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ABSTRACT

Many brain phenomena both at the cognitive and behavior level exhibit remarkable sequential
characteristics. While the mechanisms behind the sequential nature of the underlying brain activity
are likely multifarious and multi-scale, in this work we attempt to characterize to what degree some
of this properties can be explained as a consequence of simple associative learning. To this end,
we employ a parsimonious firing-rate attractor network equipped with the Hebbian-like Bayesian
Confidence Propagating Neural Network (BCPNN) learning rule relying on synaptic traces with
asymmetric temporal characteristics. The proposed network model is able to encode and reproduce
temporal aspects of the input, and offers internal control of the recall dynamics by gain modulation.
We provide an analytical characterisation of the relationship between the structure of the weight
matrix, the dynamical network parameters and the temporal aspects of sequence recall. We also
present a computational study of the performance of the system under the effects of noise for an
extensive region of the parameter space. Finally, we show how the inclusion of modularity in our
network structure facilitates the learning and recall of multiple overlapping sequences even in a noisy
regime.
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1 Introduction

From throwing spears in the savanna to the performance of a well rehearsed dance, human behavior reflects an intrinsic
sequential structure. In this light, is not surprising that sequential activity has been found in the neural dynamics across
different anatomical brain areas such as the cortex (Luczak et al., 2007; Jin et al., 2009; Harvey et al., 2012; Tang et al.,
2008), the basal ganglia (Barnes et al., 2005; Mello et al., 2015; Gouvêa et al., 2015; Bakhurin et al., 2017; Dhawale
et al., 2017; Rueda-Orozco and Robbe, 2015; Jin et al., 2009), the hippocampus (Nádasdy et al., 1999; Pastalkova
et al., 2008; Louie and Wilson, 2001; Davidson et al., 2009; MacDonald et al., 2013) and the HVC area in songbirds
(Hahnloser et al., 2002; Kozhevnikov and Fee, 2007). Moreover, sequential activity is not only present in a wide range
of neuroanatomical areas but is also associated with an ample repertoire of behaviors and cognitive processes including
sensory perception (Jones et al., 2007; Crowe et al., 2010), memory (Abeles et al., 1995; Seidemann et al., 1996;
Fujisawa et al., 2008), motor behavior (Averbeck et al., 2002; Nakajima et al., 2009) and decision making (Lapish et al.,
2008; Harvey et al., 2012). In our view, the entanglement of sequential activity with cognitive processes and behavior
strongly suggests that sequential activity is an essential component of the information processing capabilities of the brain
and therefore demands better understanding. A plausible hypothesis for the ubiquity of sequential activity is a common
learning mechanism for the construction of temporal representations at the network level. Inspired by experimental
evidence we propose the following constraints and properties for the neural representations and the underlying network
mechanisms: First, the recall dynamics of a sequence should reflect key temporal features of the input or training signal
(Johnson et al., 2010). Second, the network should enable temporal scaling, that is, once a sequential representation
has been learned, internal neural network’s mechanisms should suffice to contract or dilate its recall duration (Euston
et al., 2007; Ji and Wilson, 2007). Finally, as the same neural network circuits have been observed to exhibit many
sequential trajectories accounting for different behaviors (Pastalkova et al., 2008), it is desirable for the network to
posses mechanisms to store and recall multiple and, to some extent, overlapping sequences (Agster et al., 2002).

