

1 Asymmetric post-translational modifications regulate the intracellular distribution 2 of unstimulated STAT3 dimers

3 Beatriz Cardoso^{1#}, Ricardo Letra-Vilela^{1#}, Catarina Silva-Almeida¹, Ana Maia Rocha¹,
4 Fernanda Murtinheira¹, Carmen Rodriguez², Vanesa Martin² and Federico Herrera^{1*}

5

⁶ ¹Cell Structure and Dynamics Laboratory, Instituto de Tecnologia Quimica e Biologica
⁷ (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal.

8 ²Instituto Universitario de Oncología del Principado de Asturias (IUOPA) and
9 Departamento de Morfología y Biología Celular, Facultad de Medicina, c/Julian
10 Claveria, 33006 Oviedo, University of Oviedo, Spain

11 # Equal contribution

12 * To whom correspondence should be addressed:

13 Federico Herrera, PhD. Cell Structure and Dynamics Laboratory. Instituto de
14 Tecnologia Química e Biológica (ITQB-NOVA). Av. da República, Estação
15 Agronómica Nacional, 2781-901 Oeiras, Portugal. Phone: +(351) 21 446 9300; E-mail:
16 fherrera@itqb.unl.pt

17 **Running title:** Asymmetric PTMs regulate latent STAT3 dimer localization

18 Key words: STAT3, bimolecular fluorescence complementation, dimerization, post-
19 translational modifications, acetylation

20 **Abbreviations:** BiFC, bimolecular fluorescence complementation; PTMs, post-
21 translational modifications

Contribution: BC is responsible for most microscopy studies, and RV for cloning, mutagenesis and flow cytometry studies, as well as part of microscopy analyses. CSA and AMR are responsible for the first optimization experiments with the BiFC system and LIF experiments, a small part of which are shown in Suppl. Fig. 1. FM contributed to the microscopy, flow cytometry and immunoblotting at different stages of the project. CR and VM contributed to the analysis, presentation and interpretation of data. FH had the original idea, designed the experiments, arranged the final figures and analyzed the data, coordinated the project and wrote the manuscript.

30 **Conflicts of Interest:** The authors declare no potential conflicts of interest.

31 Abstract

32 Signal Transducer and Activator of Transcription 3 (STAT3) is a ubiquitous and
33 pleiotropic transcription factor that plays essential roles in normal development,
34 immunity, response to tissue damage and cancer. We have developed a Venus-STAT3
35 bimolecular fluorescence complementation (BiFC) assay that allows the visualization
36 and study of STAT3 dimerization and protein-protein interactions in living cells.
37 Inactivating mutations on residues susceptible to post-translational modifications
38 (K49R, K140R, K685R, Y705F and S727A) changed significantly the intracellular
39 distribution of unstimulated STAT3 dimers when the dimers were formed by STAT3
40 molecules that carried different mutations. Our results indicate that asymmetric post-
41 translational modifications on STAT3 dimers could constitute a new level of regulation
42 of STAT3 signaling.

43

44 **Significance**

45 The Signal Transducer and Activator of Transcription 3 (STAT3) transcription
46 factor plays key roles in development, immunity, cancer or response to stress or
47 damage. All previous studies on STAT3 dimerization work on a homogenous pool of
48 STAT3 molecules, where all STAT3 molecules are equally modified (i.e. "symmetric").
49 However, this is highly unlikely in a complex intracellular environment, as post-
50 translational modifications do not necessarily occur with complete efficiency or
51 simultaneously. We demonstrate that asymmetric post-translational modifications
52 change the intracellular distribution of STAT3 dimers more strikingly than symmetric
53 ones. This could mean a new level of regulation of STAT3 activity, and therefore a new
54 possible therapeutic target. Our results could be highly relevant for other protein
55 complexes regulated by post-translational modifications beyond STAT3.

