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Abstract 
Objective: To determine whether the rich-club organization, essential for information transport 
in the human connectome, is an important biomarker of functional outcome after acute ischemic 
stroke (AIS).  
Methods: Consecutive AIS patients (N=344) with acute brain magnetic resonance imaging 
(MRI) (<48 hours) were eligible for this study. Each patient underwent a clinical MRI protocol, 
which included diffusion weighted imaging (DWI). All DWIs were registered to a template on 
which rich-club regions have been defined. Using manual outlines of stroke lesions, we 
automatically counted the number of affected rich-club regions and assessed its effect on the 
National Institute of Health Stroke Scale (NIHSS) and modified Rankin Scale (mRS; obtained at 
90 days post-stroke) scores through ordinal regression. 
Results: Of 344 patients (median age 65, inter-quartile range 54-76 years) with a median DWI 
lesion volume (DWIv) of 3cc, 64% were male. We established that an increase in number of 
rich-club regions affected by a stroke increases the odds of poor stroke outcome, measured by 
NIHSS (OR: 1.77, 95%CI 1.41-2.21) and mRS (OR: 1.38, 95%CI 1.11-1.73). Additionally, we 
demonstrated that the OR exceeds traditional markers, such as DWIv (ORNIHSS 1.08, 95%CI 
1.06-1.11; ORmRS 1.05, 95%CI 1.03-1.07) and age (ORNIHSS 1.03, 95%CI 1.01-1.05; ORmRS 1.05, 
95%CI 1.03-1.07). 
Conclusion: In this proof-of-concept study, the number of rich-club nodes affected by a stroke 
lesion presents a translational biomarker of stroke outcome, which can be readily assessed using 
standard clinical AIS imaging protocols and considered in functional outcome prediction models 
beyond traditional factors. 
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Introduction 
Stroke is a leading cause of adult disability and death worldwide.1,2 With limited treatment 
options, early and effective strategies to predict and prevent adverse post-stroke outcome hold 
promise of improving stroke survivors’ quality of life and reducing the economic burden on 
society.3 However, determinants of stroke outcome are poorly understood.4,5  
 
Recent studies indicate that structural aspects, such as white matter microstructural integrity, are 
related to functional outcome post-stroke.6 This reflects the role that structural connectivity, 
defined by brain regions connected through white matter tracts, has in maintaining brain function 
and suggests that a disrupted brain network (connectome7) may contribute to the observed 
symptoms of stroke. The rich-club organization is an important aspect of the connectome.8  It 
describes a set of brain regions considered to be information hubs8, which form a backbone for 
information transport, critical for physiological connectivity8–10 and susceptible to impairment.11–

14  
 
Severity of symptoms and outcome in acute ischemic stroke (AIS) are strongly linked to a 
patient’s age and lesion size.15–17 Recently, the independent role of acute stroke lesion 
topography in functional long-term post-stroke outcome has been recognized.18,19 However, the 
mechanisms through which lesion location with respect to the underlying connectome before 
stroke affect outcome have not been investigated.  
 
In this report, we establish the extent of ischemic injury to the rich-club as an important 
determinant of functional outcome in AIS patients and highlight the importance of the 
underlying connectome with respect to acute lesion location.  
 
Materials and Methods 
Standard protocol approvals, registrations, and patient consent 
At time of enrollment, informed written consent was obtained from all participating patients or 
their surrogates. The use of human patients in this study was approved by the Partners 
Institutional Review Board. 
 
Study design, setting, and patient population 
The retrospective data are sourced from the Genes Affecting Stroke Risk and Outcomes Study 
(GASROS) study and appropriate ethical review has been obtained. Between 2003 and 2011, 
patients presenting within 12 hours of symptom onset to the Massachusetts General Hospital 
Emergency Department (ED) with symptoms of AIS and >18 years old, were eligible for 
enrollment.  Patients were scanned within 48 hours of admission. Patients with confirmed acute 
DWI lesions on brain MRI scans were included.  
 
