

1 **Title: How the initiating ribosome copes with (p)ppGpp to translate mRNAs**

2

3 **Authors:** Daria S. Vinogradova^{1,4}, Pavel Kasatsky¹, Elena Maksimova^{1,3}, Victor Zegarra², Alena
4 Paleskava¹, Andrey L. Konevga^{1,3,5*}, and Pohl Milón^{2*}

5 **Affiliations:**

6 ¹Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC “Kurchatov
7 Institute”, Gatchina 188300, Russia.

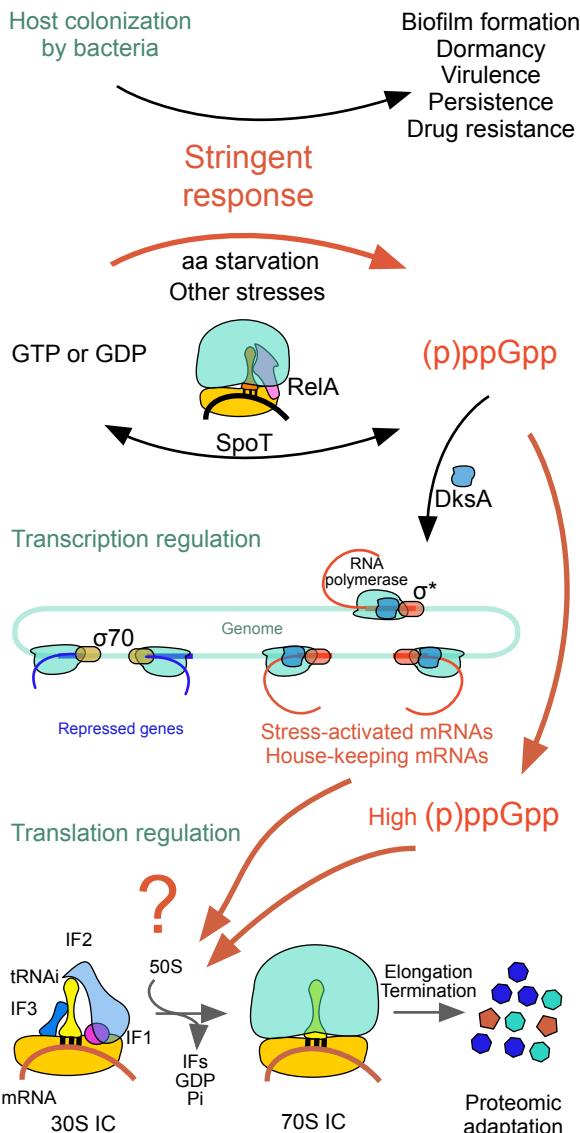
8 ²Centre for Research and Innovation, Faculty of Health Sciences, Universidad Peruana de
9 Ciencias Aplicadas (UPC), Lima 15023, Peru.

10 ³Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia.

11 ⁴NanoTemper Technologies Rus, Saint Petersburg 191167, Russia

12 ⁵NRC “Kurchatov Institute”, Moscow 123182, Russia.

13


14 * Correspondence to pmilon@upc.pe and konevga_al@pnpi.nrcki.ru

15 **Abstract:**

16 During host colonization, bacteria use the alarmone (p)ppGpp to reshape its proteome by acting
17 pleiotropically on RNA and protein synthesis. Here, we elucidate how the translation Initiation
18 Factor 2 (IF2) senses the cellular ppGpp to GTP ratio and regulates the progression towards
19 protein synthesis. Our results show that the affinity of GTP and the inhibitory concentration of
20 ppGpp for 30S-bound IF2 vary depending on the programmed mRNA. Highly translated
21 mRNAs enhanced GTP affinity for 30S complexes, resulting in fast transitions to elongation of
22 protein synthesis. Less demanded mRNAs allowed ppGpp to compete with GTP for IF2, stalling
23 30S complexes until exchange of the mRNA enhances the affinity for GTP. Altogether, our data
24 unveil a novel regulatory mechanism at the onset of protein synthesis that tolerates physiological
25 concentrations of ppGpp, and that bacteria can exploit to modulate its proteome as a function of
26 the nutritional shift happening during infection.

27 **Main Text:**

28 During colonization, pathogenic bacteria reshapes its transcriptome and proteome to activate
29 virulence genes, promote tissue-associated biofilm and enter dormancy, ultimately increasing
30 aggressiveness, antibiotic tolerance, and persistence of the pathogen (reviewed in ^{1,2}). Host
31 colonization entails fluctuations of nutrient availability that, generally, triggers stringent response
32 in bacteria (Fig. 1). Stringent response is mediated by the ribosome-associated RelA/SpoT
33 homolog protein superfamily and triggers the accumulation of the hyperphosphorylated
34 guanosine nucleotides, altogether called (p)ppGpp (Fig. 1) ³. Impaired (p)ppGpp production
35 results in antibiotic sensitivity, low biofilm formation, and low pathogenicity of several bacteria,
36 making the stringent response an appealing target for antibiotic development ⁴⁻⁶. mRNA
37 translation to proteins requires the action of several guanosine nucleotide-binding factors, on and
38 off the ribosome. Although (p)ppGpp have been shown to bind translational GTPases ^{7,8}, the
39 extent of inhibition and subsequent effect on protein synthesis regulation remain controversial.

40

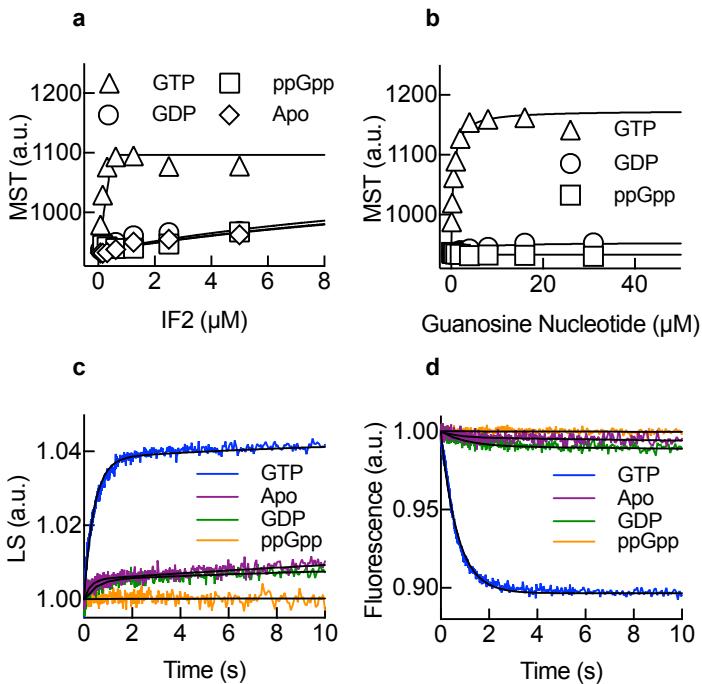
41 **Fig. 1** Bacterial stringent response and (p)ppGpp-mediated inhibition of translation initiation.