56

57 **\bodyIntroduction**

58 The Signal transducer and activator of transcription 3 (STAT3) is a conserved
59 transcription factor that plays key roles in development, immunity, response to injury
60 and cancer (1,2). STAT3 homodimerization, post-translational modification (PTM) and
61 intracellular location are key events in its biological functions. STAT3 is canonically
62 activated by phosphorylation at Y705 upon stimulation with a variety of cytokines and
63 growth factors. However, unstimulated STAT3 also dimerizes, is found in the nucleus,
64 binds to DNA and controls the transcription of a specific set of genes, different from
65 phosphorylated STAT3 (1–5). STAT3 can be also found in the mitochondria, where it is
66 necessary for normal activity of the electron transport chain (6,7). This function is
67 independent of its activity as a transcription factor and Y705 phosphorylation, but
68 dependent on S727 phosphorylation (1,6,7). Other PTMs can regulate the behavior and
69 function of STAT3, such as acetylation at K49 or K685 (3,8,9) or dimethylation at K49
70 or K140 (10,11). Although dimethylation of the K49 or K140 residues is induced by
71 stimulation with cytokines and is favored by STAT3 phosphorylation, there is basal
72 K49 (but not K140) dimethylation in unstimulated STAT3 (10), and the same happens
73 with STAT3 acetylation (8,9). Literature on STAT3 generally assumes that STAT3
74 homodimers are formed by two identically modified molecules. However, this is highly
75 unlikely in a complex intracellular context, as PTMs do not occur in all the pool of
76 STAT3 molecules at the same time or with the same efficiency. Here, we aimed at
77 determining the relative contribution of residues K49, K140, K685, Y705 and S727 to
78 the dimerization and intracellular distribution of STAT3 homodimers.

79 **Material and Methods**

80 We developed a suit of plasmids to study STAT3 homodimerization in living cells,
81 based on bimolecular fluorescence complementation (BiFC)(12). Briefly, the cDNA
82 sequence of STAT3-alpha was fused to the sequence of two complementary, non-
83 fluorescent fragments of the Venus protein (Venus 1, amino acids 1-157; and Venus 2,
84 amino acids 158-238)(Fig. 1A), and inserted in a pcDNA 3.3 TOPO backbone
85 (Invitrogen). When STAT3 dimerizes, the Venus fragments are brought together and
86 reconstitute the fluorophore, the fluorescence being proportional to the amount of
87 dimers (Fig. 1A). Deletion mutants lacking the C-terminus (DelCT) were produced by
88 PCR-mediated subcloning using full-length Venus-STAT3 BiFC constructs as
89 templates. The original lysine (K) residues on positions 49, 140 and 685 were replaced
90 by arginine (R) residues, the tyrosine (Y) residue on position 705 by phenylalanine (F)

91 and the serine (S) residue on position 727 by alanine (A)(Fig. 1A). Supplementary
92 Table I shows the primers used for cloning and mutagenesis were. Detailed methods for
93 site-directed mutagenesis, cell culture and transfection, fluorescence microscopy, flow
94 cytometry and immunoblotting were described elsewhere (12). All BiFC constructs
95 were deposited in Addgene (<https://www.addgene.org/>). HeLa human cervix
96 adenocarcinoma cells and HEK293 human embryonic kidney cells were acquired from
97 ATCC (references CRM-CCL-2 and CRL-1573, respectively), Leukemia inhibitory
98 factor (LIF) from R&D systems (MN, USA), and Stattic from Selleckchem (TX, USA).

99
100 **Results**

101 Transfection of HEK293 or HeLa cells with the wild-type (WT) pair of Venus-
102 STAT3 BiFC constructs led to successful expression of the chimeric proteins V1-
103 STAT3 and V2-STAT3 (Figs. 1B and 1C, Suppl. Fig. 1). Fluorescence was primarily
104 cytoplasmic in both cell lines, with low but visible nuclear signal (Fig. 1C, Suppl. Fig.
105 1B). Incubation with Leukemia Inhibitory Factor (LIF, 100 ng/ml) induced STAT3
106 phosphorylation and translocation to the nucleus in HEK293 and HeLa cells (Suppl.
107 Fig. 1B-C), but it did not enhance STAT3 dimerization (Fig. 1B, Suppl. Fig. 1D).
108 Incubation with STAT3 inhibitor Stattic (5 μ M) or removal of the C-terminus
109 containing the SH2 domain partially prevented STAT3 dimerization (Fig. 1B),
110 consistent with previous reports (13,14). On the other hand, single or double
111 Y705F/S727A phosphoresistant mutants did not decrease fluorescence (Fig. 1B). These
112 results support relevant evidence indicating that STAT3 dimerization is actually
113 independent of phosphorylation (1,5,14). The behavior of the Venus-STAT3 BiFC
114 system is therefore consistent with previous reports for tagged STAT3.