Clinical outcome assessment. All patients were evaluated by an ED neurologist, at which point 
stroke severity was assessed using the NIHSS 20 scale (a surrogate for early outcome). Clinical 
data were abstracted from the medical record. Patients and their caregivers were interviewed in 
person or by telephone at 3-6 months after stroke to assess functional outcome using modified 
Rankin Scale 21 (mRS).  If the patient (or surrogate) was not available in person/by phone at that 
time, their chart was reviewed and mRS abstracted from the neurology clinic follow-up visit data 
available within this time window.  
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We identified a total of 624 AIS patients with manually outlined lesions on diffusion MRI. Of 
those, 155 did not have both outcome scores recorded (35 without phenotypic information) and 
37 failed the quality control after image registration. Of the remaining patients, 344 were 
identified with supratentorial DWI lesions and subsequently used in this analysis (Table 1). 
 
Table 1: Study cohort characterization. 
 

 n Age 
(mean (sd)) 

DWIv 
(mean (sd)) 

NRC 
(mean (sd)) 

mRS 
(mean (sd)) 

NIHSS 
(mean (sd)) 

Male sex 
(%) 

All 344 64.59 
(15.76) 

15.01 
(30.00) 

1.33 
(1.27) 

1.68 
(1.74) 

5.58 
(6.21) 64 

 
Abbreviations: DWIv – diffusion-weighted imaging volume, mRS – modified Rankin scale 
score, NIHSS – National Institutes of Health Stroke Scale score, NRC – number of rich-club 
nodes involved, SD – standard deviation 
 
Neuroimage analysis 
All patient underwent the standard acute ischemic stroke protocol on a 1.5T Signa scanner (GE 
Medical Systems), which included DWI (single-shot echo planar imaging; one to five B0 
volumes, 6-30 diffusion directions with b=1000s/mm2, 1-3 averaged volumes) within 48 hours of 
admission. Median in-plane resolution was 0.94x0.94mm2 (interquartile range (IQR): 0.86-
1.72mm for both directions), with a median through-plane resolution of 6.0mm (IQR: 6.0-
6.0mm). DICOM images were first converted to Analyze format for computer-assisted 
measurement of DWI volume using MRIcro software (University of Nottingham School of 
Psychology, Nottingham, UK; www.mricro.com). Acute lesion volumes were outlined on an 
averaged volume, using a semi-automated approach22 by readers blinded to both clinical data. 
 
Images were non-linearly registered to an in-house age appropriate FLAIR template in MNI 
space using Advanced Normalization ToolS23 (ANTS). No additional preprocessing was 
required. Registration quality was manually assessed by an expert reader. All registered images 
were manually assessed for gross image and image intensity artifacts potentially affecting the 
regions comprising the rich-club, e.g. due to eddy currents or incomplete brain extraction, and no 
additional scans were excluded from further analysis. Manual lesion outlines were then warped 
into template space using nearest neighbor interpolation. 
 
Rich-club template and NRC 
We utilized the Harvard-Oxford atlas, where we identified those regions that are part of the rich-
club as described by van den Heuvel and Sporns 8. The rich-club consists of three bilateral 
cortical (precuneus, superior frontal and superior parietal cortex) and sub-cortical (hippocampus, 
putamen and thalamus) regions. This provided us with 12 individually labelled regions (see 
Figure 1). Overlaying the template and manual lesion outlines allowed us to then identify and 
count all affected rich-club regions. We then utilized the count of affected rich-club regions 
(NRC) in the proposed models. 
 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 10, 2019. ; https://doi.org/10.1101/545897doi: bioRxiv preprint 

https://doi.org/10.1101/545897
http://creativecommons.org/licenses/by/4.0/


 Schirmer et al. - 4 

 
Fig. 1: Areas comprising the rich-club in the human brain. A total of 6 bilateral rich-club 
regions were previously identified in healthy adults.  Cortical regions (left) include the 
precuneus, superior parietal and superior frontal cortex. Sub-cortical regions (right) are 
comprised of the hippocampus, thalamus and putamen.  
 
