

1 **Nanoscopic Clustering of Neuroligin-3 and Neuroligin-4X Regulates**
2 **Growth Cone Organization and Size**

3
4 Nicholas J. F. Gatford¹, P. J. Michael Deans¹, Rodrigo R.R. Duarte¹, George Chennell¹,
5 Pooja Raval¹, Deepak P. Srivastava^{1,2*}

6
7 ¹Cells & Behavior Unit, Department of Basic and Clinical Neuroscience, Institute of
8 Psychiatry, Psychology, & Neuroscience, King's College London, London, UK.

9 ²MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology
10 and Neuroscience, King's College London, London; United Kingdom.

11
12 * = corresponding author deepak.srivastava@kcl.ac.uk

13
14
15
16 Keywords: neurodevelopment, actin, neurite, Autism Spectrum Disorder, human stem
17 cell, neurexin

18
19 Abstract word count: 141
20 Main text word count: 5491
21 Main Figures: 8
22 Supplemental Figures: 7
23 Tables: 2

24 **Abstract**

25 The cell-adhesion proteins neuroligin-3 and neuroligin-4X (NLGN3/4X) have well
26 described roles in synapse formation. NLGN3/4X are also expressed highly during
27 neurodevelopment. However, the role these proteins play during this period is unknown.
28 Here we show that NLGN3/4X localized to the leading edge of growth cones where it
29 promoted neuritogenesis in immature human neurons. Super-resolution microscopy
30 revealed that NLGN3/4X clustering induced growth cone enlargement and influenced
31 actin filament organization. Critically, these morphological effects were not induced by
32 Autism spectrum condition (ASC)-associated NLGN3/4X variants. Finally, actin
33 regulators p21-activated kinase 1 (PAK1) and cofilin were found to be activated by
34 NLGN3/4X and involved in mediating the effects of these adhesion proteins on actin
35 filaments, growth cones, and neuritogenesis. These data reveal a novel role for NLGN3
36 and NLGN4X in the development of neuronal architecture, which may be altered in the
37 presence of ASD-associated variants.

38

39

40

41

42

43

44

45

46 **Introduction**

47

48 In mature neurons, axo-dendritic structure is an essential aspect of neuronal
49 function as this is a defining component of neural network connectivity¹. Development of
50 axo-dendritic morphology begins immediately after neural commitment with the
51 formation and extension of protrusions (neurites) from the cell soma². This process is
52 referred to as neuritogenesis. During this process, immature neurites with actin-rich
53 growth cones form as neural progenitor cells differentiate. Subsequent differentiation
54 leads to the development of the axon and primary dendrite. Extrinsic cues and intrinsic
55 mechanisms work in parallel to orchestrate the development of neuronal morphology³.
56 Neuritogenesis is driven by the growth cone, which are highly dynamic and motile
57 subcellular structures^{1, 2, 3, 4}. Growth cone behaviour depends on filamentous actin (F-
58 actin) and microtubule dynamics and is regulated by complex signalling pathways^{1, 2, 5}.
59 Two major regulators of actin that are also involved in regulating growth cone dynamics
60 are p21-activated kinase (PAK1) and cofilin^{2, 6, 7}. PAK1 and cofilin act in concert to
61 enable actin treadmilling and ensure a balance between stable and unstable F-actin in
62 the growth cone. This actin treadmilling provides the growth cone with significant
63 flexibility allowing exploration of the extracellular matrix, response to chemotropic cues,
64 and communication with adjacent cells via cell-adhesion⁴.

65 Cell-adhesion molecules (CAMs) are also critical regulators of this signalling
66 pathway, operating as molecular clutches between cells which modulate growth cone
67 stabilisation or destabilisation based on cell-cell or cell-matrix interactions^{1, 2, 8}.
68 Accumulating evidence suggests that the neurexin-neuroligin cell-adhesion complex

69 (NRXN-NLGN) regulates axonal development^{9, 10, 11}. The NLGNs are a family of post-
70 synaptic proteins which bind to pre-synaptic NRXN; enabling trans-synaptic adhesion,
71 synapse maturation, and establishing synaptic identity in an activity-dependent
72 manner^{12, 13, 14}. To date, most studies examining NLGN function have focused on
73 mature neurons, particularly at synapses. Little attention has been given to examining
74 the role of the NLGNs during early neuronal development, despite clear developmental
75 expression of NLGNs^{10, 15, 16}. However, there are some key exceptions. For example,
76 NLGN1 and NRXN have been found to contribute to dendritogenesis in *Xenopus*
77 neurodevelopment¹⁷. Furthermore, NLGN1 clusters at axonal branch points and
78 filopodia tips during *Drosophila* cellular neurodevelopment where it acts as a stabilizer,
79 ultimately contributing to axonal arborisation⁹. These studies provide substantial insight
80 into the role of NLGN1 in neurodevelopment but do not examine other NLGNs.
81 Interestingly, mutations in the NRXN-NLGN cell-adhesion complex have frequently
82 been associated with neurodevelopmental disorders, and in particular with autism
83 spectrum conditions (ASC)¹³. ASCs are a heterogenous group of neurodevelopmental
84 disorders of unclear and complex genetic origin¹⁸. Over 1000 genes are currently
85 associated with ASC; many of which have a neurodevelopmental function, particularly in
86 cellular neurodevelopment¹⁹. The contribution of disruptions in neurodevelopment as a
87 key component of the pathophysiology of ASCs has been highlighted by recent studies
88 using patient-derived induced pluripotent stem cell models^{20, 21}. In the NRXN-NLGN cell-
89 adhesion complex, two key mutations in NLGN3 and NLGN4X^{22, 23}, have been well
90 described to impact synapse structure as well as function²⁴. However, the role of
91 NLGN3/4X in neurodevelopment and whether the ASC-associated mutations of these

92 proteins impact neurodevelopment and/or the development of neuronal architecture is
93 not known.

94 In this study, we have identified a novel role for NLGN3/4X during early human
95 neurodevelopment. Using a conditionally immortalised human neural progenitor cell
96 line, we demonstrate that young immature neurons express NLGN3/4X, and that these
97 adhesion proteins form nanoscopic clusters at the leading edge of growth cones. ASC-
98 associated mutant variants of these proteins display an altered nanoscopic distribution.
99 Ectopic NLGN3/4X expression promoted neurite outgrowth, coupled with an
100 enlargement of growth cone size. Using super-resolution imaging, we observed that
101 actin filaments reorganised both with regards to structural organisation as well as
102 bundling, as growth cones enlarged. Interestingly, NLGN3/4X ASC mutants did not
103 exert these effects on neurites or growth cones. We further show that PAK1 was
104 required for both NLGN3/4X-mediated growth cone enlargement as well as nanoscopic
105 clustering of NLGN3/4X. Combined, these results suggest that the cell-adhesion
106 molecules NLGN3/4X regulate growth cone structure and organisation via modulation of
107 actin, ultimately promoting neuritogenesis in human neurodevelopment. Critically, the
108 morphological effects on immature neurons induced by NLGN3 and NLGN4X were not
109 recapitulated by ASC-associated mutants, indicating that abnormal regulation of growth
110 cone dynamics and thus neuritogenesis may contribute to ASC pathophysiology.

111

112 **Results**

113

114 **NLGN3 and NLGN4X are expressed in early human neurodevelopment**

115 The neuroligins (NLGN), and their extracellular binding partner neurexins, are
116 expressed in the mature rodent brain and during rodent and chick embryonic
117 development^{15, 16}. However, the temporal expression pattern of NLGN3/4X in human
118 neurodevelopment is unknown. Compiled data from the BrainSpan Atlas of the
119 Developing Human Brain²⁵ revealed NLGN3 and NLGN4X are both expressed in the
120 human prenatal brain throughout neurodevelopment and revealed NLGN3 is expressed
121 almost twice as highly as NLGN4X (**Supplemental Figure 1**). To confirm NLGN3/4X
122 expression in immature human neurons, we assessed expression levels of NLGN3/4X
123 mRNA in undifferentiated human neural progenitor cells (hNPCs) and then immature
124 neurons. NLGN3 exhibited a significant 3.34 fold-change increase in endogenous
125 mRNA expression (**Figure 1A**), while NLGN4X exhibited a 1.467 fold-change increase
126 in endogenous mRNA expression (**Figure 1A**). Next, using antibodies showing
127 specificity for NLGN3 or NLGN4X (**Supplemental Figure 2 & 3**), we then investigated
128 the expression profile of these adhesion molecules at the protein level. Similar to the
129 mRNA expression, both NLGN3/4X protein levels significantly increased as cells
130 adopted a neuronal fate (**Figure 1B**). This supports the BrainSpan data indicating
131 NLGN3/4X are expressed during the prenatal period, and therefore, may have a
132 functional role during this stage of neurodevelopment.

133

134 **NLGN3 and NLGN4X localize to the leading edge of growth cones**

135 To gain insight into the role of NLGN3/4X in early neurodevelopment, we first
136 assessed the sub-cellular distribution of endogenous NLGN3/4X in immature neurons

137 by super-resolution microscopy. Both NLGN3 and NLGN4X were expressed diffusely
138 throughout the cell. However, discrete puncta for both adhesion proteins could be
139 identified along neurites as well as at the leading edge of growth cones where NLGN3
140 and NLGN4X colocalized with actin filaments (**Figure 1C, i – ii**). Previous studies have
141 shown that recruitment and subsequent clustering of NLGNs to synapses is critical for
142 their ability to influence synaptic structure and function^{26, 27, 28}. Thus, we reasoned that
143 under the correct conditions, NLGN3/4X would also cluster at the main sites where they
144 exert their effects. To test this, we ectopically expressed HA-tagged wildtype (WT)
145 human NLGN3 or NLGN4X in differentiating neurons for 3 days in order to promote
146 clustering of these adhesion proteins. Both exogenous NLGN3 and NLGN4X were
147 expressed throughout the cell. However, both adhesion proteins were particularly
148 enriched in growth cones, where they could be observed as nanoscopic clusters at the
149 leading edge of growth cones (**Figure 1D**). Taken together, these data indicate NLGN3
150 and NLGN4X are expressed at growth cones in immature neurons and upon clustering,
151 enrich at the leading edge of growth cones.

152

153 **Mutant NLGN3 and NLGN4X display abnormal sub-cellular distributions**

154 Previous studies have demonstrated that correct subcellular localisation of
155 NLGN3/4X is critical for their ability to influence synaptic structure and function^{29, 30, 31}.
156 Interestingly, ASC-associated NLGN3/4X mutants have been reported to display
157 abnormal subcellular distribution compared to wildtype protein in mature neurons^{22, 23}.
158 Both mutant proteins, NLGN3-R451C and NLGN4X-D396, are retained intracellularly,
159 and have reduced presence at the cell membrane²². To investigate whether this

160 mislocalisation was recapitulated in our cellular system, we first compared the
161 subcellular localisation of ectopic HA-NLGN3/4X and its mutant forms in hNPCs. Whilst
162 HA-NLGN3-WT localised to the plasma membrane, HA-NLGN3-R451C was
163 predominately localised within the cytosol, with only a fraction of the protein at the
164 plasma membrane of hNPCs (**Supplemental Figure 4**). Similarly, HA-NLGN4X
165 localised to the plasma membrane of hNPCs, whereas HA-NLGN4X-D396 was almost
166 completely localised intracellularly in agreement with previous reports (**Supplemental**
167 **Figure 4**).

168 As our data indicated that NLGN3/4X-WT were particularly enriched at growth
169 cones in immature neurons (**Figure 1D**), we next compared the distribution of
170 NLGN3/4X-WT and their mutant variants in immature neurons (**Figure 2A & B**).
171 Examination of growth cones of immature neurons revealed that NLGN3-R451C was
172 less present at the leading edge but less abundant than the WT form (**Figure 2A**).
173 Conversely, the NLGN4X-D396 mutant was found to aggregate within the neurite and
174 not localize to the plasma membrane, unlike NLGN4X-WT which localized to the leading
175 edge of growth cones (**Figure 2B**). Taken together, these data indicate that ASC-
176 associated mutant NLGN3 and NLGN4X display reduced presence at the plasma
177 membranes of hNPCs and abnormal localisation at the leading edge of growth cones in
178 immature neurons.

179

180

181 **NLGN3-WT, NLGN4X-WT, and their mutant forms exert differential effects on**
182 **neurite outgrowth**

183 NLGN3/4X have well established roles in synaptogenesis and spine formation,
184 an effect mediated by the clustering of these proteins at synaptic sites which regulates
185 actin cytoskeletal remodeling^{26, 30, 32, 33}. We, therefore, reasoned that as WT NLGN3 and
186 NLGN4X clustered at membranes of hNPCs and at the leading edge of growth cones in
187 immature neurons, that these adhesion proteins may be involved in regulating
188 membrane structures and neurite outgrowth. Indeed, ectopic NLGN3 expression in
189 hNPCs significantly increased cell membrane features not induced by NLGN3-R451C.
190 This could be demonstrated by an increase in the number of lamellipodia on
191 protrusions, which is indicative of cytoskeletal reorganisation at the plasma membrane
192 (count/cell, lamellipodia on protrusions: control, 4.33±0.47; NLGN3-WT, 8.73±2.21;
193 NLGN3-R451C, 6.47±0.76) (**Supplemental Figure 5A & B**). Next, we examined
194 whether NLGN3-WT or NLGN3-R451C could induce changes in neuritogenesis owing
195 to the enrichment of this adhesion protein at growth cones. Ectopic NLGN3-WT
196 expression significantly increased neuritogenesis in immature neurons (neurite
197 count/cell: control, 10.67±1.01; NLGN3-WT, 17.80±1.67; NLGN3-R451C, 8.60±1.17;
198 neurite length/cell: control, 203.20±16.13 µm; NLGN3-WT, 356.40±31.79 µm; NLGN3-
199 R451C, 173.10±23.36 µm) (**Figure 2C & D**). This was found to be driven by a
200 significant increase in secondary neuritogenesis i.e. neurites branching from the primary
201 neurite (secondary neurite count/cell: control, 4.07±0.60; NLGN3-WT, 8.20±0.97;
202 NLGN3-R451C, 3.20±0.72); secondary neurite length/cell: control, 58.73±8.61 µm;
203 NLGN3-WT, 152.14±19.78 µm; NLGN3-R451C, 51.99±13.27 µm) (**Supplemental**
204 **Figure 5C**).
205

206 We then investigated whether NLGN4X may also influence cell membrane
207 structures owing to its functional similarity to NLGN3. In hNPCs, we observed that
208 ectopic NLGN4X-WT expression significantly increased cell membrane features not
209 induced by NLGN4X-D396. This could be demonstrated by a decrease in the number of
210 concaves as well as increases in the number of lamellipodia and lamellipodia on
211 protrusions. Conversely, NLGN4X-D396 significantly decreased concaves on cell
212 membranes i.e. sections of inward curving cell membrane (control, 4.87 ± 0.62 ;
213 NLGN4X-WT, 3.00 ± 0.49 ; NLGN4X-D396, 1.31 ± 0.29), lamellipodia (control, 2.13 ± 0.32 ;
214 NLGN4X-D396, 0.39 ± 0.14), and lamellipodia on protrusions (control, 4.33 ± 0.47 ;
215 NLGN4X-D396, 1.69 ± 0.44) compared to control (**Supplemental Figure 5A & B**). This
216 suggests the NLGN4X-D396 mutation may operate in a dominant negative way to
217 negatively influence membrane structures.

218 Next, we ectopically expressed NLGN4X-WT in immature neurons to determine
219 whether this protein also influenced neuritogenesis. Neurons expressing NLGN4X
220 showed a significant increase in neuritogenesis (neurite count/cell: control, 10.67 ± 1.01 ;
221 NLGN4X-WT, 15.67 ± 1.90 ; NLGN4X-D396, 6.40 ± 0.96); neurite length/cell: control,
222 203.20 ± 16.13 μm ; NLGN4X-WT, 332.40 ± 25.36 μm ; NLGN4X-D396, 114.00 ± 17.40 μm)
223 (**Figure 2E & F**). This was found to be driven by a significant increase in secondary
224 neuritogenesis (secondary neurite count/cell: control, 4.07 ± 0.60 ; NLGN4X-WT,
225 8.20 ± 0.97 ; NLGN4X-D396, 3.20 ± 0.72); secondary neurite length/cell: control,
226 58.73 ± 8.61 μm ; NLGN4X-WT, 152.14 ± 19.78 μm ; NLGN4X-D396, 51.99 ± 13.27 μm)
227 (**Supplemental Figure 5D**). Collectively, these data demonstrate that NLGN3 and
228 NLGN4X can drive morphological changes in hNPCs and significantly promote neurite

229 outgrowth in immature human neurons, consistent with their subcellular distribution.
230 Critically, ASC mutants of these proteins do not exert these effects, which further
231 mirrors their altered subcellular distribution.

232

233 **NLGN3 affects growth cone structure by influencing actin filament alignment**

234 The primary driver and navigator of neuritogenesis is the growth cone⁴. The
235 growth cone is a highly dynamic actin-rich structure, therefore, we hypothesized that
236 ectopically expressing NLGN3-WT or NLGN3-R451C would have a striking effect on
237 growth cone morphology and actin filaments. Investigation of growth cones by super-
238 resolution imaging revealed that ectopic NLGN3-WT but not NLGN3-R451C expression
239 significantly increased growth cone area (control, $253.20\pm28.67\text{ }\mu\text{m}^2$; NLGN3-WT,
240 $404.70\pm51.90\text{ }\mu\text{m}^2$; NLGN3-R451C, $218.10\pm33.31\text{ }\mu\text{m}^2$) (**Figure 3A & B**). This failure of
241 growth cone expansion in the NLGN3-R451C condition may be as a consequence of
242 the decrease in functional NLGN3 clusters at the growth cone leading edge. As growth
243 cone area was found to be significantly correlated to the number of actin filaments
244 within the growth cone (**Supplemental Figure 6A**), we then looked at whether NLGN3
245 exerted any influence on actin filaments. Indeed, ectopic NLGN3-WT but not NLGN3-
246 R451C significantly increased growth cone filament number (control, 9.8 ± 1.22 ; NLGN3-
247 WT, 17.8 ± 1.78 ; NLGN3-R451C, 8.71 ± 0.60), length, (control, $3.19\pm0.33\text{ }\mu\text{m}$; NLGN3-
248 WT, $4.06\pm0.36\text{ }\mu\text{m}$; NLGN3-R451C, $3.21\pm0.18\text{ }\mu\text{m}$), bundle width (control, 0.36 ± 0.04
249 μm ; NLGN3-WT, $0.84\pm0.09\text{ }\mu\text{m}$; NLGN3-R451C, $0.25\pm0.03\text{ }\mu\text{m}$), and significantly
250 decreased the distance between growth cone filaments when normalized to filament
251 number (control, $0.16\pm0.02\text{ }\mu\text{m}$; NLGN3-WT, $0.06\pm0.01\text{ }\mu\text{m}$; NLGN3-R451C, 0.22 ± 0.03

252 μm) (**Figure 3B**). Additionally, a significant decrease in anisotropy of actin filaments was
253 found between the NLGN3-WT condition and control (control, 0.16 ± 0.02 ; NLGN3-WT,
254 0.07 ± 0.02 ; NLGN3-R451C, 0.16 ± 0.02); that is, actin filaments in the growth cones of
255 immature neurons ectopically expressing NLGN3-WT are significantly more parallel
256 than actin filaments in immature neurons in control or NLGN3-R451C conditions
257 (**Figure 3A & B**). Combined, these data suggest NLGN3 has a profound effect on both
258 broad and specific growth cone morphology as well as modulating actin filament
259 orientation within the growth cone.