42

43 The initiating ribosome orchestrates a complex equilibrium between three initiation factors (IFs),
44 mRNA and initiator tRNA (fMet-tRNA^{fMet}, from here in tRNA_i) to maximize the speed and
45 accuracy of start codon selection, ultimately defining the reading frame for mRNA translation ⁹.
46 The translational GTP binding factor IF2 recruits tRNA_i to the 30S pre-initiation complex (pre-
47 IC), accompanies the subsequent isomerization to the 30S IC (start codon recognition), promotes

48 the association of the large 50S subunit and occupies all intermediates of the 70S pre-IC leading
49 to a ready-to-elongate 70S IC⁹. Although GTP has been shown to enhance IF2 activity,
50 hydrolysis of GTP appears to be dispensable¹⁰. IF2 shows a broad spectrum of binding
51 properties as a function of the bound guanosine nucleotide, enabling cycling between high and
52 low affinity states: GTP to assemble the 30S IC, whereas GDP allows dissociation of the factor
53 from the 70S pre-IC^{11,12}. Both, the dispensability of GTP hydrolysis and the wide range of
54 affinities displayed by the factor, allowed to propose IF2 to function as a molecular sensor of the
55 stringent response. Indeed, ppGpp was shown to bind IF2, and to inhibit translation initiation and
56 first peptide bond formation⁸. Whether (p)ppGpp stringently or permissively arrests translation
57 initiation remained an open question. (p)ppGpp-dependent activation of genes and involvement
58 in controlling the growth rate of the cell by acting in DNA, RNA and protein synthesis¹³⁻
59¹⁶argues for a permissive mechanism. Here, we use advanced fluorescence spectroscopy
60 techniques to investigate how the initiating ribosome copes with (p)ppGpp accumulation to
61 translate mRNAs, allowing cell survival and reshaping the bacterial proteome for environmental
62 adaptation.

63


64 **Results**

65 **Guanosine nucleotides as co-factors of IF2**

66 We used Microscale Thermophoresis (MST) to measure the binding of fluorescently labelled
67 initiator fMet-tRNA^{fMet} (Bpy-tRNAi) to 30S subunits as an indicator of 30S IC formation. MST
68 allows to measure fluorescence changes derived from molecular drifts resulting from small
69 equilibrium perturbations¹⁷. Upon equilibrium perturbations, the migration patterns of Bpy-
70 tRNAi are related to bound and unbound states, allowing to determine dissociation constants of

71 the interaction (see supplementary information: Fig. 1, 2, and experimental approach) ^{17,18}.
72 Formation of 30S ICs resulted in an increase of thermophoresis as compared to the free Bpy-
73 tRNAi. On the contrary, a decrease in thermophoresis indicated the dissociation of Bpy-tRNAi
74 from 30S complexes.

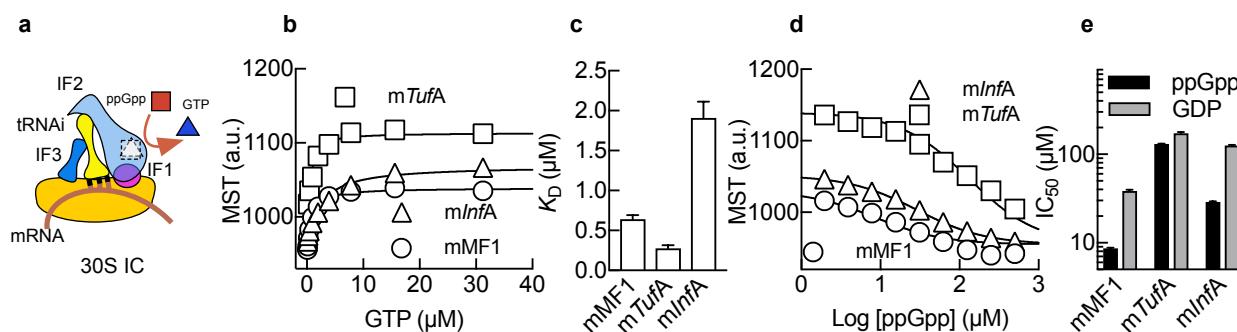
75 First, we measured 30S IC formation as a function of IF2 concentration, in the presence of
76 different guanosine nucleotides. Addition of GTP increased the amplitude of thermophoresis
77 stoichiometrically with IF2, while in the presence of GDP, ppGpp or without any nucleotide
78 (Apo), the amplitude of thermophoresis was lower (Fig. 2a), in agreement with IF2 requiring
79 GTP for rapid recruitment of tRNAi to the 30S complex ¹⁹. EC₅₀ binding concentrations for Bpy-
80 tRNAi were very low for IF2 bound to ppGpp, GDP or in the absence of any guanosine
81 nucleotide (Apo) and coincided with measurements of IF2-Bpy-tRNAi ternary complex
82 formation in the absence of the 30S subunit (Supplementary Fig. 3). Thus, ppGpp and GDP may
83 program IF2 to de-stabilizes tRNAi on the 30S complex, precluding 30S IC formation.
84 Consistently, guanosine nucleotide titrations showed thermophoresis increase for GTP and to a
85 lesser extent for GDP, whereas ppGpp failed to promote Bpy-tRNAi binding at any
86 concentration (Fig 2b). GTP seems to activate IF2 to promote tRNAi binding to the 30S IC,
87 whereas, GDP and ppGpp prevent IF2 from recruiting the initiator tRNA.

88

89 **Fig. 2** ppGpp-mediated inhibition of translation initiation. **(a)** 30S IC formation measured by
90 MST at increasing concentrations of IF2 as a function of ppGpp (squares), GTP (triangles), GDP
91 (circles) or in the absence (diamonds) of a guanosine nucleotide. Continuous lines show best fits
92 using a Hill equation. **(b)** as (a) to measure the concentration dependence for each of the tested
93 guanosine nucleoside. Continuous lines indicate non-linear regression fittings. 3-5 measurements
94 were performed, mean and standard deviation are plotted. **(c)** 70S pre-IC formation as measured
95 by light scattering (LS) on a stopped-flow apparatus. 30S initiation complexes were formed in
96 the absence of (purple) or the presence of 0.5 mM ppGpp (orange), GTP (blue) or GDP (green)
97 and rapidly mixed with 50S subunits²⁰. Continuous lines show best fits using an exponential
98 function for two steps. **(d)** 70S IC formation as measured by Bpy-tRNAi accommodation in the P
99 site of the ribosome¹². 30S ICs were formed with Bpy-tRNAi and rapidly mixed with 50S
100 subunits on a stopped-flow apparatus. Colours are as in (c). Continuous lines show best fits using
101 an exponential function for a single reaction step. All reactions are mean values of five to ten
102 replicates.

103

104 To investigate the transition to translation elongation as a function of IF2-bound nucleotides, we
105 monitored the formation of the 70S pre-IC by scattered light (LS) and 70S IC formation by Bpy-
106 tRNAi accommodation by fluorescence using stopped-flow techniques^{12,21} (Fig. 2c,d). Rapid
107 mixing of 50S subunits with 30S complexes formed with GTP resulted in a rapid increase of LS


108 over time ($k_{app} = 2.9 \pm 0.3 \text{ s}^{-1}$), indicating that 70S pre-ICs are readily formed (Fig. 2c). Bpy-
109 tRNAi showed a rapid decrease in fluorescence over time following 50S subunit joining ($k_{app} =$
110 $1.7 \pm 0.2 \text{ s}^{-1}$) (Fig. 2d). Altogether, GTP programs IF2 to form a 30S IC that is capable of rapid
111 binding the 50S subunit and accommodating tRNAi in the 70S IC to accept the incoming
112 elongator aminoacyl tRNAs. Interestingly, the omission of nucleotides or presence of GDP
113 showed similar rates for both reactions, albeit with much lower efficiencies (amplitude) than that
114 observed with GTP. ppGpp, instead, drastically reduced the rates and extent of 50S subunit
115 joining and Bpy-tRNAi accommodation, an indicator that ppGpp acts at a prior step of the
116 translation initiation pathway, i.e., before 30S IC formation. Although both, GDP and ppGpp,
117 could compete with GTP for IF2, cellular concentrations of GDP are low at any cell growth
118 condition²², whereas (p)ppGpp accumulate to millimolar ranges during bacterial stringent
119 response^{22,23}. Overall, guanosine nucleotides act as co-factors of IF2, modulating its capacity to
120 position the initiator tRNA along the pathway of translation initiation (GTP vs. GDP) or as a
121 sensor of the stringent response (GTP vs. ppGpp).

