 Kenya by the Directorate of Resource Surveys and Remote Sensing (DRSRS) and in
266 Tanzania by the Tanzania Wildlife Research Institute (TAWIRI), Tanzanian Wildlife

267 Conservation Monitoring Unit (TWCM) and Frankfurt Zoological Society (FZS). The
268 methods used in the aerial surveys and for estimating population size are described in
269 detail elsewhere [33,40-42]. Aerial surveys began in the Athi-Kaputiei ecosystem in
270 1949 [43], in the Serengeti-Mara ecosystem in 1957 [44-46]), in the Tarangire-
271 Manyara ecosystem in 1964 [27] and in Amboseli in 1973 [47].

272

273 **Distribution of cultivation and fences**

274 Data on the distribution of agriculture were obtained from the FAO Africover project
275 2000 [48]. The project mapped land cover for the year 2000 for the whole of East
276 Africa from Landsat images (30 m resolution) and updated the Kenya map in 2008.
277 The map category ‘agriculture’ was extracted from the Africover data set and clipped
278 according to the study area boundary. In the Athi-Kaputiei ecosystem fences were
279 mapped in 2004 and 2009 by the International Livestock Research Institute (ILRI)
280 and African Wildlife Foundation (AWF) in collaboration with the local communities
281 and local NGO’s using hand-held (GPS, with scientific, technical and logistical
282 support provided by ILRI [4,5,35]. Fences, settlements, roads and other
283 infrastructures were similarly mapped with hand held GPS in Amboseli in 2004-2006
284 [49,50] and in Masai Mara in 1999, 2002 and 2015 [51-54]. A few fences also exist in
285 the ecosystem in Tanzania.

286

287 **Wildlife conservation initiatives and gaps in policies, institutions and markets in**
288 **Kenya and Tanzania**

289 We reviewed official records on contemporary wildlife conservation initiatives and
290 identified important gaps in wildlife policies, institutions and markets in Kenya and
291 Tanzania.

292

293 **Statistical Analysis**

294 Estimates of wildebeest population size for each ecosystem were obtained using
295 Jolly's method II for transects of unequal lengths [55] and related to the year of
296 survey using negative binomial regression models with linear and quadratic
297 polynomial terms and serial autocorrelation in the counts accounted for using the first-
298 order autoregressive model. Selection between the linear and quadratic models was
299 based on the Akaike Information Criterion [56]. The models were fitted using the
300 SAS GLIMMIX procedure [57]. Temporal trends in wildebeest population size were
301 modeled using a semiparametric generalized linear mixed model with a negative
302 binomial error distribution and a log link function in SAS GLIMMIX procedure [33].
303 The percentage change in population size between the start and end dates of the
304 surveys was estimated for each ecosystem. For some ecosystems predicted population
305 size for two to three consecutive surveys were averaged and used to compute the
306 averages to minimize the effect of stochastic noise due to small sample size or areal
307 coverage.

308

309 **Results**

310 **Historic and contemporary migratory routes**

311 The seasonal migration of the white-bearded wildebeest and zebra (*Equus quagga*
312 *burchelli*) from the Serengeti Plains in Tanzania to Masai Mara in Kenya [14,46] is
313 called the southern migration. It differs from the northern migration that involves
314 seasonal movements of wildebeest, zebra and Thomson's gazelle (*Gazella thomsoni*)
315 between the Loita Plains and Masai Mara National Reserve within the Narok County
316 of Kenya [9,10,16,58]. The wildebeest involved in the northern migration form the
317 bulk of the Narok County population.

318

319 The migration ranges, routes and population trends of the Serengeti-Mara wildebeest
320 have been extensively studied (e.g., [59,60], Table S2). After rinderpest killed about
321 95% of this population between 1890 and 1892, it remained low till 1962. The
322 population increased from 263,362 in 1961 to 483,292 in 1967 following veterinary
323 removal of rinderpest in wildebeest in 1962 and again from 1967 to 1.4 million in
324 1977, coincident with an increase in the dry season rainfall [61,62].

325

326 The migration pattern of the Serengeti-Mara wildebeest in the 1940s and 1950s was
327 different from what it is today. Then, wildebeest migrated periodically between the
328 Kenya's Loita Plains and Tanzania [63,64]. Heavy harvesting of wildebeest (plus
329 zebra and other species) in Narok County during World War II to provide meat for
330 labour and prisoners of war and reduce competition with Masai livestock until 1947
331 [64 reduced their population. Even so, wildebeest population on the Loita Plains
332 numbered about 50,000-100,000 individuals prior to 1947 [45]. Thereafter, the

333 population further declined drastically because the Loita Plains were opened up to
334 uncontrolled commercial meat-hunters for a short period after World War II [67].

335 Subsequently, the Mara population (including the Loita Plains) numbered about
336 15000 by 1958 [45] and 17,817 by 1961 [65].

337

338 The Mara wildebeest [45,46,58,66] were formerly more numerous and their
339 distribution extended far beyond their contemporary range in the Mara region of
340 Narok County. But major land use and cover changes have progressively degraded
341 and reduced the historical wildebeest habitats [9,68].

342

343 Wildebeest occupied parts of the Rift Valley extending from the Tanzania border
344 north to Kedong Valley in Kenya and in the early 1900s, to the eastern and southern
345 shores of Lake Naivasha [46, 69-75]. Thus, in 1902, Meinertzhangen [74] recorded
346 wildebeest on the flats east of Lake Naivasha. Moreover, based on annual hunting
347 returns, wildebeest were shot in Naivasha in 1906-07 [70] and in the Rift Valley in
348 1909-10 [71]. The Mosiro Plateau in Narok County was the probable link between the
349 Rift and Serengeti-Mara wildebeests when the Plateau landscape was still open and
350 had tall grass, few gullies and bushes [46]. Livestock overgrazing degraded the
351 plateau making it impassable for wildebeest by early 1960s [46]. Part of this
352 wildebeest population also occupied the centre and west of the Rift Valley, near Mt.
353 Suswa, south of Naivasha in 1909 and 1910 [73]. Their distribution extended to the
354 East Rift Wall, near Kijabe in central Kenya [76]. But, all the wildebeest populations
355 in the northern area of the Rift Valley in Kenya became extinct before 1962 because
356 of hunting and fencing of ranches around Lake Naivasha and in the Rift neighbouring
357 Suswa area [46]. Wildebeest were later re-introduced on the Crescent Island in Lake

358 Naivasha and slowly spread, or were physically moved, to other surrounding areas.

359 Their population increased steeply in Nakuru Conservancy in the Nakuru-Naivasha

360 region of Kenya during 1996-2015 [77]. Wildebeest were also found in several other

361 parts of Kenya in earlier years where they have since been exterminated. In particular,

362 returns of game animals shot on license in 1909-10, show wildebeest were found on

363 the Mau Plateau in Narok County, the Kisii region in Southwestern Kenya, Laikipia

364 and North Uaso Nyiro in Central Kenya, Makindu and Voi in southeastern Kenya

365 [71].

366

367 A small wildebeest population occurs in the Ngorongoro Conservation Area in

368 Tanzania [78,79]. It concentrates in the Crater in the dry season but disperses to areas

369 outside the Crater in the wet season, including the Lake Natron Game Controlled

370 Area. During the early dry season wildebeest sometimes move east from the Serengeti

371 short grass plains into Ngorongoro Crater/Conservation Area and leave at the onset of

372 the rains but a smaller residual population remains in the Crater during the rainy

373 season [46,63]. Wildebeest from the NCA and the Serengeti short grass plains also

374 migrate to the south-eastern part of the LGCA.

375

376 The Athi-Kaputiei, Amboseli, Western Kajiado and Machakos County wildebeest

377 populations were historically part of a single large migratory population that used to

378 range over most of the present day Kajiado County in Kenya until the 1960s before it

379 split up into three rather distinct populations [22,26,35,76]. The western Kajiado

380 population is currently non-migratory. The Athi-Kaputiei wildebeest population uses

381 the Nairobi National Park during the dry season due to its reliable water supply and

382 abundant grass and move to calve on the pastoral lands to the southeast of the park

383 during the wet season [4,5,35,80-83]. The Athi-Kaputiei wildebeest population was
384 centred on the Athi-Kaputiei Plains in the wet season prior to the 1920s. Historically,
385 some Athi-Kaputiei wildebeest may have migrated south to the Amboseli ecosystem
386 [46,67,76]. They intermingled with the then larger Amboseli population centred on
387 the Amboseli Plains north of Kilimanjaro in the wet seasons. Both populations were
388 migratory and moved to water in the hills and woodlands in the dry seasons and
389 returned to the plains in the wet seasons. In very dry periods many wildebeest from
390 both populations moved northeast and south, including into Tanzania [46].

391

392 The Athi-Kaputiei wildebeest moved north, east, and south in the wet season but
393 spent the dry season on the Athi-Kaputiei Plains until at least 1927 [46,67,76] . The
394 Athi-Kaputiei wildebeest population migrated as far north as the Thika River in the
395 dry season but only few went beyond this point [46,67,76]. A resident wildebeest
396 population north of the Thika River and another near Juja, both northeast of Nairobi
397 in Kenya [46,75,76] went extinct. The Athi-Kaputiei wildebeest population also
398 migrated as far north as Muranga (Fort Hall) and the Yatta Plateau, south of the Tana
399 River [63]. De Beaton [84] recorded animal movements from the Nairobi National
400 Park westwards towards the Ngong Hills and to the south. The Nairobi-Mombasa
401 Road and later the park fence bordering this road interrupted the northward migration
402 of wildlife to Nairobi, Ruiru-Thika and Ol Donyo Sapuk in the dry season. When a
403 fence was first erected around Nairobi in the early 1900s, it killed many animals,
404 including wildebeest [85]. A fence constructed in 1967 along the eastern side of the
405 Ngong Hills and South of the Kiserian River and that joined the south-western corner
406 of the Nairobi Park fence, further disrupted the dry-season migration of wildlife to the
407 Ngong Hills [81,86].

408

409 Large areas of the Athi-Kaputiei Plains were ploughed and planted with wheat to
410 contribute to war time food production during World War II. The wheat attracted
411 large wildlife herds, including wildebeest, which were shot as part of crop protection
412 [87]. This population dispersed periodically to the adjoining Machakos County,
413 especially during droughts, but more recently, due to displacement by extreme land
414 use changes and developments in the Athi-Kaputiei Ecosystem [5,33,35,83,88].

415

416 The migration and ranges of the Amboseli and West Kajiado wildebeest populations
417 are described by several authors [22,25,46,63,67,75,76]. Occasional old bulls moved
418 from the Rift near Lake Magadi area in western Kajiado to Nairobi area in the 1920s
419 [76]. Wildlife, especially wildebeest and zebra, were also harvested in large numbers
420 in Kajiado County (Amboseli Ecosystem) during World War II to provide meat for
421 labour and prisoners of war; free meat for the Kamba people because of famine
422 caused by severe drought; and after the end of the war to reduce competition with
423 Masai livestock for forage [64,67].

424

425 In the Tarangire-Manyara Ecosystem, the migratory wildebeest occupy the Tarangire
426 National Park in the dry season but disperse to their wet season ranges and calving
427 grounds on the Simanjiro Plains, the Mkungunero Game Reserve, Lolkisale Game
428 Controlled Area, Manyara Ranch, Lake Manyara National Park and adjacent game
429 controlled areas (used mainly as hunting areas) in the wet season. OIKOS and
430 TANAPA [37] confirmed that nine main migratory routes that Lamprey [38] had
431 identified earlier in the Tarangire-Manyara ecosystem, were still being used during
432 1995-2002.

433

434 Wildebeest migrated from within protected areas in the dry season to dispersal areas
435 outside conservation areas in the wet season in all the ecosystems but the Serengeti-
436 Mara ecosystem where the migration occurred mostly within the protected areas (Fig.
437 2). Wildebeest migration has discontinued altogether in parts of the ecosystems, and
438 reduced along a number of historical routes (Fig. 3).

439

440 -----Fig. 3 about here -----.

441

442 Notably, the decline and discontinuation of migration happened in four out of the five
443 ecosystems where wildebeest migrated outside protected areas. No discontinuation of
444 migration is reported from the Serengeti-Mara ecosystem where wildebeest migrates
445 almost entirely within protected areas. Discontinued or currently less intensively used
446 migration routes overlapped with agricultural and settlement expansion in the Mara
447 and Tarangire-Manyara ecosystems and fences, settlements and roads in the Athi-
448 Kaputiei Plains (Fig. 3). Fig. 3 does not include settlements, which is another main
449 cause of change to the migratory routes in the study ecosystems.

450

451 -----Fig 4 about here-----.

452

453 Movement data ($n = 279,718$ fixes) from the GPS collared wildebeest showed the
454 migration routes during 2010-2013 (Fig. 4). Several features of the wildebeest
455 movements and space use are noteworthy. Wildebeest primarily used habitats outside
456 of the protected areas in the Mara, Athi-Kaputiei and Amboseli ecosystems ($> 87\%$ of

457 the 279,718 fixes). This emphasizes the importance of pastoral lands and community-
458 based conservation to the protection of the three wildebeest populations. In particular,
459 the Loita Plains wildebeest heavily used the wildlife conservancies adjoining the
460 Masai Mara National Reserve to the north. Hence, when both the reserve and
461 conservancies are considered, 73.4% (85,194 of 116,061 fixes) of the Loita Plains
462 wildebeest locations fell within the conservation area boundaries. Further, one
463 wildebeest collared in Loita Plains moved south through the LGCA to the NCA in
464 Tanzania, covering a total of 205.4 km from its initial collaring location (Fig. 4b).
465 This route approximates the historical migration route of the Loita wildebeest up to
466 the 1950s [63]. This reinforces the critical importance of LGCA to Serengeti-Mara,
467 Loita and Ngorongoro wildebeest migrations and to the ecological integrity of the
468 Greater Serengeti-Mara ecosystem.