260

261 **NLGN4X affects growth cone structure by influencing actin filament organization**

262 We also noticed NLGN4X-WT influencing growth cone morphology and actin
263 filaments in similar ways as NLGN3-WT. We reasoned that these functional similarities
264 are as a consequence of the relatively high protein sequence homology shared between
265 NLGN3 and NLGN4X. Similar to ectopic NLGN3-WT expression, ectopic NLGN4X-WT
266 expression increased growth cone area compared to control (control, 253.20 ± 28.67
267 μm^2 ; NLGN4X-WT, $598.90\pm95.19 \mu\text{m}^2$; NLGN4X-D396, $182.50\pm24.85 \mu\text{m}^2$) (**Figure 3C**
268 & **D**). No such growth cone expansion was observed in the NLGN4X-D396 condition.
269 This failure of growth cone expansion in the NLGN4X-D396 condition may be as a
270 consequence of the almost total lack of functional NLGN4X clusters at the growth cone
271 leading edge. As growth cone area was found to be significantly correlated to the
272 number of actin filaments within the growth cone (**Supplemental Figure 6B**), we then
273 looked at whether NLGN4X exerted any influence on actin filaments, similar to NLGN3.
274 Ectopic NLGN4X-WT expression was found to significantly increase growth cone

275 filament number (control, 9.8 ± 1.22 ; NLGN4X-WT, 18.2 ± 2.74 ; NLGN4X-D396,
276 7.21 ± 0.53), length (control, 3.2 ± 0.09 μm ; NLGN4X-WT, 4.69 ± 0.62 μm ; NLGN4X-D396,
277 3.14 ± 0.24 μm), bundle width (control, 0.36 ± 0.04 μm ; NLGN4X-WT, 0.76 ± 0.14 μm ;
278 NLGN4X-D396, 0.23 ± 0.02 μm), and significantly decreased the distance between
279 growth cone filaments when normalized to filament number (control, 0.16 ± 0.02 μm ;
280 NLGN4X-WT, 0.08 ± 0.01 μm ; NLGN4X-D396, 0.30 ± 0.03 μm) (**Figure 3D**). Additionally,
281 this data revealed a dominant negative effect for the NLGN4X-D396 mutation as a
282 significant increase in filament distance was found in the NLGN4X-D396 condition
283 compared to control (control, 0.16 ± 0.02 μm ; NLGN4X-WT, 0.08 ± 0.01 μm ; NLGN4X-
284 D396, 0.30 ± 0.03 μm) (**Figure 3D**); i.e. the NLGN4X-D396 mutation negatively
285 influences the distance between actin filaments within growth cones. However, contrary
286 to the NLGN3-WT anisotropy data, no significant differences in anisotropy were
287 detected between any NLGN4X condition (control, 0.16 ± 0.03 ; NLGN4X-WT, 0.14 ± 0.03 ;
288 NLGN4X-D396, 0.13 ± 0.03) (**Figure 3D**). Taken together, these data suggest NLGN3
289 and NLGN4X have profound effects on growth cone F-actin remodeling, ultimately
290 leading to significant changes in growth cone size and structure. These data also infer a
291 potential link between NLGN3/4X nanodomain clustering, growth cone F-actin, and
292 actin regulator proteins.

293

294 **PAK1 phosphorylation increases in growth cones expressing NLGN3/4X and**
295 **colocalizes with F-actin**

296 Two major regulators of the actin cytoskeleton that have also been shown to
297 have profound effects on growth cone dynamics/size are p21-activated kinases and the

298 actin severing protein cofilin. Previous studies have shown that PAK1 modulates neurite
299 outgrowth, polarity, and establishing overall neuronal morphology though the regulation
300 of downstream actin regulators within the growth cone^{2, 6}. Moreover, cofilin; a further
301 component of the actin treadmilling pathway, has been shown to play a critical role in
302 actin retrograde flow in neurites of the developing brain particularly within growth
303 cones⁷. We therefore hypothesized that the signaling pathway underlying NLGN3 and
304 NLGN4X's ability to regulate neurite outgrowth and growth cone dynamics may be
305 mediated by PAK1 and/or cofilin. To test this hypothesis, we ectopically expressed
306 NLGN3/4X constructs in HEK293 cells and assessed phospho-PAK1 (pPAK1) and
307 phospho-cofilin (pcofilin) levels, which is indicative of their ability to remodel actin and
308 can therefore be used as proxies for actin dynamics due to their involvement in actin
309 treadmilling^{6, 34}. This revealed significant increases in PAK1 and cofilin phosphorylation
310 between the control and NLGN3-WT conditions but no significant difference in
311 phosphorylation for either PAK1/cofilin in the NLGN3-R451C condition (**Figure 4A**).
312 Significant increases in PAK1 and cofilin phosphorylation were also found between the
313 control and NLGN4X-WT conditions while no significant differences in phosphorylation
314 were found for the NLGN4X-D396 condition (**Figure 4B**). These changes in PAK1 and
315 cofilin phosphorylation suggest the actin cytoskeletal pathway is activated by NLGN3/4X
316 to induce actin filament reorganization, growth cone enlargement, and ultimately
317 neuritogenesis.

318 To validate that NLGN3/4X increased pPAK1 in immature neurons; thereby
319 indicating a functional interaction, we ectopically expressed NLGN3/4X-WT in immature
320 neurons and measured pPAK1 levels specifically at F-actin/NLGN3/4X clusters.

321 Phospho-PAK1 intensity significantly increased in growth cone F-actin clusters of
322 immature neurons ectopically expressing NLGN3-WT or NLGN4X-WT (NLGN3-WT:
323 control, 11.04 ± 2.22 ; NLGN3-WT, 27.62 ± 6.92); NLGN4X-WT: control, 11.04 ± 2.22 ;
324 NLGN4X-WT, 35.39 ± 6.14) (**Figure 4C**). These data are in line with the immunoblotting
325 data and provide evidence that NLGN3 and NLGN4X strongly induce PAK1
326 phosphorylation. Taken together, these data suggest PAK1 is involved in the F-actin,
327 growth cone, and neuritogenesis phenotypes demonstrated so far. These data also
328 suggest a mechanistic link between NLGN3/4X, PAK1, and actin dynamics in the
329 growth cone but do not provide causal evidence of a functional relationship.

330

331 **Effects of NLGN3/4X on growth cone structure are attenuated by PAK1 inhibition**

332 To demonstrate a causal mechanistic link between NLGN3/4X, PAK1, and
333 growth cone actin dynamics, we ectopically expressed WT NLGN3 or NLGN4X and
334 cotreated with a PAK1 activity inhibitor, FRAX486^{35, 36}. Treating immature neurons with
335 50 nM FRAX486 in the absence of NLGN3/4X significantly decreased growth cone area
336 in control cells compared to vehicle (DMSO) treated cells, as anticipated given the
337 crucial role of PAK1 in growth cone dynamics (**Figure 5A**). In line with previous data,
338 ectopic NLGN3-WT expression and DMSO treatment resulted in the expected
339 significant increase in growth cone area. Conversely, immature neurons ectopically
340 expressing NLGN3-WT and cotreated with FRAX486, did not display any change in
341 growth cone size compared to control DMSO treated cells (CTRL-DMSO, 172.30 ± 11.02
342 μm^2 ; CTRL-FRAX, $88.02\pm9.27 \mu\text{m}^2$; NLGN3-DMSO, $468.80\pm48.98 \mu\text{m}^2$; NLGN3-FRAX,
343 $205.80\pm19.01 \mu\text{m}^2$) (**Figure 5A & B**). A similar pattern was observed for filament

344 number i.e. increases in filament number induced by ectopic NLGN3-WT expression are
345 attenuated by FRAX486 cotreatment (CTRL-DMSO, 10.68 ± 0.71 ; CTRL-FRAX,
346 3.09 ± 0.33 ; NLGN3-DMSO, 23.40 ± 1.48 ; NLGN3-FRAX, 11.95 ± 0.79). Lastly, a similar,
347 although inverse, pattern was observed for decreases in filament distance when
348 normalised to filament number. That is, the decrease in filament distance induced by
349 NLGN3-WT ectopic expression was attenuated by FRAX486 cotreatment (CTRL-
350 DMSO, 0.10 ± 0.01 μm ; CTRL-FRAX, 0.44 ± 0.06 μm ; NLGN3-DMSO, 0.04 ± 0.004 μm ;
351 NLGN3-FRAX, 0.08 ± 0.008 μm) (**Figure 5A & B**). Taken together, these data strongly
352 implicate PAK1 pathway activation as a core component of the molecular mechanism
353 underlying the previously observed subcellular phenotypes induced by ectopic NLGN3-
354 WT expression and demonstrate a causal association between NLGN3, PAK1, and
355 growth cone actin dynamics.

356 Inhibiting PAK1 has a similar effect on NLGN4X-induced remodeling of growth
357 cones and actin. Consistent with previous data, ectopic NLGN4X-WT expression
358 significantly increased growth cone area. However, cotreatment with FRAX486 (50 nM)
359 attenuated NLGN4X-WT-induced enlargement of growth cone area (CTRL-DMSO,
360 172.30 ± 11.02 μm^2 ; CTRL-FRAX, 88.02 ± 9.27 μm^2 ; NLGN4X-DMSO, $432.00\pm32.09\mu\text{m}^2$;
361 NLGN4X-FRAX, 214.70 ± 13.40 μm^2) (**Figure 5A & C**). Cotreatment with FRAX486 also
362 blocked increases in filament number induced by ectopic NLGN4X-WT expression
363 (CTRL-DMSO, 10.68 ± 0.71 ; CTRL-FRAX, 3.09 ± 0.33 ; NLGN4X-DMSO, 28.18 ± 1.81 ;
364 NLGN4X-FRAX, 16.18 ± 0.85). Lastly, the decrease in filament distance induced by
365 ectopic NLGN4X-WT expression is attenuated by FRAX486 cotreatment (CTRL-DMSO,
366 0.10 ± 0.01 μm ; CTRL-FRAX, 0.44 ± 0.06 μm ; NLGN4X-DMSO, 0.03 ± 0.002 μm ; NLGN4X-

367 FRAX, $0.06 \pm 0.006 \mu\text{m}$) (**Figure 5A & C**). Combined, these data implicate PAK1
368 pathway activation as a core component of the molecular mechanism underlying the
369 previously observed subcellular phenotypes induced by ectopic NLGN4X-WT
370 expression and further demonstrate a causal link between NLGN4X, PAK1, and growth
371 cone actin dynamics.

372

373 **PAK1 Inhibition Decreases NLGN3/4X Growth Cone Clustering**

374 We previously observed that wildtype NLGN3/4X formed nanoscopic clusters at
375 the growth cone leading edge where it colocalized with actin. Conversely, mutant forms
376 of these proteins displayed reduced localization in growth cones and impaired ability to
377 remodel growth cone morphology and actin dynamics. Interestingly, inhibiting PAK1
378 signaling with FRAX486 produced growth cone morphologies and actin dynamics
379 similar to that produced by mutant NLGN3/4X. Therefore, we hypothesised that
380 treatment with FRAX486 may also disrupt the nanoscopic clustering of ectopic
381 NLGN3/4X-WT within growth cones. To examine this, we compared the abundance of
382 either adhesion protein at the leading edge of growth cones with or without FRAX486
383 cotreatment. This revealed significant decreases in NLGN3-WT growth cone cluster
384 number, area, and intensity in FRAX486 compared to DMSO treated cells (number:
385 NLGN3-DMSO, 863.80 ± 127.50 ; NLGN3-FRAX, 158.70 ± 15.29); area: NLGN3-DMSO,
386 $0.17 \pm 0.04 \mu\text{m}^2$; NLGN3-FRAX, $0.05 \pm 0.008 \mu\text{m}^2$); intensity: NLGN3-DMSO, 11.46 ± 3.53 ;
387 NLGN3-FRAX, 4.38 ± 1.09) (**Figure 6A**). A similarly significant decrease was also
388 observed for NLGN4X-WT growth cone clusters in terms of number, area, and intensity
389 when treated with FRAX486 compared to DMSO (number: NLGN4X-DMSO,

390 713.70 \pm 83.84; NLGN4X-FRAX, 212.80 \pm 35.68); area: NLGN4X-DMSO, 0.21 \pm 0.05 μm^2);
391 NLGN4X-FRAX, 0.06 \pm 0.01 μm^2 ; intensity: NLGN4X-DMSO, 10.44 \pm 2.32; NLGN4X-
392 FRAX, 3.81 \pm 0.86) (**Figure 6B**). Combined, these data suggest PAK1 activation also
393 plays a role in clustering NLGN3/4X at the growth cone promoting its adhesive function.
394 Furthermore, combined with previous data, this not only suggests NLGN3/4X are
395 capable of activating PAK1 in the growth cone but also PAK1 activation can promote
396 NLGN3/4X clustering in growth cones.

397

398 **Effects of NLGN3/4X on neurite outgrowth are attenuated by PAK1 inhibition**

399 Given that FRAX486 attenuated the nanoscopic clustering of ectopic NLGN3/4X-
400 WT in growth cones, we hypothesized that this would also impact the overall
401 morphology of the cell. Consistent with this notion, FRAX486 treatment significantly
402 decreased neurite number and length in immature neurons compared to DMSO
403 controls. Similar to previous data, ectopic NLGN3-WT expression resulted in the
404 expected significant increase in neurite outgrowth. However, FRAX486 cotreatment
405 inhibited NLGN3-WT-induced effects on neurite number and length (number: CTRL-
406 DMSO, 7.05 \pm 0.43; CTRL-FRAX, 3.14 \pm 0.24; NLGN3-DMSO, 14.00 \pm 1.16; NLGN3-
407 FRAX, 6.26 \pm 0.37; length: CTRL-DMSO, 181.00 \pm 8.32 μm ; CTRL-FRAX, 59.89 \pm 6.00 μm ;
408 NLGN3-DMSO, 302.20 \pm 22.45 μm ; NLGN3-FRAX, 130.40 \pm 8.87 μm) (**Figure 7A**). A
409 similar pattern was observed when the same experimental paradigm was applied to
410 NLGN4X. In agreement with previous data, ectopic NLGN4X-WT expression resulted in
411 significantly increased neurite number and length. However, again, cotreatment with
412 FRAX486 blocked NLGN4X-WT's effect on neuritogenesis (number: CTRL-DMSO,

413 7.05 \pm 0.43; CTRL-FRAX, 3.14 \pm 0.24; NLGN4X-DMSO, 13.61 \pm 1.03; NLGN4X-FRAX,
414 7.31 \pm 0.58; length: CTRL-DMSO, 181.00 \pm 8.32 μ m; CTRL-FRAX, 59.89 \pm 6.00 μ m;
415 NLGN4X-DMSO, 276.40 \pm 15.08 μ m; NLGN4X-FRAX, 153.30 \pm 13.44 μ m) (**Figure 7B**).
416 Taken together, these data indicate that clustering of NLGN3/4X at the leading edge of
417 growth cones is required for both increased growth cone dynamics and neuritogenesis
418 via a PAK1-dependent mechanism.

419

420 **Discussion**

421

422 CAMs (cell-adhesion molecules) are key regulators of neuritogenesis, particularly
423 at the growth cone leading edge³⁷. Gene mutations in the trans-synaptic neurexin-
424 neuroligin cell-adhesion complex are frequently associated with ASD pathogenesis,
425 particularly neuroligin-3 and neuroligin-4X (NLGN3/4X)¹³. However, the role of
426 NLGN3/4X during human cellular neurodevelopment is unknown. Furthermore, the
427 functional consequences of ASC-associated NLGN3/4X mutations have yet to be
428 investigated in human neurodevelopment. Here we demonstrate novel roles for
429 NLGN3/4X in early human neurodevelopment. Specifically, we demonstrate NLGN3
430 and NLGN4X nanodomains promote neuritogenesis during cellular neurodevelopment
431 via actin filament organization within the growth cone, mediated by PAK1 signaling. We
432 also observed that growth cones of immature neurons ectopically expressing
433 NLGN3/4X-WT cotreated with the PAK1 phosphorylation inhibitor, FRAX486, appeared
434 similar in size and structure to growth cones ectopically expressing NLGN3-R451C or
435 NLGN4X-D396. Furthermore, we demonstrate a novel feedback loop between PAK1

436 and NLGN3/4X nanodomain clustering which contributes to this growth cone
437 enlargement and, by extension, neuritogenesis. Our data reveal novel roles for both
438 NLGN3 and NLGN4X in the development of human cortical neurons, which is not
439 replicated by ASD-associated mutants of these adhesion proteins (**Figure 8**).

440 Broadly, our data indicates that WT NLGN3 and NLGN4X exert similar effects on
441 the development of neuronal morphology. Similar increases in neurite length/number,
442 growth cone area, and actin filament metrics were observed between the two proteins.
443 Critically, both NLGN3 and NLGN4X demonstrated an ability to regulate PAK1 and
444 cofilin activity, indicating that these CAMs signal via the same pathway to regulate the
445 actin cytoskeleton. The similarity in effect and signaling pathways activated by these
446 proteins is consistent with the comparatively high amino acid sequence homology
447 between NLGN3 and NLGN4X (69.026% homology)^{38, 39} and the finding that NLGN4
448 evolved rapidly from other NLGN gene sequences in mice⁴⁰. Additionally, NLGN4X
449 overexpression was recently found to rescue aberrant neurite outgrowth induced by
450 ZNF804A knockdown⁴¹. Combined, these suggest necessary roles for both proteins in
451 mammalian neuritogenesis as well as a degree of functional overlap between NLGN3
452 and NLGN4X. However, it is unlikely that these proteins operate alone. Accumulating
453 evidence has linked NLGNs with other proteins involved in dendrite morphogenesis,
454 such as Rap. Rap proteins are a subfamily of the Ras superfamily of small GTPases.
455 Small GTPases have been extensively implicated in neuritogenesis and as signaling
456 mediators for CAMs^{1, 2}. NLGN3 has previously been shown to interact with the Rap
457 guanine-nucleotide exchange factor, Epac2 (RapGEF4) thus controlling Rap signaling⁴².
458 Rare variants in Epac2 have been associated with ASC and have been implicated in

459 impaired basal dendrite morphogenesis⁴³. It is also noteworthy that NLGN1 can regulate
460 Rap activity via the activation of spine-associated Rap GTPase (SPAR) resulting in the
461 modulation of LIMK/cofilin-mediated actin organization⁴⁴. The importance for the correct
462 regulation of such a pathway is highlighted by increasing evidence that ASC-associated
463 mutations in SynGAP, a GAP for Rap, play a significant role in the development of
464 neuronal and synaptic morphology⁴⁵. Combined, these findings suggest several ASC-
465 associated proteins operate via different signaling pathways prior to PAK1/cofilin but
466 result in a similar modulation of actin dynamics at the endpoint. Furthermore, this
467 suggests the ability of NLGN3/4X to regulate the actin-cytoskeleton via PAK1/cofilin is
468 likely mediated by specific binding partners.