122

123 mRNA dependence of ppGpp inhibition

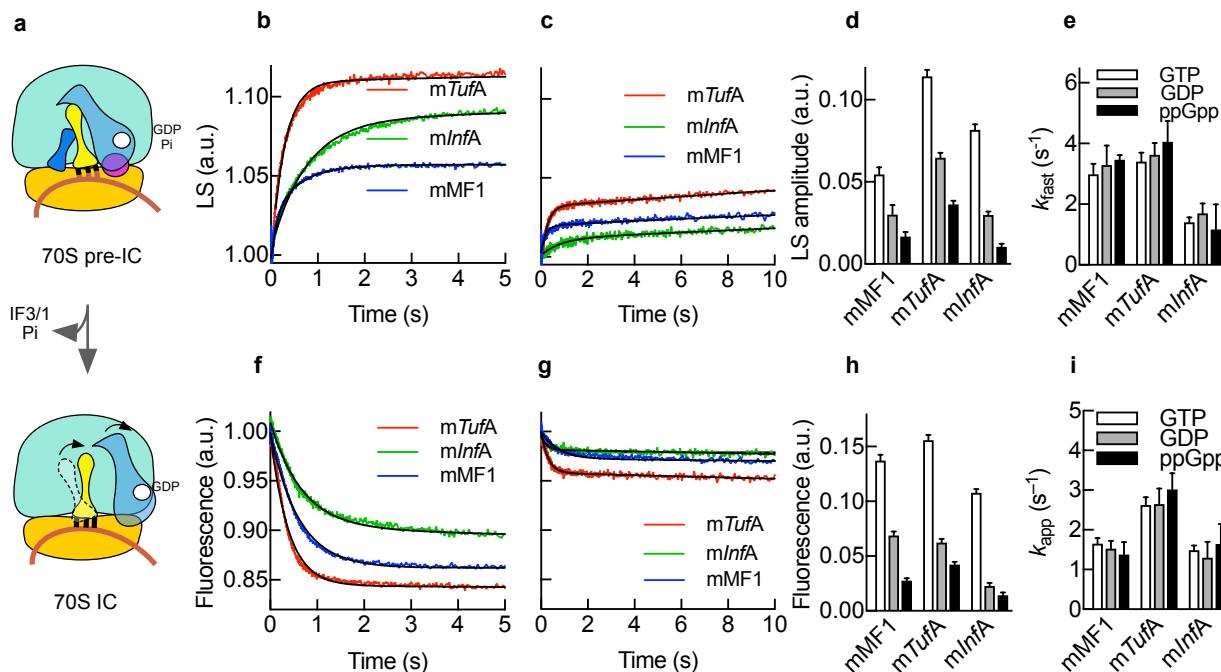
124 mRNAs may contain the determinants to enter translation at otherwise inhibiting concentrations
125 of ppGpp, allowing GTP to compete with ppGpp (Fig. 3a). To test this model, we used two
126 house-keeping mRNAs, coding for the essential proteins EF-Tu (*mTufA*) and IF1 (*mInfA*), with
127 the former being 40-fold more expressed than the latter in *E. coli*²⁴. 30S IC formation as a
128 function of mRNA concentrations was higher for *mTufA* than for *mInfA* or the model mRNA
129 *mMF1* as evaluated from the thermophoresis amplitude (Supplementary Fig. 4 and Tables 1-3).
130 Similarly, GTP titrations in complexes formed with each mRNA showed the same
131 thermophoresis trend for 30S IC formation: *mTufA*>*mInfA*>*mMF1* (Fig. 3b). Additionally, GTP

132 dissociation constants differed around an order of magnitude as a function of the mRNA used.
133 The calculated K_D for the 30S IC programmed with mTufA was about 7-fold lower ($K_D = 0.28 \pm$
134 $0.04 \mu\text{M}$) than that for mInfA ($K_D = 1.9 \pm 0.2 \mu\text{M}$) and about 2-fold lower than that for mMF1
135 ($K_D = 0.65 \pm 0.05 \mu\text{M}$) (Fig. 3c). Thus, mTufA, which codes for the highly abundant EF-Tu,
136 possesses functional determinants that allow efficient 30S IC formation with IF2 strongly
137 binding GTP. On the other hand, mInfA results in less efficient 30S IC formation and weaker
138 binding of GTP.

139
140 **Fig. 3** mRNA dependence and MST analysis of 30S IC formation. **(a)** Scheme of the 30S IC
141 highlighting ppGpp (red square) and GTP (blue triangle) competition for IF2. **(b)** 30S IC
142 formation with increasing concentrations of GTP for mTufA (squares), mInfA (triangles) or
143 model messenger mMF1 (circles). 30S IC formation was measured by MST and analysed as
144 described above (Fig. 2). **(c)** Comparison of K_D calculated from (b). **(d)** ppGpp to GTP
145 competitive assays for 30S IC formation. 30S complexes formed with each mRNA (symbols as
146 in b) and in the presence of 50 μM GTP were subjected to increasing concentrations of ppGpp.
147 Log of competitor concentrations is plotted and used for determining the inhibitory concentration
148 for 50% inhibition (IC_{50}) using a same-site competition model. **(e)** Bar graph comparing IC_{50}
149 values for ppGpp (black) or GDP (grey) for all three mRNAs. Continuous lines indicate non-
150 linear regression fittings. 3-5 measurements were performed, mean and standard deviation are
151 plotted.

152
153 ppGpp competition experiments with GTP showed a decrease in 30S IC formation for all
154 mRNAs with increasing concentrations of ppGpp, however with different dependencies on the
155 competing nucleotide (Fig. 3d). The calculated inhibitory concentrations (IC_{50}) ranged over 15-
156 fold with mTufA being the least sensible to ppGpp ($IC_{50} = 132 \pm 1 \mu\text{M}$), mMF1 the most sensible

157 (IC₅₀ = 8.6 ± 0.2 μM), and m*InfA* being inhibited with an intermediate concentration (IC₅₀ = 29
158 ± 1 μM) (Fig. 3e). Similar experiments performed with GDP required higher concentrations of
159 the competitor to inhibit 30S IC; however, mRNAs dependencies were maintained (Fig. 3e,
160 supplementary Fig. 5). Thus, ppGpp-mediated inhibition of translation initiation is dynamic and
161 dependent on the mRNA bound to the 30S complex, with the highly translated m*TufA* being
162 more tolerant of ppGpp concentrations than m*InfA*.