469
470 The Nairobi-Namanga tarmac road, bisecting the wet season range of the Athi-
471 Kaputiei wildebeest, has split the population into two distinct sub-populations,
472 concentrated on the eastern and western sides of the road (Fig. 4b). Collaring
473 locations and direct field observations showed that no collared wildebeest crossed the
474 tarmac road during the 2010-2013 study period. Lastly, the Amboseli wildebeest
475 population also moved widely, including into the adjoining Longido District in
476 Tanzania, reflecting the historical migration routes for this population [46,76]. One
477 wildebeest collared in the Amboseli Basin travelled 6,197.8 km over 728 days during
478 the study period. Further details on the collared wildebeest movements can be found
479 in Stabach [88].

480

481 **Wildebeest population trends**

482 The Serengeti-Mara wildebeest population grew steadily from 190,000 in 1957
483 following the veterinary eradication of rinderpest in cattle in 1962 [90], until 1977
484 when it stabilized with one noticeable decline during 1993, when a severe drought
485 reduced the population from around 1.2 million to less than 900,000 animals [91] (Fig. 5a). The population has since then recovered and stabilized at around 1.3 million
486 animals [14] though the more recent population size estimates suggest some slight
487 upward trend (Fig. 5a). The estimated population size and standard errors and other
488 details of the aerial surveys for all the eight study ecosystems are provided in S1-S5
489 Datas.

491
492 The Loita Plains wildebeest population declined steadily from about 123,930 animals
493 in 1977-1978 to around 19,650 animals by January 2016 (Fig. 4b), a decrease of
494 80.9%. This decline was highly significant (Table 1). The population of the Serengeti
495 migrants coming to the Mara ecosystem in the dry season (July-October) similarly
496 decreased by 73.4% from 587,500 in July-August 1979 to 157,124 animals in
497 November 2016. The dramatic decline was also evident for the Narok County
498 wildebeest population (Table 1, Fig. 5c, S2 Data).

499
500 The Athi-Kaputiei wildebeest population suffered a 95% decline in numbers from
501 over 26,800 animals in 1977-1978 to less than 10,000 by the mid-1990s and under
502 3,000 animals in 2007-2014. The decline of this population has been much more
503 dramatic in recent decades, leading to a virtual collapse of the migration (Fig. 5d).
504 The catastrophic decline is highly significant (Table 1, S3 Data). A recent 1298%
505 increase in Machakos County population, coincident with the decrease in the Athi-

506 Kaputiei population (Fig. 5e), is not statistically significant likely because of a large
507 variance in the population estimates (Table 1, S4 Data). This strongly suggests that
508 some wildebeest migrated from the Athi-Kaputiei rather than died.

509

510 The migratory wildebeest population in the Amboseli ecosystem also declined by
511 84.5% from about 16,290 animals in 1977-1979 to 2,375 by 2010-2014 (Fig. 5f). The
512 population fluctuated between 16,290 and 20,000 individuals and increased to 33,000-
513 37,000 individuals during 1978-1986 and fell to 16,779 animals by 2007. The
514 population declined to under 5,000 animals in 2010 following a severe drought in
515 2008-2009 (Fig. 5f) and has not recovered ever since. This decline is highly
516 statistically significant (Table 1). The non-migratory wildebeest population in West
517 Kajiado decreased by 44% from 5,700 animals in 1977-1979 to 3200 animals in 2010-
518 2014 but this decrease is not statistically significant likely due to large variances in
519 population size estimates (Table 1, Fig. 5g, S5 Data).

520

521 The Tarangire-Manyara population first increased from an estimated 24,399 animals
522 in 1987 to 48,783 animals in 1990. Thereafter the population fell precipitously to
523 13,603 animals by 2016 without signs of recovery (Fig. 5h). This extreme population
524 decline is statistically significant (Table 1) despite the large variances in the
525 population estimates (S5 Data).

526

527 -----Fig. 5 about here-----

528

529 **Table 1.** Results of the regression of wildebeest population size on year of survey.

530 NDF and DDF are the numerator and denominator degrees of freedom, respectively.

Region	Number of surveys	Intercept	Linear Slope	Quadratic slope	NDF	DDF	F	P >F
Serengeti-Mara	22	-4785.20	4.8075	-0.000120	^a 1	19	39.84	<0.0001
Mara	21	13272	-13.2237	0.0033	^a 1	18	11.40	0.0034
					^b 1	18	11.26	0.0035
Narok County	17	62.966	-0.0261		1	15	7.52	0.0151
Athi-Kaputiei	25	11.68	-0.00024		1	23	18.74	0.0002
Machakos	5	-94.57	0.0511		1	3	1.53	0.3046
Amboseli	21	-15810	15.8951	-0.0023	^a 1	18	13.04	0.0020
				-0.00399	^b 1	18	13.11	0.0020
West Kajiado	18	42.56	-0.01715		1	16	2.39	0.1417
Tarangire	8	156.64	-0.07808		1	5	11.16	0.0205

531 ^aLinear slope, ^bQuadratic slope

532

533 **Discussion**

534 **Wildebeest movements and migratory routes**

535 Animal movement depends on individual fitness and is essential for accessing
536 favoured resources, finding potential mates and escaping deteriorating habitat
537 conditions [92]. As expected, the GPS collared wildebeest moved more, in virtually
538 all measured aspects, in Amboseli, the least productive and least anthropogenically
539 disturbed of the three Kenyan ecosystems, than in the Loita Plains and Athi-Kaputiei.
540 The productivity of Amboseli grasslands has reduced even further in recent years

541 [93,94], apparently forcing wildebeest to move over larger areas in search of food in
542 the dry season [95]. Wildebeest surprisingly moved less in Athi-Kaputiei than in
543 either the Amboseli or Loita Plains even though the Loita Plains had the greatest
544 availability of resources of the three landscapes. This is unexpected even if the
545 wildebeest decline in the Athi-Kaputiei has reduced intraspecific competition and the
546 need to move to locate resources. High livestock density likely heightens interspecific
547 competition with wildebeest for resources and thus could force wildebeest to move
548 more in Athi-Kaputiei. The reduced wildebeest movements in the Athi-Kaputiei
549 landscape therefore reflect its high degree of anthropogenic disturbance and
550 truncation [5], preventing needed further movement [88]. It follows that resource
551 availability and anthropogenic disturbance determine wildebeest movements.
552 Consequently, because wildebeest occur primarily outside protected areas, except in
553 the Serengeti-Mara, controlling the rate and type of anthropogenic change in these
554 areas is crucial to maintaining the long-term viability of their populations and
555 migrations.

556

557 **Wildebeest population declines**

558 Migratory wildebeest population size and their routes declined in all the five
559 ecosystems except the Serengeti-Mara. The declines are related to expansion of
560 agriculture, settlements, fences and roads that progressively occlude wildebeest
561 grazing resources and migratory routes (Table 2). Even though it was not possible to
562 formally test if these processes caused the declines, literature review, interviews and
563 collared wildebeest movements, suggest that they are all important. In all the four
564 ecosystems where they are declining, agricultural encroachment excludes wildebeest
565 from part of their seasonal ranges. Notably, irrigated agriculture encroached the

566 swamps that ring the base of Mt. Kilimanjaro, denying wildebeest access to their
567 critical dry season dispersal areas in Amboseli [24,25,96]. Settlements also interfere
568 with wildebeest movements in the Mara [31,34,52], Tarangire-Manyara [15,18] and
569 Athi-Kaputiei [4,5,35] by blocking their migratory routes and access to resources.
570 Further, although wildebeest avoid anthropogenic disturbances [97], they are attracted
571 to short grass created by livestock grazing outside protected areas on pastoral lands
572 with moderate densities of pastoral settlement and livestock [21,98].

573

574 Land fragmentation through fencing, roads and settlements primarily exclude
575 wildebeest from their grazing ranges in the Athi-Kaputiei ecosystem [5] (Table 2). In
576 Kitengela, a major part of the Athi-Kaputiei Plains adjoining Nairobi National Park,
577 fenced land parcels have spread throughout the range of wildlife and movements of
578 people, livestock, dogs and vehicles harass wildlife [4,5,35]. Fences impede
579 wildebeest movements between the Nairobi Park and the Athi-Kaputiei Plains
580 [4,5,35]. Similarly, the Nairobi-Namanga road has effectively truncated the
581 ecosystem, splitting the Athi-Kaputiei population into two separate sub-populations
582 [89]. The Athi-Kaputiei landscape is also fragmented and degraded by large, un-
583 rehabilitated mines, mining waste, unregulated development, commercial charcoal
584 burning and sand harvesting, all of which restrict wildebeest habitats and obstruct
585 their migratory routes. Invasive weeds are also spreading in the rangelands and at
586 abandoned settlement sites in Athi-Kaputiei, degrading wildebeest habitats
587 [5,35,51,99]. Fences [100,101] are also increasing rapidly in the Mara, including in
588 the Loita Plains, following land subdivision and privatization of land ownership.

589

590 The loss of connectivity restricts the mobility and flexibility of migratory wildebeest,
591 especially during droughts when heavy mortality can result where wildebeest access
592 to water and food is blocked [102-104]. The risk of outbreaks of zoonotic diseases
593 and population declines can also increase if ungulate migrations are curtailed by
594 degraded habitats yet climate change increases the frequency and severity of droughts
595 [105]. Climate change may amplify the frequency of outbreaks of zoonotic diseases
596 by modifying host and vector population characteristics that control pathogen
597 transmission, including concentration in key resource areas, population density,
598 prevalence of infection by zoonotic pathogens, and the pathogen load in individual
599 hosts and vectors [106,107]. Also, calving wildebeest transmit bovine malignant
600 catarrhal fever (BMCF) virus to livestock where the two species co-occur, causing
601 livestock losses [20]. The risk of transmitting the BMCF virus is elevated where
602 habitat loss and degradation force livestock and wildebeest to use the same areas.

603

604 Another leading cause of wildebeest decline is poaching, which removes 6-10% of the
605 Serengeti-Mara wildebeest annually [108,109]. Poaching is also common in the other
606 ecosystems, including the Mara [34] and Athi-Kaputiei [35]. The status and threats
607 facing the five ecosystems with migratory wildebeest populations in East Africa are
608 summarized in Table S2.

609

610 **Table 2.** Summary of the processes likely associated with the declining migratory
611 wildebeest populations and patterns in the East African rangelands.

Processes	Serengeti- Mara		Masai	Athi- Kaputiei	Greater Amboseli	Tarangire- Manyara
	Mara	Mara				

Direct interferences/causes					
Agricultural encroachment	-	+++	+	+++	+++
Fencing	-	++	+++	++	-
Settlements	+	++	+++	++	++
Urbanization	-	+	+++	-	-
Roads & Infrastructural developments	+	++	+++	+	++
Poaching by increasing human populations	++	+	++	+	++
Competition with livestock for forage, water and space	+	+++	+++	+++	+++
Declining drinking water supply and quality	+	++	+++	++	+
Drivers					
Human population increase	+	++	+++	++	+++
Land tenure change	+	++	+++	+++	+
Land subdivision	-	+++	+++	++	++
Settlement policies	++		+++		+++
Wildlife conservation and management policies	+++	+++	+++	+++	+++
Wildlife management institutions	-	+++	+++	++	++
Wildlife markets or benefits to landowners	-	+++	+++	+++	+

612 †+++ High importance; ++ Important; + less importance; - not important. Source: Interviews with
613 resident researchers [4,5,15,18,111].

614

615 Additional factors that adversely affect access of migratory wildebeest to critical
616 habitats, food and water include human population expansion, land subdivision and
617 privatization of land tenure, development of urban centres and intensification of land
618 use following sedentarization of formerly semi-nomadic pastoralists [4,26,31,33-35].

619

620 Why is the Serengeti-Mara wildebeest population stable while the other populations
621 are declining? Moreover, given that the Serengeti-Mara ecosystem protects nearly 1.5
622 million wildebeest, why should we worry about conserving the other smaller
623 wildebeest populations? First, the Serengeti-Mara populations are not declining
624 because over 80% of the wildebeest live in the large and relatively well-protected
625 ecosystem. Second, it is important to conserve the smaller populations in other areas
626 for at least three reasons. a) Some of the other areas support populations of wildebeest
627 belonging to a different subspecies from that found in Serengeti-Mara. b) Migratory
628 wildebeest provide important ecosystem services, even at low densities, such as
629 promoting calf survival among other ungulate species by reducing predation pressure
630 when present in an area [112]. c) Wildebeest migrations are a magnificent spectacle
631 and thus can provide significant tourism revenue opportunities in specific areas.

632

633 **Land-use change and poaching as causes of wildebeest population declines**
634 Land use change, particularly expansion of agriculture, settlements and fences and
635 commercial charcoal production linked to human population growth degrade and
636 reduce wildlife habitats [5,26]. In the Athi-Kaputiei ecosystem, expansion of the
637 neighbouring Nairobi Metropolis, urbanization in the ecosystem plus relatively lower
638 land prices compared with Nairobi, strongly drive land use change [114].
639 Development of new industries, businesses and infrastructure attract more people
640 from Nairobi and elsewhere to the Athi-Kaputiei [4,83]. In Amboseli and Western
641 Kajiado, commercial charcoal production is causing widespread deforestation of
642 wildlife habitats [115].