469 NLGNs binding partner NRXN has also been implicated in dendritogenesis. The
470 NRXN-NLGN interaction is of particular importance as questions remain about exactly
471 if/how NLGN3/4X are activated extracellularly to induce growth cone enlargement and
472 neuritogenesis. For example, it is unclear if the growth cone enlarging effects of
473 NLGN3/4X are activated by cis- or trans-binding mechanisms given the canonical
474 pre/post-synaptic NRXN-NLGN configuration is not the focus of this research. It was
475 recently discovered that NRXN-NLGN interactions play a key role in sexually dimorphic
476 neurite plasticity during *Caenorhabditis elegans* cellular neurodevelopment¹¹.
477 Additionally, NRXN1 β was found to induce neurite outgrowth in HEK293 cells and rat
478 primary hippocampal neurons via an interaction with NLGN1⁴⁶. Lastly, interactions
479 between NLGN1 and NRXN were found to extensively modulate dendritogenesis by
480 stabilizing filopodia in *Xenopus* and *Drosophila* neurodevelopment^{9, 17}. These multiple
481 lines of evidence indicate NRXN-NLGN interactions are likely a critical component of

482 neurodevelopment which is evolutionarily conserved from *Drosophila* to humans.
483 Combined with the evidence discussed previously, this suggests NLGNs may operate
484 as components of a larger macromolecular structure with other proteins often
485 associated with ASC, such as Epac2, SynGAP, or NRXN1 to regulate (or dysregulate)
486 cytoskeletal remodeling during neurodevelopment and in the mature brain. However,
487 many of these ASC-associated proteins may influence the cytoskeleton via the common
488 mechanism of PAK1 but by different routes.

489 Despite the functionally compromising nature of the ASC-associated mutations,
490 few dominant negative effects were observed when either mutant variant was
491 ectopically expressed. This suggests the mutant proteins are not noticeably cytotoxic.
492 Rather, the mutant proteins lack of appropriate localization and clustering at the growth
493 cone leading edge resulted in an inability to gain function rather than mimic a loss of
494 function i.e. growth cones and neurites do not shrink as a result of ectopic NLGN3-
495 R451C/NLGN4X-D396 expression but also do not expand or extend completely as
496 intended. It is noteworthy that we have utilized an ectopic-based “gain of function”
497 approach to investigate the role of NLGN3/4 and the impact of ASC-mutations on their
498 function. One potential caveat of this approach could arise due to a compensatory
499 mechanism induced by endogenous expression of NLGN3/4X. Indeed, previous studies
500 have shown that up or down regulation of NLGNs can produce conflicting results,
501 depending on the cellular context^{32, 47, 48}. Alterations in the expression of NLGNs and
502 their subsequent impact on their cellular function may, therefore, be obfuscated by other
503 NLGNs. This complication may further obfuscate subtle effects of ASC-associated
504 mutations due to endogenous NLGN3/4X expression or upregulation of other NLGNs to

505 compensate for the loss of function. This notion is particularly highlighted by the lack of
506 effect of NLGN triple-KO on synapses¹⁴, as well as potential off target effects on the
507 cytoskeleton induced by shRNA approaches⁴⁹. Hence, we have opted to use a gain of
508 function approach to disentangle NLGN3/4X function due to the emerging complex
509 nature of endogenous NLGN interference.

510 While no dominant negative effects were found, subtle differences between
511 NLGN3/4X-WT and their mutant variants were observed. For example, a significant
512 difference in anisotropy was found between control and NLGN3-WT growth cone
513 filaments. However, no significant differences in anisotropy were observed for NLGN4X-
514 WT. This suggests NLGN4X has a subtly different function to NLGN3 in growth cones,
515 perhaps suggesting NLGN3 has more of a stabilizing effect on actin filaments while
516 NLGN4X has a destabilizing or less stabilizing effect. Additionally, a significant
517 dominant negative effect was observed for filament distance between control and
518 NLGN4X-D396. This was not observed for the NLGN3-R451C mutation. This suggests
519 the NLGN4X-D396 mutation does have a deleterious effect on growth cones, but the
520 observable effects may be diluted by the aforementioned compensatory mechanisms.
521 These differences in actin filament organization would not have been observable
522 without super-resolution microscopy and highlights the importance of using this
523 advanced microscopy technique to further our understanding of subcellular molecular
524 interactions. Lastly, the significance patterns in PAK and cofilin activation were slightly
525 different between control, NLGN3/4X-WT, and their mutant variants. No dominant
526 negative effects were observed, however, a significant increase in cofilin activation was
527 observed between control and NLGN3-R451C, although not as substantial of an

528 increase as NLGN3-WT. This partial increase in cofilin activity is likely due to the
529 remaining partial functionality of the NLGN3-R451C protein. This was not observed in
530 the NLGN4X-D396 condition, likely due to the complete loss of function of the NLGN4X-
531 D396 protein.

532 The novel finding of a NLGN-PAK1 feedback loop dependent on molecular
533 clustering at the cell membrane was an intriguing discovery and not without
534 precedence. Indeed, filamin, an actin cross-linking protein, was found to operate in a
535 similar bidirectional loop with PAK1 to locally influence actin cytoskeletal dynamics and
536 membrane ruffles^{50, 51}. Furthermore, nanoscale clustering of the chemokine receptor
537 CXCR4 at the leading edge of Jurkat T lymphocyte cells was found to promote dynamic
538 actin rearrangement resulting in increased cell migration⁵². Evidence from mature
539 neurons also suggests orchestrated nanoscale recruitment and clustering of cell-
540 adhesion molecules (CAM) at synapses is critical to synaptic function³². For example,
541 NLGN1 and N-cadherin were found to cooperate to form clusters at synapses in mature
542 hippocampal neurons, ultimately promoting synapse formation⁵³. This synaptic
543 clustering function was also demonstrated for NLGN3. Mature hippocampal neurons
544 treated with purified Wnt3a exhibited increased NLGN3 recruitment to dendritic
545 processes and, ultimately, increased clustering of NLGN3 with PSD-95 at synapses³⁰.
546 Lastly, but perhaps most relevantly, transient clustering interactions between flowing
547 actin filaments and immobilized N-cadherin/catenin complexes were demonstrated in
548 neuronal growth cones⁸. This led to a local reduction of actin retrograde flow and
549 increased growth cone migration. Combined, this evidence suggests the actin
550 cytoskeleton responds dynamically to nanoscale clustering of specific molecules at the

551 cell membrane. This response is likely to be similar in growth cones given the high
552 dynamicity of growth cone actin and the integral role of cell adhesion molecules in the
553 growth cone, therefore, this system may also be a component of neuritogenesis during
554 cellular neurodevelopment. Perturbation of this nanoscale clustering via ASC-
555 associated NLGN mutations may therefore lead to alterations in growth cone motility,
556 ultimately contributing to subtly atypical neurodevelopment. Additionally, the similarity in
557 structure of NLGN3/4X-WT and FRAX486 cotreated growth cones to NLGN3/4X mutant
558 growth cones suggests a link between the molecular mechanism discovered herein and
559 the underlying mechanism that may be involved in the impaired cellular phenotypes
560 seen when the ASC-associated mutant variants are ectopically expressed.

561 In summary, we demonstrate a novel function for NLGN3/4X during early human
562 neurodevelopment in neuronal growth cones, particularly at the growth cone leading
563 edge. The functional impact of this role at the growth cone was to significantly promote
564 neuritogenesis in immature human neurons. We also illustrate the consequences of this
565 new role on the actin cytoskeleton in that NLGN3/4X clustering has profound effects on
566 growth cone F-actin remodeling, ultimately leading to significant changes in growth cone
567 size and structure. These functional roles were found to be impaired by ASC-associated
568 mutant forms of NLGN3/4X for which the clustering function was severely impaired.
569 Furthermore, we show a link between NLGN3/4X clustering and PAK1 activation in the
570 growth cone. Ultimately, leading to the discovery of a mechanistic feedback loop
571 between NLGN3/4X and PAK1 in growth cones which drives actin dynamics, growth
572 cone enlargement, and neuritogenesis.

573

574 **Methods**

575

576 **Antibodies and Plasmids**

577 Antibodies: mouse anti-HA monoclonal (BioLegend, 901503, 1:1000), rabbit anti-
578 RFP polyclonal (MBL, PM005, 1:500), chicken anti-GFP polyclonal (Abcam, ab13970,
579 1:1000), chicken anti-Tuj1 polyclonal (Abcam, ab41489, 1:500), ActinGreen 488
580 ReadyProbe (Thermo Fisher, R37110, per manufacturer's instructions), and rabbit anti-
581 phospho-PAK1 (Ser144)/PAK2 (Ser141) (Cell Signaling Technology, 2606, 1:100).
582 Alexa Fluor 488, 568, 633 (Life Technologies, 1:500) and 4',6-diamidino-2-phenylindole
583 (DAPI – D1306, Life Technologies, 1:50000) fluorescent secondary antibodies were
584 used in all immunocytochemistry experiments where applicable. Immunoblotting: mouse
585 anti-NLGN3 monoclonal (StressMarq, SMC-471D, 1:1000), rabbit anti-NLGN3
586 polyclonal (Synaptic Systems, 129113, 1:1000), rabbit anti-HA polyclonal (ProteinTech,
587 51064-2-AP, 1:1000), rabbit anti-NLGN4X monoclonal (Abcam, ab181251, 1:1000),
588 mouse anti-total cofilin monoclonal (ProteinTech, 66057-1-Ig, 1:3000), rabbit anti-
589 phospho-cofilin (Ser3) polyclonal (Cell Signaling Technology, 3311, 1:1000), rabbit anti-
590 total PAK1/2/3 (Cell Signaling Technology, 2604), rabbit anti-phospho-PAK1
591 (Ser144)/PAK2 (Ser141) (Cell Signaling Technology, 2606, 1:1000), rabbit anti-HRP
592 (Life Technologies, G-21234, 1:10000), mouse anti-HRP (Life Technologies, A16078,
593 1:10000) (**Supplemental Table 1**).

594 Cloned HA-tagged NLGN3-WT, NLGN3-R451C, NLGN4X-WT and NLGN4X-
595 D396 plasmids were gifts from Prof. Peter Scheiffele²³. A pmCherry-N1 plasmid
596 (ClonTech, 632523) was utilised as a morphological marker in HEK293

597 immunocytochemistry experiments. A peGFP-N2 plasmid (ClonTech, 632483) was
598 utilised as a morphological marker in subsequent proliferating CTX0E16 experiments
599 due to red fluorescent protein aggregation in CTX0E16 hNPCs.

600

601 ***Cell Culture, Transfection, and Replication***

602 Antibody validation, protrusion outgrowth, and PAK/cofilin mechanism
603 experiments used human embryonic kidney cells (HEK293) cultured in DMEM:F12
604 (Sigma, D6421) supplemented with 10% foetal bovine serum (ClonTech, 631107) and
605 1% L-glutamine (Sigma, G7513), in a 37°C/5% CO₂ atmosphere. Cells were seeded at
606 30-40% confluence on acid-washed glass coverslips 24 hours before transfection. For
607 antibody validation, three biological replicate whole cell lysate samples were generated
608 (see immunoblotting section) and separated per lane. One biological replicate was
609 considered as a single passage/plating between flasks of fully confluent cells. For
610 PAK/cofilin mechanism experiments, three biological replicate whole cell lysate samples
611 per condition (control, wildtype NLGN, and mutant NLGN) were generated 48 hours
612 post-transfection. The protrusion outgrowth experiment was conducted in HEK293 cells
613 once to confirm the outgrowth phenotype.

614 The conditionally immortalised cortically derived human neural progenitor cell line
615 (hNPC) CTX0E16 was obtained from ReNeuron Ltd. (Guildford, UK) under a Material
616 Transfer Agreement. CTX0E16 hNPCs were derived from 12-week foetal cortical
617 neuroepithelium and conditionally immortalized using a c-mycER^{TAM} transgene.
618 Characterization of the CTX0E16 cell line is described in detail elsewhere^{54, 55}.
619 Proliferation and neuralization of CTX0E16 cells were carried out as previously

620 described⁵⁴. Briefly, CTX0E16 cells were neuralized by replacing 4-hydroxytamoxifen
621 (Sigma, H7904) supplemented DMEM:F12 medium (Sigma, D6421) with Neurobasal
622 medium (Invitrogen, 12348017) supplemented with serum-free B27 (Life Technologies,
623 17504044).

624 For endogenous NLGN3/4X expression experiments, three biological replicate
625 whole cell protein or RNA lysates per time point (NPC and neuron) were generated in
626 parallel (see immunoblotting or RNA isolation sections). Super-resolution images of
627 endogenous NLGN3/4X expression were conducted once to assess endogenous
628 protein localisation in immature neurons.

629 All transfections in HEK293 and CTX0E16 hNPCs were carried out using
630 Lipofectamine 2000 (Invitrogen, 17504044), per the manufacturer's instructions. Briefly,
631 2 µg of each HA-NLGN and 2 µg of peGFP-N2 or mCherry (where applicable) construct
632 were mixed with 2 µl of Lipofectamine 2000 in 100 µl DMEM:F12 and incubated for 20
633 minutes in a 37°C/5% CO₂ atmosphere. The DNA:Lipofectamine 2000 mixture was
634 added dropwise to HEK293 or CTX0E16 hNPCs which were then incubated for 4 hours
635 at 37°C, before being transferred to new wells containing fresh media. Proliferating
636 HEK293 or CTX0E16 hNPCs recovered for 48 hours in an incubator at 37°C/5% CO₂
637 prior to fixation and immunocytochemistry. Differentiating CTX0E16 hNPCs recovered
638 for 48 hours and continued differentiating for a further 24 hours in an incubator at
639 37°C/5% CO₂ prior to fixation and immunocytochemistry.

640 Super-resolution assessment of nanodomains was conducted once to confirm
641 their presence in and at the leading edge of growth cones. For neurite outgrowth
642 experiments, five images per condition (control, wildtype NLGN, mutant NLGN) were

643 acquired and quantified for each of three biological replicates. One biological replicate
644 was considered as a single passage/plating between flasks of fully confluent cells. Line
645 scan analyses of exogenously expressed growth cone and neurite NLGN3/4X were
646 conducted once to demonstrate the localisation disparity between wildtype and mutant
647 NLGN. For super-resolution growth cone actin analyses, five images per condition
648 (control, wildtype NLGN, mutant NLGN) were acquired and quantified for each of three
649 biological replicates (see microscopy and quantification sections). For super-resolution
650 analysis of growth cone pPAK1 and wildtype NLGNs, five images per condition (control,
651 wildtype NLGN) were acquired and quantified for each of three biological replicates.

652 The brain penetrant and orally bioavailable p21-activated kinase (PAK) inhibitor
653 FRAX486 (Tocris, 5190) was used to inhibit PAK1-4 in pharmacological
654 inhibition/rescue experiments. FRAX486 was diluted in dimethyl sulphate (DMSO) to 10
655 mM per manufacturer's instructions. Differentiating hNPCs were treated with FRAX486
656 diluted in differentiation media 24 hours after transfection with HA-NLGN3/4X constructs
657 at a final concentration of 50 nM^{35, 36}. DMSO was used as a vehicle treatment for control
658 at the same dilution. FRAX486 and vehicle treated hNPCs continued differentiating for a
659 further 48 hours in an incubator at 37°C/5% CO₂ prior to fixation and
660 immunocytochemistry. For super-resolution growth cone FRAX486 attenuation
661 experiments, five images per condition (control DMSO, control FRAX, NLGN DMSO,
662 NLGN FRAX) were acquired and quantified for each of three biological replicates. For
663 FRAX486 treated growth cone NLGN cluster experiments, five images per condition
664 (control DMSO, control FRAX, NLGN DMSO, NLGN FRAX) were acquired and
665 quantified for each of three biological replicates. For neurite FRAX486 attenuation

666 experiments, five images per condition (control DMSO, control FRAX, NLGN DMSO,
667 NLGN FRAX) were acquired and quantified for each of three biological replicates.

668

669 ***Microscopy***

670 Representative images of preliminary experiments in HEK293 and CTX0E16
671 cells, proliferating CTX0E16 experiments and all images for data analysis were acquired
672 using a Zeiss Axio Imager Z1 epifluorescent microscope with ApoTome attachment
673 using a 40x oil-immersion objective (Carl Zeiss AG). Representative images of further
674 experiments investigating neurite outgrowth in differentiated CTX0E16 cells were
675 acquired using a Leica SP-5 confocal microscope with a 100x oil-immersion objective
676 (Leica Microsystems). Z-stacks of 5 individual cells per condition across three biological
677 replicates were obtained for statistical data analysis. 10 images were taken per Z-stack
678 at a slice distance of 0.5 μ m.

679 Super-resolved images of growth cones were collected using a Visitech-iSIM
680 module coupled to a Nikon Ti-E microscope with a Nikon 100x 1.49 NA TIRF oil
681 immersion lens (Nikon, Japan). Blue fluorescence was excited with a 405 nm laser and
682 emission filtered through a 460/50 filter. Green fluorescence was excited with a 488 nm
683 laser and emission filtered through a 525/50 filter. Red Fluorescence was excited with a
684 561 nm laser and emission filtered through a 630/30 filter. Far Red fluorescence was
685 excited with a 640 nm laser and emission filtered through a 710/60 filter. Multiple
686 images at focal planes were collected spaced apart by 0.05 μ m. Data were deconvolved
687 using a Richardson-Lucy algorithm specific to the iSIM mode of imaging to increase

688 contrast and resolution using the supplied NIS-Elements Advanced Research software
689 (Nikon, Japan, v4.6).