 
Model description and statistical analysis 
Multicollinearity was assessed based on the variance inflation factor (VIF), where VIF>10 
indicates multicollinearity between variables24. We then assessed the agreement between our 
semi-automated approach in identifying the number of rich-club regions and the manual 
assessment of an export neurologist (MRE), based 20 randomly selected patients and by 
calculating the intra-class correlation coefficient (ICC). Models have the form ‘response ~ 
terms’, where response is the dependent variable and terms the series of independent variables 
utilized in the model, connected by ‘+’. Inclusion of interaction terms between independent 
variables are indicated by ‘:’. As a baseline model for comparison, we define each outcome 
measure (NIHSS or mRS) as 
 

𝑜𝑢𝑡𝑐𝑜𝑚𝑒	~	𝐴𝑔𝑒: 𝑆𝑒𝑥 + 𝐷𝑊𝐼𝑣, 
 
for age, sex and acute lesion volume (DWIv). This model also includes an interaction term 
between age and sex, as women commonly experience cerebrovascular incidences later in life 25.  
 
The model including the number of rich-club regions for both NIHSS and mRS is given by 
 

𝑜𝑢𝑡𝑐𝑜𝑚𝑒	~	𝐴𝑔𝑒: 𝑆𝑒𝑥 + 𝐷𝑊𝐼𝑣:𝑁56, 
 
with an interaction term between NRC and DWIv. This follows the intuition that the larger the 
acute lesion, the more likely it is that a higher number of rich-club regions are affected. Model 
parameters were estimated using ordinal regression based on an implementation of the 
cumulative link model (logit) in R26. We assessed both models, with and without interaction 
terms, based on Akaike Information Criterion (AIC), log-likelihood statistics and c2 test for 
comparison using ANOVA. Statistical significance was set to p<0.05.  
 
To validate our findings, we utilized 5-fold cross-validation. We divided our data set 100 times 
into five approximately equal sized, disjoint folds (characteristics shown in Table 1) and repeated 
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the analysis using four of the five folds at a time. This was repeated 5 times and allowed us to 
assess the stability of our parameter estimates, reporting mean and standard deviation of the 
significant parameter in at least 95%, i.e. 475 out of 500, of the folds. After model fit, odds ratios 
were calculated by transforming the determined model parameters using an exponential function. 
Finally, we use the subset of subjects which had a stroke, but no rich-club involvement, to 
demonstrate the specificity of the rich-club nodes with respect to outcome over a simple number 
of region count (Ntotal) affected by the acute lesion. All analyses were performed using the 
computing environment R27–29. 
 
Data availability 
Both code for analysis and rich-club template will be made available upon acceptance to 
facilitate reproducibility of our findings. The authors agree to make available to any researcher 
the data, methods used in the analysis, and materials used to conduct the research for the express 
purposes of reproducing the results and with the explicit permission for data sharing by the local 
institutional review board. 
 
Results 
We examined 344 AIS patients with supratentorial lesions and clinical diffusion MRI. Clinical 
characteristics of the cohort are presented in Table 1. Excluded patients with phenotypic 
information were on average of 63.0±15.7 years old (p<0.01), 63.0% male, with an average DWI 
lesion volume of 9.7±26.4cm3 (p<0.001). Registering each patient’s diffusion scan to the 
template allows for automatic count of the number of rich-club regions (NRC) affected by the 
stroke lesion for each patient. Figure 2 shows the distribution of NRC with respect to post-stroke 
outcome of the individual patients.  
 

 
Fig. 2: Number of rich-club regions affected by the stroke lesion (NRC) with corresponding 
early (NIHSS) and late (mRS) outcome assessment. Left: Early outcome assessment (NIHSS; 
range: [0-40]) shows a correlation of 0.42 (p<0.001), as assessed using Spearman’s Rank 
Correlation coefficient. Right: Late outcome assessed using 90-day mRS (range: [0-6]) also 
demonstrates a significant correlation with NRC (Spearman’s Rank Correlation coefficient: 0.27; 
p<0.001). 
 
For both outcome scores, we performed ordinal regressions for a baseline and rich-club model. 
Analysis of variance inflation factors (VIF) suggested no multicollinearities (VIFage=1.0; 
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VIFsex=1.0; VIFDWIv=1.9; VIF:;<=1.9)24. Calculating ICC between manual and semi-automatic 
assessment of NRC suggested good agreement (ICC=0.8). Using ANOVA, we compared the 
baseline and rich-club models for both outcomes. In both cases, models were significantly 
different (p<0.001), suggesting that the inclusion of the NRC provides additional information for 
outcome. Table 2 summarizes the estimates for the model parameters of all models and both 
outcome variables, as well as the statistical comparison using ANOVA. These results suggest 
that the models including NRC are a better descriptor of the data compared to the baseline models 
and models excluding interaction terms.  
 