643

644 Agriculture, particularly large-scale commercial cultivation, is a leading cause of
645 habitat loss for the migratory wildebeest. Previously, mainly outsiders practiced
646 cropped agriculture in the study ecosystems, but the Masai have recently started
647 cultivating next to their settlements [116,117]. Widespread adoption of subsistence
648 agriculture in small plots right around a household's compound can threaten
649 wildebeest populations migrating outside protected areas [118]. Remarkably, nearly
650 500 km² of natural vegetation in the Loita Plains were converted to wheat farms and
651 other uses between 1975 and 1995 [67] and even more has been converted in recent
652 years [119,120]. In Tanzania, people moved into, and cultivated for several years,
653 parts of Game Controlled Areas or Open Areas, such as the LGCA, which had
654 functioned much like game reserves in the past, interfering with wildlife migrations.

655

656 In the Tarangire-Manyara ecosystem, about 710 km² of land was converted from
657 rangelands to farms between 1984 and 2000 [15], cutting-off large portions of forage
658 and dispersal areas and blocking routes traditionally used by migratory wildebeest.
659 Villagization promoted by government settlement policies in Tanzania is another key
660 driver of land conversion to agriculture in the Tarangire-Manyara ecosystem [15] and
661 western Serengeti [14].

662

663 Wildebeest prefer land suitable for agriculture [121] and therefore face a high risk of
664 displacement by agriculture and competition with livestock for space, forage and
665 water in pastoral lands. Such high potential lands tend to generate higher economic
666 returns from cropping than from livestock or conservation [114,119]. Land users are
667 thus likely to opt for cultivation rather than conservation thereby accentuating

668 encroachment of agriculture and wildebeest population declines. But once land is
669 cultivated, it is difficult to restore to its former rangeland status where returns from
670 agriculture overwhelm those from either livestock or wildlife [119]. Even where
671 wildlife tourism benefits are competitive with those from agriculture, the benefits
672 often accrue to the rich so that the poor land owners, who bear the burden of
673 supporting wildlife on their lands, typically receive meagre benefits [122]. This calls
674 for schemes for more equitable sharing of wildlife benefits [116].

675

676 Land tenure change from group ranches to private ownership is another important
677 driver of land use change in Masailand in Kenya [116]. The land sub-divisions and
678 individualization of tenure associated with fencing in Masai Mara, Athi-Kaputiei and
679 Amboseli ecosystems amplify habitat fragmentation and interfere with the migratory
680 wildebeest [4,5,123].

681

682 Poaching is associated with increasing human population size and resource use
683 intensity [108-110]. On commercial wheat farms in the Mara, poaching is very
684 common (R. Lamprey, pers comm), especially far from pastoral settlements, because
685 pastoralists often discourage poaching. Poaching is also common inside the protected
686 areas in the Mara and Serengeti [34,109,110]. In the Athi-Kaputiei, poachers killed
687 many wildebeest by running them up against fences [35].

688 **Ways to make land use compatible with wildlife conservation**

689 Human population explosion, unplanned urbanization, settlements, cultivation and
690 other developments pose unprecedented challenges to conservation and maintenance
691 of migrations as the spaces available for wildlife and their habitats shrink, leading to

692 population declines. It is thus important to conserve spatially extensive migratory
693 systems while balancing human and wildlife needs. In Kenya, wildlife conservancies
694 are expanding conservation areas for wildlife beyond the state-owned parks and
695 reserves onto land owned privately by local communities or individuals who benefit
696 by receiving land rents and job opportunities [34,113].

697

698 It is primarily tourism income that pays for conservancy land leases and management
699 in Kenya. Thus, the success of the common conservancy model in Kenya is
700 contingent upon sustainable wildlife tourism making it worthwhile for landowners to
701 allow conservancies to be set up on their lands. This conservancy model can thus only
702 be viable in areas with low tourism potential if tourism revenue is supplemented with
703 other revenue streams.

704

705 Nevertheless, wildebeest can and do benefit from community-based wildlife
706 conservation endeavours where wildlife conservancies have been established on
707 private and communal rangelands, including in areas of high rainfall [14,25,124,125].
708 By 2015, 178 wildlife or mixed livestock-wildlife conservancies had been established
709 across Kenya [51] and new ones continue to be established on private and communal
710 lands in Masai Mara, Amboseli, Athi-Kaputiei and Machakos (Tables S3 and S4),
711 Naivasha-Nakuru and other parts of Kenya [26,34,77,125,126]. The total area of
712 wildlife conservancies and ranches in Kenya's rangeland counties by 2017 was
713 54,265 km² of which Narok, Kajiado and Machakos counties that support wildebeest
714 populations had set aside 2,219, 2,837 and 463 km², respectively (KWCA,
715 Unpublished data, <https://kwcafrica.com/>).

716 What makes the conservancies so popular with local communities is that they also
717 protect land rights; create jobs; provide income to communities through tourism; and
718 provide increased security for people, livestock and wildlife [51]. Conservancies are
719 crucial for wildlife conservation because all state protected areas cover only about
720 10% of Kenya's land surface (an additional 10.7% is in conservancies, benefiting
721 close to 700,000 people nationally) and 70% of these areas are found in the
722 rangelands of Kenya. Moreover, about 65% of Kenya's wildlife are found outside the
723 protected areas [127]. As limited public land constrains expansion of public protected
724 areas, the private and communal conservancies are crucial for expanding the space for
725 wildlife in Kenya. The conservancies are promoting positive attitudes towards
726 wildlife and restoration of degraded rangelands by regulating livestock grazing,
727 restricting settlements and other developments. They act as buffers for parks and
728 reserves, besides offering increased protection to wildlife, enabling many wildlife
729 species to increase within conservancies [77,126,128].

730

731 Effective wildlife conservation would require permanent conservancies, land
732 purchases or conservation easements on land used by wildlife. In the Kenya wildlife
733 conservancies, landowners typically amalgamate adjacent individual plots to create
734 large, viable game viewing areas. They then broker land lease agreements with a
735 coalition of commercial tourism operators under institutional arrangements modelled
736 in the form of payments for ecosystem services [125]. There is a strong interest in this
737 wildlife conservancy model in Kenya. Thus, starting with only two conservancies in
738 2005-2006 covering 145.76 km², there were eight conservancies covering about 1000
739 km² by 2010 [125] and 10 conservancies by 2016 (Table S3). The Mara conservancies
740 covered 1355 km² by 2018 and are expanding rapidly. The development of the Mara

741 conservancies has helped partially unblock the movements of migratory wildebeest
742 between the Mara Reserve and the Loita Plains.

743

744 In certain areas, such as the Athi-Kaputiei, land owners are paid conservation land
745 lease fees since 2000 to keep land open for use by wildlife and livestock, not building
746 fences and for collecting poachers' snares [35,129-131]. The cost of financing such
747 land leases over large areas year after year would, however, require creating
748 conservancies able to maintain viable conservation enterprises, such as a vibrant
749 tourism industry, to ensure their long-term sustainability. The benefits derived from
750 such enterprises would be an important incentive for the landowners to continue
751 keeping their land open for use by wildlife and desisting from other uses incongruent
752 with conservation. The changes taking place in Athi-Kaputiei are, however, so
753 dramatic and fast that unless these conservation efforts are undertaken immediately,
754 the opportunity to save even the very few remaining and most critical portions of this
755 once magnificent ecosystem, is highly likely to be lost for good.

756

757 In Tanzania, various conservation initiatives have been launched to protect the
758 remaining migratory routes and dispersal ranges beyond the borders of protected
759 areas. These include reducing illegal hunting and livestock grazing in Manyara
760 Ranch, recently converted to a private Conservancy. Provision of artificial water holes
761 in the Manyara Ranch Conservancy keeps migratory wildebeest and zebra in the
762 vicinity of the Conservancy until late in the dry season. On the communal grazing
763 lands, initiatives have been launched to enhance the wildlife benefits going to the
764 local communities. In Simanjiro Plains, hunting companies, tour operators and

765 conservation organizations have teamed up together to pay for conservation land lease
766 fees to community members to refrain from farming or expanding settlements into
767 critical areas of communal grazing lands [132]. Certificate of Customary Right of
768 Occupancy (CCRO) agreements are also being used to protect grazing ranges for
769 wildlife and pastoral livestock, including in areas neighbouring migratory corridors.
770 One such CCRO was established in Selela Village situated north of Manyara and
771 includes an important but narrow corridor [133]. Other initiatives include
772 establishment of Wildlife Management Areas (WMAs) two of which were recently
773 established to the north and west of Tarangire National Park [18]. The WMAs not
774 only protect communal land but also reduce the incentive for poaching by distributing
775 tourism revenue to the local communities. The Tarangire National Park and the
776 Tanzania Wildlife Authority are also supporting community game rangers to intensify
777 anti-poaching patrols in the WMAs and Manyara Ranch Conservancy and among
778 villages in the Simanjiro Plains.

779
780 **Wildlife conservation initiatives and gaps in wildlife policies, institutions and**
781 **markets in Kenya and Tanzania**

782 What else can be done to stop the declines and allow migratory wildebeest access to
783 at least the few remaining critical portions of their former habitats? A significant
784 challenge to wildlife conservation in East Africa remains incoherent government
785 development policies that promote incompatible land uses, such as promoting
786 cultivation in pastoral rangelands occupied by wildlife to combat food insecurity
787 while also promoting wildlife-based tourism in the same areas. Such policies should
788 be harmonised to minimize the adverse impacts on wildlife conservation of
789 incongruent land uses in pastoral rangelands. Another weakness of the wildlife policy

790 in Kenya is that the state owns all wildlife whereas land owners in the rangelands do
791 not have access to or user rights over wildlife. The land owners do not get any
792 compensation for the opportunity cost of supporting wildlife on their private lands nor
793 for wildlife damage to their private property, thus fuelling indifference or hostility
794 towards wildlife. There is also no public institution specifically charged with
795 conserving and managing wildlife on the private lands. Although these shortcomings
796 are well documented [114,134] and have partly been addressed by the Wildlife
797 Conservation and Management Act 2013 [135] and the National Wildlife Strategy
798 [136], the Act should be fully implemented to address these glaring policy,
799 institutional and market deficiencies.

800

801 In Tanzania, several national initiatives are being undertaken to restructure the
802 institutions that manage the wildlife sector in order to contain a spiralling poaching
803 crisis. Key among these is the dissolution of the former Wildlife Division (WD) that
804 used to manage all the Game Reserves and Game Controlled Areas, including
805 overseeing all wildlife in village lands (i.e., WMAs), and its reconstitution as the
806 Tanzania Wildlife Authority (TAWA) in October 2015. TAWA is empowered and
807 better funded compared with its predecessor, the WD, to improve the management of
808 the wildlife areas under its jurisdiction.

809 The second is the re-organization of the entire wildlife sector in the country into para-
810 military style organizations to intensify the fight against run-away poaching in
811 protected and unprotected areas, most especially in game reserves. Because many game
812 reserves and game controlled areas share open borders with national parks, wildlife
813 population declines due to poaching are occurring even inside the national parks. But,
814 to be successful in curbing poaching, these efforts should be accompanied with

815 enhanced economic incentives to communities neighbouring wildlife areas or sharing
816 land with wildlife to discourage poaching and destruction of wildlife habitats. Tanzania
817 is also working on expanding the Serengeti National Park by adding to it about 1500
818 km² from the Loliondo Game Controlled Area to the east and extending the western
819 side of the park to reach the shores of Lake Victoria.

820

821 A major initiative in both Tanzania and Kenya is the development of national policies
822 on wildlife corridors, dispersal areas, buffer zones and migratory routes to promote
823 habitat connectivity [137,138]. Regional initiatives linking the two countries are,
824 however, needed to foster close cooperation between Kenya and Tanzania in
825 conserving the trans-boundary wildebeest migrations and implementing regional and
826 international conservation conventions and treaties. Such initiatives should include
827 harmonization of policies, legal and regulatory frameworks for the conservation of
828 wildlife and other species involved in trans-boundary migrations.

829

830 **Conclusions**

831 Migratory wildebeest populations in four out of five key ecosystems in East Africa
832 are under severe threats and two populations are on their way to total collapse if the
833 trends are left to continue unabated. Such collapse in migratory wildlife population in
834 East Africa has been documented for zebra and Thomson's gazelle populations that
835 used to migrate between Lakes Nakuru and Elementaita and Baringo regions of
836 Kenya [76,77,139] that went extinct because of fences and uncontrolled shooting [85].
837 The migration of the Athi-Kaputiei wildebeest to Nairobi National Park had also
838 virtually collapsed by 2011 [35]. Recent surveys in the park show that the wildebeest

839 involved in this migration remained under 350 animals from 2012 to 2015 [5].

840 Agricultural encroachment, settlements, poaching, roads and fencing are the major

841 proximate threats responsible for the extreme wildebeest losses and degradation of

842 their habitats as they directly kill, displace, or reduce wildebeest access to forage,

843 water and calving areas. The fundamental causes of wildebeest population declines

844 seem to be expanding unplanned land use developments driven by human population

845 growth; poaching, policy, institutional and market deficiencies. Consequently, the

846 Kenyan and Tanzanian governments need to strongly promote and lead the

847 conservation of the remaining key wildebeest habitats, migration corridors and

848 populations to ensure their continued access to grazing resources in these rangelands.