There is evidence that sequential activity can be characterized as a succession of meta-stable cell assemblies in the
cortex (Seidemann et al., 1996). Attractor neural networks have a long standing tradition as models of sequential
activity with meta-stable states corresponding to attractor patterns (Amari, 1972; Willwacher, 1982). Hopfield in his
seminal work (Hopfield, 1982, 1984) already noted that an asymmetric connectivity in a recurrent attractor network
was conducive to sequential recall. However, in the most basic implementation, the asynchronous update dynamics of
these Hopfield models resulted in mixed patterns, thereby gradually diluting sequential recall with time (Kühn and
van Hemmen, 1991). To overcome such limitations, temporal traces of the activity were utilized successfully as a
mechanism to keep the meta-stable states active for long enough to ensure a successful transition between the patterns
and some models even allow for temporal rescaling of the dynamics (Kleinfeld, 1986; Sompolinsky and Kanter, 1986).
However, such models are unable to properly integrate the temporal structure of the input due to the discrete nature of
their learning rule. A more sophisticated approach relies on systematically considering all the possible delays of the
input and calculate all the resulting cross-correlations (Herz et al., 1989; Coolen and Gielen, 1988). While in principle
these models are able to lean arbitrary variations in the temporal structure of the input, in practice they are limited by an
explosion in the number of parameters as the connectivity matrix scales with the size of the longest transition. In this
work we propose an attractor model that uses the following properties to overcome the aforementioned problems: 1) It
exploits temporal traces for learning in a probabilistic framework (Tully et al., 2016). The temporal nature of the traces
allows us to capture the temporal structure of the input, while avoiding an explosion in the number of parameters by
collapsing the temporal structure into statistical estimates of the connectivity. 2) The sequence transition mechanism
rests on the meta-stability of the attractor dynamics by means of intrinsic adaptation of the network units coupled with a
competition mechanism that bias the transition in the correct direction. At the same time the intrinsic adaptation allows
for the internal control and rescaling of the recall dynamics. 3) The use of a modular structure in our network facilitates
both flexible learning and recall of overlapping representations.

Several network models have been proposed to account for sequential activity. While Veliz-Cuba et al. (2015) reported
that their network could learn the temporal structure of the input, it required a fine-tuned relationship between synaptic,
dynamic and homeostatic parameters. Additionally, their model lacked a mechanism for temporal rescaling and the
question of learning multiple sequences was not addressed. In a recent approach by Pereira and Brunel (2018) persistent
or sequential activity dynamics could be learned depending on the temporal structure of the input. However, the
proposed network did not solve the problem of temporal scaling nor the acquisition of multiple sequences. Using
spike-time-dependent plasticity (STDP) with heterosynaptic competition Fiete et al. (2010) demonstrated the capability
of their model to learn multiple sequences from random activity but handling input with specific temporal structure
was not elaborated in their work. Furthermore, Byrnes et al. (2011) addressed the problem of learning overlapping
sequences but their approach did not scale well as it relied on a single unique representation for every sequence even
if they had overlapping elements. Finally, Murray et al. (2017) proposed an inhibitory network inspired by the basal
ganglia that achieves temporal rescaling by means of the interplay between synaptic fatigue and external input. In this
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model, however, the problem of handling multiple sequences could be solved only by assuming the existence of such
representations in an upstream network, which we consider as a strongly limiting factor.

Inspired by our previous modelling efforts to study sequence (Tully et al., 2016) and word list learning phenomena
(Lansner et al., 2013) we propose here a modular attractor memory neural network model that learns sequential
representations by means of the combination of the Bayesian Confidence Propagating Neural Network (BCPNN)
learning mechanism Lansner and Ekeberg (1989) and asymmetrical temporal synaptic traces. We proceed by first
presenting the network and its dynamics. Then, we derive analytical formulae for the temporal structure of the recall
process in noiseless conditions. We also describe how learning is accomplished in the network through the use of
synaptic traces and study how the temporal structure of the input is accounted for in the recall dynamics by means of
the BCPNN learning rule. We follow up with a systematic characterization of the effects of noise on the sequence recall
capability of the network. Finally, we elaborate on how the modularity of the network enables learning overlapping
sequences and discuss key limitations.