690

691 ***Immunoblotting***

692 Cultured cells were lysed in radioimmunoprecipitation lysis buffer consisting of 20 mM
693 Tris; pH 7.2, 150 mM NaCl, 1% Triton-X-100, 5 mM EDTA; pH 8, 0.1% SDS, 1%
694 sodium deoxycholate with additional phosphatase inhibitors (Sigma, P0044). Detergent
695 soluble lysates were sonicated and centrifuged to remove cell debris. Samples were
696 resolved by SDS-PAGE, transferred to a nitrocellulose or PVDF membrane and blocked
697 for 1 hour in 5% bovine serum albumin (Sigma, A7906) in TBS-T. Membranes were
698 then immunoblotted with primary antibodies overnight at 4°C, followed by incubation
699 with anti-mouse or anti-rabbit horseradish peroxidase (HRP) conjugated secondary
700 antibodies for 1 hour at room temperature. Membranes were then incubated in Clarity
701 electrochemiluminescence substrate (Bio-Rad, 1705061) for 5 minutes and
702 subsequently scanned using the Bio-Rad ChemiDoc MP (Bio-Rad). Band intensity was
703 quantified by densitometry using Image Lab software (Bio-Rad, v6.0).

704

705 ***RNA Isolation, cDNA Synthesis, RT-PCR, and qPCR***

706 Proliferating hNPCs (n=3) or differentiating immature neurons (n=3) CTX0E16s
707 were pelleted and lysed in TRI Reagent (Ambion, AM9738). Total RNA was then
708 extracted per the manufacturer's instructions. Residual genomic DNA was removed
709 from each of 6 biological replicates using the TURBO DNA-free™ Kit (Life Technologies,
710 AM1907) per the manufacturer's instructions. cDNA was synthesized from 1 µg of total

711 RNA from each extraction using random decamers (Ambion, AM5722G) and
712 SuperScript III Reverse Transcriptase (Invitrogen, 18080044), per the manufacturer's
713 instructions.

714 To determine the expression of specific genes, primers were designed to target
715 all known RefSeq transcripts of genes of interest, sourced from the UCSC Genome
716 Browser website (<http://genome.ucsc.edu>) (**Supplemental Table 2**). Primers were
717 designed to span intronic regions of the selected genes to ensure specific amplification
718 of mRNA, even in the presence of DNA contamination. Reactions were carried out in a
719 total volume of 20 μ l containing diluted cDNA, 1 X HOT FIREPol Blend Master Mix
720 (Solis Biodyne, 04-25-00125) and primers at 200 nM, using a GS4 thermal cycler.
721 Samples were separated and visualised by agarose gel electrophoresis.

722 For quantitative expression analysis, 20 μ l cDNA samples from SuperScript III
723 reactions were diluted with a further 120 μ l of nuclease-free H₂O. Reactions were
724 carried out in a total volume of 20 μ l, containing diluted cDNA, 1 \times HOT FIREPol[®]
725 EvaGreen[®] q-PCR Mix (Solis Biodyne, 08-25-00001) and primers at 200 nM, using an
726 MJ Research Chromo 4 (Bio-Rad) and MJ Opticon Monitor analytic software (Bio-Rad).
727 Triplicate qPCR reactions were performed to measure each gene in each cDNA
728 sample. The level of each gene was measured against a standard curve constructed by
729 serial dilution of pooled cDNA from all assayed samples. A relative value was thus
730 obtained for each of the three triplicate reactions for each cDNA sample. Mean
731 measures of target genes were then normalized against a geometric mean determined
732 from 2 internal control genes (ALG2 & RPL6) for each cDNA sample to yield a relative
733 target gene expression value for all samples. ALG2 & RPL6 were identified as suitable

734 internal controls based on a combination of previous whole-genome microarray data of
735 CTX0E16 cells, where it showed the least variability (in terms of standard deviation)
736 across conditions and a housekeeper screen qPCR. Normalized qPCR target gene
737 expression values were compared between hNPC or immature neuron CTX0E16 cells.

738

739 ***Quantification and Statistical Analysis***

740 All neurite outgrowth images were quantified using the NeuronJ ImageJ plug-in
741 (<http://www.imagescience.org/meijering/software/neuronj/> v1.4.2) which allowed for
742 manual tracing and labelling (primary, secondary, or tertiary) of individual neurites⁵⁶
743 (**Supplemental Figure 7A**). Neurite inclusion/exclusion criteria were established
744 visually while tracing and later re-established once all neurites were traced via a <3 µm
745 neurite length exclusion threshold set via logic test in MS Excel. 5 cells per condition
746 were quantified across three biological replicates.

747 Growth cone area was quantified using NIS-Elements Advanced Research
748 software (Nikon, Japan). Growth cone filament number was quantified using line scan
749 analysis in ImageJ (**Supplemental Figure 7B & C**). Growth cone filament skeletons
750 were generated using the ImageJ plug-in Ridge Detection⁵⁷. Filament length was also
751 quantified using Ridge Detection. Growth cone filament anisotropy was quantified using
752 the ImageJ plug-in FibrilTool⁵⁸.

753 All immunoblotting and RT-qPCR data were processed post-hoc in MS Excel to
754 eliminate batch effects⁵⁹. Briefly, the sum of all conditions in each data set was
755 calculated. Each condition was then divided by the sum of all conditions to remove
756 batch effects. Data were then log transformed and plotted. All datasets were tested for

757 normality using the D'Agostino & Pearson normality test prior to inferential statistical
758 analyses⁶⁰. Datasets found to be normally distributed were analysed using parametric
759 statistical tests while datasets found to be abnormally distributed were analysed using
760 their non-parametric equivalent. Two-tailed unpaired students t-test or Mann Whitney U
761 test was used for endogenous expression protein/RNA analyses with an alpha level of
762 0.05. Ordinary one-way analysis of variance (ANOVA) with Bonferroni correction for
763 multiple comparisons or Kruskal-Wallis test with Dunn's post-hoc correction was used
764 for total neurite outgrowth analyses with an alpha level of 0.05 (MRD, Mean Rank
765 Difference). Two-way ANOVA with Bonferroni correction for multiple comparisons was
766 used for primary, secondary, and tertiary neurite outgrowth analyses. Ordinary one-way
767 ANOVA with Bonferroni correction for multiple comparisons or Kruskal-Wallis test with
768 Dunn's post-hoc correction was used for all super-resolution growth cone actin
769 analyses, including FRAX486 attenuation analyses with an alpha level of 0.05. Two-
770 tailed unpaired students t-test or Mann Whitney U test was used for FRAX486 treated
771 growth cone NLGN cluster analyses. Lastly, ordinary one-way ANOVA with Bonferroni
772 correction for multiple comparisons or Kruskal-Wallis test with Dunn's post-hoc
773 correction was used for FRAX486 treated neurite outgrowth analyses. All data
774 visualisations were generated in GraphPad Prism 7.0 (GraphPad Software, La Jolla
775 California USA, <http://www.graphpad.com/scientific-software/prism/>). All data are shown
776 as mean \pm standard error of the mean (SEM) to two decimal places where necessary
777 and all error bars represent SEM.

778

779 **Data Availability**

780 All data supporting the findings of this manuscript are available from the
781 corresponding authors upon reasonable request. NLGN3/4X mRNA expression data are
782 freely available from the BrainSpan Atlas of the Developing Human Brain compiled
783 primarily by the Allen Institute for Brain Science.

784

785 **References**

786

- 787 1. Jan Y-N, Jan LY. Branching out: mechanisms of dendritic arborization. *Nature*
788 *Reviews Neuroscience* **11**, 316 (2010).
- 789 2. Arimura N, Kaibuchi K. Neuronal polarity: from extracellular signals to
790 intracellular mechanisms. *Nature Reviews Neuroscience* **8**, 194 (2007).
- 791 3. Polleux F, Snider W. Initiating and growing an axon. *Cold Spring Harbor*
792 *perspectives in biology* **2**, a001925 (2010).
- 793 4. Lowery LA, Van Vactor D. The tip of the tip: understanding the growth cone
794 machinery. *Nature reviews Molecular cell biology* **10**, 332 (2009).
- 795 5. Pak CW, Flynn KC, Bamburg JR. Actin-binding proteins take the reins in growth
796 cones. *Nature Reviews Neuroscience* **9**, 136 (2008).
- 797 6. Delorme V, et al. Cofilin activity downstream of Pak1 regulates cell protrusion
801 efficiency by organizing lamellipodium and lamella actin networks.
802 *Developmental cell* **13**, 646-662 (2007).
- 803 7. Flynn KC, et al. ADF/cofilin-mediated actin retrograde flow directs neurite
804 formation in the developing brain. *Neuron* **76**, 1091-1107 (2012).
- 805 8. Garcia M, Leduc C, Lagardère M, Argento A, Sibarita J-B, Thoumine O. Two-
806 tiered coupling between flowing actin and immobilized N-cadherin/catenin
807 complexes in neuronal growth cones. *Proceedings of the National Academy of*
808 *Sciences*, 201423455 (2015).
- 809 9. Constance WD, et al. Neurexin and Neuroligin-based adhesion complexes drive
810 axonal arborisation growth independent of synaptic activity. *eLife* **7**, (2018).

- 816
- 817 10. Harkin LF, *et al.* Neurexins 1–3 each have a distinct pattern of expression in the
818 early developing human cerebral cortex. *Cerebral Cortex* **27**, 216-232 (2017).
- 819
- 820 11. Hart MP, Hobert O. Neurexin controls plasticity of a mature, sexually dimorphic
821 neuron. *Nature* **553**, 165 (2018).
- 822
- 823 12. Chubykin AA, *et al.* Activity-dependent validation of excitatory versus inhibitory
824 synapses by neuroligin-1 versus neuroligin-2. *Neuron* **54**, 919-931 (2007).
- 825
- 826 13. Südhof TC. Neuroligins and neurexins link synaptic function to cognitive disease.
827 *Nature* **455**, 903-911 (2008).
- 828
- 829 14. Varoqueaux F, *et al.* Neuroligins determine synapse maturation and function.
830 *Neuron* **51**, 741-754 (2006).
- 831
- 832 15. Clarris HJ, McKeown S, Key B. Expression of neurexin ligands, the neuroligins
833 and the neurexophilins, in the developing and adult rodent olfactory bulb.
834 *International Journal of Developmental Biology* **46**, 649-652 (2004).
- 835
- 836 16. Paraoanu LE, Becker-Roeck M, Christ E, Layer PG. Expression patterns of
837 neurexin-1 and neuroligins in brain and retina of the chick embryo: Neuroligin-3 is
838 absent in retina. *Neuroscience letters* **395**, 114-117 (2006).
- 839
- 840 17. Chen SX, Tari PK, She K, Haas K. Neurexin-neuroligin cell adhesion complexes
841 contribute to synaptotropic dendritogenesis via growth stabilization mechanisms
842 in vivo. *Neuron* **67**, 967-983 (2010).
- 843
- 844 18. Gaugler T, *et al.* Most genetic risk for autism resides with common variation.
845 *Nature genetics* **46**, 881 (2014).
- 846
- 847 19. Basu SN, Kollu R, Banerjee-Basu S. AutDB: a gene reference resource for
848 autism research. *Nucleic Acids Research* **37**, D832-D836 (2009).
- 849
- 850 20. Kathuria A, *et al.* Stem cell-derived neurons from autistic individuals with
851 SHANK3 mutation show morphogenetic abnormalities during early development.
852 *Mol Psychiatry* **23**, 735-746 (2018).
- 853
- 854 21. Schafer ST, *et al.* Pathological priming causes developmental gene network
855 heterochronicity in autistic subject-derived neurons. 1 (2019).

- 856
- 857 22. Jamain S, *et al.* Mutations of the X-linked genes encoding neuroligins NLGN3
858 and NLGN4 are associated with autism. *Nature genetics* **34**, 27-29 (2003).
- 859
- 860 23. Chih B, Afridi SK, Clark L, Scheiffele P. Disorder-associated mutations lead to
861 functional inactivation of neuroligins. *Human molecular genetics* **13**, 1471-1477
862 (2004).
- 863
- 864 24. Chanda S, Aoto J, Lee S-J, Wernig M, Südhof TCJMp. Pathogenic mechanism of
865 an autism-associated neuroligin mutation involves altered AMPA-receptor
866 trafficking. **21**, 169 (2016).
- 867
- 868 25. Miller JA, *et al.* Transcriptional landscape of the prenatal human brain. *Nature*
869 **508**, 199-206 (2014).
- 870
- 871 26. Letellier M, *et al.* A unique intracellular tyrosine in neuroligin-1 regulates AMPA
872 receptor recruitment during synapse differentiation and potentiation. *Nature
873 Communications* **9**, 3979 (2018).
- 874
- 875 27. Graf ER, Zhang X, Jin S-X, Linhoff MW, Craig AM. Neurexins induce
876 differentiation of GABA and glutamate postsynaptic specializations via
877 neuroligins. *Cell* **119**, 1013-1026 (2004).
- 878
- 879 28. Boucard AA, Chubykin AA, Comoletti D, Taylor P, Südhof TC. A Splice Code for
880 trans-Synaptic Cell Adhesion Mediated by Binding of Neuroligin 1 to α - and β -
881 Neurexins. *Neuron* **48**, 229-236 (2005).
- 882
- 883 29. Levinson JN, Li R, Kang R, Moukhles H, El-Husseini A, Bamji SX. Postsynaptic
884 scaffolding molecules modulate the localization of neuroligins. *Neuroscience* **165**,
885 782-793 (2010).
- 886
- 887 30. Medina MA, *et al.* Wnt/ β -catenin signaling stimulates the expression and synaptic
888 clustering of the autism-associated Neuroligin 3 gene. *Translational psychiatry* **8**,
889 45 (2018).
- 890
- 891 31. Hoon M, *et al.* Neuroligin-4 is localized to glycinergic postsynapses and regulates
892 inhibition in the retina. *Proceedings of the National Academy of Sciences* **108**,
893 3053-3058 (2011).
- 894
- 895 32. Chamma I, Thoumine O. Dynamics, nanoscale organization, and function of
896 synaptic adhesion molecules. *Molecular and Cellular Neuroscience*, (2018).

- 897
- 898 33. Haas KT, et al. Pre-post synaptic alignment through neuroligin-1 tunes synaptic
899 transmission efficiency. *eLife* **7**, e31755 (2018).
- 900
- 901 34. Edwards DC, Sanders LC, Bokoch GM, Gill GN. Activation of LIM-kinase by
902 Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics.
903 *Nature cell biology* **1**, 253 (1999).
- 904
- 905 35. Dolan BM, et al. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by
906 the small-molecule PAK inhibitor FRAX486. *Proceedings of the National
907 Academy of Sciences of the United States of America* **110**, 5671-5676 (2013).
- 908
- 909 36. Hayashi-Takagi A, et al. PAKs inhibitors ameliorate schizophrenia-associated
910 dendritic spine deterioration in vitro and in vivo during late adolescence.
911 *Proceedings of the National Academy of Sciences* **111**, 6461-6466 (2014).
- 912
- 913 37. Vitriol EA, Zheng JQ. Growth cone travel in space and time: the cellular
914 ensemble of cytoskeleton, adhesion, and membrane. *Neuron* **73**, 1068-1081
915 (2012).
- 916
- 917 38. Breuza L, et al. The UniProtKB guide to the human proteome. *Database* **2016**,
918 (2016).
- 919
- 920 39. Consortium U. UniProt: the universal protein knowledgebase. *Nucleic acids
921 research* **45**, D158-D169 (2016).
- 922
- 923 40. Bolliger MF, Pei J, Maxeiner S, Boucard AA, Grishin NV, Südhof TC. Unusually
924 rapid evolution of Neuroligin-4 in mice. *Proceedings of the National Academy of
925 Sciences* **105**, 6421-6426 (2008).
- 926
- 927 41. Deans PM, et al. Psychosis risk candidate ZNF804A localizes to synapses and
928 regulates neurite formation and dendritic spine structure. *82*, 49-61 (2017).
- 929
- 930 42. Woolfrey KM, et al. Epac2 induces synapse remodeling and depression and its
931 disease-associated forms alter spines. *Nature neuroscience* **12**, 1275-1284
932 (2009).
- 933
- 934 43. Srivastava DP, et al. An autism-associated variant of Epac2 reveals a role for
935 Ras/Epac2 signaling in controlling basal dendrite maintenance in mice. *PLoS Biol*
936 **10**, e1001350 (2012).

- 937
938 44. Liu A, *et al.* Neuroligin 1 regulates spines and synaptic plasticity via
939 LIMK1/cofilin-mediated actin reorganization. *The Journal of Cell Biology* **212**, 449
940 (2016).
- 941
942 45. Clement JP, *et al.* Pathogenic SYNGAP1 mutations impair cognitive
943 development by disrupting maturation of dendritic spine synapses. *Cell* **151**, 709-
944 723 (2012).
- 945
946 46. Gjørlund MD, *et al.* Neuroligin-1 induces neurite outgrowth through interaction
947 with neurexin-1 β and activation of fibroblast growth factor receptor-1. *The FASEB
948 Journal* **26**, 4174-4186 (2012).
- 949
950 47. Chanda S, Hale WD, Zhang B, Wernig M, Südhof TC. Unique vs. Redundant
951 Functions of Neuroligin Genes in Shaping Excitatory and Inhibitory Synapse
952 Properties. *Journal of Neuroscience*, 0125-0117 (2017).
- 953
954 48. Biederer T, Kaeser PS, Blanpied TA. Transcellular nanoalignment of synaptic
955 function. *Neuron* **96**, 680-696 (2017).
- 956
957 49. Alvarez VA, Ridenour DA, Sabatini BL. Retraction of synapses and dendritic
958 spines induced by off-target effects of RNA interference. *Journal of Neuroscience*
959 **26**, 7820-7825 (2006).
- 960
961 50. Vadlamudi RK, *et al.* Filamin is essential in actin cytoskeletal assembly mediated
962 by p21-activated kinase 1. *Nature cell biology* **4**, 681 (2002).
- 963
964 51. Rane CK, Minden A. P21 activated kinases: structure, regulation, and functions.
965 *Small GTPases* **5**, e28003 (2014).
- 966
967 52. Martínez-Muñoz L, *et al.* Separating Actin-Dependent Chemokine Receptor
968 Nanoclustering from Dimerization Indicates a Role for Clustering in CXCR4
969 Signaling and Function. *Molecular cell* **70**, 106-119. e110 (2018).
- 970
971 53. Aiga M, Levinson JN, Bamji SX. N-cadherin and neuroligins cooperate to
972 regulate synapse formation in hippocampal cultures. *Journal of Biological
973 Chemistry* **286**, 851-858 (2011).
- 974
975 54. Anderson GW, *et al.* Characterisation of neurons derived from a cortical human
976 neural stem cell line CTX0E16. *Stem Cell Research Therapy* **6**, 149 (2015).