849 More wildlife conservancies or management areas should be established to protect

850 migratory routes or corridors, buffer zones, dispersal areas and calving grounds for

851 the species. Land use and development planning should be enhanced and gaps in

852 wildlife policies, institutions and markets addressed. Where migration occurs across

853 international boundaries, such as in the Serengeti-Mara, Loita Plains and Amboseli

854 ecosystems, wildlife policies, land use plans, conservation and management goals

855 should be harmonized to ensure the long-term survival of migratory species and the

856 sustainability of the rangelands upon which they depend. All areas currently under

857 protection should ideally have binding legal restrictions on future developments to

858 minimize their vulnerability to future changes. The various conservation initiatives

859 should be coordinated spatially and across bureaucratic lines to enhance their

860 effectiveness.

861

862 **Acknowledgements**

863 We thank the Tanzania Wildlife Research Institute (TAWIRI) and the Directorate of
864 Resource Surveys and Remote Sensing of Kenya (DRSRS) for permission to use their
865 aerial survey data. JOO was supported by a grant from the German National Research
866 Foundation (DFG; Grant # OG 83/1-1). MYS was supported by the Pathways to
867 Resilience in Semi-Arid Economies (PRISE, Project # 107643-001). This project has
868 received funding from the European Union's Horizon 2020 research and innovation
869 programme under grant agreement No 641918 through the AfricanBioservices
870 Project. National Science Foundation (NSF) DEB Grant #0919383) supported this
871 work through the project: Wildebeest Forage Acquisition in Fragmented Landscapes
872 under Variable Climates.

873

874 **References**

875 1. Bolger DT, Newmark WD, Morrison TA, Doak DF (2008) The need for integrative
876 approaches to understand and conserve migratory ungulates. *Ecology Letters* 11: 63-
877 77.

878

879 2. Harris G, Thirgood S, Hopcraft JGC, Cromeisig JPG, Berger J (2009) Global decline
880 in aggregated migrations of large terrestrial mammals. *Endangered Species Research*
881 7: 55-76.

882

883 3. Berger J (2004) The Last Mile: How to sustain long-distance migrations in
884 mammals. *Conservation Biology* 18: 320-331.

885

886 4. Reid RS, Gichohi H, Said MY, Nkedianye D, Ongutu JO, Kshatriya M, Kristjanson
887 P, Kifugo SC, Agatsiva JL, Andanje SA, Bagine R (2008) Fragmentation of a peri-

888 urban savanna, Athi-Kaputiei plains, Kenya. In: Fragmentation in Semi-arid and Arid
889 Landscapes;Consequences for Human and Natural Systems (eds KA Galvin, RS Reid,
890 RH Behnke, NT Hobbs), pp. 195-224. Springer.

891

892 **5.** Said MY, Ongutu JO, Kifugo SC, Makui O, Reid RS, de Leeuw J (2016) Effects of
893 extreme land fragmentation on wildlife and livestock population abundance and
894 distribution. *Journal of Nature Conservation* 34: 151-164.

895

896 **6.** Fryxell JM, Greever J, Sinclair ARE (1988) Why are migratory ungulates so
897 abundant? *American Naturalist* 131: 781-98.

898

899 **7.** Hopcraft JGC, Holdo RM, Mwangomo E, Mduma SAR, Thirgood SJ, Borner M,
900 Sinclair ARE (2015) Why are wildebeest the most abundant herbivore in the
901 Serengeti ecosystem? *Serengeti IV: sustaining biodiversity in a coupled human-
902 natural system*, 125.

903

904 **8.** Sinclair ARE (1995) Serengeti past and present. Pp. 3-30 In: *Serengeti II*. Sinclair,
905 ARE Arcese P (Eds). Chicago University Press, Chicago.

906

907 **9.** Ottichilo WK, de Leeuw J, Prins HHT (2001) Population trends of resident
908 wildebeest *Connochaetes taurinus hecki* (Neumann) and factors influencing them in
909 the Masai Mara ecosystem, Kenya. *Biological Conservation* 97: 271-282.

910

911 **10.** Serneels S, Lambin EF (2001). Proximate causes of land-use change in Narok

912 District, Kenya: a spatial statistical model. *Agriculture, Ecosystems Environment* 85:
913 65-81.

914

915 **11.** Wolanski E, Gereta E, Borner M, Mduma SAR (1999) Water, migration and the
916 Serengeti ecosystem. *American Scientist* 87: 523-526.

917

918 **12.** McNaughton SJ (1990) Mineral nutrition and seasonal movements of African
919 migratory ungulates. *Nature* 345: 613-615.

920

921 **13.** Fryxell JM, Sinclair ARE. (1988) Causes and consequences of migration by
922 large herbivores. *Trends in Ecology and Evolution* 9: 237-241.

923

924 **14.** Thirgood S, Mosser A, Tham S, Hopcraft JGC, Mwangomo E, Mlengeya T,
925 Kilewo M, Fryxell J, Sinclair ARE, Borner M (2004) Can Parksprotect migratory
926 ungulates? The case of the Serengeti wildebeest. *Animal Conservation* 7: 113-120.

927

928 **15.** Msoffe FU, Kifugo SC, Said MY, Neselle M, van Gardingen P, Reid RS, Ongutu
929 JO, Herrero M and de Leeuw J (2011) Drivers and impacts of land-use change in the
930 Masai-Steppe of Northern Tanzania; a ecology-socio-political analysis. *Land Use
931 Science* 6: 261-281.

932

933 **16.** Homewood K, Lambin EF, Kariuki A, Kikula I, Kivelia J, Said MY, Serneels S,
934 Thompson M (2001) Long-term changes in Serengeti-Mara wildebeest and land
935 cover: pastoralism, population or policies? *Proceedings of the National Academy of
936 Science* 98: 12544-12549.

937

938 17. Morrison TA, Bolger DT (2012) Wet season range fidelity in a tropical migratory
939 ungulate. *Journal of Animal Ecology* 81: 543-552.

940

941 18. Morrison TA, Link WA, Newmark WD, Foley CA, Bolger DT (2016) Tarangire
942 revisited: Consequences of declining connectivity in a tropical ungulate population.
943 *Biological Conservation* 197: 53-60.

944

945 19. Foley C, Foley L (2015) Wildlife trends and status of migratory corridors in the
946 Tarangire Ecosystem, Ed. TP Wildlife Conservation Society, Arusha.

947

948 20. Bedelian C, Nkedianye, D, Herrero M (2007) Masai perception of the impact and
949 incidence of malignant catarrhal fever (MCF) in southern Kenya. *Preventive
950 Veterinary Medicine* 78: 296-316.

951

952 21. Reid RS (2012) *Savannas of our birth: People, wildlife, and change in East Africa.*
953 Univ of California Press, Berkeley, CA.

954

955 22. Estes RD, East R (2009) Status of the wildebeest (*Connochaetes taurinus*) in
956 the wild 1967-2005. *Wildlife Conservation Society*.

957

958 23. Pennycuick L (1975) Movements of the migratory wildebeest population in the
959 Serengeti area between 1960 and 1973. *African Journal of Ecology* 13: 65-87.

960

961 **24.** Western D (1975) Water availability and its influence on the structure and
962 dynamics of a savannah large mammal community. *African Journal of Ecology* 13:
963 265-286.

964

965 **25.** Western D (1982) Amboseli National Park: Enlisting Landowners to Conserve
966 Migratory Wildlife. *Ambio* 5: 302-305.

967

968 **26.** Ogutu JO, Piepho H-P, Said MY, Kifugo SC (2014) Herbivore Dynamics and
969 Range Contraction in Kajiado County Kenya: Climate and Land Use Changes,
970 Population Pressures, Governance, Policy and Human-wildlife Conflicts. *Open
971 Ecology Journal* 7: 9-31.

972

973 **27.** Lamprey HF (1964) Estimation of large mammal densities, biomass and energy
974 exchange in the Tarangire Game Reserve and the Masai Steppe inTanganyika. *East
975 African Journal of Ecology* 2: 1-46.

976

977 **28.** Borner M (1985) The Increasing Isolation of Tarangire National Park. *Oryx* 19:
978 91-96.

979

980 **29.** Kahurananga J, Silkilwasha, F (1997) The migration of zebra and wildebeest
981 between Tarangire National Park and Simanjiro Plains, northern Tanzania, in 1972
982 and recent trends. *African Journal of Ecology* 35: 179-185.

983

984 **30.** OIKOS (2002) Analysis of Migratory movements of large mammals and their

985 interactions with human activities in the Tarangire area Tanzania, as a contribution
986 and sustainable development strategy: Tarangire-Manyara Conservation Project
987 (TCMP) Final Project Report. Istituto Oikos and University of Milan, Italy in
988 collaboration with Tanzania National Parks.

989

990 **31.** Ogutu JO, Owen-Smith N, Piepho H-P, Said MY (2011) Continuing wildlife
991 population declines and range contraction in the Mara region of Kenya during
992 1977-2009. *Journal of Zoology* 285: 99-109.

993

994 **32.** Veldhuis MP, Ritchie ME, Ogutu JO, Beale C, Estes A, Hopcraft JGC, Morrison
995 TA, Mwakilema W, Ojwang GO, Parr CL, Probert J, Wargute PW, Olff H (2019) The
996 Serengeti squeeze: cross-boundary human impacts compromise an iconic protected
997 ecosystem. *Science* (In Revision).

998

999 **33.** Ogutu JO, Piepho H-P, Said MY, Ojwang GO, Njino LW, Wargute PW, Kifugo
1000 SC (2016) Extreme wildlife declines and concurrent increase in livestock numbers in
1001 Kenya: What are the causes? *PLoS ONE* 10(8): e0133744.
1002 doi:10.1371/journal.pone.0133744.

1003

1004 **34.** Ogutu JO, Piepho H-P, Dublin HT, Bhola N, Reid RS (2009) Dynamics of Mara-
1005 Serengeti ungulates in relation to land use changes. *Journal of Zoology* 278: 1-14.

1006

1007 **35.** Ogutu JO, Owen-Smith N, Piepho H-N, Said MY, Kifugo SC, Reid RS, Gichohi
1008 H, Kahumbu P, Andanje S (2013) Changing WildlifePopulations in Nairobi National

1009 Park and Adjoining Athi-Kaputiei Plains: Collapse of the Migratory Wildebeest. Open
1010 Conservation Biology Journal 7: 11-26.

1011

1012 **36.** Msoffe FU, Said MY, Ongutu JO, Kifugo SC, de Leeuw J, van Gardingen P, Reid
1013 RS (2011) Spatial correlates of land-use changes in the Masai-Steppe of Tanzania:
1014 Implications for conservation and environmental planning. International Journal of
1015 Biodiversity Conservation 3: 280-290.

1016

1017 **37.** Tarangire Conservation Project (TCP) (1997) Analysis of migratory movements
1018 of large mammals and their interactions with human activities in the Tarangire area,
1019 Tanzania, as a contribution to a conservation and sustainable development strategy.
1020 Final report, pp.217. University of Milan and Instituto Oikos, Italy, in collaboration
1021 with Tanzania National Parks (TANAPA).

1022

1023 **38.** Lamprey HF (1963) on the ecological separation of the large mammal species in
1024 the Tarangire Game Reserve, Tanganyika. East African Wildlife Journal 1: 63-92.

1025

1026 **39.** Msoffe F U, Mturi FA, Galanti V, Tosi W, Wauters LA, Tosi G (2007)
1027 Comparing data of different survey methods for sustainable wildlife management in
1028 hunting areas: the case of Tarangire-Manyara ecosystem, northern Tanzania.
1029 European Journal of Wildlife Research 53: 112-124.

1030

1031 **40.** Norton-Griffiths M (1978) Counting Animals. A series of handbooks on
1032 techniques currently used in African Wildlife ecology. Hand book No.1; Second
1033 Edition, African wildlife Foundation, Nairobi, Kenya.

1034

1035 **41.** Grunblatt L, Said MY, Warugute R (1996) National Rangeland Report. Summary

1036 of population estimates of wildlife and livestock. DRSRS. Nairobi, Kenya, Ministry

1037 of Planning and National Development .

1038

1039 **42.** Woodworth B, Farm B (1996) Tanzania Wildlife Conservation Monitoring:

1040 Procedure Manual. Frankfurt Zoological Society, Arusha, Tanzania.

1041

1042 **43.** Stewart DRM, Zaphiro DRP (1963) Biomass and density of wild herbivores in

1043 different East African habitats. *Mammalia* 27: 483-496.

1044

1045 **44.** Pearsall MH (1957) Report on an Ecological Survey of the Serengeti National

1046 Park Tanganyika. *Oryx* 4: 71-136.

1047

1048 **45.** Darling (1960) An ecological reconnaissance of the Mara Plains in Kenya Colony.

1049 Wildlife Monographs 5, 41pp.

1050

1051 **46.** Talbot LM, Talbot MH (1963) The wildebeest in western Masailand, East Africa.