163

164 **ppGpp halts 70S IC formation**

165 Late events of translation initiation entail the association of 30S ICs with the large ribosomal
166 subunit 50S leading to the intermediate 70S pre-IC, and after IFs dissociation results in a ready-
167 to-elongate 70S IC (Fig. 4a)¹². Here, we measured the velocities of 70S pre-IC formation as a
168 function of the bound mRNA, the IF2-bound nucleotide, and the ability of ppGpp to compete
169 with GTP (Fig. 4). Rapid kinetics analysis of the 50S joining to 30S ICs show that complexes
170 programmed with m*TufA* resulted in higher 70S pre-IC formation than those formed with m*InfA*
171 or mMF1, essentially following the same trend as observed by thermophoresis analysis (Fig. 4b).
172 Addition of ppGpp as a competitor for GTP showed an overall decrease of 70S pre-IC formation
173 efficiency for all mRNAs; however, complexes harbouring m*TufA* appeared least affected while
174 m*InfA* were the most affected (Fig. 4c). Using GDP as a competitor for GTP also resulted in a
175 decreased efficiency of 70S pre-IC formation; however, inhibiting the reaction to a lesser extent
176 than ppGpp (Fig. 4d, supplementary Fig. 6). Additionally, the formation of the 70S pre-IC
177 appears to be kinetically influenced by the m*InfA* showing 3 to 4-fold slower velocities than
178 m*TufA* or mMF1 (Fig. 4e). However, the nucleotide competing with GTP, either GDP or ppGpp,
179 did not perturb the initial rate of the 50S joining to 30S ICs, suggesting that the observed fraction
180 corresponds to 30S ICs containing GTP (Fig. 4e). Thus, ppGpp competition with GTP results in

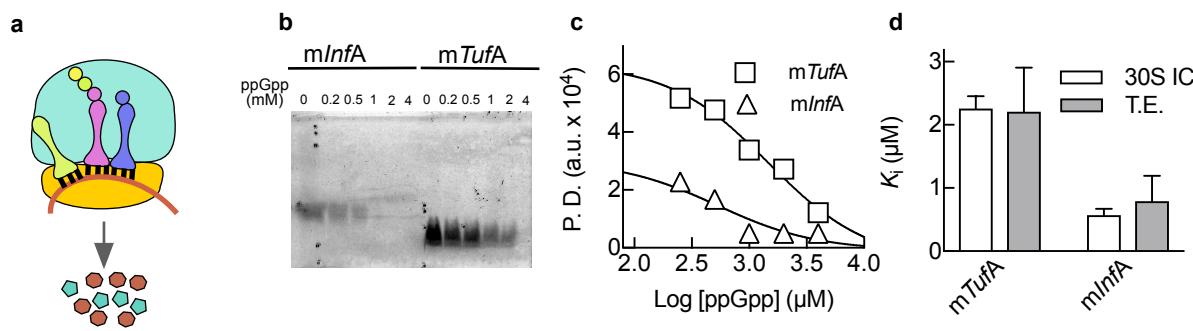
181 fewer 30S ICs habilitated to recruit the 50S subunit; albeit, mRNAs modulate the GTP-bound
182 fraction. Similar reactions in the absence of GTP resulted in negligible rapid 70S pre-IC
183 formation for either ppGpp and some transitions for GDP or without any nucleotide
184 (Supplementary Fig. 7).

185

186

187 **Fig 4** Kinetic parameters of ppGpp-mediated regulation of 70S IC progression. **(a)** Scheme of
188 70S IC formation. 30S complexes programmed with mTufA (red), mInfA (green) or mMF1
189 (blue) and 20 μ M GTP and the absence **(b)** or presence **(c)** of 200 μ M ppGpp were reacted with
190 50S subunits. Time traces were analysed by non-linear regression with two exponential terms.
191 **(d)** Bar graph comparing amplitudes in the absence of any competing nucleotide (white) or in the
192 presence of ppGpp (black) or GDP (grey). **(e)** Bar graph comparing apparent rates of 70S pre-IC
193 formation (colours as in d). 70S IC formation as measured by Bpy-tRNAi accommodation in the
194 absence **(f)** or presence of 200 μ M ppGpp **(g)**. Time traces were analysed by non-linear
195 regression with one exponential term. **(h)** Bar graph comparing amplitude variations as a
196 function of mRNAs and guanosine nucleotides (colours as in d). **(i)** Bar graph comparing
197 apparent rates of 70S IC formation for all three mRNAs (bar colours as in d). Continuous lines
198 show best fits using an exponential function for a single reaction step. All time traces are mean
199 values of five to ten replicates, mean and standard deviation are plotted.

200


201 IF2 populates every intermediate of the multi-step reaction leading to 70S IC formation,
202 ultimately promoting the accommodation tRNAi in the P site before factor dissociation (Fig.
203 4a)^{12,25}. 70S IC formation was assessed by measuring Bpy-tRNAi accommodation using the
204 stopped-flow technique as a function of the guanosine nucleotide competing with GTP for all
205 three mRNAs. In the absence of any GTP competitor, tRNAi accommodated rapidly to the
206 complexes after the 50S joining (Fig. 4f), with overall efficiencies reflecting those of 30S IC
207 formation as measured by thermophoresis (Fig. 3b) or 70S pre-IC as measured by light scattering
208 (Fig. 4b). Replacement of GTP by GDP or ppGpp resulted in small fluorescence changes for
209 tRNA accommodation, indicating very few 30S complexes contained the tRNAi (Supplementary
210 Fig. 8). Addition of GDP or ppGpp as competitors of GTP resulted in a defined decrease of
211 overall efficiencies of tRNAi accommodation; however, ppGpp showed a higher degree of
212 inhibition than GDP (Fig. 4g, supplementary Fig. 6). As observed for 70S pre-IC formation,
213 complexes programmed with *mTufA* appeared to be less sensitive to ppGpp while those
214 programmed with *mInfA* showed more susceptibility (Fig. 4h). Non-linear analysis of the time
215 dependencies shows that the tRNAi accommodates at different rates for each mRNA. Although
216 the extent of the reaction is affected by the competing nucleotide, the apparent rates of tRNAi
217 accommodation appeared not to be influenced, indicating that the resulting amplitude
218 corresponds to GTP-bound 30S ICs (Fig. 4i). Altogether, the formation of 70S ICs are halted by
219 ppGpp. The progression towards protein synthesis elongation is mediated by the competition
220 between GTP with ppGpp during 30S IC formation in an mRNA-dependent manner.

221

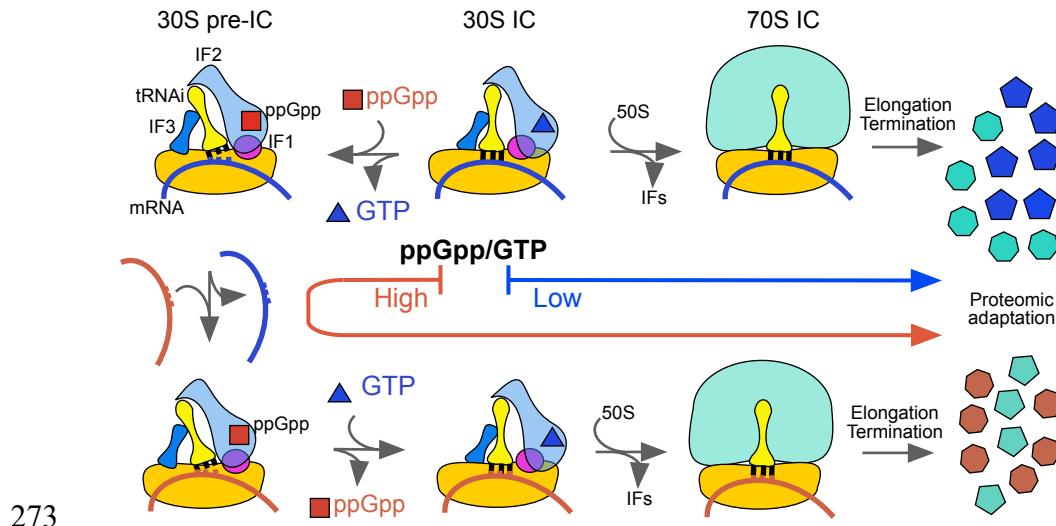
222 **Permissive mRNA translation at high ppGpp**