Table 2: Model parameters for both outcomes for the baseline, and rich-club model with 
and without interaction terms. Model parameters are determined using ordinal regression 
(cumulative link models (link: logit)) and significance levels are reported (*: p<0.01; **: 
p<0.005; ***: p<0.001). Baseline and rich-club models for mRS and NIHSS are assessed based 
on ANOVA using Akaike Information Criterion (AIC), log-likelihood statistics and c2 test for 
the comparison between models. 
 

O
ut

co
m

e Model 

Parameter estimation 
(ordinal regression) 

Model comparison 
(ANOVA) 

 

Age Sex Age: 
Sex DWIv NRC DWIv:NRC AIC Log-

likelihood 
p 

(c2) 
 

m
R

S 

Baseline 
0.05*** 

± 
0.01 

0.53 
± 

0.87 

-0.02 
± 

0.01 

0.02*** 
± 

0.00 
- - 1068.

1 -524.1 

*** 

- 

Rich-Club 
0.05*** 

± 
0.01 

0.78 
± 

0.87 

-0.02 
± 

0.01 

0.05*** 
± 

0.01 

0.33** 
± 

0.11 

-0.01** 
± 

0.00 

1058.
1 -517.0 

** Rich-Club 
w/o 

interaction 
terms 

0.04*** 
± 

0.01 

0.70*** 
± 

0.21 
- 

0.02*** 
± 

0.00 

0.26** 
± 

0.11 
- 1065.

0 -522.5 - 

N
IH

SS
 

Baseline 
0.02* 
± 

0.01 

0.61 
± 

0.82 

-0.01 
± 

0.01 

0.04*** 
± 

0.00 
- - 1847.

5 -892.8 

*** 

- 

Rich-Club 
0.03** 
± 

0.01 

0.90 
± 

0.82 

-0.02 
± 

0.01 

0.08*** 
± 

0.01 

0.57*** 
± 

0.11 

-0.01*** 
± 

0.00 

1806.
8 -870.4 

*** Rich-Club 
w/o 

interaction 
terms 

0.02** 
± 

0.01 

-0.18 
± 

0.20 
- 

0.03*** 
± 

0.00 

0.40*** 
± 

0.11 
- 1834.

8 -886.4 - 

Abbreviations: DWIv – diffusion-weighted imaging volume, mRS – modified Rankin scale 
score, NIHSS – National Institutes of Health Stroke Scale score, NRC – number of rich-club 
nodes involved, SD – standard deviation 
 
In our cohort, 85 patients had no rich-club involvement with 1-17 regions affected by the stroke 
lesion (Pearson correlation between Ntotal and DWIv: 0.69) and outcome between 0-6 for mRS 
and 0-27 for NIHSS. Parameters of the model fit are shown in Table 3, suggesting that Ntotal only 
affects NIHSS and not mRS.  
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Table 3: Model parameters for both outcomes using the total number of affected regions 
without rich-club involvement. Model parameters are determined using ordinal regression 
(cumulative link models (link: logit)) and significance levels are reported (*: p<0.01; **: 
p<0.005).  
 

 Age Sex Age:Sex DWIv NTotal DWIv:NTotal 

mRS 0.07±0.02** 1.49±2.01 -0.03±0.03 0.05±0.12 0.10±0.09 -0.00±0.01 

NIHSS 0.08±0.02** 4.40±2.07* -0.05±0.03 0.30±0.14* 0.25±0.10* -0.03±0.01* 

 
 
Abbreviations: DWIv – diffusion-weighted imaging volume, mRS – modified Rankin scale 
score, NIHSS – National Institutes of Health Stroke Scale score, NRC – number of rich-club 
nodes involved, SD – standard deviation 
 