115 In order to analyze the intracellular location of unstimulated STAT3 homodimers,
116 we classified cells qualitatively in three categories that are mutually exclusive (their
117 sum is 100% of cells), according to the relative intensity and location of the
118 fluorescence signal (Fig. 1C-1D): 1) predominantly in the cytoplasm (e.g. WT pair), 2)
119 predominantly in the nucleus (e.g. upon LIF induction, Suppl. Fig. 1B), or 3)
120 homogeneously distributed through nucleus and cytoplasm (e.g. Y705F pair). We also
121 determined the percentage of cells with mitochondrial signal or intracellular inclusions
122 (Suppl. Fig. 2). Although changes in patterns of STAT3 dimer distribution were
123 observed in several symmetric BiFC pairs, only Y705F and S727A pairs induced

124 significant increases in the percentage of cells with homogeneous nucleocytoplasmic
125 fluorescence or inclusions, respectively (Fig. 1D).

126 We made use of the unique properties of our BiFC system to determine the relative
127 contribution of each residue to the dimerization and intracellular distribution of
128 unstimulated STAT3 dimers. We combined all possible inactivating PTM mutations
129 with each other, but no combination had a consistent effect on STAT3 dimerization as
130 determined by flow cytometry (Suppl. Fig. 3). However, the intracellular distribution of
131 STAT3 homodimers was significantly altered by specific combinations of STAT3
132 molecules (Fig. 2A). Unlike the K49R symmetric pair, K49R asymmetric combinations
133 dominantly induced an increase in cells with homogeneous nucleocytoplasmic
134 fluorescence at the expense of cytoplasmic location (Fig. 2A), similar to the Y705F
135 symmetric pair. K140R- or K685R-containing pairs showed some tendency to shift
136 cytoplasmic location towards nucleus, but only the K140R+S727A combination
137 achieved significance. This phenotype was almost identical to the Y705F+S727A
138 asymmetric pair (Fig. 2A).

139 We then pooled and analyzed all results according to the number and type of PTM
140 mutations present in the each BiFC pair. Combinations carrying any one (asymmetric)
141 or two K-R substitutions (symmetric or asymmetric) significantly increased
142 mitochondrial translocation, while decreasing the percentage of cells with STAT3
143 dimers predominantly in the cytoplasm (Fig. 2B). Asymmetric combinations of one K-R
144 substitution and one phosphoresistant mutant also increased nuclear translocation, but
145 only 2xK-R combinations increased homogeneous nucleocytoplasmic distribution.
146 Combinations carrying any two phosphoresistant mutations (symmetric or asymmetric)
147 had no significant effect on cellular distribution of STAT3 homodimers (Fig. 2B).
148 These results indicate that specific asymmetric PTMs on STAT3 dimers can prevent
149 their nuclear import/export. This was later confirmed by pooling the data according to
150 whether the STAT3 pair was symmetric or asymmetric in their PTM mutations (Fig.
151 2C). We found that only asymmetric PTM mutant combinations increased
152 nucleocytoplasmic or nuclear distribution at the expense of decreasing cytoplasmic
153 localization of STAT3 homodimers. Asymmetric combinations were also sufficient to
154 produce an increase in mitochondrial localization of STAT3 dimers (Fig. 1C).

155 **Discussion**

156 Our results indicate that asymmetric PTMs could constitute a new level of
157 regulation of unstimulated STAT3 behavior and function. Most STAT3 molecules are
158 not phosphorylated in the absence of extracellular stimuli, and this proportion is
159 reversed shortly after cytokines bind to their corresponding membrane receptors (Suppl.
160 Fig. 1C). However, cells often show small amounts of phosphorylated STAT3 in resting
161 state (Suppl. Fig. 1C) and, conversely, cytokine-stimulated STAT3 induces the *de novo*
162 transcription of new STAT3 molecules that are not necessarily phosphorylated (1,2).
163 This indicates that unphosphorylated and phosphorylated STAT3 should coexist at
164 similar levels in many situations, and the literature presents evidence that this could be
165 equally true for other STAT3 PTMs induced by cytokines (8-10).

166 To the best of our knowledge, there is no direct empirical evidence in the literature
167 showing that asymmetric STAT3 dimers actually happen in living cells, and such
168 demonstration would be currently extremely difficult from a technical point of view,
169 even *in vitro*. Previous studies most often rely on systems that do not differentiate
170 between monomers and dimers (2,3,6-11), and/or that produce a single population of
171 STAT3 molecules, either mutated or normal (5,14,15). And yet, in the crowded and
172 diverse intracellular environment, the probability for two identical STAT3 molecules to
173 form a dimer (or for a dimer to be modified in both molecules simultaneously and in the
174 same residues) should be low, although it could certainly be enhanced by either total
175 absence or presence of stimuli. Our results point in this exciting direction, and open a
176 series of interesting questions. If asymmetric STAT3 dimers actually happen, do they
177 regulate specific sets of genes? Do they enable gradation of STAT3 transcriptional or
178 mitochondrial activities? And if they do not happen, how do cells manage to achieve
179 perfectly symmetrical STAT3 dimers with such high efficiency? Given the essential
180 roles of STAT3 in development, immunity, tissue stress and cancer, addressing these
181 questions could have important implications for the diagnosis, treatment and
182 understanding of a wide spectrum of human pathologies.