223 Our results are consistent with IF2 sensing ppGpp to GTP ratios in an mRNA-dependent manner
224 and ultimately translating them into protein output efficiencies (Fig. 5a). To test this premise, we

225 used a cell-free translation system at physiological concentrations of ribosomes, aminoacyl-
226 tRNAs, translational GTPases, GTP and varying ppGpp concentrations (up to 4 mM)(Fig. 5). In
227 the absence of ppGpp, translation of *mTufA* was three-fold higher than *mInfA* (Fig. 5b),
228 consistent with our results obtained by measuring every previous step, 30S IC, 70S pre- and IC
229 (Fig. 3,4). Addition of ppGpp resulted in decreased translation efficiencies for both mRNAs in a
230 ppGpp concentration-dependent manner (Fig. 5c). The inhibitory concentration IC50 differed for
231 each mRNA, with *mTufA* being 4-fold more tolerant to ppGpp than *mInfA* (Fig. 5d).

232 **Fig. 5** ppGpp-mediated inhibition of mRNA translation. (a) Scheme of the translating 70S
233 complex. (b) *In vitro* translation of *mTufA* and *mInfA* derivatives harbouring a coding sequence
234 for the Lumio labelling system (see Methods). Protein synthesis reactions were started in the
235 presence of 2 mM GTP and increasing concentrations of ppGpp. Synthesized proteins were
236 fluorescently labelled and resolved by 20% SDS-PAGE. The resulting images were analysed by
237 pixel densitometry using ImageJ²⁶ to estimate efficiencies of translation (T.E.). (c) Log of
238 ppGpp concentrations was plotted and used for determining the inhibitory concentration for 50%
239 inhibition (IC50) using a same-site competition model. (d) Comparison of inhibitory constants
240 for both mRNAs as measured during 30S IC formation (white) or overall translation efficiency
241 (grey). Mean and standard deviation from 3-5 measurements are plotted.
242

243


244 The calculated affinity of GTP (Fig. 2) for complexes differing on the programmed mRNA
245 allowed to estimate the ppGpp inhibitory constants for each corresponding 30S IC and
246 translation efficiencies. The calculated ppGpp inhibitory constants for translation efficiency were
247 similar to those obtained for 30S IC formation as measured by thermophoresis, reaffirming IF2
248 as the primary target for ppGpp-mediated regulation during protein synthesis (Fig. 5d) ⁸.
249 Remarkably, mTufA was translated at ppGpp concentrations that have been reported during cell
250 starvation ²², indicating that the protein synthesis apparatus is capable of tolerating high
251 concentrations of the alarmone. Altogether, the protein synthesis apparatus can translate mRNAs
252 at physiological concentrations of ppGpp; however, the initiating ribosome is able to sort which
253 mRNAs shall enter the elongation phase of protein synthesis.

254

255 **Discussion**

256 Our results provide unprecedented details on the dynamic regulation of the initiating ribosome
257 and allowed us to untangle a novel mechanism that allow bacteria to cope with mRNA
258 translation during stringent response. The canonical model suggests that upon (p)ppGpp
259 accumulation the translation machinery halts until more favourable growth conditions are
260 available. Shutdown of protein synthesis during stringent response was supported by several
261 reports indicating (p)ppGpp binds and inhibits translational GTPases ^{7,27}. However, the canonical
262 model fails to explain how a subset of proteins are synthetized during overexpression of RelA,
263 the primary (p)ppGpp synthetizing factor ²⁸. Additionally, (p)ppGpp activates the transcription of
264 a number of genes. How these mRNAs are translated remained unexplained. More recent reports
265 showed that (p)ppGpp are not restricted to stringent response, but their concentration fluctuates
266 as a function of growth rate ¹³. A tight RNA/protein and DNA/protein synthesis coordination in
267 *E. coli* was shown to be regulated by (p)ppGpp ¹³. On the other hand, the rate of protein

268 elongation appears to be unaffected during stationary phase (starvation), characterized by high
269 levels of the alarmone ²⁹. Thus, (p)ppGpp-mediated inhibition of protein synthesis appears to be
270 permissive rather than a strict on/off mechanism. Our results support a permissive mechanism
271 where IF2 translates the nutritional availability of the bacterial cell into protein synthesis
272 efficiencies by sensing the ppGpp to GTP ratios (Fig. 6).

273 **Fig. 6** 30S-bound IF2 senses the stoichiometry of ppGpp to GTP. At low ppGpp/GTP ratios IF2
274 binds GTP and can rapidly transit towards translation elongation (blue arrow). At high
275 ppGpp/GTP ratios ppGpp binds IF2, precluding start codon recognition and promoting the 30S
276 pre-IC. In turn, the 30S pre-IC can exchange the bound mRNA for a more ppGpp-tolerable
277 transcript, allowing GTP to replace the tetraphosphate and proceed to protein elongation.

279
280 ppGpp accumulation results in IF2 modulating the 30S pre-IC to IC equilibrium, ultimately
281 contributing to define the efficiency by which the mRNA enters the elongation phase of protein
282 synthesis (Fig 6). ppGpp-bound IF2 shifts the translation initiation equilibrium towards the
283 liable 30S pre-IC in an mRNA dependent manner. The potential of each mRNA to be translated
284 arises from the intrinsic capability of mRNAs to program 30S ICs (Fig. 3a, supplementary Fig.
285 4), the GTP affinity for IF2-bound complexes (Fig. 3c), and the tolerance to ppGpp (Fig. 3e). We

286 observe that the highly translated *mTufA* mRNA is more tolerant to ppGpp than *mInfA* despite
287 that both code for house-keeping and essential proteins. *mTufA* initiates translation 2 to 4-fold
288 more efficiently than *mInfA* in the absence of any competing mRNA. In a cellular context, the
289 observed difference may be accentuated to the extent observed *in vivo* (40-fold,²⁴ due to the
290 availability of free 30S subunits and competing mRNAs. On the other hand, the GTP affinity for
291 30S ICs programmed with *mTufA* is 7-fold higher if compared to *mInfA*, both in the low
292 micromolar range. In contrasts, previous studies reported two to three orders of magnitude lower
293 affinities between free IF2 and GTP⁷. Thus, the formation of the 30S IC entails an affinity gain
294 for GTP to the 30S-bound IF2 of at least two orders of magnitude. This increase of affinity is of
295 particular importance in the context of stringent response where GTP concentration have been
296 shown to drop to micromolar ranges²². However, the affinity gain of the 30S-bound IF2 for GTP
297 does not prevent ppGpp to compete. Altogether, IF2 may act as a molecular sensor for cellular
298 homeostasis, coupling functional determinants of the mRNA to ppGpp concentration to cope for
299 the environmental adaptation of bacteria during infection.