- 977
- 978 55. Pollock K, *et al.* A conditionally immortal clonal stem cell line from human cortical
979 neuroepithelium for the treatment of ischemic stroke. *Experimental neurology*
980 **199**, 143-155 (2006).
- 981
- 982 56. Meijering E, Jacob M, Sarria JC, Steiner P, Hirling H, Unser M. Design and
983 validation of a tool for neurite tracing and analysis in fluorescence microscopy
984 images. *Cytometry Part A* **58**, 167-176 (2004).
- 985
- 986 57. Steger C. An unbiased detector of curvilinear structures. *IEEE Transactions on
987 pattern analysis and machine intelligence* **20**, 113-125 (1998).
- 988
- 989 58. Boudaoud A, *et al.* FibrilTool, an ImageJ plug-in to quantify fibrillar structures in
990 raw microscopy images. *Nat Protocols* **9**, 457-463 (2014).
- 991
- 992 59. Degasperi A, Birtwistle MR, Volinsky N, Rauch J, Kolch W, Kholodenko BN.
993 Evaluating strategies to normalise biological replicates of Western blot data. *PLoS
994 one* **9**, e87293 (2014).
- 995
- 996 60. D'Agostino RB, Belanger A. A Suggestion for Using Powerful and Informative
997 Tests of Normality. *The American Statistician* **44**, 316-321 (1990).
- 998

999 **Author Information**

1000 **Affiliations**

- 1001 *Cells & Behavior Unit, Department of Basic and Clinical Neuroscience, Institute of
1002 Psychiatry, Psychology, & Neuroscience, King's College London, London, UK.*
- 1003 Nicholas J. F. Gatford, P. J. Michael Deans, Rodrigo R.R. Duarte, George Chennell,
- 1004 Pooja Raval, & Deepak P. Srivastava
- 1005
- 1006 *MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and
1007 Neuroscience, King's College London, London; United Kingdom.*
- 1008 Deepak P. Srivastava

1009

1010 Contributions

1014

1015 Acknowledgements

1016 The authors gratefully thank Professor Philip Gordon-Weeks for his insightful editorial
1017 comments and feedback on the manuscript and figures. The study was supported by
1018 grants from the Wellcome Trust ISSF Grant (No. 097819) and the King's Health
1019 Partners Research and Development Challenge Fund, a fund administered on behalf of
1020 King's Health Partners by Guy's and St Thomas' Charity awarded to DPS; the Brain and
1021 Behavior Foundation (formally National Alliance for Research on Schizophrenia and
1022 Depression (NARSAD); Grant No. 25957), awarded to DPS; the European Autism
1023 Interventions (EU-AIMS), and the Innovative Medicines Initiative Joint Undertaking
1024 under grant agreement no. 115300, resources of which are composed of financial
1025 contribution from the European Union's Seventh Framework Programme (FP7/2007-
1026 2013) and EFPIA companies' in kind contribution (DPS). We thank the Wohl Cellular
1027 Imaging Centre (WCIC) at the IoPPN, Kings College, London, for help with microscopy.

1028

1029

1030 Conflict of Interest Statement

1031 The authors declare no competing interests.

1032

1033 **Figure Legends**

1034 **Figure 1 – NLGN3 and NLGN4X are expressed in early human neurodevelopment**
1035 **and super-resolution imaging reveals they cluster in nanodomains at the leading**
1036 **edge of growth cones.** (A) RT-qPCR data showing endogenous NLGN3 and NLGN4X
1037 mRNA expression levels increase as hNPCs differentiate into immature neurons.
1038 NLGN3 - $t(4)=8.822$, $p=0.0009$, $n=3$; NLGN4X - $t(4)=1.875$, $p=0.134$, $n=3$. (B) Data and
1039 representative western blots showing endogenous NLGN3 and NLGN4X protein
1040 expression levels increase as hNPCs differentiate into immature neurons. NLGN3 -
1041 $t(4)=3.25$, $p=0.031$, $n=3$; NLGN4X - $t(4)=3.35$, $p=0.029$, $n=3$. (C) Representative super-
1042 resolution images of immature human neurons showing endogenous NLGN3 (upper)
1043 NLGN4X (lower) expression and localisation. NLGN3 and NLGN4X localise to the
1044 growth cone, particularly at the leading edge where they colocalise with F-actin (insets).
1045 Scale bar = 25 μ m (whole cell), 5 μ m (insets) (D) Representative super-resolution images
1046 of human neuronal growth cones ectopically expressing HA-tagged NLGN3 or
1047 NLGN4X. Clusters of HA-NLGN3/4X are visible at the growth cone leading edge based
1048 on high intensity puncta (open white arrows). Scale bar = 5 μ m.

1049

1050 **Figure 2 – Ectopic wildtype (WT) NLGN3/4X expression in immature neurons**
1051 **increases neuritogenesis in terms of both length and number compared to**
1052 **ectopic ASC-associated NLGN3-R451C or NLGN4X-D396 expression.** (A)
1053 Representative intensity images showing NLGN3-WT is highly localized to the leading
1054 edge of growth cones while the mutant variant is less localized but still present at the

1055 leading edge (open white arrows). Scale bar = 5 μ m (B) Representative intensity images
1056 showing NLGN4X-WT is highly localized to the leading edge of growth cones while
1057 NLGN4X-D396 is barely present in growth cones. (open white arrows). Scale bar = 5 μ m
1058 (C+D) Representative images and data showing ectopic NLGN3 expression significantly
1059 increases neurite number and length in immature neurons. Scale bar = 25 μ m. Neurite
1060 count/cell: Kruskal-Wallis: $\chi^2(3)=18.07$, $p=0.0001$, Dunn: Mean rank difference: -14.37,
1061 $p=0.008$, $n=15$; neurite length/cell: One-way ANOVA: $F(2,42)=15.97$, $p<0.0001$,
1062 Bonferroni: $t(42)=4.41$, $p<0.0001$, $n=15$). (E+F) Representative images and data
1063 showing ectopic NLGN4X expression significantly increases neurite number and length
1064 in immature neurons. Scale bar = 25 μ m. Neurite count/cell: One-way ANOVA:
1065 $F(2,42)=11.62$, $p<0.0001$, Bonferroni: $t(42)=2.60$, $p=0.039$, $n=15$; neurite length/cell:
1066 Kruskal-Wallis: $\chi^2(3)=26.95$, $p<0.0001$, Dunn: Mean rank difference: -13.53, $p=0.014$,
1067 $n=15$.

1068
1069 **Figure 3 – NLGN3 and NLGN4X effects growth cone structure by influencing actin
1070 filament organization.** (A) Representative super-resolution images showing ectopic
1071 wildtype (WT) NLGN3 expression influences growth cone area and actin filament
1072 organization. Scale bar = 5 μ m. (B) Data showing ectopic NLGN3-WT expression
1073 significantly increases growth cone area, filament number, filament length, and filament
1074 bundle width while decreasing filament distance and anisotropy compared to control or
1075 ectopic NLGN3-R451C expression. Growth cone area: One-way ANOVA:
1076 $F(2,35)=6.434$, $p=0.004$, Bonferroni: $t(35)=2.86$, $p=0.021$, $n=15$; filament number: One-
1077 way ANOVA: $F(2,44)=15.57$, $p<0.0001$, Bonferroni: $t(44)=4.43$, $p=0.0002$, $n=15$;

1078 filament length: One-way ANOVA: $F(2,39)=4.83$, $p=0.0134$, Bonferroni: $t(39)=2.73$,
1079 $p=0.028$, $n=15$; bundle width: One-way ANOVA: $F(2,44)=33.47$, $p<0.0001$, Bonferroni:
1080 $t(44)=6.10$, $p<0.0001$, $n=15$; filament distance: Kruskal-Wallis: $\chi^2(3)=22.07$, $p<0.0001$,
1081 Dunn: Mean rank difference: 17.41, $p=0.001$, $n=15$; anisotropy: One-way ANOVA:
1082 $F(2,43)=6.621$, $p=0.0031$, Bonferroni: $t(43)=3.21$, $p=0.0075$, $n=15$. (C) Representative
1083 super-resolution images showing ectopic NLGN4X-WT expression influences growth
1084 cone area and actin filament organization. Scale bar = 5 μ m. (D) Data showing ectopic
1085 NLGN4X-WT expression significantly increases growth cone area, filament number,
1086 filament length, and filament bundle width while decreasing filament distance but not
1087 anisotropy compared to control or ectopic NLGN4X-D396 expression. Filament distance
1088 was also found to be significantly increased between control and ectopic NLGN4X-D396
1089 conditions suggesting a dominant negative effect. Growth cone area: One-way ANOVA:
1090 $F(2,45)=15.54$, $p<0.0001$, Bonferroni: $t(45)=4.22$, $p=0.0003$, $n=15$; filament number:
1091 One-way ANOVA: $F(2,46)=12.38$, $p<0.0001$, Bonferroni: $t(46)=3.51$, $p=0.003$, $n=15$;
1092 filament length: Kruskal-Wallis: $\chi^2(3)=16.06$, $p=0.0003$, Dunn: Mean rank difference: -
1093 13.47, $p=0.028$, $n=15$; bundle width: One-way ANOVA: $F(2,46)=13.02$, $p<0.0001$,
1094 Bonferroni: $t(46)=3.55$, $p=0.003$, $n=15$; filament distance: Kruskal-Wallis: $\chi^2(3)=27.28$,
1095 $p<0.0001$, Dunn: Mean rank difference: 12.45, $p=0.043$, $n=15$, CTRL-NLGN4X-D396
1096 Dunn: Mean rank difference: -12.04, $p=0.041$, $n=15$; anisotropy: Kruskal-Wallis:
1097 $\chi^2(3)=2.59$, $p=0.2738$.

1098

1099 **Figure 4 – p21-activated kinase (PAK1) phosphorylation increases in growth
1100 cones ectopically expressing wildtype (WT) NLGN3 or NLGN4X and colocalizes**

1101 **with growth cone F-actin.** (A) Representative blots and data showing ectopic NLGN3-
1102 WT expression in HEK293 cells increases phosphorylation of actin regulator proteins
1103 PAK1 and cofilin. PAK1: One-way ANOVA: $F(2,6)=13.97$, $p=0.006$, Bonferroni:
1104 $t(6)=5.19$, $p=0.006$, $n=3$; cofilin: One-way ANOVA: $F(2,6)=160.20$, $p<0.0001$, Bonferroni:
1105 $t(6)=17.70$, $p<0.0001$, $n=3$. (B) Representative blots and data showing ectopic
1106 NLGN4X-WT expression in HEK293 cells increases phosphorylation of actin regulator
1107 proteins PAK1 and cofilin. PAK1: One-way ANOVA: $F(2,6)=26.15$, $p=0.001$, Bonferroni:
1108 $t(6)=4.13$, $p=0.02$, $n=3$; cofilin: One-way ANOVA: $F(2,6)=35.95$, $p=0.0005$, Bonferroni:
1109 $t(6)=6.73$, $p=0.002$, $n=3$. (C) Representative images and data showing phosphorylated
1110 PAK1 intensity significantly increases in growth cone F-actin clusters of immature
1111 neurons ectopically expressing NLGN3/4X-WT. NLGN3: $t(43)=2.07$, $p=0.04$ $n=25$;
1112 NLGN4X: $t(41)=3.52$, $p=0.001$, $n=23$. Scale bar = 5 μ m.

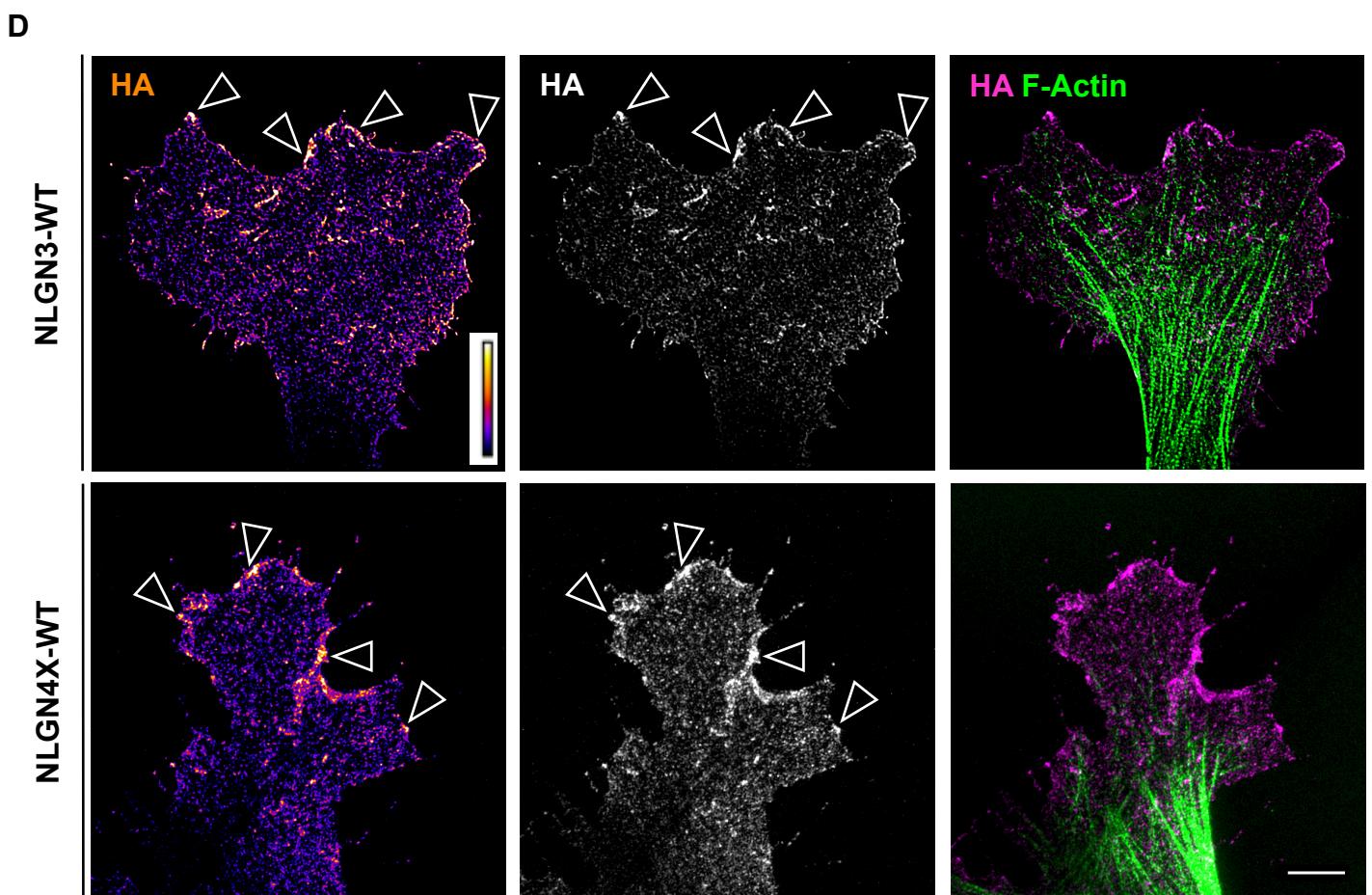
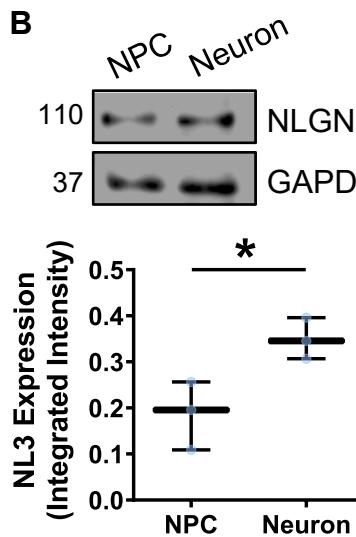
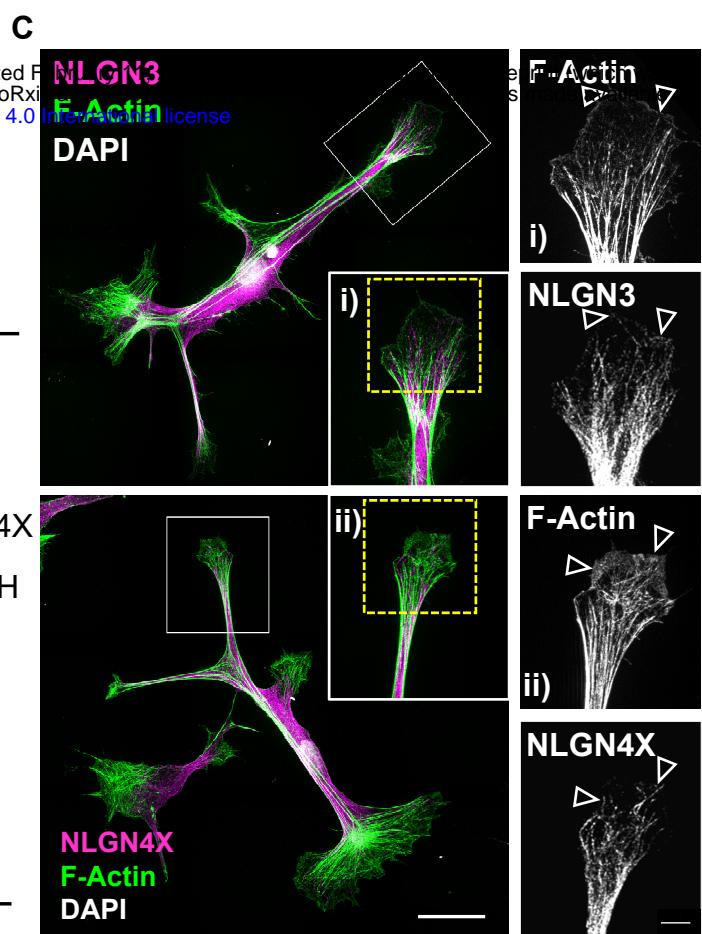
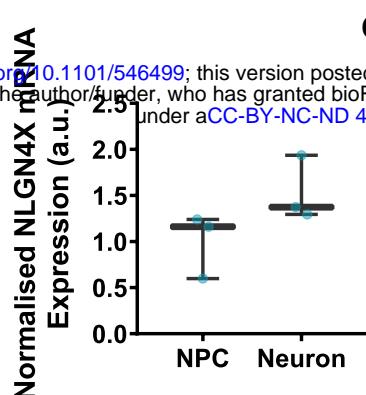
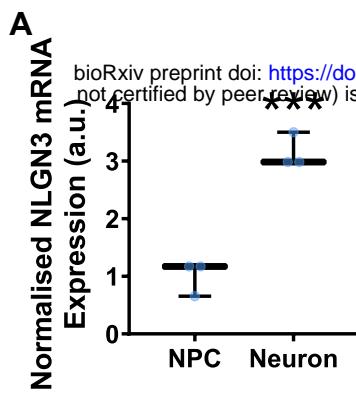
1113
1114 **Figure 5 – Growth cone morphology changes induced by ectopic NLGN3/4X-WT**
1115 **expression are attenuated by PAK1 inhibition.** (A) Representative images showing
1116 increases in growth cone area, filament number, and decreases in filament distance
1117 induced by ectopic NLGN3/4X-WT expression are attenuated by PAK1 inhibition. Scale
1118 bar = 5 μ m. (B) Data showing increases in growth cone area, filament number, and
1119 decreases in filament distance induced by ectopic NLGN3-WT expression are
1120 attenuated by PAK1 inhibition. Growth cone area: Kruskal-Wallis: $\chi^2(4)=62.71$,
1121 $p<0.0001$; CTRL-DMSO/CTRL-FRAX - Dunn: Mean rank difference: 24.68, $p=0.01$,
1122 $n=25$; CTRL-DMSO/NLGN3-DMSO - Dunn: Mean rank difference: -35.21, $p<0.0001$,
1123 $n=25$; CTRL-DMSO/NLGN3-FRAX - Dunn: Mean rank difference: -6.50, $p>0.99$, $n=25$.