2 Results

2.1 Sequence recall

Following previous work on cortical attractor memory modelling (Tully et al., 2016; Lansner et al., 2013) we present here
a network capable of learning, recalling and processing sequential activity. We utilize a population model of the cortex
where units represent aggregations of neurons (cortical columns). Consistently with the mesoscale neuroanatomical
organization, those units are organized into hypercolumns, where winner-takes-all (WTA) dynamics keeps the activity
within the module normalized (Douglas and Martin, 2004). The topological organization of the model is presented in
Fig. 1A. The circuit implements attractor dynamics (Lansner, 2009) that leads the evolution of the network towards
temporary or permanent patterns of activity. We refer to these stable or meta-stable states as the stored patterns of
the network. The patterns themselves are defined by self-recurrent excitatory connectivity that tends to maintain the
pattern in place once activated (represented by wself in Fig. 1B). The patterns can naturally be thought of as cell
assemblies distributed among the hypercolumns in the network. The WTA mechanism renders the activity of the units
mutually exclusive within the hypercolumns and therefore ensures sparse activity (Foldiak, 2003). Sequential activation
of patterns can be induced by feed-forward excitation (represented by wnext in Fig. 1B) coupled with an adaptation
mechanism whose role is to cease current pattern activity thereby counteracting the pattern retention effects of the
self-recurrent connectivity.
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Figure 1: Network architecture and connectivity underlying sequential pattern activation. (A) network topology. Units uj
i are

organized into hypercolumns H1, . . ., Hn. At each point in time only one unit per hypercolumn is active due to a WTA mechanism.
Each memory pattern is formed by a set of recurrently connected units distributed across hypercolumns. For simplicity and without
compromising the generality we adopt the convention P1 = (u1

1, . . . , u1
n). We depict stereotypical network connectivity by showing

all the units that emanate from unit u1
1. The unit has excitatory projections to the proximate units on the sequence (connections from

u1
1 to u1

2 and u1
3 and the corresponding units in other hypercolumns) and inhibitory projections to both the units that are farther ahead

on the sequence (u1
1 to u1

4) and the units that are not in the sequence at all (gray units). (B) abstract representation of the relevant
connectivity for sequence dynamics. Please note that only connections from P2 are shown.
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We model the dynamics of the units with a population model equation (Wilson and Cowan, 1972). As described in
Eq. 1 the current s changes according to the base rate βj (also called the bias term) plus the total incoming current
from the other units

∑
i wijoi. The binary activation variable oj represents unit activation and is related to the current

through the WTA dynamics described in Eq. 2. This mechanism selects the unit receiving the maximum current at each
hypercolumn and activates it. We introduce intrinsic adaptation as a mechanism controlled by the variable a in Eq. 3 to
induce pattern deactivation. dξ represents additive white noise with variance σ. An extra current Ij(t) is used to model
external input into the system. For the sake of generality, it is important to stress that our current based population
model is equivalent to a rate-based formalism as shown in Miller and Fumarola (2012).

τs
dsj
dt

= βj +
1

H

∑
i

wijoi − gaaj − sj + σdξ(t) + Ij(t) (1)

oj =

{
1, sj = max

hypercolumn
(s),

0, otherwise
(2)

τa
daj
dt

= oj − aj (3)

It has long been recognized that an attractor model with asymmetric connectivity produces sequential dynamics (Amit,
1992). In that vein, we explain now how an asymmetric connectivity matrix coupled with the dynamics of our model
brings about sequential activity.

In Fig. 2A we show a case of successful sequential recall in the network with the connectivity matrix depicted in Fig.
2D. Here we handcrafted the connectivity matrix to illustrate the unfolding of the following dynamics. Once the first
pattern gets activated (oi=1) as a result of an external cue (current input I(t) to all the units belonging to the pattern)
the adaptation current ai depicted in Fig. 2B starts growing and, in consequence, the self-excitatory current si becomes
smaller. At some point, the self-excitatory current si is going to become weaker than the feed-forward current si+1

which the next pattern in the sequence is receiving. Then, the competitive WTA mechanism mediates the activation of
the next pattern (oi+1 = 1) and suppresses the current one (oi) by competition. These dynamics are self-sustained and
the cycle repeats until the end of the sequence. We depict the profile of such transitions in Fig.2C. The total time that
the pattern stays activated is defined as the persistence time Tper (as used in van Hemmen et al. (1991)) and depends on
the interplay between the connectivity matrix, the bias term and the adaptation.

Table 1: Relevant parameters and quantities.