300

301 **Methods**

302 **Biological preparations**

303 *Ribosomal subunits*: 30S subunits were prepared from purified 70S ribosomes by sucrose
304 gradient centrifugation in a zonal rotor (Ti-15, Beckman, CA, USA) under dissociating
305 conditions using buffer TAKM_{3.5} (50 mM Tris (pH 7.5), 70 mM NH₄Cl, 30 mM KCl and 3.5
306 mM MgCl₂), essentially as described²¹. Briefly, fractions containing 30S or 50S subunits were
307 collected and pelleted in a Ti50.2 rotor at 50000 rpm over 12 hours. The resulting 30S pellets
308 were resuspended in buffer TAKM₇ (as TAKM_{3.5} but containing 7 mM MgCl₂). The

309 concentration of 30S subunits was determined by measuring the absorbance at 260 nm using an
310 extinction coefficient of 63 pmol/AU_{260 nm}.

311 *Initiation factors*: Cells harbouring pET 21 (*Kan* resistant) expression plasmids with cloned
312 either *infA*, *infB* or *infC* (coding for IF1, 2 and 3, respectively) were grown in 6 L of LB medium
313 supplemented with 30 µg/ml of kanamycin at 37°C until they reached an optical density of 0.8
314 OD₆₀₀. A final concentration of 1 mM of IPTG was added to induce protein expression, leaving
315 cells grow for 3 hours at same growth conditions. Cells were collected by centrifugation at 6000
316 RCF and resuspended in buffer A (50 mM Tris (pH 7.1), and 5% v/v glycerol) with 200 mM
317 KCl. Prior to cell lysis 5 mM 2-mercaptoethanol, a protease tablet cocktail inhibitor
318 (11836153001, Roche), 0,5 mM Pefabloc (11429868001, Roche) 1 mg/ml of lysozyme and few
319 crystals of DNase (DN25, Sigma-Aldrich) were added to the ice-cold suspension of unfrozen
320 cells. Lysates were obtained using a Misonix 3000 sonicator (EW-04711-81, Misonix Inc) for 5
321 minutes with 25% amplitude for 10 s sonication followed by 20 s of pausing to avoid
322 overheating. The lysate was centrifuged in a JA30.5 rotor for 30 min at 25000 rpm to remove
323 cell debris. To dissociate initiation factors from the ribosomes, the concentration of KCl of the
324 supernatant was increased to 0.7 M subsequently, ribosomes were sedimented by centrifugation
325 in a Ti 50.2 rotor for 2 h at 50000 rpm, enriching the initiation factors in the supernatant.
326 Supernatants containing either IF1 or IF3 were diluted with buffer A to reach a final
327 concentration of 0.1M KCl. A HiTrap SP HP column (5 ml) (17-1151-01, GE Healthcare) was
328 equilibrated with buffer A containing 0.1 M KCl prior to loading the clarified lysates. IF1 was
329 eluted with a linear gradient of 0.05 - to 1 M KCl in buffer A. Fractions containing IF1 were
330 identified using 18% acrylamide SDS-PAGE, pooled and concentrated using an Amicon
331 centrifugation membrane with a 3 KDa cut-off (UFC900308, Merck). Size exclusion using a
332 HiLoad 26/60 Superdex 75 prep grade column (17-1070-01, GE Healthcare) was necessary to

333 further purify IF1 from contaminants of higher molecular weight. Typically, 0.5 ml of IF1 was
334 loaded, separated with a flow rate of 1 ml/min and elution was monitored by absorbance at 290
335 nm. IF3 was purified similarly to IF1 using a cation exchange chromatography on a HiPrep CM
336 FF 16/10 column (28-9365-42, GE Healthcare), however using a stronger gradient in Buffer A
337 (0.1 to 1 M NH₄Cl). A second chromatography step was unnecessarily, IF3 elutes with very high
338 purity as observed using 15% SDS-PAGE.

339 Cell lysates containing IF2 were processed essentially as described for IF1 with the following
340 modifications. Affinity chromatography on Hi-Trap His Column (54835, GE Healthcare) was
341 used as a first step as a 6x His-tag was added at the amino terminal domain of IF2. A 50 to 300
342 mM imidazole gradient in Buffer A containing 300 mM KCl was used to elute IF2. Fractions
343 containing the factor were pooled together and dialyzed overnight to buffer A containing 50 mM
344 KCl prior to cation exchange chromatography. A 50 – 500 mM KCl gradient was used to elute
345 IF2 from a 5 ml Hi-Trap SP HP column (17115201, GE Healthcare). Fractions were analysed by
346 8% acrylamide SDS-PAGE and those containing IF2 were pooled together. All three IFs were
347 finally dialyzed in Storage Buffer (50 mM Tris (pH 7.1), 200 mM NH₄Cl, 5 mM 2-
348 mercaptoethanol and 10 % v/v Glycerol), small aliquots were flash frozen in liquid nitrogen and
349 stored at -80°C.

350 *Bpy-Met-tRNA^{fMet} (Bpy-tRNAi)*: Met-tRNA^{fMet} was prepared essentially as described³⁰. NHS
351 ester BODIPY FL SSE dye (D6140, Invitrogen, or analogous) was used to label Met-tRNA^{fMet} at
352 the amino group of the amino acid as follows. Met-tRNA^{fMet} was incubated in 50 mM Hepes-
353 KOH (pH 8.5) with 3 mM of the dye in the dark. The reaction was stopped by adding 0.3 M
354 potassium acetate (pH 5.0). Bpy-Met-tRNA^{fMet} was purified by three sequential ethanol
355 precipitations and HPLC chromatography on a reverse phase C18 column with a 5 %-40 %

356 ethanol gradient. The efficiency of labelling was determined by the molar stoichiometry of the
357 compound measuring both, tRNA and dye absorbance.

358 *mRNAs*: DNA templates for mRNAs were amplified by PCR using the Maxima Hot Start Green
359 PCR Master Mix (K1062, ThermoScientific) and corresponding primers (Table S1). Essentially,
360 the reaction contained 20 ng of DNA template, 1 μ M of each primer, Master Mix (containing
361 Buffer, NTPs and polymerase) and deionized water. Primers were synthetized by Macrogen
362 (South Korea). PCR products were purified using the GeneJET PCR Purification Kit (K0702,
363 ThermoScientific) (Table S2). mRNAs were produced by *in vitro* transcription for 3 hours at
364 37°C. The reaction contained Transcription Buffer (40 mM Tris-HCl (pH 7.5), 15 mM MgCl₂, 2
365 mM spermidine and 10 mM NaCl), 10 mM DL-Dithiothreitol (DTT), 2.5 mM NTPs, 5 mM
366 guanosine monophosphate, 0.01u/ μ l inorganic pyrophosphatase, 2 U/ μ l T7 polymerase, 5 ng/ μ l
367 DNA template and deionized water. Transcripts were then purified using Direct-ZolTM RNA
368 MiniPrep (R2052, Zymo Research) and visualized by 8 M urea PAGE electrophoresis followed
369 by staining in Methylene blue (Table S3).