1052 Wildlife Monographs 12, 88p.

1053

1054 **47.** Western D, Nightingale DLM (2003) Environmental change on the vulnerability

1055 of pastoralists to drought: the Masai in Amboseli, Kenya. In: Africa Environmental

1056 Outlook: Human Vulnerability to Environmental Change. Earthprint on behalf of the

1057 United Nations Environmental Program. London.

1058 Available at: http://oceandocs.net/bitstream/1834/436/1/Amboseli_Masai.pdf

1059

1060 48. Africover land classification. Available at <http://www.fao.org/3/a-bd854e.pdf>

1061

1062 49. Okello MM, D'amour DE (2008) Agricultural expansion within Kimanaelectric

1063 fences and implications for natural resource conservation around Amboseli National

1064 Park, Kenya. Journal of Arid Environments 72: 2179-2192.

1065

1066 50. Okello MM (2009) Contraction of wildlife dispersal area and displacement by

1067 human activities in Kimana Group Ranch near Amboseli National Park, Kenya. Open

1068 Conservation Biology Journal 3: 49-56.

1069

1070 51. Reid RS, Kaelo D, Galvin KA, Harmon R (2016) Pastoral Wildlife Conservancies

1071 in Kenya: A Bottom-up Revolution in Conservation, Balancing Livelihoods and

1072 Conservation? Proceedings of the International Rangelands Congress 18-22 July

1073 2016, Saskatoon, Canada.

1074

1075 52. Lamprey RH, Reid RS (2004) Expansion of human settlement in Kenya's Masai

1076 Mara: what future for pastoralism and wildlife?. Journal of Biogeography 31:997-

1077 1032.

1078

1079 53. Ogutu JO, Piepho HP, Reid RS, Rainy ME, Kruska RL, Worden JS, Hobbs NT

1080 (2010) Large herbivore responses to water and settlements in savannas. Ecological

1081 Monographs 80: 241-266.

1082

1083 **54.** Ogutu JO, Reid RS, Piepho H-P, Hobbs NT, Rainy ME, Kruska RL, Nyabenge M
1084 (2014). Large herbivore responses to surface water and land use in an East African
1085 savanna: implications for conservation and human- wildlife conflicts. *Biodiversity*
1086 and Conservation

1087 **55.** Jolly GM (1969) Sampling methods for aerial censuses of wildlife populations.
1088 *East African Agricultural and Forestry Journal* 34(sup1): 46-49.

1090 **56.** Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a
1091 practical information-theoretic approach. Springer Science and Business Media.

1093 **57.** SAS Institute Inc (2018) SAS system for windows. Cary, North Carolina, USA.

1095 **58.** Stelfox JG, Peden DG, Epp H, Hudson RJ, Mbugua SW, Agastiva JL, Amuyunzu
1096 C L (1986) Herbivore Dynamics in Southern Narok, Kenya. *Journal of Wildlife*
1097 Management

1099 **59.** Maddock L (1979) The “migration” and grazing succession. Pp. 104-129 In: ARE
1100 Sinclair, M Norton-Griffiths (1979), University of Chicago Press, Chicago, USA.

1102 **60.** Hopcraft JGC, Morales J, Beyer H, Borner M, Mwangomo E, Sinclair ARE, Olff
1103 H, Haydon D (2014) Competition, predation, and migration: individual choice
1104 patterns of Serengeti migrants captured by hierarchical models. *Ecological*
1105 Monographs

1106 84: 355–372.

1107

1108 **61.** Sinclair ARE (1973) Population increases of buffalo and wildebeest in the
1109 Serengeti. *African Journal of Ecology* 11: 93-107.

1110

1111 **62.** Sinclair ARE, Norton-Griffiths M (1982) Does competition or facilitation regulate
1112 ungulate populations in the Serengeti? A test of hypotheses. *Oecologia*. 53: 364-369.

1113

1114 **63.** Sidney J (1965) The past and present distribution of some African ungulates.
1115 Transactions of the Zoological Society of London 30: 1-396.

1116

1117 **64.** Jenkins P (2001) Wildlife use in World War II. In: An impossible dream, some of
1118 Kenya's last colonial wardens recall the game department in the closing years of the
1119 British Empire, Pages 39-41, eds, I Parker and S Bleazard. Librario Publishing
1120 Limited.

1121

1122 **65.** Talbot LM, Stewart DRM (1964) First wildlife census of the entire Serengeti-
1123 Mara Region, East Africa. *Journal of Wildlife Management* 28: 815-827.

1124

1125 **66.** Talbot LM, Talbot MH (1961) Preliminary observations on the population
1126 dynamics of wildebeest in Narok District, Kenya. *East African Agricultural and
1127 Forestry Journal* 27: 108-116.

1128

1129 **67.** Simon N (1962) Between the sunlight and the Thunder: The Wild Life of Kenya.
1130 London: Collins.

1131

1132 **68.** Serneels S, Lambin EF (2001) Impacts of Land-use changes on the wildebeest

1133 migration in the northern part of the Serengeti-Mara ecosystem. Journal of
1134 Biogeography 28: 391-407.

1135

1136 **69.** Thomson J (1885) Through Masailand. Samson Low, Marston, Searle and
1137 Rivington, London.

1138

1139 **70.** Game Report (GAR) (1907) Game Annual Report 1906-07. Kenya National
1140 Archives.

1141

1142 **71.** Game Report (GAR) (1910) Game Report and lists of game killed 1909-1910.
1143 Kenya National Archives.

1144

1145 **72.** Heller E (1913) The white rhinoceros. Smithsonian Miscellaneous Collections 61:
1146 1-77.

1147

1148 **73.** Roosevelt T, Heller E (1914) Life Histories of African Game Animals. Charles
1149 Scribner's Sons, New York.

1150

1151 **74.** Meinertzhagen R (1957) Kenya Diary (1902-1906). Edinbugh: Oliver and Boyd.

1152

1153 **75.** Stewart DRM, Stewart J (1963) The distribution of some large mammals in
1154 Kenya. Journal of East African Natural History Society 24:1-52.

1155

1156 **76.** Percival AB (1928) A game Ranger on Safari. Nesbit Co Ltd, London.

1157

1158 77. Ogutu JO, Kuloba B, Piepho H-P, Kanga E (2017) Wildlife population dynamics
1159 in human-dominated landscapes under community-based conservation: Example of
1160 Nakuru Wildlife Conservancy, Kenya. *PLoS One* 12(1), e0169730.

1161

1162 78. Estes RD, Atwood JL, Estes AB (2006) Downward trends in Ngorongoro Crater
1163 ungulate populations 1986–2005: Conservation concerns and the need for ecological
1164 research. *Biological Conservation* 131: 106-120.

1165

1166 79. Oates L, Rees PA (2013) The historical ecology of the large mammal populations
1167 of Ngorongoro Crater, Tanzania, east Africa. *Mammal Review* 43: 124-141.

1168

1169 80. Foster JB, Kearney D (1967) Nairobi National Park game census, 1966. *East*
1170 *African Wildlife Journal* 5: 112-120.

1171

1172 81. Foster JB, Coe MJ (1968) The biomass of game animals in Nairobi National Park,
1173 1960-66. *Journal of Zoology* 155: 413-25.

1174

1175 82. Gichohi HW (1996) The Ecology of a truncated ecosystem, The Athi-Kapiti
1176 Plains. PhD Thesis, University of Leicester, Leicester.

1177

1178 83. Gichohi H (2000) Functional relationships between parks and agricultural areas in
1179 East Africa: the case of Nairobi National Park. In: Prins HHT, GrootenhuisJG,
1180 Thomas TD (Eds.) *Wildlife Conservation by Sustainable Use*.

1181

1182 84. De Beaton KP (1949) A warden's diary. *East African Standard*.

1183

1184 85. Percival AB (1924) A Game Ranger's Note Book. Nisbet, London.

1185

1186 86. Hillman JC, Hillman AK (1977) Mortality of wildlife in Nairobi National Park,

1187 during the drought of 1973–1974. *African Journal of Ecology* 15: 1-18.

1188

1189 87. Simon N (2001) New Directions in the 1950s. In: An impossible dream, some of

1190 Kenya's last colonial wardens recall the game department in the closing years of the

1191 British Empire, Pages 83-92, eds, I Parker and S Bleazard. Librario Publishing

1192 Limited. Kinloss, Scotland.

1193

1194 88. Stanley J (2000) The Machakos Wildlife Forum: The story from a woman on the

1195 land. In *Wildlife Conservation by Sustainable Use* (pp. 13-20). Springer Netherlands.

1196

1197 89. Stabach JA (2015) Movement, resource selection, and the physiological stress

1198 response of white-bearded wildebeest. PhD Thesis, Colorado State University,

1199 Fort Collins, USA.

1200

1201 90. Sinclair ARE, Dublin H, Borner M (1985) Population regulation of Serengeti

1202 Wildebeest: a test of the food hypothesis. *Oecologia* 65: 266-268.

1203

1204 91. Mduma SAR, Sinclair ARE, Hilborn R (1999) Food regulates the Serengeti

1205 wildebeest: a 40-year record. *Journal of Animal Ecology* 68: 1101-1122.

1206

1207 92. Hobbs NT, Galvin KA, Stokes CJ, Lackett JM, Ash AJ, Boone RB, Reid RS,
1208 Thornton PK (2008) Fragmentation of rangelands: Implications for humans, animals,
1209 and landscapes. *Global Environmental Change* 18:776-785.

1210

1211 93. Western D (2007) A half a century of habitat change in Amboseli National Park,
1212 Kenya. *African Journal of Ecology* 45: 302-310.

1213

1214 94. Western D (2007) The ecology and changes of the Amboseli ecosystem.
1215 Recommendations for planning and conservation. Amboseli Conservation Program
1216 Report, 53pp. ACC, Nairobi, Kenya.

1217

1218 95. Mose VN, Nguyen-Huu T, Western D, Auger P, Nyandwi C (2013) Modelling the
1219 dynamics of migrations for large herbivore populations in the Amboseli National
1220 Park, Kenya. *Ecological Modelling* 254: 43-49.

1221

1222 96. Andere DK (1981) Wildebeest *Connochaetes taurinus* (Burchell) and its food
1223 supply in Amboseli Basin. *African Journal of Ecology* 19: 239-250.

1224

1225 97. Stabach JA, Wittemyer G, Boone RB, Reid RS, Worden JS (2016) Variation in
1226 habitat selection by white-bearded wildebeest across different degrees of human
1227 disturbance. *Ecosphere* 7(8):e01428. 10.1002/ecs2.1428.

1228

1229 98. Bhola N, Ogutu JO, Said MY, Olff H (2012) Herbivore hotspots in the Mara
1230 Region of Kenya in relation to land use. *Journal of Animal Ecology* 81: 1268-1287.

1231

1232 **99.** Morara MK, MacOpiyo L, Kogi-Makau W (2014) Land use, land cover change in
1233 urban pastoral interface. A case of Kajiado County, Kenya. *Journal of Geography and*
1234 *Regional Planning* 7: 192-202.

1235

1236 **100.** Reid RS, Rainy M, Ongutu JO, Kruska RL, Kimani K, Nyabenge M, McCartney
1237 M, Kshatriya M, Worden J, Ng'ang'a L, Owuor J, Kinoti J, Njuguna E, Wilson CJ,
1238 Lamprey R (2003) People, wildlife and livestock in the Mara ecosystem: The Mara
1239 Count 2002. International Livestock Research Institute, Nairobi, Kenya. Available
1240 online at:
1241 https://www.researchgate.net/profile/Joseph_Ongutu2/publication/266852551_People_wildlife_and_livestock_in_the_Mara_Ecosystem_the_Mara_Count_2002/links/54508a6d0cf249aa53da977c.pdf

1244

1245 **101.** Løvschal M, Bøcher PK, Pilgaard J, Amoke I, Odingo A, Thuo A, Svenning JC
1246 (2017) Fencing bodes a rapid collapse of the unique Greater Mara ecosystem. *Nature*
1247 *Scientific Reports* 7:41450. DOI: 10.1038/srep41450.

1248

1249 **102.** Williamson D, Williamson J (1985) Botswana's fences and the depletion of
1250 Kalahari wildlife. *Oryx* 18: 218-222.

1251

1252 **103.** Tambling CJ, Du Toit JT (2005) Modelling wildebeest population dynamics:
1253 implications of predation and harvesting in a closed system. *Journal of Applied*
1254 *Ecology* 42: 431-441.

1255

1256 104. Western D (2010) The Worst Drought: Tipping point or Turning point. *Swara*

1257 2:16-20.

1258

1259 105. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P

1260 (2008) Global trends in emerging infectious diseases. *Nature* 451: 990–993.

1261

1262 106. Mills JN, Gage KL, Khan AS (2010) Potential influence of climate change on

1263 vector-borne and zoonotic diseases: a review and proposed research plan.

1264 *Environmental Health Perspectives* 118:1507-1514.

1265

1266 107. Bryony AJ, Grace D, Kock R, Alonso S, Rushton J, Said MY, McKeever D,

1267 Mutua F, Young J, McDermott J, Pfeiffer DO (2013) Zoonosis emergence linked to

1268 agricultural intensification and environmental change. *Proceedings of the National*

1269 *Academy of Science* 110(21): 8399-8404. <http://dx.doi.org/10.1073/pnas.1208059110>

1270

1271 108. Mduma SAR, Hilborn R, Sinclair ARE (1998) Limits to exploitation of

1272 Serengeti wildebeest and implications for its management. Pp 243–265 in *Dynamics*

1273 of tropical communities. Newbury DM, Prins, HHT Brown N (Eds). Oxford:

1274 Blackwell Science.

1275

1276 109. Rentsch D, Packer C (2015) The effect of bushmeat consumption on migratory

1277 wildlife in the Serengeti ecosystem, Tanzania. *Oryx* 49: 287-294.