We subsequently assessed odds-ratios (OR) for both outcome variables using the rich-club 
models (Figure 3). In case of NIHSS, age, DWIv and NRC showed to increase the odds of worse 
early outcome (increase in NIHSS) with ORs (95% confidence interval (CI)) of 1.03 (1.01-1.05) 
for age, 1.08 (1.06-1.11) for DWIv and 1.77 (1.41-2.21) for NRC. Similar results were found for 
mRS as late outcome measures, with ORs (CI) of 1.05 (1.03-1.07) for both age and DWIv and 
1.38 (1.11-1.73) for NRC. Additionally, the interaction term between NRC and DWIv showed an 
odds ratio of 0.99 (0.98-0.99) and 0.99 (0.99-1.00) for NIHSS and mRS, respectively. The CI of 
sex and its interaction term with age includes 1. 
 

 
Fig. 3: Odds ratios (OR) for models including NRC on NIHSS (red) and mRS (red) as 
outcome measures. In both models age, DWIv and NRC increase the odds of a higher outcome 
score, reflecting worse outcome. Additionally, in case of NIHSS the 95% confidence interval 
(CI) of the interaction term between NRC and DWIv does not include 1. 
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We validated these results using 5-fold cross-validation 100 times. For both mRS and NIHSS, 
we validated the trends in our results with ORs of 1.05±0.00 for age (0/500 not significant), 
1.05±0.00 (0/500 not significant) for DWIv and 1.39±0.07 (22/500 not significant) for NRC in 
case of mRS and ORs of 1.03±0.01 for age (5/500 not significant), 1.08±0.01 for DWIv (0/500 
not significant) and 1.77±0.10 (0/500 not significant) for NRC in case of NIHSS.  
 
Discussion 
Here we showed that the interaction of the network topology and stroke lesion location is an 
important biomarker for stroke outcome. We demonstrated that the effect size of NRC exceeds all 
other investigated clinical variables in the models of outcome after ischemic stroke. This 
underpins the significance of lesion location in clinical prognosis. Further, the novelty of our 
findings is that outcome measures as used in stroke populations are capturing a complex array of 
functions, which cannot be solely explained by a single region’s function, but rather their 
importance in terms of global connectivity.  
 
The rich-club is considered to facilitate information transport, which is highly reliant on the 
integrity of those regions 9. We demonstrate that this relationship is important both for early 
(NIHSS) and late (mRS) outcome. The mRS, although clinically important, is a coarse measure 
of function with only 7 categories, making a more detailed assessment difficult, as it combines 
different levels of disability in broad categories. Importantly, an mRS score of 6 reflects death, 
which may have other causes beyond brain involvement. Nonetheless, we showed that the odds 
of having a worse outcome as measured by mRS increases by 1.38 per each additional region 
belonging to the rich-club being affected. In contrast, NIHSS is a more fine-grained assessment 
of stroke outcome used clinically as a measure of initial stroke severity. Considering that NIHSS 
shows an odds ratio of 1.77 in our study, this measure might be a robust marker of long-term 
outcome if collected at 3 months for longitudinal comparison (delta NIHSS) in future studies, 
either in addition to or instead of mRS. Moreover, we show that the number of rich-club nodes in 
our analysis outperforms a simple count of the total number of regions affected, which had no 
effect on outcome in patients with no rich-club involvement. 
 