370 *Rel_{Seq}*: For preparation of ppGpp, we first purified the N-terminal fragment containing the 385
371 first amino acids of native Rel_{Seq} protein. The enzyme was purified from BL21 (DE3) cells
372 transformed with pET21 plasmid encoding C-terminal 6 \times His-tagged fragment. Cells were grown
373 in LB medium with 100 μ g/ml ampicillin at 37 °C to an 0.6 OD₆₀₀ and protein expression was
374 induced with 1 mM IPTG with additional incubation for 3 h. Cells were collected by low speed
375 centrifugation (6000 rpm \times 20 min, JLA8.1 rotor). Cell pellets were resuspended in lysis buffer
376 (20 mM Tris-HCl pH 7.9, 300 mM KCl, 5 mM MgCl₂, 20% glycerol, 10 mM imidazole, 1 mM
377 DTT, 280 μ g/ml lysozyme, 0.1 mg/ml DNase I (DN25, Sigma-Aldrich) and 1 tablet of protease
378 inhibitor cocktail (11836153001, Roche). Cells were opened using the EmulsiFlex-C3 (Avestin)
379 and the cell debris was removed by the centrifugation (45000 rpm \times 30 min, rotor Ti50.2). The

380 supernatant was applied to a HisTrap FF (5 ml) column (17531901, GE Healthcare) for affinity
381 chromatography. The column was washed with buffer HT (20 mM Tris-HCl pH 7.9, 5 mM
382 MgCl₂, 20% glycerol, 1 mM DTT) with 300 mM KCl and 10 mM imidazole and the protein was
383 eluted by a linear gradient from 10 mM to 200 mM imidazole in the same buffer. The eluted
384 product was dialyzed twice against the buffer HT and 450 mM KCl. The protein was
385 concentrated by Amicon Ultra-15 Centrifugal Filters (10 KDa) (UFC901008, Merck) and diluted
386 in buffer HT with 50 mM KCl for decreasing of KCl concentration to 90 mM. An anion-
387 exchange chromatography step was used to further purify Rel_{Seq}. HiTrapQ (5 ml) column
388 (17115301, GE Healthcare) was equilibrated with the buffer (20 mM Tris-HCl pH 9.5, 50 mM
389 KCl, 5 mM MgCl₂, 20% glycerol, 1 mM DTT) and the protein was eluted by a linear gradient
390 from 50 mM to 750 mM KCl. Fractions containing Rel_{Seq} were analysed by 12% SDS-PAGE
391 gel-electrophoresis, pooled, aliquoted and frozen in a liquid nitrogen. The enzyme activity of
392 Rel_{Seq} was above 80%, as measured by ppGpp production over the sum of ppGpp plus GDP.
393 *ppGpp*: preparative synthesis of the tetraphosphate was performed in buffer B (30 mM Tris-HCl
394 pH 8.0, 100 mM NaCl, 10 mM MgCl₂) using 10 mM ATP, 4 mM GDP and 50 µM Rel_{Seq}. The
395 reaction was incubated for 40 min at 37 °C and stopped by phenol extraction. The water phase
396 was loaded to a MonoQ 5/50 GL (1 ml) column (GE17-5166-01, GE Healthcare). ppGpp was
397 eluted with a linear gradient from 0.5 mM to 600 mM LiCl in buffer C (25 mM Tris-HCl pH 8.3,
398 0.5 mM EDTA). Fractions containing ppGpp were pooled and precipitated with 1.5 M LiCl and
399 2 volumes of absolute ethanol. The precipitate was harvested by centrifugation (16100 RFC × 20
400 min) and dissolved in water. ppGpp concentration was measured by UV absorbance at 253 nm
401 using an extinction coefficient of 13700. Samples were aliquoted and stored at -20°C.

402 **Experimental conditions and analysis**

403 30S complexes were reconstituted using pure subunits, IFs, tRNAi, mRNA and nucleotides. 30S
404 subunits were reactivated by incubation in TAKM₂₀ buffer (as TAKM_{3.5} but with 20 mM MgCl₂)
405 for 1 h at 37 °C prior to use. Generally, 30S ICs were formed by incubation at 37°C for 30 min in
406 TAKM₇ using 1 μM 30S subunits, 4 μM mRNA, 2 μM IF1, 1 μM IF2, 1.5 μM IF3, 0.5 μM Bpy-
407 Met-tRNA^{fMet} and 0.5 mM guanosine nucleotides, unless otherwise stated in the results section
408 or figure legends. Ligand titrations were prepared using serial dilutions by one to one mixing of
409 complexes containing the highest concentration of the titrant with complexes lacking only the
410 ligand under investigation. The number of reactions were setup to cover a wide range of
411 concentrations.

412 MST was measured on 10 μl reactions using standard capillaries (MO-K022, NanoTemper
413 Technologies) on a Monolith NT.115 (NanoTemper Technologies) at monochromatic LED with
414 power input of 30% and IR laser power of 40%. The local temperature perturbation was expected
415 to be less than 3 °C. All measurements were performed at room temperature (22 ± 2 °C). 3-5
416 replicates were measured for each investigated reaction to calculate mean and standard deviation.
417 Day to day reproducibility was very high which allowed to report absolute thermophoresis
418 values rather than to use normalized MST traces. K_D were calculated using a hyperbolic or
419 quadratic function using Graphpad Prism 6.0 (GraphPad Inc, USA) or software provided by
420 NanoTemper. Same-site inhibitory constants were calculated using the K_D values obtained for
421 GTP and concentrations used by non-linear fitting using the one site competition function using
422 Graphpad Prism 6.0 (GraphPad Inc, USA).

423 To measure 70S pre-IC formation, a SX-20 stopped flow instrument (Applied Photophysics, UK)
424 was set up for light scattering recording with an excitation wavelength of 430 nm. Scattered light
425 was measured at an angle of 90° without a filter. Pseudo first order conditions were
426 approximated by using ≥3-fold excess of 50S subunits over 30S ICs. 0.2 μM 30S ICs were

427 rapidly mixed in the instrument with 0.6 μ M 50S at 25 °C. Bpy-tRNAi accommodation was
428 measured essentially as described by¹². Briefly, 0.2 μ M 30S ICs were formed using Bpy-tRNAi
429 and rapidly mixed with 0.6 μ M 50S at 25 °C. Fluorescence was excited at 470 nm and measured
430 after a 495 nm long pass filter. Individual traces (6-11 traces) were averaged and the resulting
431 kinetic curve was approximated by single ($F = A_0 + A_1 * \exp(-k_{app}^1 * t)$) or double ($F = A_0 +$
432 $A_1 * \exp(-k_{app}^1 * t) + A_2 * \exp(-k_{app}^2 * t)$) exponential fit using Graphpad Prism 6.0 software
433 (GraphPad Inc, USA).
434 In order to visualize overall protein synthesis, we used a coupled transcription-translation cell-
435 free system. Reactions were carried out in 10 μ l of the purified components from the
436 PURExpress *In Vitro* Protein Synthesis Kit (E6800S/L, NEB) with the corresponding templates.
437 These reactions were incubated at 37°C for 2 hours. To asses ppGpp inhibitory capacity in
438 translation, 0.15 μ M of DNA coding for mTufA or mInfA were introduced in the described
439 system in the absence or presence of 4, 2, 1, 0.5 or 0.25 mM ppGpp. After incubation, sample
440 processing and fluorescent labelling were carried out as described by the Lumio™ Green
441 Detection Kit (LC6090, ThermoScientific) for *in vitro* reactions. Finally, 20 μ l of labelled
442 samples were loaded into 20% SDS-PAGE gels and visualized under a Blue-light LED
443 transilluminator with orange filter (Cleaver Scientific LTD). Gel quantification was performed
444 by pixel densitometry analysis using ImageJ software²⁶.

445

446 **References**

- 447 1. Harms, A., Maisonneuve, E. & Gerdes, K. Mechanisms of bacterial persistence during
448 stress and antibiotic exposure. *Science* **354**, aaf4268–11 (2016).
- 449 2. Dalebroux, Z. D. & Swanson, M. S. ppGpp: magic beyond RNA polymerase. *Nat. Rev.*
450 *Microbiol.* **10**, 203–212 (2012).

451 3. Hauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T. & Gerdes, K. Recent
452 functional insights into the role of (p)ppGpp in bacterial physiology. *Nat. Rev. Microbiol.*
453 **13**, 298–309 (2015).