183 **Acknowledgements**

184 The authors thank the Advanced Imaging Unit from Gulbenkian Science Institute
185 and Dr. Sixto Herrera for support with bioimaging and flow cytometry, and statistics,
186 respectively. FH was supported by Project LISBOA-01-0145-FEDER-007660 (Cellular
187 Structural and Molecular Microbiology) funded by FEDER funds through
188 COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI)

189 and by national funds through Fundação para a Ciência e Tecnologia (FCT, Ref.
190 IF/00094/2013/CP1173/CT0005 and PTDC/MED-NEU/31417/2017). RLV and FM
191 were supported by fellowships from FCT (Refs. PD/BD/128163/2016 and
192 SFRH/BD/133220/2017, respectively).

193

194 **References**

- 195 1. Srivastava J, DiGiovanni J. Non-canonical Stat3 signaling in cancer. *Mol Carcinog.*
196 2016 Dec;55(12):1889–98.
- 197 2. Yang J, Chatterjee-Kishore M, Staugaitis SM, Nguyen H, Schlessinger K, Levy DE,
198 et al. Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional
199 regulation. *Cancer Res.* 2005 Feb 1;65(3):939-47.
- 200 3. Dasgupta M, Unal H, Willard B, Yang J, Karnik SS, Stark GR. Critical Role for
201 Lysine 685 in Gene Expression Mediated by Transcription Factor
202 Unphosphorylated STAT3. *J Biol Chem.* 2014 Oct;289(44):30763–71.
- 203 4. Yang J, Stark GR. Roles of unphosphorylated STATs in signaling. *Cell Res.* 2008
204 Apr;18(4):443-51.
- 205 5. Schröder M, Kroeger KM, Volk HD, Eidne KA, Grütz G. Preassociation of
206 nonactivated STAT3 molecules demonstrated in living cells using
207 bioluminescence resonance energy transfer: a new model of STAT activation? *J*
208 *Leukoc Biol.* 2004 May;75(5):792-7.
- 209 6. Wegrzyn J, Potla R, Chwae YJ, Sepuri NBV, Zhang Q, Koeck T, et al. Function of
210 mitochondrial Stat3 in cellular respiration. *Science.* 2009 Feb 6;323(5915):793-7.
- 211 7. Zhang Q, Raje V, Yakovlev VA, Yacoub A, Szczepanek K, Meier J, et al.
212 Mitochondrial localized Stat3 promotes breast cancer growth via phosphorylation
213 of serine 727. *J Biol Chem.* 2013 Oct 25;288(43):31280-8.
- 214 8. Kang HJ, Yi YW, Hou S-J, Kim HJ, Kong Y, Bae I, et al. Disruption of STAT3-
215 DNMT1 interaction by SH-I-14 induces re-expression of tumor suppressor genes
216 and inhibits growth of triple-negative breast tumor. *Oncotarget.* 2015 May
217 9;8(48):83457-83468.
- 218 9. Ray S, Boldogh I, Brasier AR. STAT3 NH2-terminal acetylation is activated by the
219 hepatic acute-phase response and required for IL-6 induction of angiotensinogen.
220 *Gastroenterology.* 2005 Nov;129(5):1616-32.
- 221 10. Dasgupta M, Dermawan JKT, Willard B, Stark GR. STAT3-driven transcription
222 depends upon the dimethylation of K49 by EZH2. *Proc Natl Acad Sci.* 2015

223 Mar;112(13):3985–90.

224 11. Yang J, Huang J, Dasgupta M, Sears N, Miyagi M, Wang B, et al. Reversible
225 methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc
226 Natl Acad Sci U S A. 2010 Dec 14;107(50):21499-504.