Symbol Name Values

τs Synaptic time constant 10ms
τa Adaptation time constant 250ms
ga Adaptation gain 0 − 2.5 (units of w, control)
τzpre Pre synaptic z-filter time constant 5 − 150ms
τzpost Post synaptic z-filter time constant 5ms
τp Probability traces time constant 5 s
σ Standard deviation of s values 0 − 3
Tper Persistence time 50 − 3000ms (controlled)
Tp Pulse time 100ms

∆Tp Inter Pulse Interval (IPI) 0ms

2.2 Persistence time

Two important characteristics of sequence dynamics are the order in which the patterns are activated (the serial order)
and the temporal structure of those activations (the temporal order) (Dominey and Ramus, 2000). In our model the
serial order is determined by the differential connectivity between the current activated pattern and all other patterns.
In general, the next pattern activated will be the one for which the quantity ∆wnext = wself − wnext is smaller. The
persistence time or temporal information of the sequence on the other hand is determined by the interplay between
the connectivity of the network and the dynamical parameters of the network. We now proceed to characterize this
relationship analytically. From the deterministic trajectories (see Appendix A) we can find the time point at which the
currents from two subsequent units are equal: si(t) = si+1(t). Solving for t we determine the persistence time, Tper
for each attractor determined with the expression in Eq. 4.
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Figure 2: An instance of sequence recall in the model. (A) Sequential activity of units initiated by the cue. (B) The time course of
the adaptation current for each unit. (C) The total current s (note that this quantity crossing the value of wnexto depicted here with a
dotted line) marks the transition point from one pattern to the next. (D) The connectivity matrix where we have included pointers to
the most important quantities wself for the self-excitatory weight, wnext for the inhibitory connection to the next element, wrest for
the largest connection in the column after wnext and wprev for the connection to the last pattern that was active in the sequence.

Tper = τa log

(
1

1 −B

)
+ τa log

(
1

1 − τs
τa

)
(4)

B =
wself − wnext + βself − βnext

ga
(5)

=
∆wnext + ∆βnext

ga

The parameter B in Eq. 5 condenses information regarding the connectivity w, bias terms β, and adaptation strength
ga. From Eq. 4 we can infer that Tper is defined only for 0 < B < 1. This sets the conditions for how the weights,
bias and external input interact with the adaptation parameters in order for the sequence to be learned and recalled.
The straightforward interpretation for B < 1 is that the adaptation has to be strong enough to overcome the effects
of the other currents, while B > 0 sets the connectivity conditions for sequence recall to occur (wself > wnext). As
illustrated in Fig. 3A Tper is small for B ≈ 0 and diverges to infinity as B ≈ 1. This facilitates the interpretation of B
as a unitless parameter whose natural interpretation is the inverse of transition speed, as shown in the examples provided
in Fig. 3B-C.

Controlling the individual persistence times of different patterns (the temporal structure) through short-term dynamics
has been discussed previously in the literature (Veliz-Cuba et al., 2015). In our network the temporal structure of the
sequence is also controlled by the adaptation dynamics. We illustrate this in Fig. 3D where by choosing specific values
for the adaptation gain, ga, precise control of the Tper is achieved for every attractor.

For illustration purposes the formula in 4 is given for the case of orthogonal patterns and one hypercolumn. In the
general case with more than one hypercolumn it is possible that not all transitions in a pattern (in different hypercolumns)
occur at the same time. Moreover, as we recall sequences with non-repeating elements the adaptation effects are not
specified. A full treatment that handles both the modular effects of non-overlapping elements and adaptation effects is
given in Appendix A.
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Figure 3: Systematic study of persistence time Tper . (A) Tper dependence of B. The blue solid line represents the theoretical
prediction described in Eq. 4 and the orange bullets are the result of simulations. Inset depicts what happens close to B = 0 where
we can see that the lower limit is the time constant of the units τs. (B) An example of sequence recall where Tper = 100ms. This
example corresponds to configuration marked the black star in (A). (C) example of sequence recall with Tper = 500 ms. This
example corresponds to the configuration marked with a black triangle in (A). (D) Recall of a sequence with variable temporal
structure (varying Tper . The values of Tper are 500, 200, 1200, 100, and 400 ms respectively.