1278

1279 **110.** Knapp EJ (2012) Why poaching pays: a summary of risks and benefits illegal
1280 hunters face in Western Serengeti, Tanzania. *Tropical Conservation Science* 5: 434-
1281 445.

1282

1283 **111.** Msoffe FU, Ongutu JO, Kaaya J, Bedelian C, Said MY, Kifugo SC, Reid RS,
1284 Neselle M, van Gardingen P, Thirgood S (2010) Participatory wildlife surveys in
1285 communal lands: a case study from Simanjiro, Tanzania. *African Journal of Ecology*
1286 48: 727-735.

1287

1288 **112.** Lee DE, Kissui BM, Kiwango YA, Bond ML (2016) Migratory herds of
1289 wildebeests and zebras indirectly affect calf survival of giraffes. *Ecology and*
1290 *Evolution* 6: 8402-8411.

1291

1292 **113.** Bedelian C, Ongutu JO (2017) Trade-offs for climate-resilient pastoral livelihoods
1293 in wildlife conservancies in the Mara ecosystem, Kenya. *Pastoralism* 7: 10.

1294

1295 **114.** Norton-Griffiths M, Said MY (2010) The future for wildlife on Kenya's
1296 rangelands: an economic perspective. *Wild Rangelands: Conserving wildlife while*
1297 *maintaining livestock in semi-arid ecosystems*, p. 367-392.

1298

1299 **115.** KWS 2010 Aerial total count: Amboseli – West Kilimanjaro Natron cross border
1300 landscape, Wet season, March 2010. Available at
1301 <https://www.kws.go.ke/kws/sites/default/files/Amboseli%20West%20Kilimanjaro%20and%20Magadi%20->

1303 %20Natron%20Cross%20Border%20Landscape%20March%202010%20Wet%20Sea
1304 son.pdf.
1305
1306 **116.** Thompson DM, Homewood K (2002) Entrepreneurs, elites and exclusion in
1307 Masailand: trends in wildlife conservation and pastoral development. *Human Ecology*
1308 30: 107-138.
1309
1310 **117.** McCabe JT, Leslie PW, DeLuca L (2010) Adopting cultivation to remain
1311 pastoralists: The diversification of Masai livelihoods in northern Tanzania. *Human*
1312 *Ecology* 38: 321-334.
1313
1314 **118.** Boone RB, Galvin KA, Thornton PK, Swift DM, Coughenour MB (2006)
1315 Cultivation and conservation in Ngorongoro conservation area, Tanzania.
1316 *Human Ecology* 34: 809-828.
1317
1318 **119.** Norton-Griffiths M, Said MY, Serneels S, Kaelo DS, Coughenour M, Lamprey
1319 RH, Thompson DM, Reid RS (2008) Land use economics in the Mara Area of the
1320 Serengeti Ecosystem. Pp. 379-416In: Serengeti III: The future of an ecosystem, Eds
1321 ARE Sinclair, C Packer, SAR Mduma, JM Fryxell. University of Chicago Press.
1322
1323 **120.** Mundia NC, Murayama Y (2009) Analysis of land use/cover changes and animal
1324 population dynamics in a wildlife sanctuary in East Africa. *Remote Sensing* 1: 952-
1325 970.
1326

1327 **121.** Norton-Griffiths M (1996) Property rights and the marginal wildebeest: An
1328 economic analysis of wildlife conservation options in Kenya. *Biodiversity and*
1329 *Conservation* 5: 1557-1577.

1330

1331 **122.** Homewood K (2009) Policy and practice in Kenya rangelands: Impacts on
1332 livelihoods and wildlife. Pages 335-367 in K Homewood, P Kristjanson, PC Trench,
1333 editors. *Staying Masai? Livelihoods, conservation and development in East African*
1334 *rangelands*. Springer, New York.

1335

1336 **123.** Western D, Groom R, Worden J (2009) The impact of subdivision and
1337 sedentarization of pastoral lands on wildlife in an African savanna ecosystem.
1338 *Biological Conservation* 142: 2538-2546.

1339

1340 **124.** Kideghesho JR (2002) Trends in areas adjacent to Tarangire National
1341 Park, Tanzania: What Community-Based land use planning can offer?
1342 Kakakuona[Jan-March]. Ministry of Natural Resources and Tourism, Tanzania.

1343

1344 **125.** Osano PM, Said MY, Leeuw J, Ndiwa N, Kaelo D, Schomers S, Ongutu JO
1345 (2013) Why keep lions instead of livestock? Assessing wildlife tourism-based
1346 payment for ecosystem services involving herders in the Masai Mara, Kenya. *Natural*
1347 *Resources Forum* 37: 242-256.

1348

1349 **126.** Blackburn S, Hopcraft JGC, Ongutu JO, Matthiopoulos J, Frank L (2016)
1350 Human-wildlife conflict, benefit sharing and the survival of lions in pastoralist
1351 community-based conservancies. *Journal of Applied Ecology* 53: 1195-1205.

1352

1353 **127.** Western D, Russell S, Cuthill I (2009) The status of wildlife in protected areas
1354 compared to non-protected areas of Kenya. *PloS One* 4: e6140.

1355

1356 **128.** Dougherty LS (2014) The ecological viability of wildlife conservancies in the
1357 Mara ecosystem. Transfer report to spatial ecology and land use unit, faculty of health
1358 and life sciences, Oxford Brookes University. Unpublished Report.

1359

1360 **129.** Nkedianye D, Radeny M, Kristjanson P, Herrero M (2009) Assessing returns to
1361 land and changing livelihood strategies in Kitengela Pages 115-150 in K Homewood,
1362 P Trench, and P Kristjanson, editors. *Staying Masai? Livelihoods, Conservation and*
1363 *Development in East African Rangelands.* Springer-Verlag, London.

1364

1365 **130.** de Leeuw JM, Said MY, Kifugo S, Ongutu JO, Osano P, de Leeuw J (2014)
1366 Spatial variation in the willingness to accept payments for conservation of a migratory
1367 wildlife corridor in the Athi-Kaputiei Plains, Kenya. *Ecosystem Services* 8: 16-24.

1368

1369 **131.** Matiko D (2014) Wildlife conservation leases are considerable conservation
1370 options outside Protected Areas: The Kitengela-Nairobi National Park Wildlife
1371 Conservation Lease Program. *Journal of Ecosystem and Ecography.* 4:2.
1372 <http://dx.doi.org/10.4172/2157-7625.1000146>.

1373

1374 **132.** Nelson F, Foley C, Foley LS, Leposo A, Loure E, Peterson D, Peterson
1375 MPeterson T, Sachedina H, Williams A (2010) Payments for ecosystem services as a

1376 framework for community-based conservation in Northern Tanzania. Conservation
1377 Biology 24: 78–85.

1378

1379 **133.** Morrison TA, Bolger DT (2014) Connectivity and bottlenecks in a migratory
1380 wildebeest *Connochaetes taurinus* population. Oryx 48: 613-621.

1381

1382 **134.** Norton-Griffiths, M (2000) Wildlife losses in Kenya: An analysis of
1383 conservation policy. Natural Resources Modelling 13: 13-34.

1384

1385 **135.** Republic of Kenya (2013) The Wildlife Conservation and Management Act,
1386 2013. Kenya Gazette Supplement No. 181, Acts No. 47, Sixth Schedule. Nairobi.
1387 Available at: <http://kenyalaw.org/kl/fileadmin/pdfdownloads/Acts/WildlifeConservationandManagement%20Act2013.pdf>. Kenya Gazette
1388 Supplement No. 18/ (Acts No. 47). Republic of Kenya.

1390

1391 **136.** Ministry of Tourism and Wildlife (2018) National Wildlife Strategy 2030.
1392 Govenrment of Kenya Publication, Nairobi.

1393

1394 **137.** Ojwang' GO, Wargute PW, Said MY, Worden JS, Davidson Z, Muruthi P, Kanga
1395 E, Ihwagi F, Okita-Ouma B (2017) Wildlife migratory corridors and dispersal areas:
1396 Kenya rangelands and coastal terrestrial ecosystems. Government of the Republic of
1397 Kenya, Nairobi.

1398

1399 **138.** United Republic of Tanzania (2018) Wildlfie Conservation (Wildlife corridors,
1400 dispersal areas, buffer zones and migratory routes) Regulations 2018. Government
1401 Printer, Dar es Saalam.

1402

1403 **139.** Ongutu J O, Owen-Smith N, Piepho H P, Kuloba B, Edebe J (2012) Dynamics of
1404 ungulates in relation to climatic and land use changes in an insularized African
1405 savanna ecosystem. *Biodiversity Conservation* 21:1033-1053.

1406

1407 **140.** Swynnerton GH (1958) Fauna of the Serengeti National Park. *Mammalia* 22:
1408 435-450.

1409

1410 **141.** Grizmek B, Grizmek M (1960) Serengeti shall not die. Hamish Hamilton, Ltd.
1411 London. 344pp.

1412

1413 **142.** Stewart D RM, Talbot LM (1962) Census of wildlife in the Serengeti, Mara and
1414 Loita Plains. *East African Agricultural and Forestry Journal* 28: 58-60.

1415

1416 **143.** Anderson GD, Talbot, LM (1965) Soil factors affecting the distribution of the
1417 grassland types and their utilisation by wild animals on the Serengeti plains,
1418 Tanganyika. *Journal of Ecology* 53: 33-56.

1419

1420 **144.** Watson RM (1967) The population ecology of the wildebeest (*Connochaetes*
1421 *taurinus albojubatus* Thomas) in the Serengeti. PhD Thesis, Cambridge University.

1422

1423 **145.** Bell R V H (1971) A grazing ecosystem in the Serengeti. *Scientific American*
1424 224: 86-93.

1425

1426 **146.** Kreulen D (1975) Wildebeest habitat selection on the Serengeti Plains, Tanzania,
1427 in relation to Calcium and lactation. *African Journal of Ecology* 13: 297-304.

1428

1429 **147.** McNaughton S J (1976) Serengeti migratory wildebeest: Facilitation of energy
1430 flow by grazing. *Science* 191 (4222): 92-94.

1431

1432 **148.** Hilborn R, ARE Sinclair (1979) A simulation of the wildebeest population,other
1433 ungulates and their predators. Pages 287–309 in ARE Sinclair and MNorton-Griffith,
1434 editors. *Serengeti: dynamics of an ecosystem*. University ofChicago Press, Chicago.

1435

1436 **149.** Sinclair ARE (1979) The eruption of the ruminants. Pp 82–103 In: A R E
1437 Sinclair and M Norton-Griffith, editors. *Serengeti: dynamics of an ecosystem*.
1438 University of Chicago Press, Chicago.

1439

1440 **150.** Sinclair ARE, Norton-Griffiths M (1979) *Serengeti: Dynamics of an ecosystem*.
1441 University of Chicago Press, Chicago, USA.

1442

1443 **151.** Bell RVH (1982) The effect of soil nutrient availability on community structure
1444 in African ecosystems. In: *Ecology of tropical savannahs*, p. 193-216. ed. BJHuntley,
1445 Walker BH. Springer, New York.

1446

1447 **152.** Broten MD, Said MY (1995) Population trends of ungulates in and around
1448 Kenya's Masai Mara Reserve. In: Serengeti II: Dynamics, Management,
1449 and Conservation of an Ecosystem, p. 169-193. ed. ARE Sinclair, P Arcese. Univ. of
1450 Chicago Press, Chicago.

1451

1452 **153.** Fryxell JM (1995) Aggregation and migration by grazing ungulates in relation
1453 to resources and predators. In: Serengeti II. Dynamics, Management, and Conservation
1454 of an Ecosystem, p. 257-273. ed. ARE Sinclair, P Arcese. Univ. of Chicago Press,
1455 Chicago.

1456

1457 **154.** Murray MG (1995) Specific nutrients requirements and migration of wildebeest.
1458 Pp 231-56 In: Serengeti II; dynamics, management and conservation of an ecosystem.
1459 University of Chicago Press, Chicago, USA.

1460

1461 **155.** Wilmshurst JF, Fryxell JM, Farm BP, Sinclair ARE, Henschel CP (1999) Spatial
1462 distribution of Serengeti wildebeest in relation to resources. Canadian Journal of
1463 Zoology 77: 1223-1232.

1464

1465 **156.** Gereta E, Wolanski E, Chiombola EAT (2003) Assessment of the environmental,
1466 social and economic impacts on the Serengeti ecosystem of the developments in the
1467 Mara. River catchment in Kenya. Amala Project Report, 59pp. TANAPA, FZS,
1468 Arusha, Tanzania.

1469

1470

1471 157. Musiega DE, Kazadi SN (2004) Simulating the East African wildebeestmigration
1472 patterns using GIS and remote sensing. African Journal of Ecology 42: 355-62.

1473

1474 158. Boone RB, Thirgood SJ, Hopcraft JGC (2006) Serengeti wildebeest migratory
1475 patterns modeled from rainfall and new vegetation growth. Ecology 87: 1987-94.

1476

1477 159. Sinclair ARE, Mduma SA, Hopcraft JGC, Fryxell J M, Hilborn R A Y, Thirgood
1478 S (2007) Long-Term Ecosystem Dynamics in the Serengeti: Lessons for
1479 Conservation. Conservation Biology 21: 580-590.

1480

1481 160. Holdo R M, Holt R D, Fryxell J M (2009) Grazers, browsers, and fire influence
1482 the extent and spatial pattern of tree cover in the Serengeti. Ecological Applications
1483 19: 95-109.