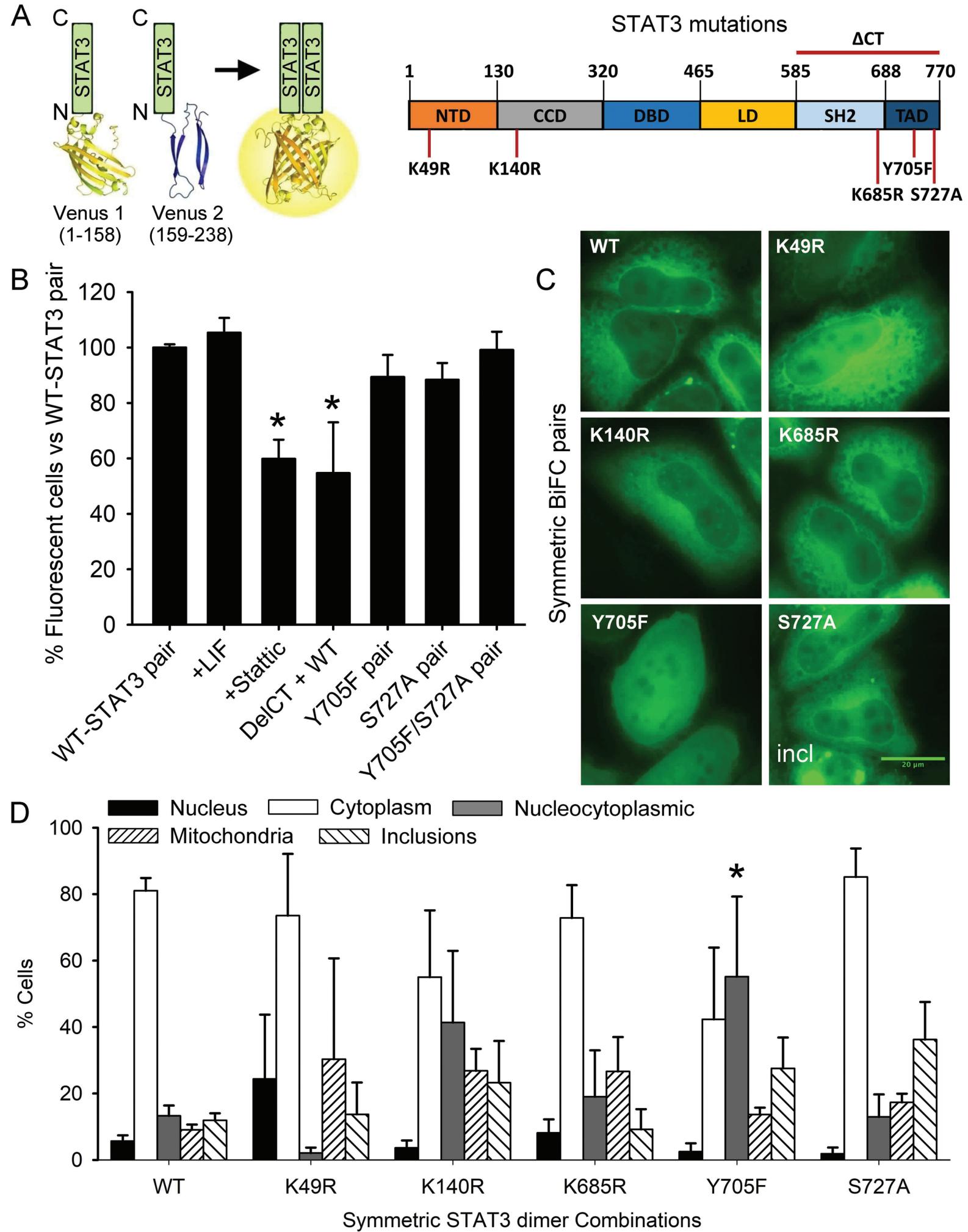
227 12. Branco-Santos J, Herrera F, Poças GM, Pires-Afonso Y, Giorgini F, Domingos PM,
228 et al. Protein phosphatase 1 regulates huntingtin exon 1 aggregation and toxicity.
229 Hum Mol Genet. 2017 Oct 1;26(19):3763-3775.