2.3 Learning

So far we have shown that our model can support sequence recall and control of the temporal structure through the
adaptation dynamics. We now show that if the network is subject to the right spatio-temporal input structure then
associative Hebbian learning is sufficient to induce the learning of the asymmetric connectivity structure characteristic
of sequence recall (Amit, 1992). Based on previous work (Tully et al., 2016) we use the the BCPNN learning rule in its
incremental on-line version (Sandberg et al., 2002) with learning mediated through asymmetric synaptic time traces.
The version of the BCPNN learning rule presented is an adaptation of the discrete learning rule presented in (Lansner
and Ekeberg, 1989) to a continuous setting.

τzpre
dzi
dt

= oi − zi τzpost
dzj
dt

= oj − zj (6)

τp
dpi
dt

= zi − pi τp
dpij
dt

= zizj − pij τp
dpj
dt

= zj − pj (7)

wij = log

(
pij
pipj

)
βj = log(pj) (8)

In the spirit of associative learning the BCPNN rule sets positive weights of recurrent connections between units
that statistically tend to co-activate and creates inhibitory connections (negative weights) between those that do not.
This is reflected in Eq. 8, where the connections are determined with a logarithmic ratio between the probability of
co-activation (pij) and the product of the activation probabilities (pi and pj). Note that if the events are independent
the weight between them is zero (pij = pipj). Nevertheless, basic associative learning can only bind units that are
active simultaneously. In order to bind units that are not simultaneously active in time we need an extra mechanism
of temporal integration (Amit, 1992). To overcome this we combine the BCPNN learning rule with the introduction
of the z-traces in order to create temporal associations between units that are contiguous in time (Tully et al., 2014).
The z-traces, defined in Eq. 6, which can be thought of as synaptic traces, are a low-passed filtered version of the unit
activations o and dynamically track the activation as shown in the top of Fig. 4B. To approximate the probabilities of
activation (pi and pj) and co-activation (pij) the z-traces are accumulated over time in agreement with Eq. 7 which
implements an on-line version of the exponentially weighted moving average (EWMA). As illustrated in Fig. 4A,
asymmetry in the connectivity matrix arises from having two z-traces, a pre-synaptic trace with a slow time constant
τzpre and a fast post-synaptic trace with a fast time constant τzpost (Tully et al., 2016). In short, the z-traces work as
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a temporal proxy for unit activation that allow us to use the probabilistic framework of the BCPNN rule to learn the
sequential structure of the input.

Figure 4: Sequence learning paradigm. (A) Relationship between the connectivity matrix w and the z-traces. The weight wij from
unit i to unit j is determined by the probability of co-activation of those units which in turn is proportional to the overlap between the
z-traces (show in dark red). The symmetric connection wij is calculated through the same process but with the traces flipped (here
shown in dark blue). Note that the asymmetry of the weights is a direct consequence of the asymmetry of the z-traces. (B) Schematic
of the training protocol. In the top we show how the activation of the patterns (in gray) induces the z-traces. In the bottom we show
the structure of the training protocol where the pulse time Tp and the inter-pulse interval IPI are shown for further reference. (C) We
trained a network with only five minicolums for illustration. The first three epochs (50 in total) of the training protocol are shown for
reference. The values of the parameters during training were set to Tp = 100ms, IPI = 0ms, τzpre = 50ms and τzpost = 5ms.
(D) The matrix at the end of the training (after 50 epochs). (E) Evolution of the probability values during the first three epochs of
training. The probability values of the pre, post and joint probability evolve with every presentation. Note that the same color code is
used in images C, E and F. (F) Long-term evolution of the probabilities with respect to the number of epochs. The values of the
probability traces eventually reach a steady state. (G) Short-term evolution of the weight matrix at the points marked in the first
epoch in C. Note that the colors are subjected to the same colorbar reference as in D.

The training protocol shown in Fig. 4B is driven by the temporal nature of the input and can be characterized by two
quantities: the time that the network is exposed to a pattern (this is implemented by units being clamped through I in Eq.
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1) called the pulse time, Tp, and the time between the presentation of two patterns referred as the inter-pulse-interval
(IPI). In the following we use a homogeneous training protocol where the values of the pulse time,Tp, and the inter
pulse interval, IPI, are the same for every pattern in the sequence.