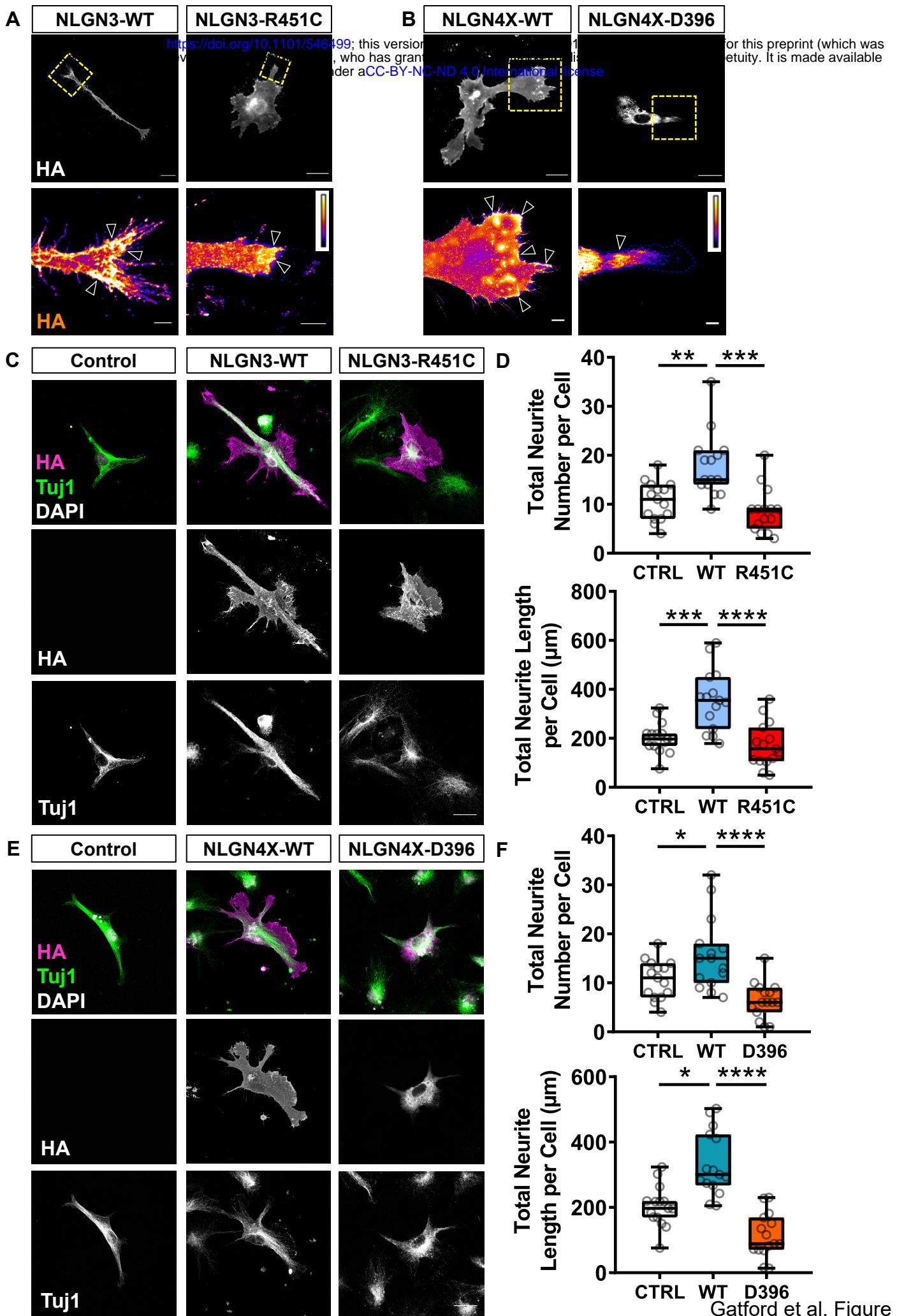
1124 Filament number: Kruskal-Wallis: $\chi^2(4)=70.82$, $p<0.0001$; CTRL-DMSO/CTRL-FRAX -
1125 Dunn: Mean rank difference: 29.17, $p=0.003$, $n=25$; CTRL-DMSO/NLGN3-DMSO -
1126 Dunn: Mean rank difference: -34.10, $p<0.0001$, $n=25$; CTRL-DMSO/NLGN3-FRAX -
1127 Dunn: Mean rank difference: -5.33, $p>0.99$, $n=25$. Filament distance: Kruskal-Wallis:
1128 $\chi^2(4)=60.25$, $p<0.0001$; CTRL-DMSO/CTRL-FRAX - Dunn: Mean rank difference: -
1129 29.84, $p=0.003$, $n=25$; CTRL-DMSO/NLGN3-DMSO - Dunn: Mean rank difference:
1130 29.82, $p=0.0007$, $n=25$; CTRL-DMSO/NLGN3-FRAX - Dunn: Mean rank difference:
1131 5.75, $p>0.99$, $n=25$. (C) Data showing increases in growth cone area, filament number,
1132 and decreases in filament distance induced by ectopic NLGN4X-WT expression are
1133 attenuated by PAK1 inhibition. Growth cone area: Kruskal-Wallis: $\chi^2(4)=64.28$,
1134 $p<0.0001$; CTRL-DMSO/CTRL-FRAX - Dunn: Mean rank difference: 20.78, $p=0.03$,
1135 $n=25$; CTRL-DMSO/NLGN4X-DMSO - Dunn: Mean rank difference: -35.17, $p<0.0001$,
1136 $n=25$; CTRL-DMSO/NLGN4X-FRAX - Dunn: Mean rank difference: -10.84, $p>0.99$,
1137 $n=25$. Filament number: Kruskal-Wallis: $\chi^2(4)=69.94$, $p<0.0001$; CTRL-DMSO/CTRL-
1138 FRAX - Dunn: Mean rank difference: 23.17, $p=0.02$, $n=25$; CTRL-DMSO/NLGN4X-
1139 DMSO - Dunn: Mean rank difference: -37.11, $p<0.0001$, $n=25$; CTRL-DMSO/NLGN4X-
1140 FRAX - Dunn: Mean rank difference: -15.55, $p>0.99$, $n=25$. Filament distance: Kruskal-
1141 Wallis: $\chi^2(4)=65.93$, $p<0.0001$; CTRL-DMSO/CTRL-FRAX - Dunn: Mean rank
1142 difference: -22.16, $p=0.03$, $n=25$; CTRL-DMSO/NLGN4X-DMSO - Dunn: Mean rank
1143 difference: 36.72, $p<0.0001$, $n=25$; CTRL-DMSO/NLGN4X-FRAX - Dunn: Mean rank
1144 difference: 13.90, $p>0.99$, $n=25$.

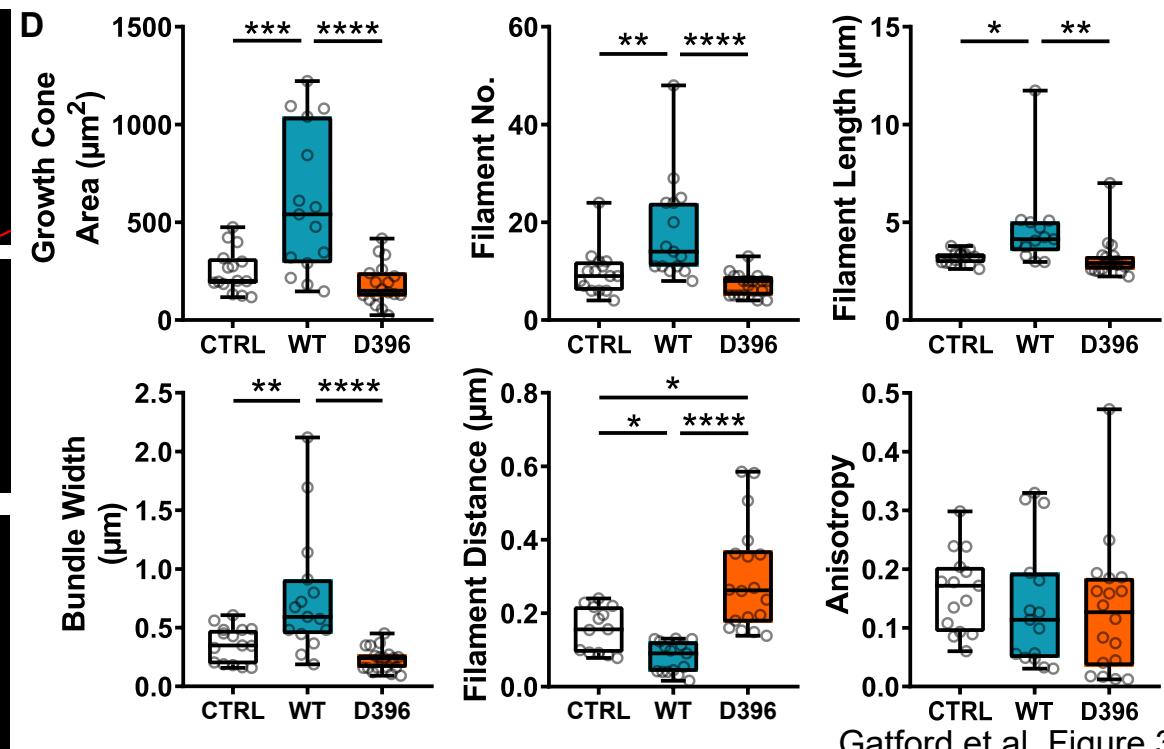
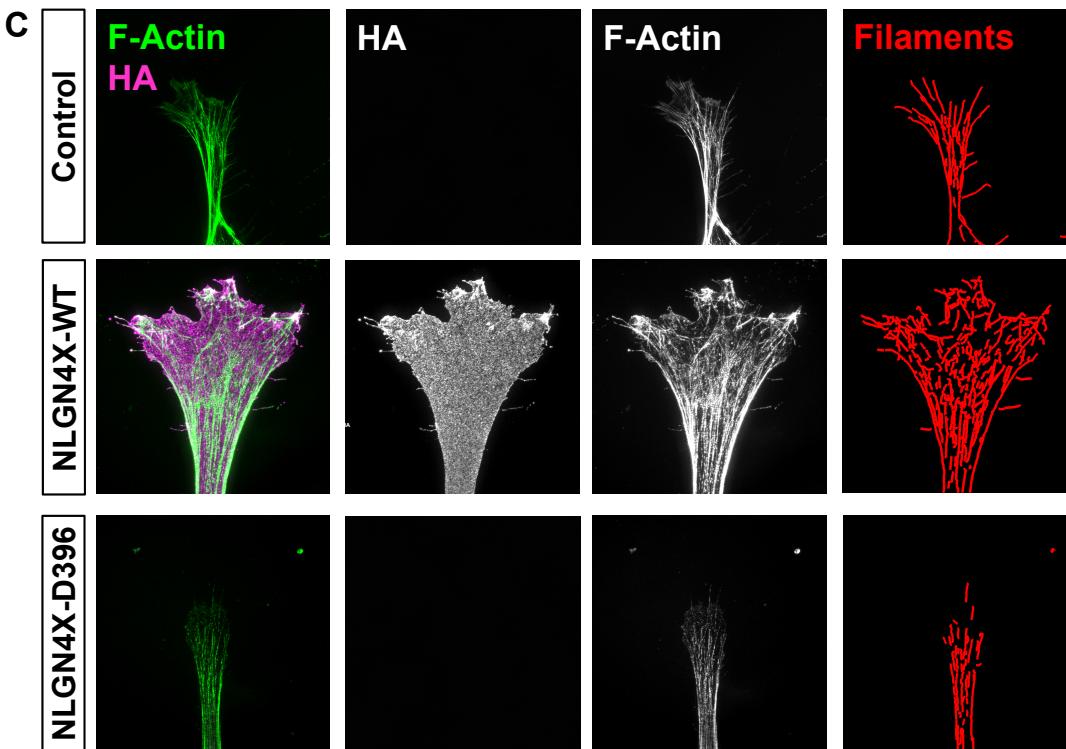
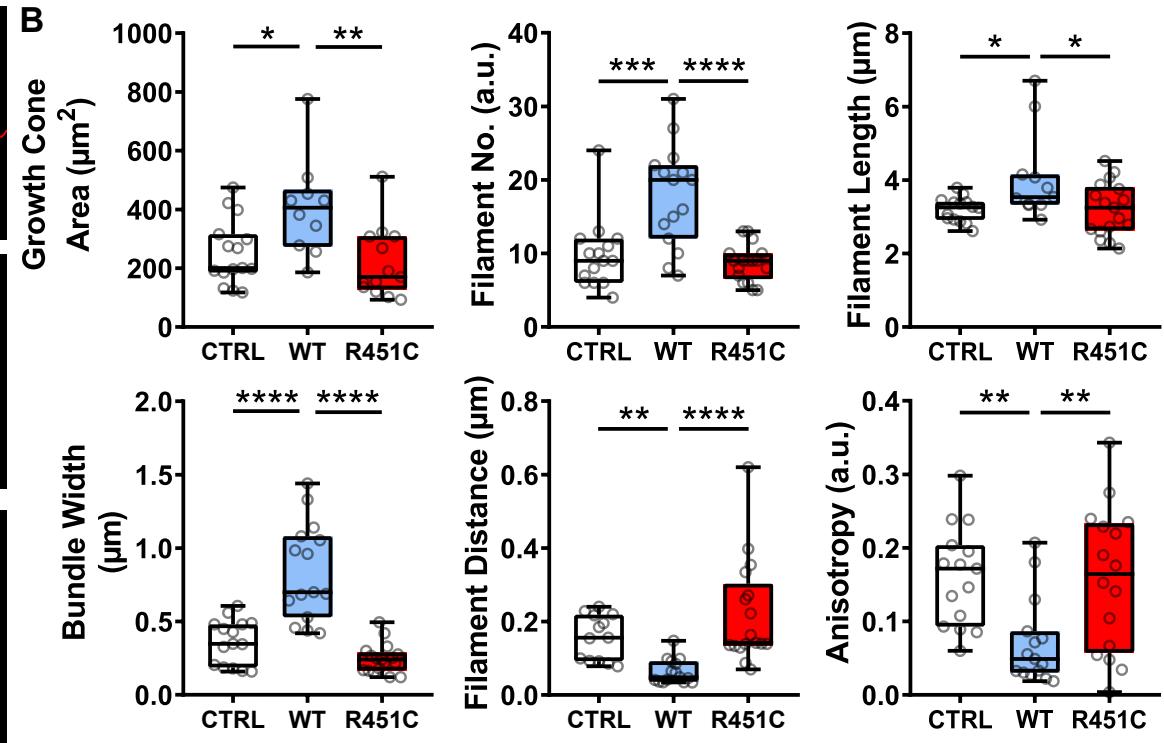
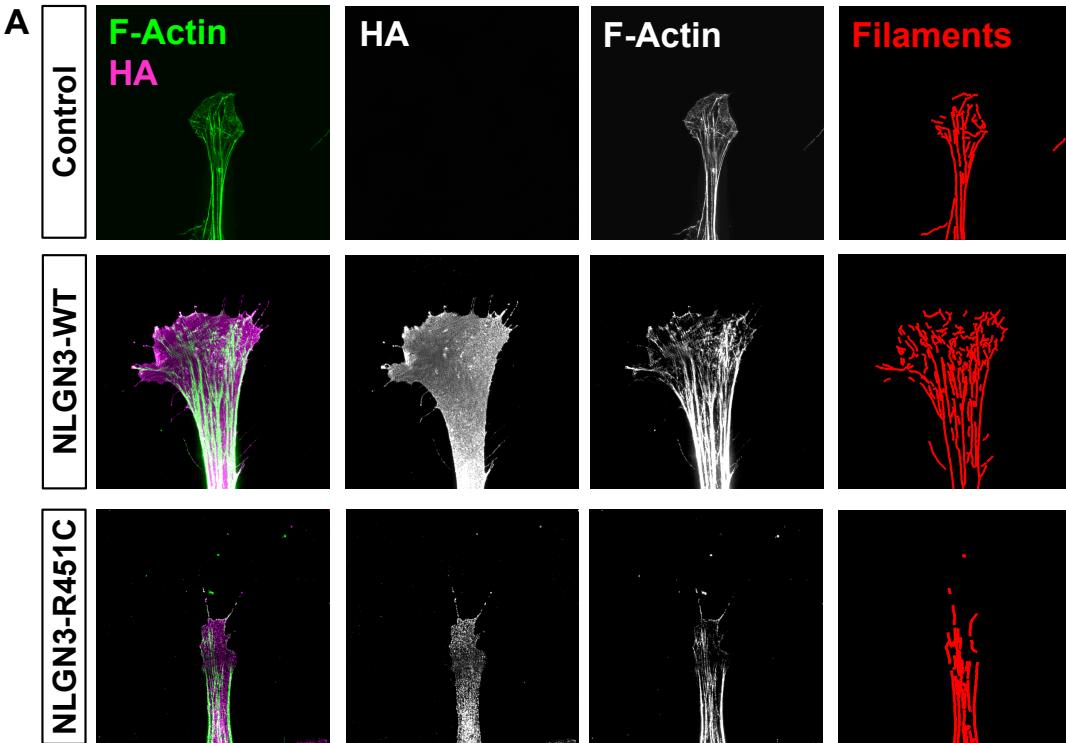
1145

1146 **Figure 6 – Growth cone NLGN3/4X clusters induced by ectopic HA-NLGN3/4X**
1147 **expression are also attenuated by PAK1 inhibition, a NLGN-PAK1 feedback loop**
1148 **is likely to play a role.** (A) Representative images and data showing ectopically
1149 expressed HA-NLGN3-WT clusters are attenuated by PAK1 inhibition in terms of cluster
1150 number, area, and intensity. Scale bar = 5 μ m. Number: T-test: $t(47)=5.16$, $p<0.0001$,
1151 $n=25$; area: Mann-Whitney: ($U=100$, $p<0.0001$, $n=25$); integrated intensity (I.I.): Mann-
1152 Whitney: ($U=117$, $p=0.0096$, $n=25$). (B) Representative images and data showing
1153 ectopically expressed HA-NLGN4X-WT clusters are attenuated by PAK1 inhibition in
1154 terms of cluster number, area, and intensity. Scale bar = 5 μ m Number: T-test:
1155 $t(37)=4.76$, $p<0.0001$, $n=20$; area: Mann-Whitney: ($U=41$, $p<0.0001$, $n=20$); integrated
1156 intensity (I.I.): Mann-Whitney: ($U=87$, $p=0.015$, $n=20$).