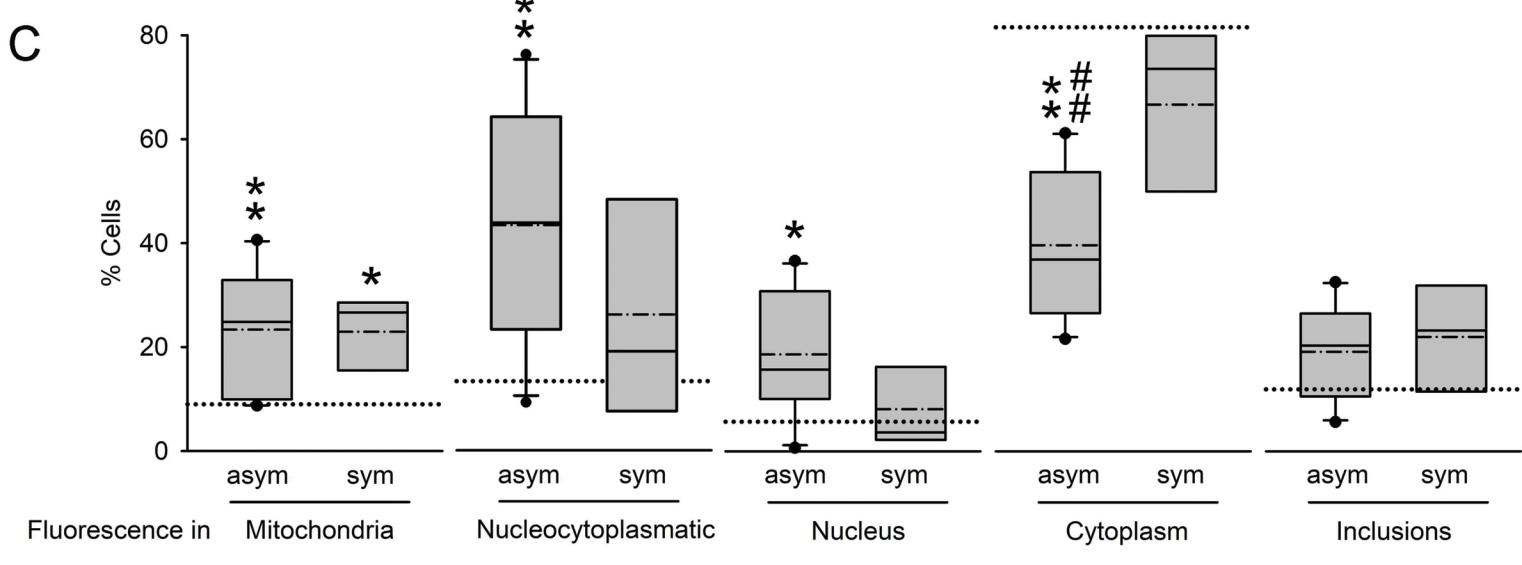
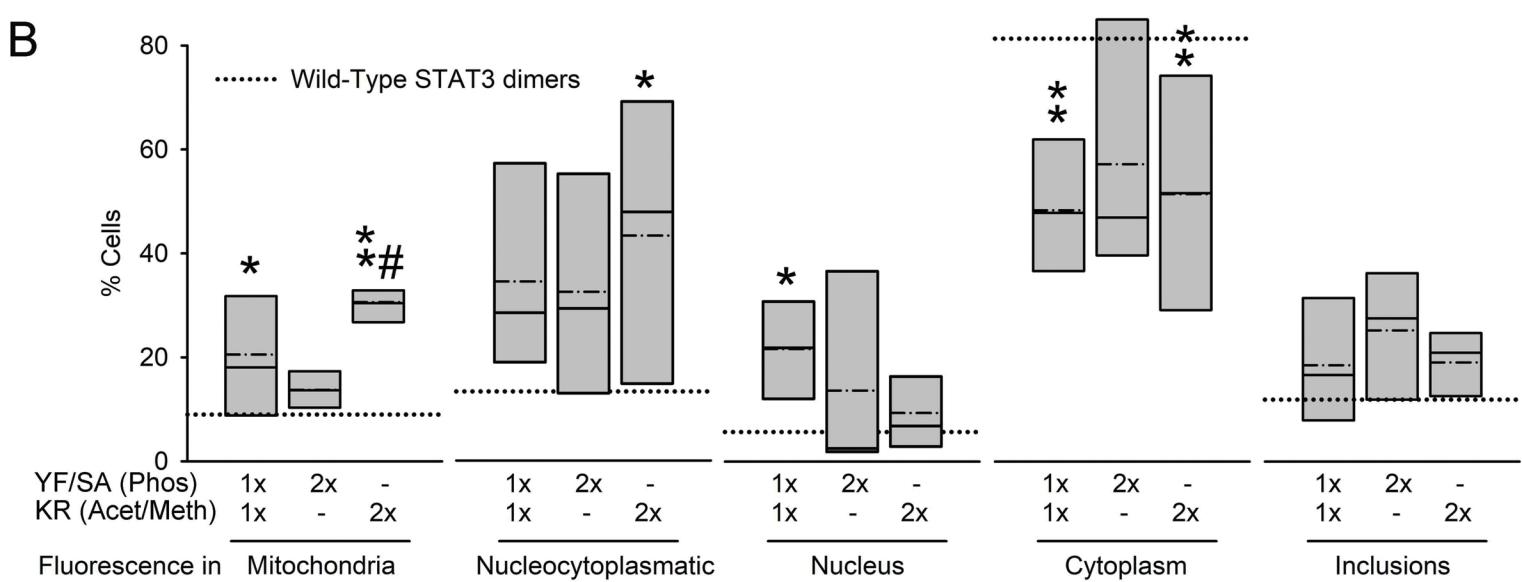
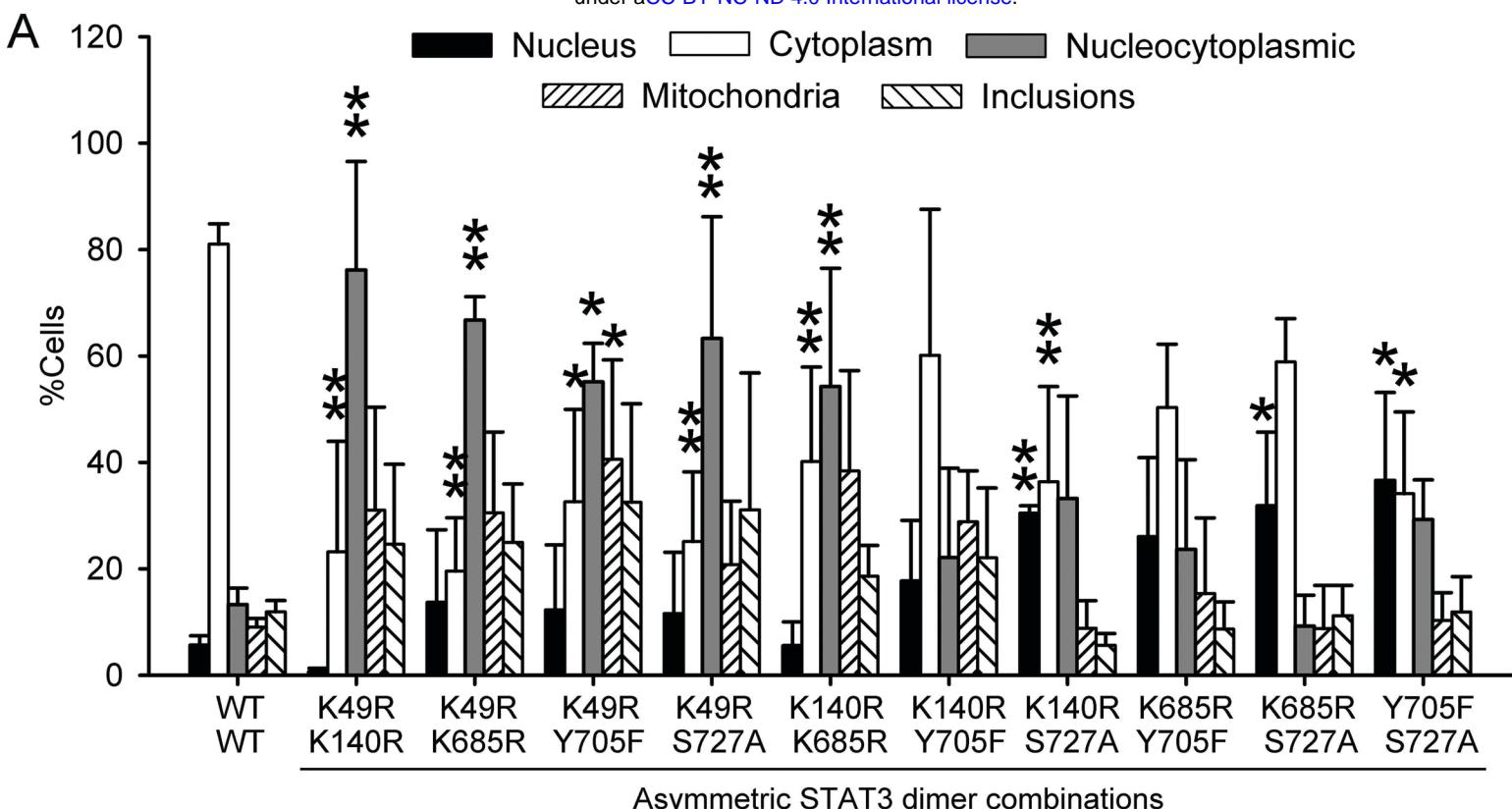
230 13. Schust J, Sperl B, Hollis A, Mayer TU, Berg T. Stattic: A Small-Molecule Inhibitor
231 of STAT3 Activation and Dimerization. Chem Biol. 2006 Nov;13(11):1235-42.