The networks weights were learned using a training protocol where the patterns were presented sequentially for a
number of epochs (50 epochs in the example illustrated in Fig. 4C-G). With every presentation of the stimuli the
probability traces p absorb information (see Fig. 4E) slowly evolving to their steady state value (Fig. 4F). While the
steady state weight matrix that results from training reveals asymmetric connectivity (Fig. 4D) the sequential structure
of the input is learned as early as during the first epoch as can be observed in Fig. 4G. This demonstrates that the
sequential structure of the input has been successfully learned by the BCPNN rule with the help of the z-traces.

We characterized the relationship between the connectivity matrix (wself , wnext and wprev) and the training protocol
parameters (the pulse time TP , the inter-pulse-interval IPI and the two time constants of the synaptic traces τzpre and
τzpost). We summarize our findings and its relationship to the persistence time Tper in Fig 5. Longer pulse times Tp
lead first to an increase in the value of wself followed by its stabilization thereafter and to a decrease in the value of
wnext (Fig. 5A). This can be explained by the fact that while the ratio between self co-activation and the total training
time remains more or less constant (stabilizing wself ) the co-activation between units becomes a smaller portion of
the whole training protocol effectively reducing the estimating of pij (making wnext smaller). In consequence the
rate of Tper growth becomes constant with longer pulse times Tp giving a logarithmic encoding of time (Fig. 5D). In
contrast, longer inter-pulse-intervals lead to monotonic increments and decrements in wself and wnext respectively
(Fig. 5B). The reason for this is that a longer inter pulse intervals bring about an overall longer training protocol and
after the co-activation of the units cease pipi decreases further than pii leading to a larger wself . wnext, in the other
hand, is rendered smaller by longer inter-pulse-intervals as a consequence of the unit’s activations begin further apart in
time. It follows that Tper increases faster with larger IPIs as both wself and wnext separate farther and farther with
growing inter pulse intervals (Fig. 5E). The effect of the z-filters time constant τz in the weights can be described as
diminishing the difference between wself and wnext (5C). The results can be explained by interpreting the effect of
increasing τzpre as spreading more and more the activation in time rendering the co-activations less meaningful overall
(co-activation probability drops). This results in a diminishing value of Tper as the difference between weights ∆wnext
drops with larger values of τzpre (Fig. 5F). Note here that the point at which τzpre becomes larger than τzpost (marked
with a dashed red line) coincides with wnext becoming larger than wback as we should expect. The reasoning for wpre
is analogous to that of wnext with the only difference in synaptic time constant (τzpost instead of τzpre ).

We have shown so far that the temporal structure of the input determines the temporal structure of the recall (Fig5D-F).
We now show that the inter-pulse-interval, IPI, can change the recall phase from a sequence regime where the patterns
are tied in time (Fig. 6A) to a free attractor regime, where the patterns are learned independently (Fig. 6B). In general,
to bridge a longer inter-pulse-interval, a longer τzpre is required as illustrated in Fig 6C. The idea is that τzpre provides
a temporal window of integration that links the patterns in time and the larger the window is, the longer are the
inter-pulse-intervals that it can bridge.

2.4 Noise

We also tested whether sequence recall in the network was robust to noise by controlling the level of noise with the
parameter σ in Eq. 1. Additive noise manifest itself in stochastic trajectories where pattern to pattern transitions happens
earlier (Fig. 7A). This phenomenon is illustrated clearly with the red and purple lines in Fig 7A where compared to their
deterministic counterparts (solid lines) the noisy trajectories (thin lines) make the transition as soon as the variations
in s drive them under the transition point (wnext o). Therefore, the persistence time in a network operating in a noisy
regime will be a stochastic variable (denoted Tper,σ) whose mean will be lower than the persistence time Tper present in
the deterministic regime. The mean value of Tper,σ decays systematically with increasing sigma and quickly converges
to a common value independent of the value of Tper for the deterministic regime set by controlling ga (Fig. 7B). To
examine whether a sequence with lower values of Tper is less likely to be recalled correctly under the influence of noise
we cued the sequence 1000 times for every value of σ and constructed the success rate vs noise profile shown in Fig.
7C where we observe that the success rate is identical for different values of Tper. We conclude that Tper has no effect
in how sensitive the recall process is to noise thus facilitating the study of the effect of noise in the system by enabling
us to control Tper.