1484

1485 161. Bhola N, Ongutu J O, Piepho H-P, Said MY, Reid RS, Hobbs NT, Olff H (2012b)
1486 Comparative changes in density and demography of large herbivores in the Masai
1487 Mara Reserve and its surrounding human-pastoral ranches in Kenya. Biodiversity
1488 Conservation 21: 1509-1530.

1489

1490 162. Bedelian C (2014) Saving the Great Migrations: Declining wildebeest in East
1491 Africa? Environmental Development 9: 101-109.

1492

1493

1494 163. Stabach JA, Boone RB, Worden JS, Florant G (2015) Habitat disturbance effects
1495 on the physiological stress response in resident Kenyan white-bearded wildebeest
1496 (*Connochaetes taurinus*). *Biological Conservation* 182:177–186.

1497

1498 164. Ottichilo WK (2000) Wildlife Dynamics: An Analysis of Change in the Masai
1499 Mara Ecosystem of Kenya. PhD Dissertation, ITC, The Netherlands.

1500

1501 165. Sheehan MM (2016) Determining drivers for wildebeest (*Connochaetes*
1502 *taurinus*) distribution in the Masai Mara National Reserve and surrounding Group
1503 Ranches (Doctoral dissertation, Miami University).

1504

1505 166. McCutcheon JT (1910) In Africa. The Bobbs-Merrill Company. Indianapolis,
1506 USA.

1507

1508 167. Foster JB, McLaughlin R (1968) Nairobi National Park game census, 1967.
1509 *EastAfrican Wildlife Journal* 6: 152-54.

1510

1511 168. Casebeer RL, Koss GG (1970) Food habits of wildebeest, zebra, hartebeest and
1512 cattle in Kenya Masailand *African Journal of Ecology* 8: 25-36.

1513

1514 169. Petersen JCB, Casebeer RL (1972) Distribution, population status and group
1515 composition of wildebeest (*Connochaetes taurinus* Burchell) and zebra (*Equus*
1516 *burchelli* Gray) on the Athi-Kapiti plains, Kenya. *Wildlife Management Project*.
1517 UNDP/FAO KEN/71 /526, Project Working Document No. 1.

1518

1519 **170.** Casebeer RL, Mbai HJ (1974) Animai mortality 1973/74. Kajiado District,
1520 FAOProject DP/KEN/71/526. Working Document. Report No. 5.

1521

1522 **171.** Owaga M L (1975) The feeding ecology of wildebeest and zebra in Athi-Kaputei
1523 Plains. African Journal of Ecology 13: 375-83.

1524

1525 **172.** Hillman JC (1979) The biology of the eland (*Taurotragus oryx* Pallas) in the
1526 wild. PhD. University of Nairobi.

1527

1528 **173.** Trzebinski E (1985) The Kenya Pioneers. Cox and Wyman Ltd, Great Britain.

1529

1530 **174.** Gichohi HW (2003) Direct payments as a mechanism for conserving important
1531 wildlife corridor links between Nairobi National Park and its wider ecosystem: The
1532 Wildlife Conservation Lease Program. In Vth World Parks Congress.

1533

1534 **175.** Ego WK, Mbuvi D M, Kibet PFK (2003) Dietary composition of wildebeest
1535 (*Connochaetes taurinus*), kongoni (*Alcephalus buselaphus*) and cattle (*Bos indicus*),
1536 grazing on a common ranch in south-central Kenya. African Journal of Ecology 41:
1537 83-92.

1538

1539 **176.** Imbahale SS, Githaiga J M, Chira RM, Said MY (2008) Resource utilization by
1540 large migratory herbivores of the Athi-Kapiti ecosystem. African Journal of Ecology
1541 46: 43-51.

1542

1543 **177.** Croze H (1978) Aerial surveys undertaken by the Kenya Wildlife Management
1544 Project: meththodoiogies and results. FAO Project DP/KEN/71/526. Working
1545 document. Report No. 16.

1546

1547 **178.** Campbell DJ, Gichohi H, Mwangi A, Chege L (2000) Land Use Conflicts in
1548 Kajiado District, Kenya. *Land Use Policy* 17: 337-48.

1549

1550 **179.** Worden J, Reid RS, Gichohi H (2003) Land-use impacts on large wildlife and
1551 livestock in the swamps of the Greater Amboseli Ecosystem, Kajiado District,
1552 Kenya Lucid Project. International Livestock Research Institute, Nairobi,
1553 Kenya. https://cgspage.cgiar.org/bitstream/handle/10568/1901/Lucid_wp27_part1.pdf?sequence=1.

1555

1556 **180.** Okello M M (2005) Land use changes and human–wildlife conflicts in
1557 the Amboseli Area, Kenya. *Human Dimensions of Wildlife* 10: 19-28.

1558

1559 **181.** Sitati N, Lekishon K, Bakari S, Warinwa F, Mwiu S N, Gichohi N, Mukeka J
1560 (2014). Wildebeest (*Connochaetes taurinus*) Population densities and distribution in
1561 dry and wet season in the Kilimanjaro landscape. *Natural Resources* 5: 810.

1562

1563 **182.** Galanti V, Tosi G, Rossi R, Foley C (2000) The Use of GPS radio-collars to
1564 track elephants (*Loxodonta africana*) in the Tarangire National Park (Tanzania).

1565 *Hystrix* 11: 27-37.

1566

1567 **183.** TAWIRI (2001) Tarangire Ecosystem: Wet Season Systemmatic
1568 ReconnaissanceFlight Count, May 2001. TAWIRI, Arusha, Tanzania.
1569
1570 **184.** Gereta E, Meing'ataki GEO, Mduma SAR, Wolanski E (2004) The role
1571 ofwetlands in wildlife migration in the Tarangire ecosystem, Tanzania. Wetlands
1572 Ecology and Management 12: 285-99.
1573
1574 **185.** Newmark WD (2008) Isolation of African protected areas. Frontiers in Ecology
1575 and the Environment 6:321-8.
1576
1577 **Figure legends**
1578 **Fig 1. Wildebeest migration in the greater Serengeti-Mara ecosystem in East**
1579 **Africa. (Photo credit: ARE Sinclair).**
1580
1581 **Fig 2. Map showing the general extent of Masailand in Kenya and Tanzania and**
1582 **the five study ecosystems with eight populations:** 1 = Serengeti Ecosystem, 2 =
1583 Masai Mara Ecosystem, 3 = Narok County, 4 = Athi-Kaputiei Ecosystem, 5 =
1584 Machakos County, 6 = Greater Amboseli Ecosystem, 7 = West Kajiado and 8 =
1585 Tarangire-Manyara Ecosystem populations. Notes: NCA = Ngorongoro Conservation
1586 Area, MGR = Maswa Game Reserve, SNP =Serengeti National Park, IGR = Ikorongo
1587 Game Reserve, GGR = Grumeti Game Reserve, MMNR = Masai Mara National
1588 Reserve, NNP = Nairobi National Park, ANP = Amboseli National Park, LMNP =
1589 Lake Manyara National Park, LGCA = Lokisale Game Controlled Area, TNP =
1590 Tarangire National Park and MGR* = Mkungunero Game Reserve. Use of each
1591 seasonal area by the study populations is described in the text.

1592 **Fig 3. Map showing the general area occupied by the (a) Greater Serengeti-**
1593 **Mara, b) Athi-Kaputiei, (c) Greater Amboseli and (d) Tarangire-Manyara**
1594 **ecosystems.** For each ecosystem, the status of routes of migratory wildebeest post-
1595 2000 in relation to the distribution of agriculture and fences is highlighted. The
1596 current wildlife conservancies (and wildlife-livestock ranches) are provided for the
1597 Masai Mara, Athi-Kaputiei and Greater Amboseli ecosystems of Kenya. Also shown
1598 are extreme land fragmentation through fences in Athi-Kaputiei and recent emergence
1599 of fences along the eastern and south eastern borders of the Mara Conservancies.
1600
1601 **Fig 4. Movement tracks of GPS collared wildebeest during 2010-2013 (colored**
1602 **lines) in Kenya (A = Loita Plains in Masai Mara Ecosystem, B = Athi-Kaputiei**
1603 **Ecosystem, C = Greater Amboseli Ecosystem).** Protected areas (1 = Masai Mara
1604 National Reserve, 2 = Serengeti National Park in Tanzania, 3 = Nairobi National
1605 Park, 4 Amboseli National Park) are partially obscured.
1606
1607 **Fig 5. Trends in population size of migratory wildebeest populations in a)**
1608 **Serengeti-Mara ecosystem, b) Masai Mara ecosystem, c) Narok County in which**
1609 **Masai Mara is located, d) Athi-Kaputiei ecosystem, e) Machakos County, f)**
1610 **Greater Amboseli ecosystem, g) West Kajiado and h) Tarangire-Manyara**
1611 **ecosystem.**
1612
1613 **Supporting information**
1614 **Table S1. The field data form used to collect information for ground truthing**
1615 **historical information on land use and cover changes in the Tarangire-Manyara**
1616 **ecosystem of Tanzania.** We uploaded the coordinates and their Ids into a Global

1617 Positioning System (GPS) and used them to locate sampling points. We collected
1618 information on the following attributes for each sampling point. (1) Was there
1619 agriculture at the location in 1984, 2000 or 2006-2007? (2) If yes, was agriculture
1620 practiced on small or large scale? (3) Was agriculture irrigated or not? (4) When did
1621 agriculture start? (5) Photographs of the sampling point. (6) Crop types cultivated at
1622 each sampling location. (7) We empirically assessed the change type we had
1623 identified during initial image interpretation in the office and assigned change codes
1624 A, B, C or D described in the table to the observed changes. (8) General comments.

1625

1626 **Supporting information**

1627 **Table S1.**

1628 **Table S2. The five ecosystems with migratory wildebeest populations in East**
1629 **Africa, their current status and earlier studies.**

1630

1631 **Table S3. Wildlife conservancies in Masai Mara, their names, size, number of**
1632 **landowners that pooled land to form the conservancy, tourist camps, tourist**
1633 **beds, rangers and scouts and jobs created by each conservancy and year of**
1634 **establishment.**

1635

1636 **Table S4. Wildlife conservancies or ranches, their names and sizes in Machakos**
1637 **Plains (adjoining the Athi-Kaputiei), Athi-Kaputiei and Greater Amboseli**
1638 **ecosystem.** The total area covered in each ecosystem is 347.0, 40.6 and 1046.5 km² in
1639 the Machakos Plains, Athi-Kaputiei and Greater Amboseli ecosystems, respectively.

1640

1641 **S1 Data. The estimated population size and standard errors and other details of**
1642 **the aerial surveys of wildebeest for the Serengeti-Mara (1957-2012) and**
1643 **Tarangire-Manyara (1987-2016) ecosystems.**

1644

1645 **S2 Data. The estimated population size and standard errors and other details of**
1646 **the aerial surveys of wildebeest for the Masai Mara Ecosystem (1977-2016)**
1647 **ecosystems.**

1648

1649 **S3 Data. The estimated population size and standard errors and other details of**
1650 **the aerial surveys of wildebeest for the Athi-Kaputiei Ecosystem (1977-2014).**

1651

1652 **S4 Data. The estimated population size and standard errors and other details of**
1653 **the aerial surveys of wildebeest for the Machakos County (1977-2015).**

1654

1655 **S5 Data. The estimated population size and standard errors and other details of**
1656 **the aerial surveys of wildebeest for the Greater Amboseli (1977-2014) and**
1657 **Western Kajiado (1977-2014) ecosystems.**

bioRxiv preprint doi: <https://doi.org/10.1101/546747>; this version posted February 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

bioRxiv preprint doi: <https://doi.org/10.1101/546747>; this version posted February 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