232 14. Domoszlai T, Martincuks A, Fahrenkamp D, Schmitz-Van de Leur H, Kuster A,
233 Muller-Newen G. Consequences of the disease-related L78R mutation for
234 dimerization and activity of STAT3. J Cell Sci. 2014 May 1;127(Pt 9):1899-910.

235 15. Okada Y, Watanabe T, Shoji T, Taguchi K, Ogo N, Asai A. Visualization and
236 quantification of dynamic STAT3 homodimerization in living cells using
237 homoFluoppi. Sci Rep. 2018 Feb 5;8(1):2385.

238


239 **Figure Legends**




240 **Figure 1. A Venus-STAT3 BiFC system allows the visualization and study of**
241 **STAT3 homodimers in living cells.** A, Venus BiFC fragments constituted by amino
242 acids 1-158 (Venus 1, V1) and 159-238 (Venus 2, V2) were fused to the N-terminus of
243 the STAT3 sequence in two independent constructs. K49, K140, K685, Y705 and S727
244 residues can be post-translationally modified, and were inactivated in both V1- and V2-
245 STAT3 constructs by site-directed mutagenesis. B, Wild-type Venus-STAT3 constructs
246 produced fluorescence in HeLa cells, and it was monitored by flow cytometry 24 hours
247 after transfection with BiFC constructs. Incubation with Leukemia Inhibitory Factor
248 (100 ng/ml) for 2 hours in the absence of serum or the presence of the indicated drugs or
249 mutant BiFC pairs (n=3, p<0.05). Results were normalized versus the Wild-type STAT3
250 pair (100%). C, Microscopy pictures of representative cell phenotypes in the different
251 symmetric combinations of BiFC Venus-STAT3 constructs (Incl, inclusions; Scale bar,
252 20µm). D, Percentage of cells displaying fluorescence predominantly in the Nucleus
253 (black bar), predominantly in the Cytosol (white bar), homogeneously distributed in
254 cytoplasm and nucleus (nucleocytoplasmic, grey bar), in the mitochondria or in non-
255 mitochondrial inclusions. Data are shown as the average ± SEM of n=12 (Wild-type,
256 WT) or n=3 (rest of combinations) independent experiments. Statistical analysis was
257 carried out by means of a One-way ANOVA followed by a Bonferroni test adjusted for
258 multiple comparisons. *, sign. vs the symmetric Wild-type STAT3 pair, p<0.05.

259

260 **Figure 2. Asymmetric STAT3 PTMs regulate intracellular distribution of STAT3**
261 **homodimers.** A, Intracellular distribution of fluorescence in asymmetric combinations
262 of Venus-STAT3 BiFC constructs (and the WT symmetric pair as reference). Data are
263 shown as the average of n=12 (Wild-type, WT) or n=3 (rest of combinations)

264 independent experiments \pm SEM. Statistical analysis was carried out by means of a
265 One-way ANOVA followed by a Bonferroni test adjusted for multiple comparisons. *,
266 significant vs the symmetric Wild-type STAT3 pair, *, p<0.05, ** p<0.01. B-C, The
267 same original data, but pooled according to the number and nature of substitutions (B)
268 or the symmetry or asymmetry of substitutions (C) in the STAT3 homodimer, and
269 represented as box plots. The limits of the boxes represent the smallest and largest
270 values, the straight line represents the median, the dashed line represents the average,
271 and the dotted line represents the average for wild-type STAT3 pair. Statistical analysis
272 was carried out on the Average \pm SEM of each pool of data (1xYF/SA:1xKR, n=6;
273 2xYF/SA, n=3; 2xKR, n=6; sym, n=5; asym, n=10). Statistical analysis was carried out
274 by means of a One-way ANOVA followed by a Bonferroni test adjusted for multiple
275 comparisons. *, significant vs the symmetric Wild-type STAT3 pair, *, p<0.05, **
276 p<0.01; #, significant vs 2xYF/SA substitution (in B) or the symmetric mutant pairs (in
277 C), #, p<0.05, ##, p<0.01.
278