Next we systematically characterized the sensitivity of the network to noise as a function of the training parameters
by calculating σ50 (see Methods). We illustrate the nature of σ50 in Fig. 8A, please note that a larger σ50 implies a
system which is less sensitive to noise and vice versa. Calculating σ50 for different values of Tp we conclude that the
network becomes less sensitive to noise with longer values of Tp as shown in 8B. This can be explained by the fact that
training with longer pulses increases the distances between the weights (and therefore the distance between the currents)
as previously shown in Fig. 5A. We can see the same effect by increasing the inter pulse interval in Fig. 8C where
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Figure 5: Characterization of the connectivity weights wself , wnext and wprev . We also show the effects of training in the
persistence time Tper of the attractors. The equation on the inset in D relates Tper to ∆wnext = wself − wnext which we show
as dashed red lines in each of the top figures (note that here ∆β = 0 as we trained with an homogeneous protocol). When the
parameters themselves are not subjected to variation their values are: Tp = 100ms, IPI = 0ms, τzpre = 25ms, τzpost = 20ms
for all the units. (A-C) Show how the weights depend on the training parameters Tp, inter pulse interval and τzpre , respectively,
whereas (D-E) illustrate the same effects on Tper . Here we are providing the steady state values of w obtained after 100 epochs of
training.

the separation of weights produced by longer inter pulse intervals leads to a similar outcome. The opposite effect is
observed with longer values of τzpre where the system becomes more sensitive with longer values of τzpre as shown in
8D. We can appeal again to the structure of the weights in Fig. 5C to explain these results as an outcome of the weights
and therefore the current being less differentiated among themselves leading to failures in sequence recall.

We also report two relevant noise effects not related to the connectivity. First, we show in Fig. 8E that the network
becomes more sensitive to noise for longer sequences. This can be explained by considering each pattern-to-pattern
transition as a possible point of failure. Naturally, adding more links to the chain makes the recall of the sequence
more likely to fail at some point (i.e. not recall all patterns in the right order). Finally, in Fig 8F we observe a scaling
effect in how robust the network is with the number of hypercolumns. This can be explained using the fact a network
with more hypercolumns posses a higher degree of recurrent connectivity. Every time there is a mis-transition in any
of the units the recurrent connectivity channels the currents of the units where the transition occurred correctly as an
error correction mechanism assuring the successful completion of the sequence more often than not. In a more abstract
language the more hypercolumns the network possess, the less likely it is for enough transitions to occur such that the
network state is pushed out of the basin of attraction of the next pattern. Therefore, the more hypercolumns the network
possess, the more robust it is to noise and hence the observed scaling.

2.5 Overlapping representations and sequences

Previous work with attractor models has shown that it is possible to store attractor states with overlapping representations
(i.e. patterns that shared a unit activation in some hypercolumns) (Meli and Lansner, 2013; Sandberg et al., 2002).
We test here whether our network is able to store and recall overlapping patterns successfully when they belong to
sequences and are recalled as such. This is desirable to increase the storage capacity of our network and to enrich the
combinatorial representations that our network can process.
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Figure 6: Transition from the sequence regime to the free attractor regime. (A) An example of a sequential (ordered) activation of
patterns. (B) An example of an unordered chain of activations of patterns in the free attractor regime. (C) The two regimes (sequential
in blue and free attractors in red) in the relevant parameter space spammed by τzpre and inter pulse interval. The examples in (A)
and (B) correspond to the black dot and the star, respectively.