454 4. Xu, X. *et al.* Role of ppGpp in *Pseudomonas aeruginosa* acute pulmonary infection and
455 virulence regulation. *Microbiol. Res.* **192**, 84–95 (2016).

456 5. Bager, R., Roghonian, M., Gerdes, K. & Clarke, D. J. Alarmone (p)ppGpp regulates the
457 transition from pathogenicity to mutualism in *Photobacterium luminescens*. *Molecular*
458 *Microbiology* **100**, 735–747 (2016).

459 6. Gupta, A., Venkataraman, B., Vasudevan, M. & Gopinath Bankar, K. Co-expression
460 network analysis of toxin-antitoxin loci in *Mycobacterium tuberculosis* reveals key
461 modulators of cellular stress. *Sci Rep* **7**, 5868 (2017).

462 7. Mitkevich, V. A. *et al.* Thermodynamic characterization of ppGpp binding to EF-G or IF2
463 and of initiator tRNA binding to free IF2 in the presence of GDP, GTP, or ppGpp. *Journal*
464 *of Molecular Biology* **402**, 838–846 (2010).

465 8. Milon, P. *et al.* The nucleotide-binding site of bacterial translation initiation factor 2 (IF2)
466 as a metabolic sensor. *Proceedings of the National Academy of Sciences* **103**, 13962–
467 13967 (2006).

468 9. Gualerzi, C. O. & Pon, C. L. Initiation of mRNA translation in bacteria: structural and
469 dynamic aspects. *Cell. Mol. Life Sci.* **72**, 4341–4367 (2015).

470 10. Fabbretti, A. *et al.* Translation initiation without IF2-dependent GTP hydrolysis. *Nucleic*
471 *Acids Research* **40**, 7946–7955 (2012).

472 11. Caban, K., Pavlov, M., Ehrenberg, M. & Gonzalez, R. L. A conformational switch in
473 initiation factor 2 controls the fidelity of translation initiation in bacteria. *Nat Commun* **8**,
474 1475 (2017).

475 12. Goyal, A., Belardinelli, R., Maracci, C., Milon, P. & Rodnina, M. V. Directional transition
476 from initiation to elongation in bacterial translation. *Nucleic Acids Research* **43**, 10700–
477 10712 (2015).

478 13. Potrykus, K., Murphy, H., Philippe, N. & Cashel, M. ppGpp is the major source of growth
479 rate control in *E. coli*. *Environ. Microbiol.* **13**, 563–575 (2011).

480 14. Kamarthapu, V. *et al.* ppGpp couples transcription to DNA repair in *E. coli*. *Science* **352**,
481 993–996 (2016).

482 15. Madison, K. E. *et al.* Stringent response processes suppress DNA damage sensitivity
483 caused by deficiency in full-length translation initiation factor 2 or PriA helicase.
484 *Molecular Microbiology* **92**, 28–46 (2014).

485 16. Traxler, M. F. *et al.* The global, ppGpp-mediated stringent response to amino acid
486 starvation in *Escherichia coli*. *Molecular Microbiology* **68**, 1128–1148 (2008).

487 17. Duhr, S. & Braun, D. Why molecules move along a temperature gradient. *Proceedings of
488 the National Academy of Sciences* **103**, 19678–19682 (2006).

489 18. Thurlow, B. *et al.* Binding properties of YjeQ (RsgA), RbfA, RimM and Era to assembly
490 intermediates of the 30S subunit. *Nucleic Acids Research* **44**, 9918–9932 (2016).

491 19. Milon, P. *et al.* The ribosome-bound initiation factor 2 recruits initiator tRNA to the 30S
492 initiation complex. *EMBO Rep.* **11**, 312–316 (2010).

493 20. Milon, P., Konevega, A. L., Gualerzi, C. O. & Rodnina, M. V. Kinetic checkpoint at a late
494 step in translation initiation. *Molecular Cell* **30**, 712–720 (2008).

495 21. Milon, P. *et al.* Transient kinetics, fluorescence, and FRET in studies of initiation of
496 translation in bacteria. *Meth. Enzymol.* **430**, 1–30 (2007).

497 22. Varik, V., Oliveira, S. R. A., Hauryliuk, V. & Tenson, T. HPLC-based quantification of
498 bacterial housekeeping nucleotides and alarmone messengers ppGpp and pppGpp. *Sci Rep*
499 **7**, 11022 (2017).

500 23. Kriel, A. *et al.* Direct regulation of GTP homeostasis by (p)ppGpp: a critical component
501 of viability and stress resistance. *Molecular Cell* **48**, 231–241 (2012).

502 24. Schmidt, A. *et al.* The quantitative and condition-dependent *Escherichia coli* proteome.
503 *Nat. Biotechnol.* **34**, 104–110 (2016).

504 25. La Teana, A., Pon, C. L. & Gualerzi, C. O. Late events in translation initiation.
505 Adjustment of fMet-tRNA in the ribosomal P-site. *Journal of Molecular Biology* **256**,
506 667–675 (1996).

507 26. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of
508 image analysis. *Nature Methods* **9**, 671–675 (2012).

509 27. Rojas, A. M., Ehrenberg, M., Andersson, S. G. & Kurland, C. G. ppGpp inhibition of
510 elongation factors Tu, G and Ts during polypeptide synthesis. *Mol. Gen. Genet.* **197**, 36–
511 45 (1984).

512 28. Schreiber, G. *et al.* Overexpression of the *relA* gene in *Escherichia coli*. *Journal of*
513 *Biological Chemistry* **266**, 3760–3767 (1991).

514 29. Dai, X. *et al.* Reduction of translating ribosomes enables <italic>Escherichia coli</italic>
515 to maintain elongation rates during slow growth. *Nature Microbiology* 1–9 (2016).
516 doi:10.1038/nmicrobiol.2016.231

517 30. Mittelstaet, J., Konevega, A. L. & Rodnina, M. V. A kinetic safety gate controlling the
518 delivery of unnatural amino acids to the ribosome. *J. Am. Chem. Soc.* **135**, 17031–17038
519 (2013).

520

521 **Supplementary Information**

522 Supplementary Text, experimental approach

523 Supplementary Figures 1 to 8

524 Supplementary Tables 1 to 3

525

526

527

528 **Acknowledgments**

529 We are thankful to Vasili Hauryliuk for the construct coding for Rel_{Seq} and to Claudio Gualerzi

530 for sharing plasmids coding for model mRNAs. Experiments on dynamics of the ribosomal

531 complexes were supported by Russian Science Foundation Grant 17-14-01416 (to ALK),

532 experiments on various mRNAs were supported by Russian Foundation for Basic Research grant

533 17-00-00368 (to ALK), by InnóvatePerú grants 382-PNICP-PIBA-2014 and 297-

534 INNOVATEPERU-EC-2016 (to PM), and by the Fondecyt grant 154-2017-Fondecyt (to PM).

535 The Monolith NT.115 equipment used for MST measurements was provided by Nanotemper

536 Technologies RUS LLC.

537 **Author Contributions**

538 ALK and PM conceived the project; DSV, VZ, PK and EM performed the experiments; DSV,

539 AP, ALK, and PM analysed the data; AP, ALK and PM wrote the manuscript with the input of

540 all authors.

541 **Competing financial interests**

542 ALK is founder of the company NanoTemper Technologies Rus, which provides services and

543 devices based on thermophoresis and represents NanoTemper Technologies GmbH (Germany).

544

545

546

547