There are several important limitations to our study. The DWIv and NRC parameters used in our 
models are highly correlated. Although there is no indication of multicollinearity between these 
variables, high degree of correlations can lead to increasing uncertainty in parameter estimation. 
Furthermore, we are currently only investigating a simple count of the regions being affected, 
regardless of the extent to which a lesion overlaps with the regions of interest. Utilizing the 
percentage of the regions being affected in more sophisticated models can help elucidate the 
relationships determined in this manuscript.  However, NRC allows a simple and direct way to 
estimate the effect of the stroke lesion in the clinic, whereas acute lesion volume and/or the 
percentage of the region being affected can currently only be determined outside of the 
emergency setting, severely limiting its practical application. Another limitation is related to the 
individual steps of the preprocessing and neuroimage analyses that could be further refined. In 
this study, we did not correct for eddy currents. Manual assessment suggested that eddy currents 
did not affect the regions comprising the rich-club; however, they may lead to increased noise in 
the data analysis. However, by not correcting for these effects, we simulated the ability of 
assessing the affected regions from the raw data, as they are available to clinicians in the clinic, 
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making this a clinically relevant approach.  By showing good agreement between manual and 
automated assessment, we further highlighted its translatability. In addition, our presented 
models utilize interaction terms between age and sex, as well as NRC and DWIv. While 
interaction terms can be hard to interpret, the models including these terms better capture the 
complexity of the observed data.  Moreover, rich-club regions comprise relatively large regions 
within the brain, as determined by the Harvard-Oxford atlas. In this study, we did not consider 
how large of a percentage of a rich-club region is affected by the stroke but instead considered 
the effect as a binary measure (affected versus not affected). Detailed atlas-based analyses, 
which subdivide these regions, may present an opportunity to assess the affected topology with 
higher accuracy; however, these have limited application to the bedside care of acute stroke 
patients. Additionally, others have demonstrated that the alterations of network topology are 
associated with stroke outcome30–32. While we do not have data available to generate 
connectomes in the acute setting due to clinical time constraints in patient treatment, those 
assessments commonly include effects due to the reorganization of the brain network and cannot 
be used in the acute setting prior to the effects of compensatory mechanisms. 
 
 We acknowledge that a subset of the mRS scores (~10%) in this cohort was reconstructed from 
the neurological assessment data at the follow-up clinic visits.  While a potential limitation, this 
adds to the variability in outcome models and diminishes the probability of discovering a 
significant association as seen in our analyses. An additional limitation to consider is a potential 
lack of generalizability of these findings to the larger patient populations given the evolving 
nature of stroke treatment options such as thrombectomy.  These treatments are rapidly changing 
the landscape of stroke outcome science and are available to growing numbers of AIS patients 
with large-vessel occlusion (LVO), who represent ~10-15% of general stroke population. The 
overall stroke severity in our cohort was mild-to-moderate, which is typical of a mixed ischemic 
stroke cohort; therefore, our findings can be most closely generalized to the study of outcomes in 
the non-LVO stroke patient majority. Furthermore, we developed a model that includes a limited 
set of broadly validated clinical predictors of outcome (such as age and sex) in addition to the 
imaging phenotypes.  Future studies that are statistically powered to address greater 
heterogeneity in the effect of multiple clinical variables, including stroke subtypes, on functional 
outcome will be needed to develop comprehensive models. 
 
The strengths of this novel, proof-of-the concept analysis includes: (a) the availability of a large, 
hospital-based cohort of AIS patients with systematic clinical and radiographic approaches to 
evaluation and ascertainment of the critical data points; (b) use of the validated semi-automated 
volumetric DWI analysis; (c) outcome assessment using validated protocols by the vascular 
neurology experts; and (d) the direct translatability of the presented approach to the clinic.  
 
Although our models demonstrate the importance of NRC in stroke outcome, it should be noted 
that we are using untransformed independent variables to infer the dependent variable. This 
approach is justified by the complexity of the AIS phenotype and the timeline of the outcome 
ascertainment. It has been suggested that more complex models and additional clinical 
parameters may provide a better estimate of outcome 33,34. However, rather than creating a 
prediction model, in this proof-of-principle study, we aimed to assess whether and demonstrate 
that NRC is an important biomarker that can be utilized in a clinical setting. Detailed data sets 
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with additional clinically relevant phenotypes are necessary to generate prediction models and 
should be the aim of future investigations.  
 
As hypothesized, the number of affected rich-club regions is associated with both stroke severity 
(NIHSS) and functional stroke outcome (mRS). These results reinforce the relevance of 
combining both connectomics approaches and clinical outcome assessment in stroke. A crucial 
aspect is that the assessment, although performed using a semi-automatic approach, can easily be 
conducted by clinicians on a per-patient basis and, in the future, help improve clinical outcome 
prediction in the early phases of this acute and often devastating illness. Given this foundation, 
studies and clinicians have the opportunity to move beyond the commonly used stroke lesion 
volume, as a relevant outcome surrogate for identifying patients at risk for bad outcomes, and 
open new research opportunities for early interventions, thereby helping to improve overall 
outcomes for acute ischemic stroke populations.  
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