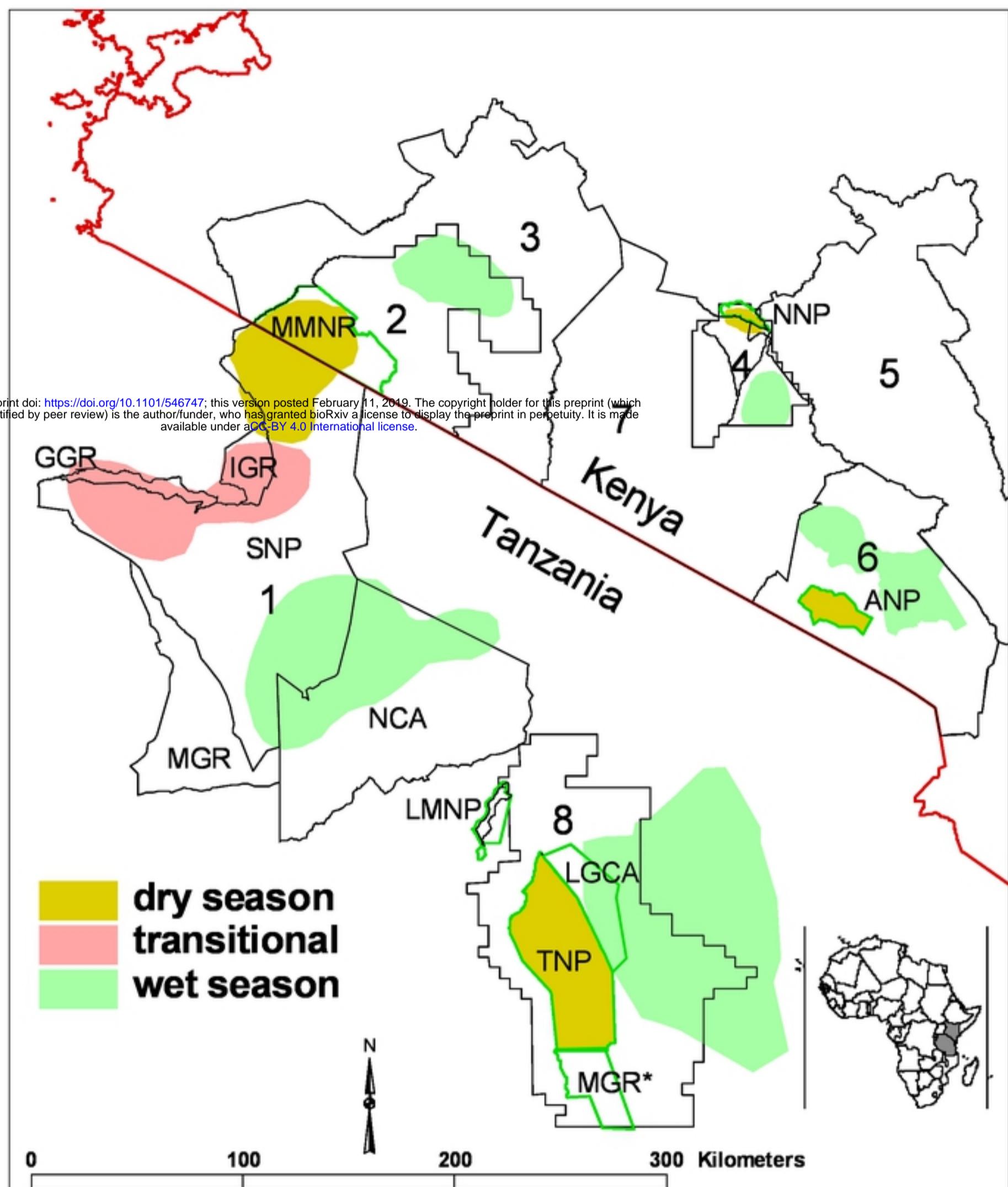


Fig2

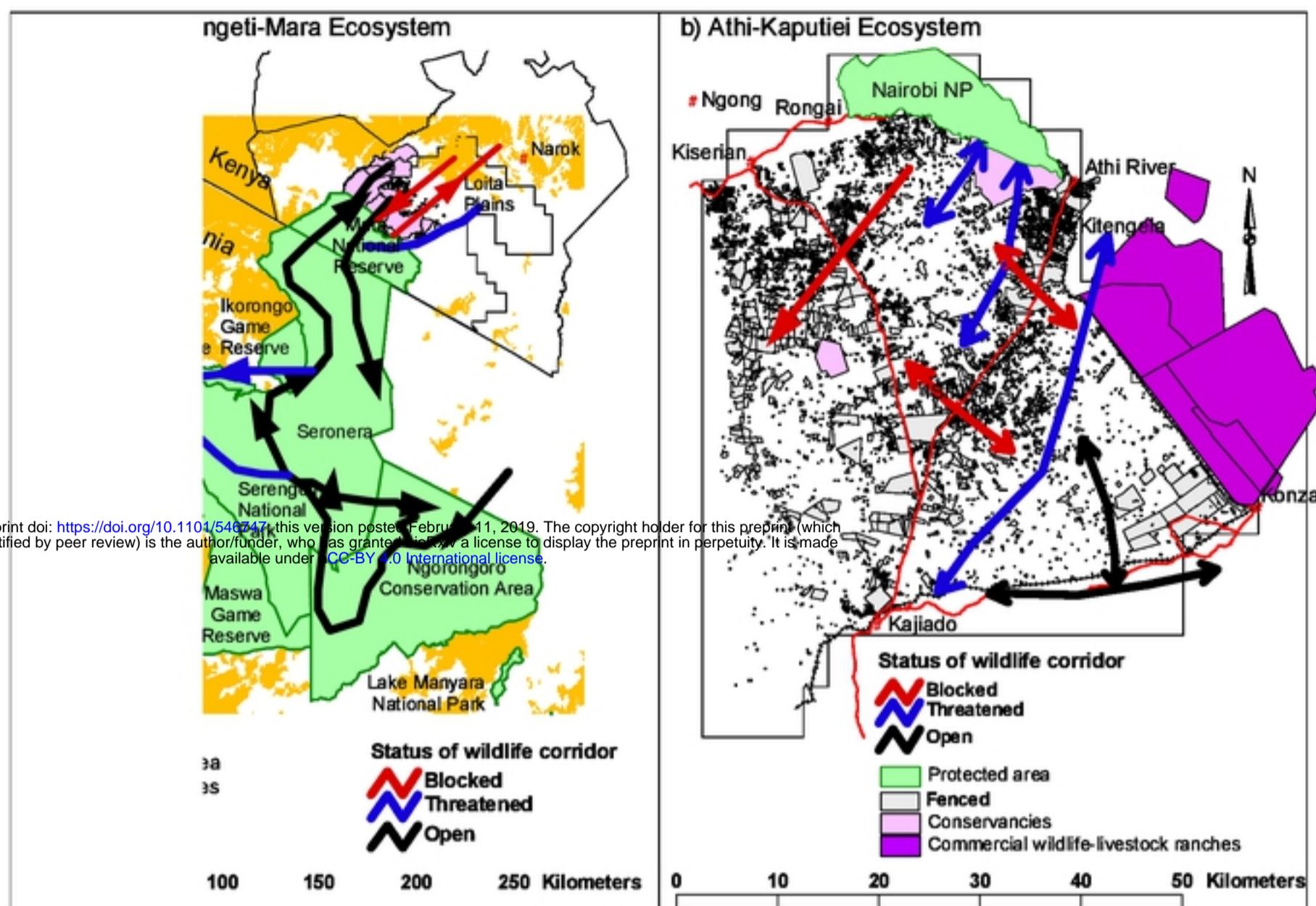


Fig3

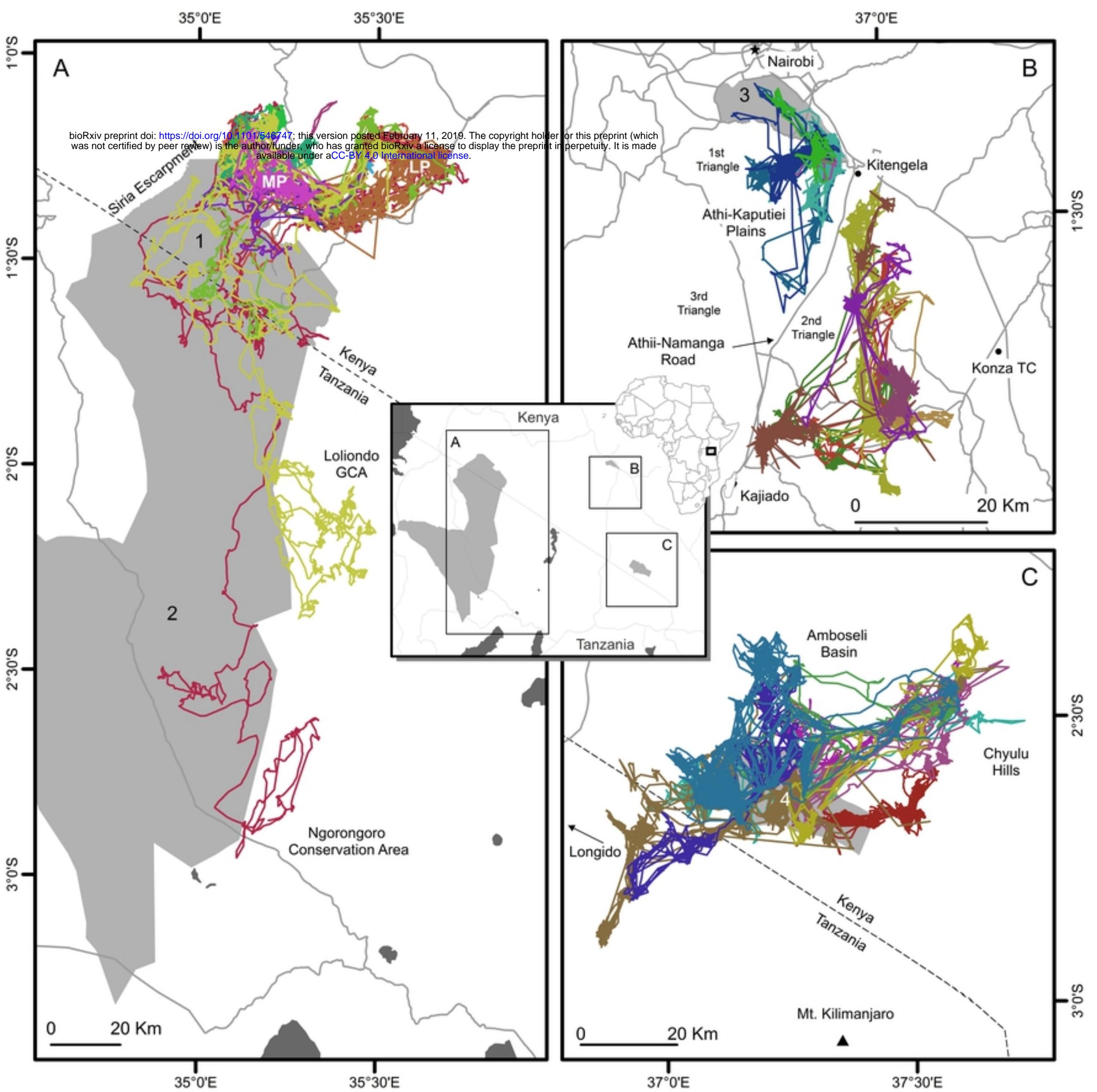


Fig4

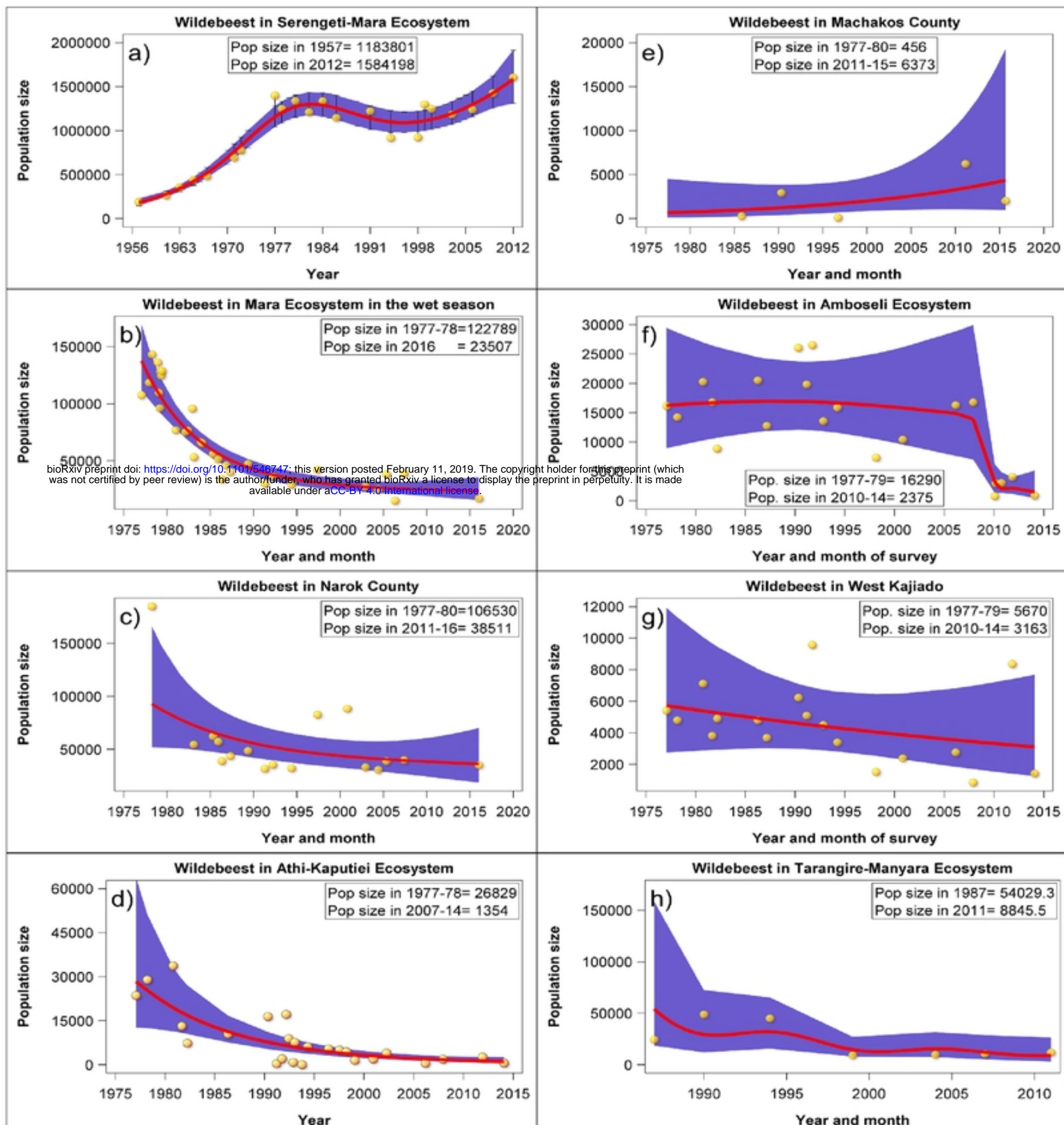


Fig5