1157
1158 **Figure 7 – Increases in neuritogenesis induced by ectopic NLGN3/4X-WT**
1159 **expression are attenuated by PAK1 inhibition.** (A) Representative images and data
1160 showing ectopic NLGN3-WT mediated increases in neurite number and length are
1161 attenuated by PAK1 inhibition. Scale bar = 25 μ m. Number: Kruskal-Wallis: $\chi^2(4)=69.19$,
1162 $p<0.0001$; CTRL-DMSO/CTRL-FRAX - Dunn: Mean rank difference: 34.30, $p=0.0001$,
1163 $n=25$; CTRL-DMSO/NLGN3-DMSO - Dunn: Mean rank difference: -30.03, $p=0.0007$,
1164 $n=25$; CTRL-DMSO/NLGN3-FRAX - Dunn: Mean rank difference: 5.83, $p>0.99$, $n=25$.
1165 Length: Kruskal-Wallis: $\chi^2(4)=74.33$, $p<0.0001$; CTRL-DMSO/CTRL-FRAX - Dunn:
1166 Mean rank difference: 41.77, $p<0.0001$, $n=25$; CTRL-DMSO/NLGN3-DMSO - Dunn:
1167 Mean rank difference: -32.40, $p=0.017$, $n=25$; CTRL-DMSO/NLGN3-FRAX - Dunn:
1168 Mean rank difference: 17.38, $p=0.19$, $n=25$. (B) Representative images and data

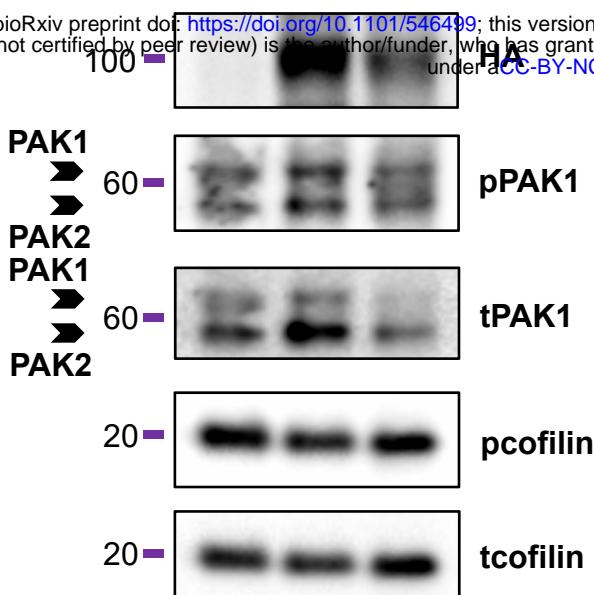





1169 showing ectopic NLGN4X-WT mediated increases in neurite number and length are
1170 attenuated by PAK1 inhibition. Scale bar = 25 μ m. Number: Kruskal-Wallis: $\chi^2(4)=62.30$,
1171 $p<0.0001$; CTRL-DMSO/CTRL-FRAX - Dunn: Mean rank difference: 29.75, $p=0.0002$,
1172 $n=25$; CTRL-DMSO/NLGN4X-DMSO - Dunn: Mean rank difference: -26.75, $p=0.001$,
1173 $n=25$; CTRL-DMSO/NLGN4X-FRAX - Dunn: Mean rank difference: -1.27, $p>0.99$, $n=25$.
1174 Length: Kruskal-Wallis: $\chi^2(4)=62.40$, $p<0.0001$; CTRL-DMSO/CTRL-FRAX - Dunn:
1175 Mean rank difference: 35.09, $p<0.0001$, $n=25$; CTRL-DMSO/NLGN4X-DMSO - Dunn:
1176 Mean rank difference: -20.85, $p=0.02$, $n=25$; CTRL-DMSO/NLGN4X-FRAX - Dunn:
1177 Mean rank difference: 10.25, $p>0.99$ $n=25$.


1178

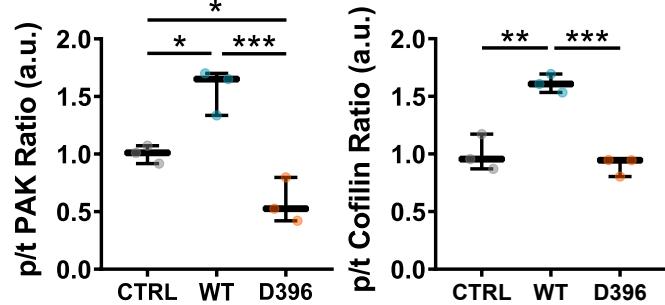
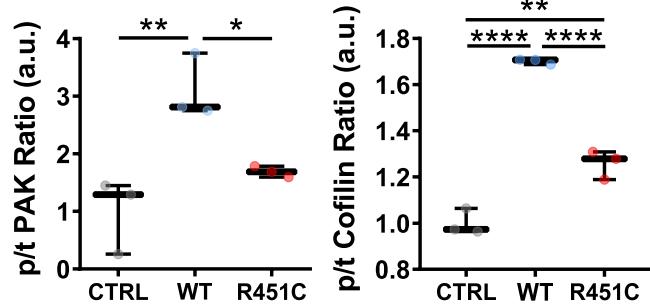
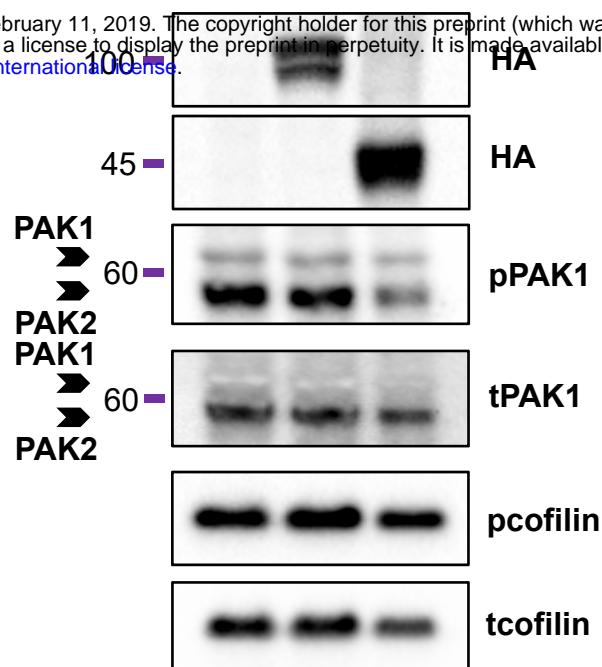




1179 **Figure 8** – Diagram summarizing all primary findings of this research including the
1180 effects on neuritogenesis (upper), the effects on growth cone actin (lower left), and the
1181 molecular mechanism involved in both phenotypes (lower right). NLGN, neuroligin; GC,
1182 growth cone; WT, wild type; DMSO, dimethyl sulfoxide; FRAX, FRAX486; PAK1, p21-
1183 activated kinase.

1184

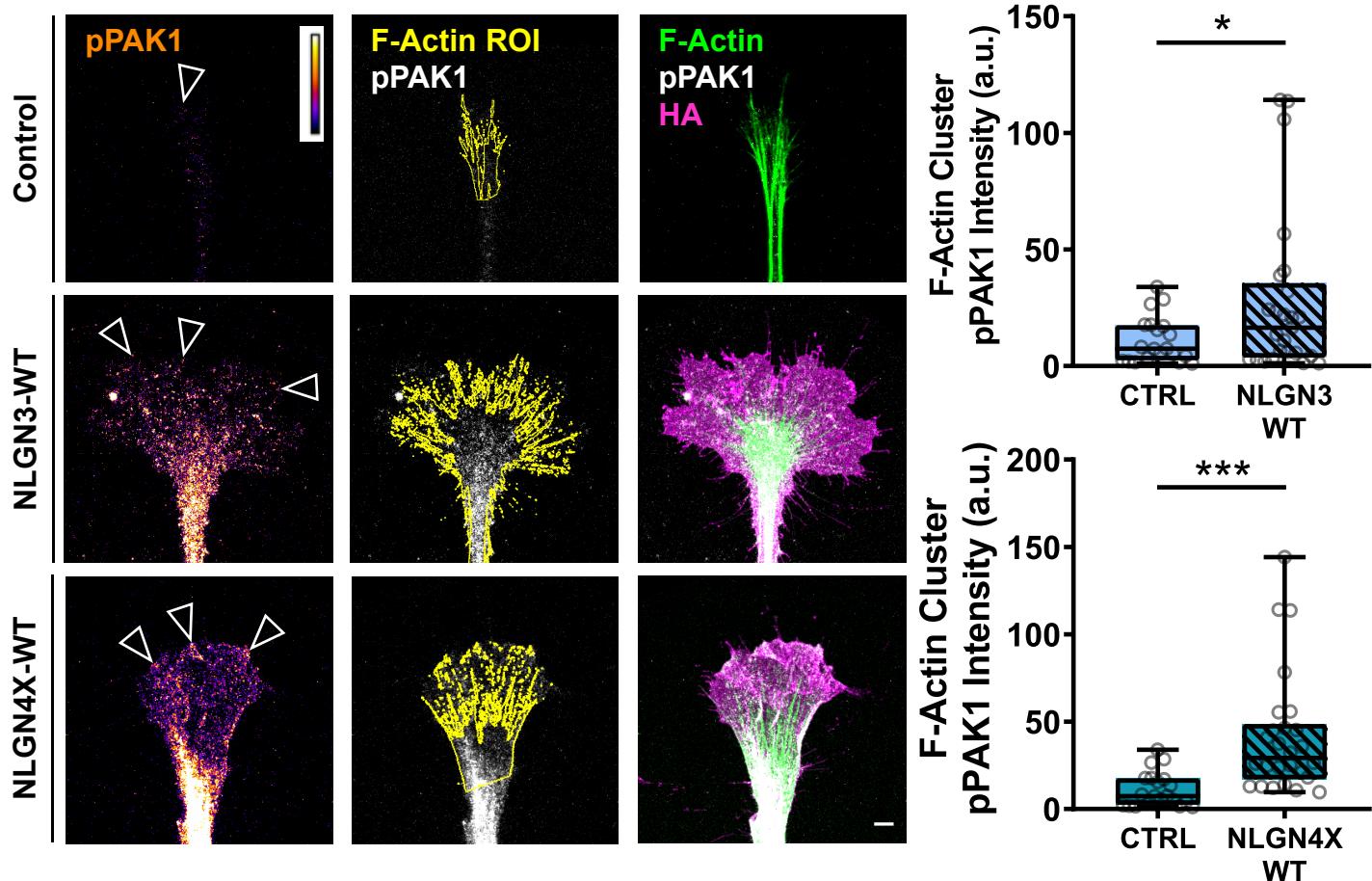
1185

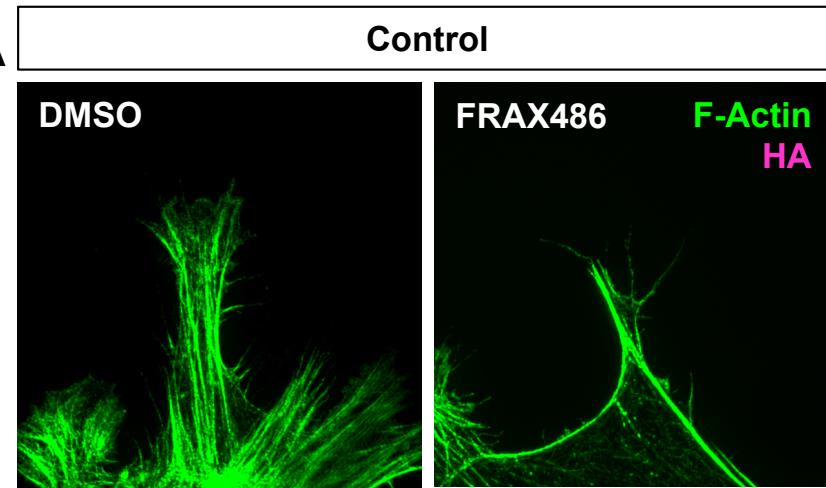
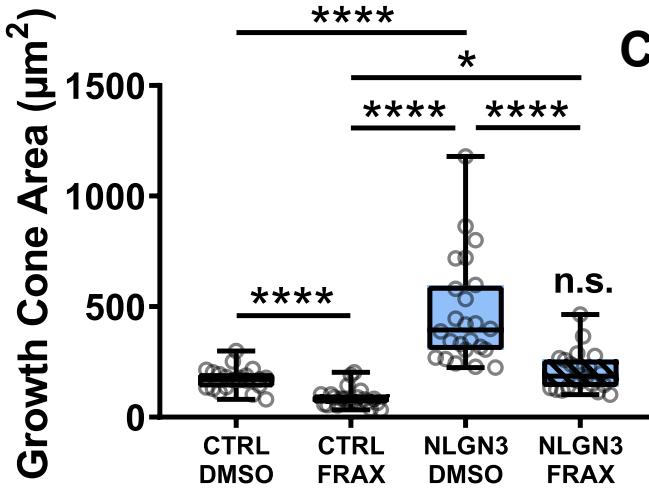
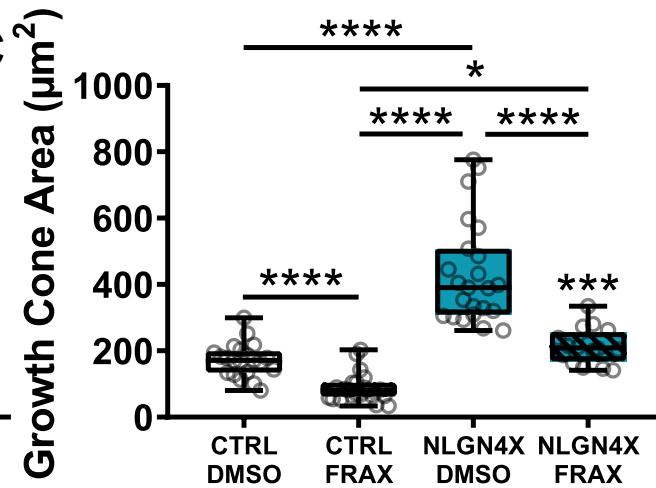
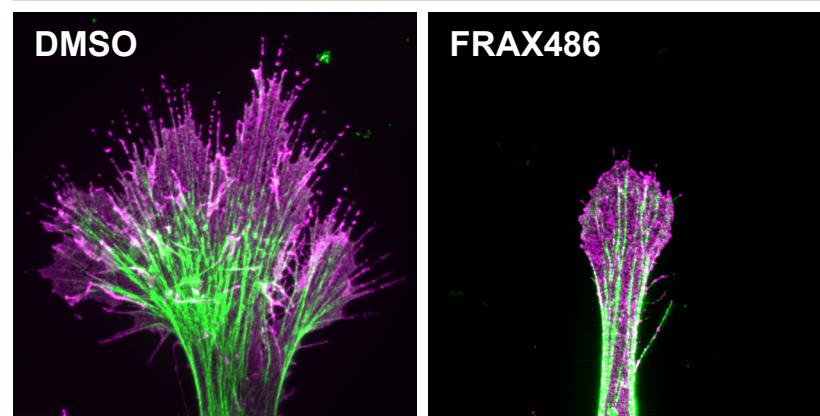
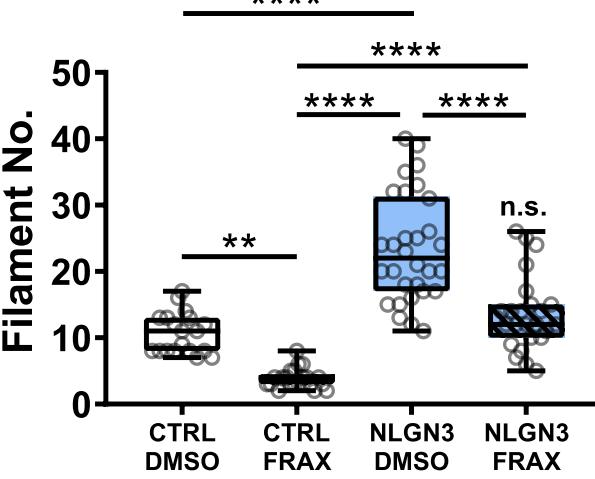
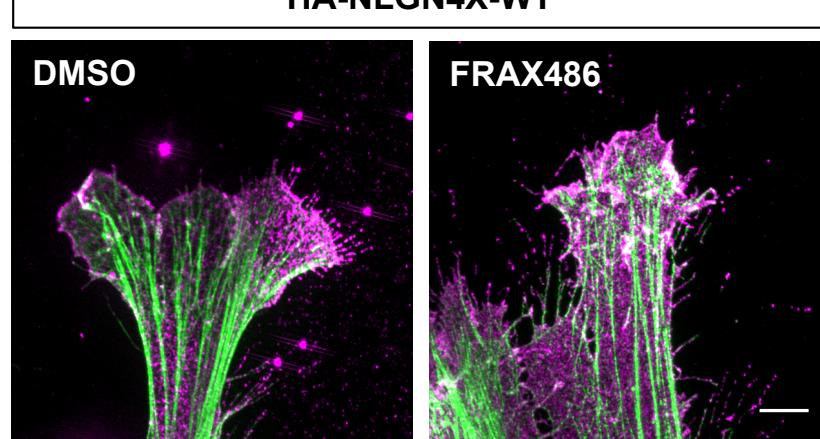
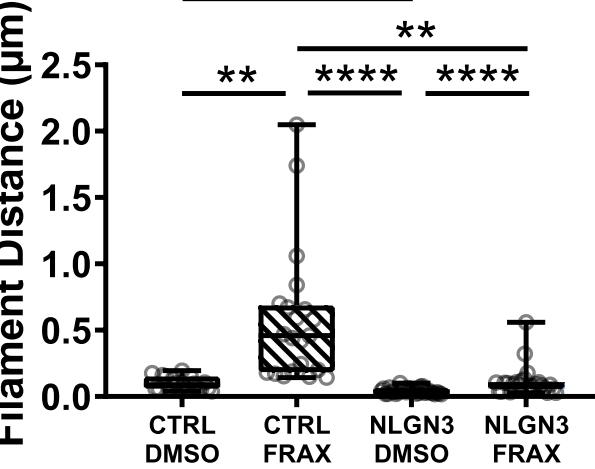


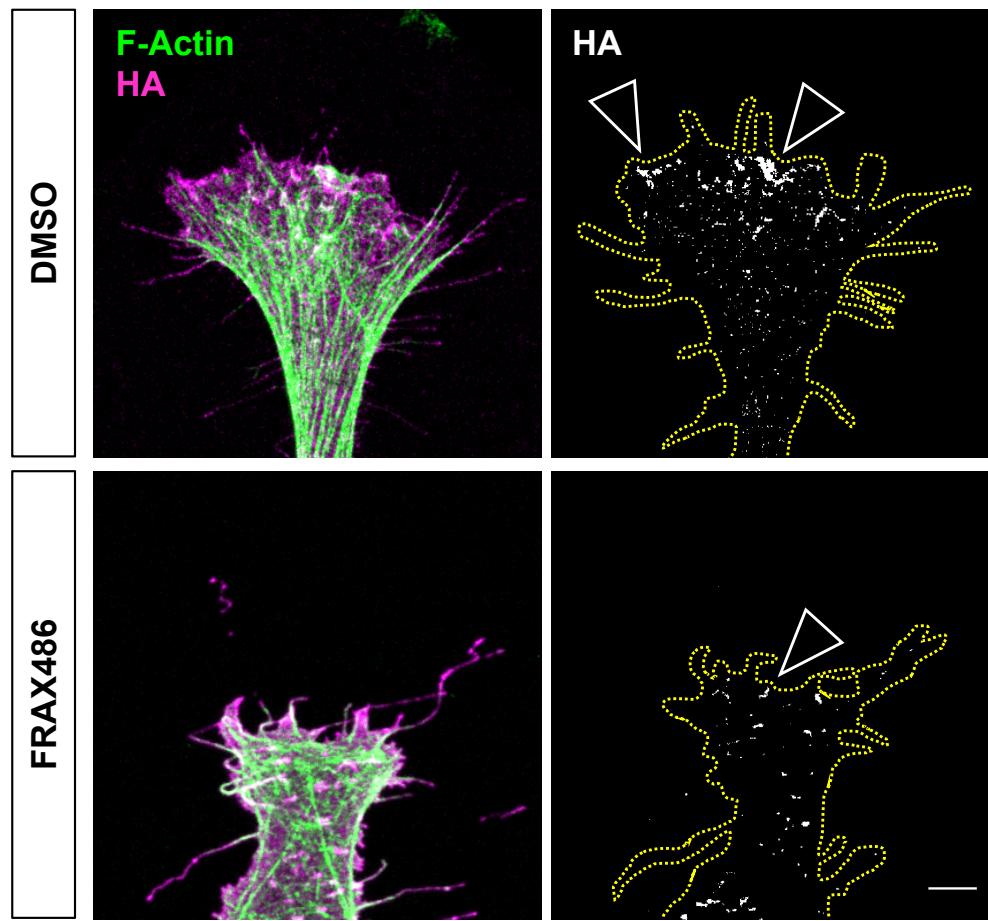
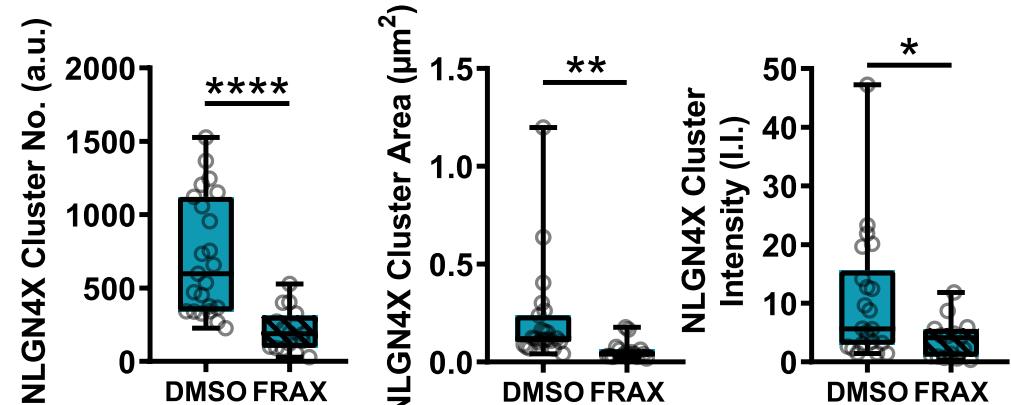
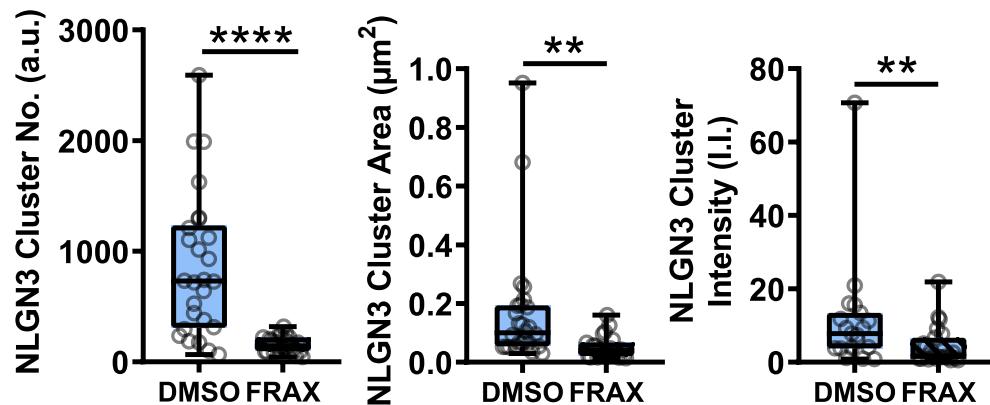
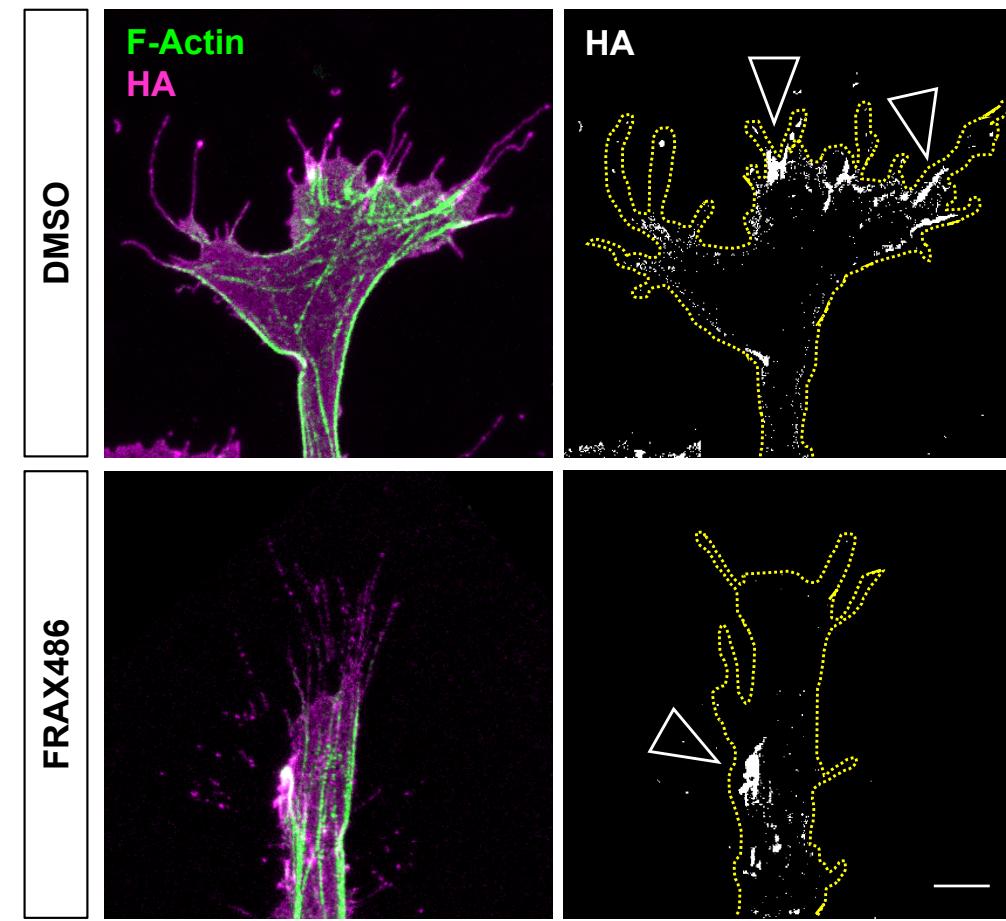
A

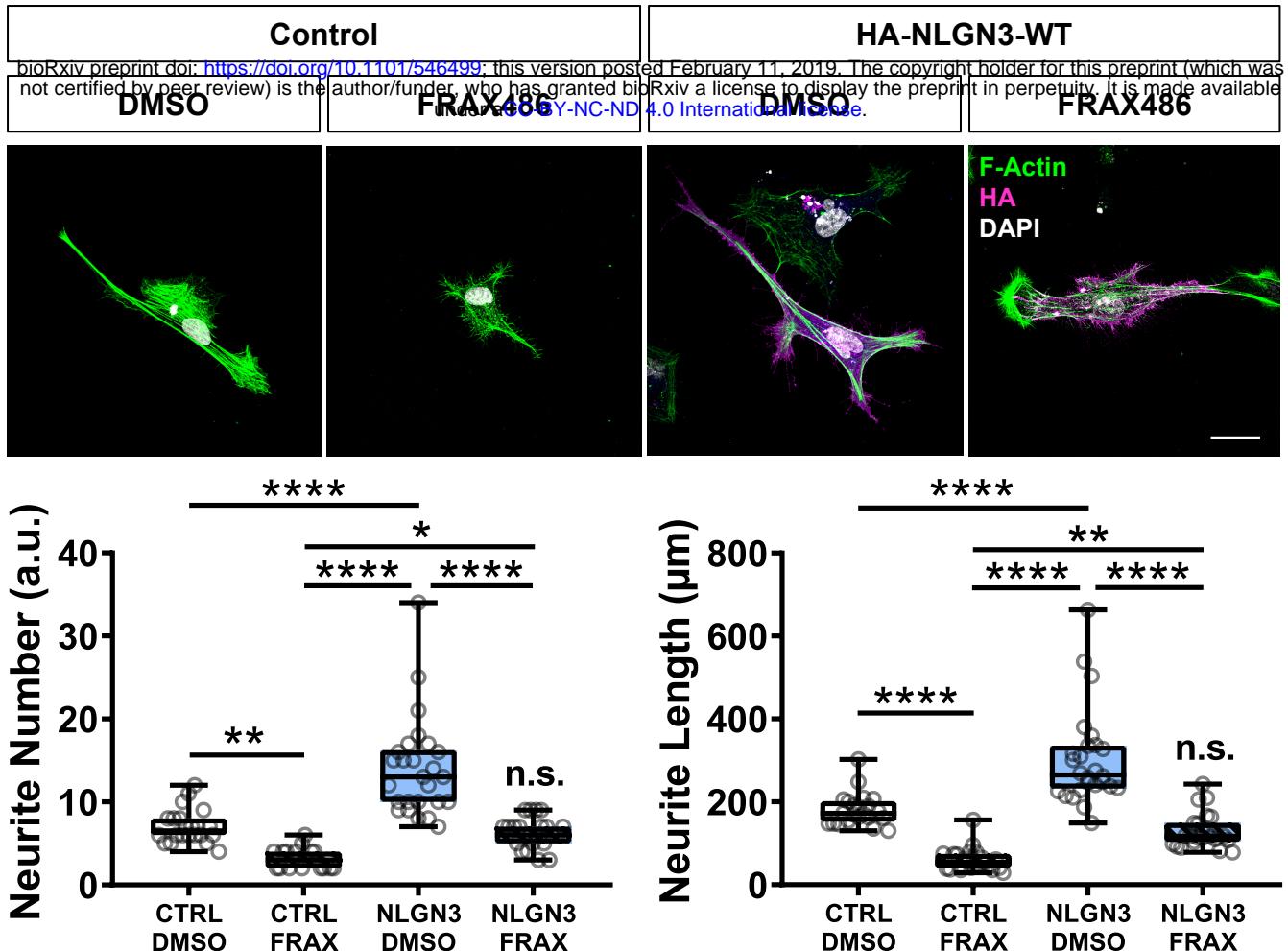
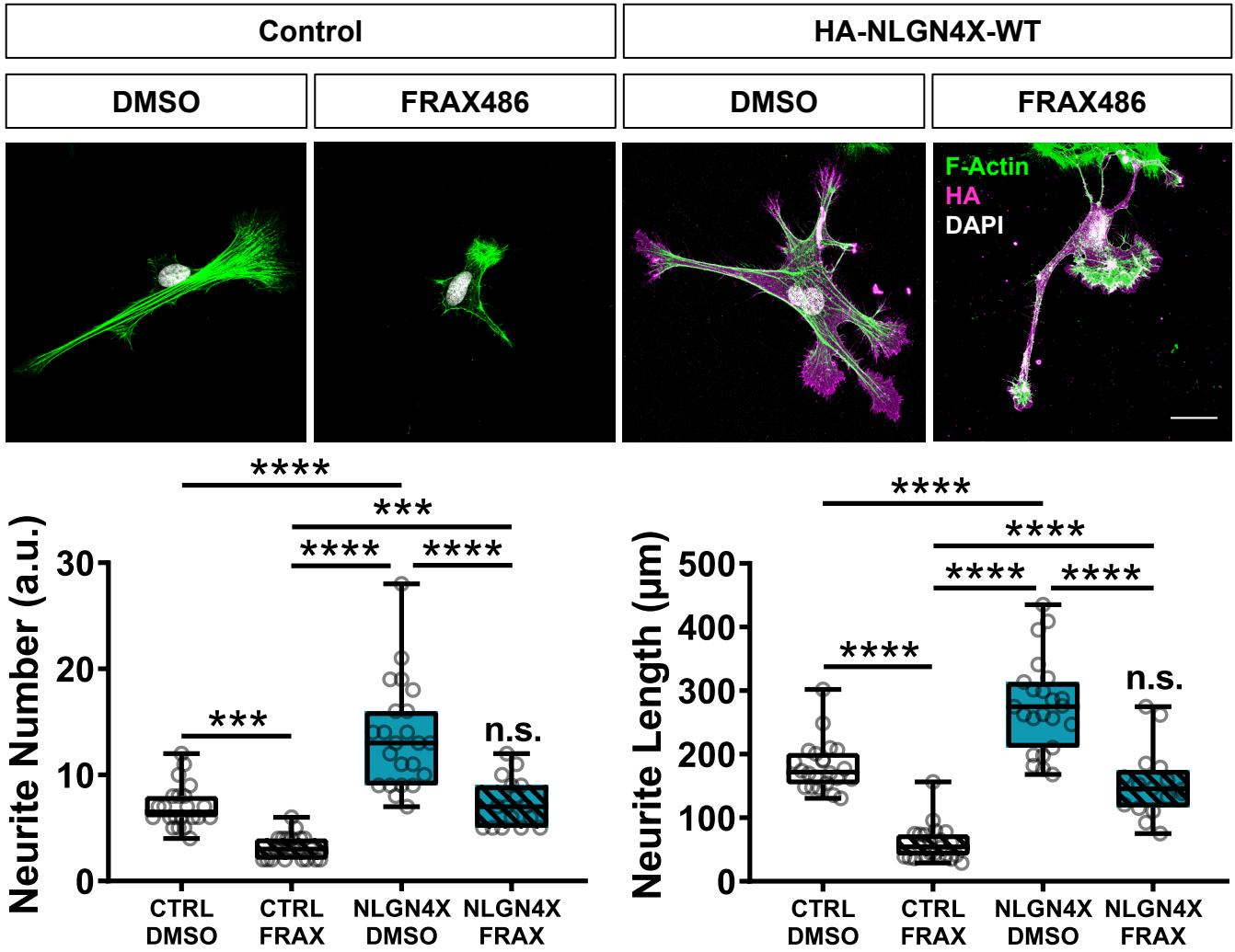



CTRL WT R451C

bioRxiv preprint doi: <https://doi.org/10.1101/546499>; this version posted February 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

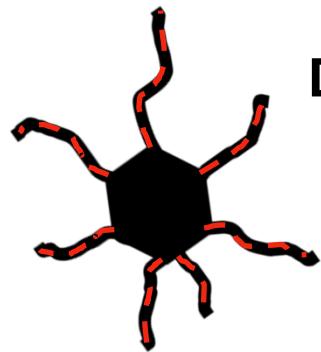









B

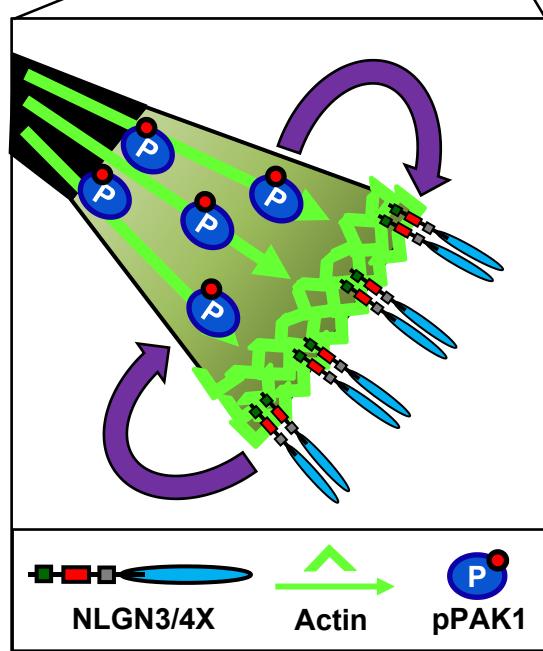
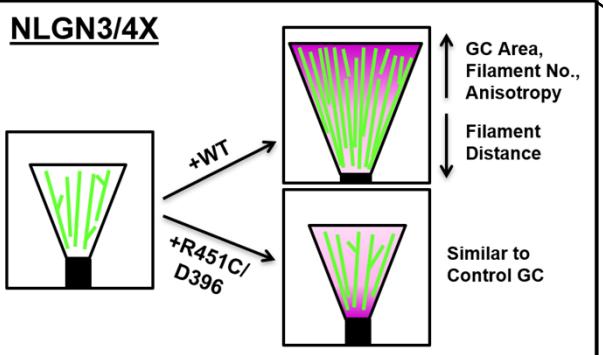




CTRL WT D396

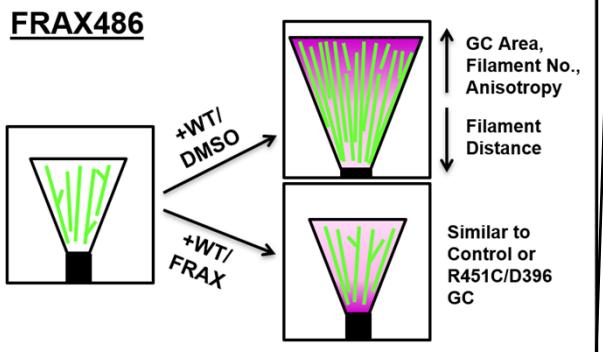
C



A**B****C****HA-NLGN3-WT****Filament No.****HA-NLGN4X-WT****Filament Distance (μm)****Filament Distance (μm)**



A**HA-NLGN3-WT****B****HA-NLGN4X-WT**

A**B**


Neuronal Differentiation

NLGN3/4X

FRAX486