Our aim is to characterize the capabilities of our network to store and successfully recall sequences containing patterns
with some degree of overlap. As sequences can contain more than a pair of overlapped patterns we propose the following
two parameters as a framework to systematically parameterize the problem: 1) the first parameter quantifies the level of
overlap between the representation of two patterns and is therefore a spatial measure of overlap, we call this parameter
representation overlap. 2) the second parameter is a temporal metric of overlap and quantifies how many patterns
between two sequences possess some degree of representational overlap; we call this parameter sequential overlap.
A schematic illustration of the general idea is presented in Fig. 9A1, where the two parameters, the representational
overlap and the sequential overlap, are shown in black and grey, respectively. To be more precise, the representational
overlap between two patterns is defined as the proportion / ratio of hypercolumns that share units between the two
patterns. We define the sequential overlap between two sequences as the number of patterns in the sequences that
possess some degree of overlap (e.g. in Fig. 9A1 the sequential overlap is 4). In order to illustrate these concepts
we present a detailed example in Fig. 9B. The example consists of two six-pattern sequences (i.e. of length six)
whose patterns are distributed over three hypercolumns (for example, the first pattern P1a of sequence a consists in the
activation of the unit 10 in each of the three hypercolumns). The two sequences have two pairs of patterns that have
some degree of overlap (pairs P3a −P3b and P4a −P4b) and therefore the two sequences have a sequential overlap of 2
as indicated by the gray area in Fig 9B. If we look at patterns P3a = (12, 3, 3) and P3b = (3, 3, 3) we can observe that
they have the same unit activation in the last two hypercolumns (hypercolumns 2 and 3) and therefore the pair has a
representational overlap of 2

3 . The units in the hypercolumns responsible for the representational overlap between the
pair are highlighted in black in Fig. 9B. Note that the representational overlap is a parameter between 0 and 1, whereas
the sequential overlap is an unbounded parameter as sequences can be arbitrarily long.

The limit case when representational overlap is equal to 1 is the domain of sequence disambiguation. We show a
schematic of the disambiguation problem in Fig. 9A2 where a representational overlap of 1 can be interpreted as the
equivalence of both patterns in the sequential overlap section. In this regime the sequential overlap corresponds to the
size of the disambiguation window that the network has to bridge to correctly disambiguate the sequence (i.e. ending in
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Figure 7: Effects of noise reflected in current trajectories and persistence times. (A) An example of current trajectories subjected to
noise. The solid lines indicate the deterministic trajectories the system would follow in the zero noise case. In dotted, jagged and
dashed lines we depict the currents induce wself , wnext and wrest for reference. (B) Change in the average of the actual value of
Tper for different levels on noise. We Shaded the area between the 25th and the 75th percentile to convey and idea of the distribution
for every value of σ (C) Success rate vs noise profile dependence on Tper . We ran 1000 simulations of recall and present the ratio of
successful recalls as a function of σ. Confidence intervals from the binomial distribution are too small to be seen.
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Figure 8: Sensitivity of network performance to noise for different parameters. The base reference values of the parameters of
interest are: Tp = 100ms, IPI = 0ms, τzpre = 25ms, τzpost = 15ms, sequence length = 5, #hypercolumns = 1. (A) Two
examples of the success vs noise profiles (Tp= 50 ms, 200 ms). The value of σ50 is indicated in the abscissa for clarity, note that
smaller σ50 implies a network that is more sensitive to noise (the success rate decays faster). (B) σ50 variation with respect to TP .
We also indicate the σ50 for the values of Tp used in (A) with stars of corresponding colors.(C) σ50 variation with respect to the
inter pulse intervals. (D) σ50 variation with respect to the value of τzpre . (E) σ50 variation with respect to sequence length. (F) σ50

variation with respect to the number of hypercolumns.
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P8a if you started in P1a in Fig 9A2). Solving sequence disambiguation in the most strict sense requires the network
to be able to store the contextual information required to solve correctly the bifurcation at the end of the overlapping
section. That is, the network requires to hold the information of what pattern was activated before the disambiguation
window for as long as the time it takes for the sequential dynamics to reach forking point.

Figure 9: Overlapping representations and sequences. (A1) Schematic of the parameterization framework. Black and gray stand
for the representational overlap and the sequential overlap respectively (see text for details) (A2) Schematic of the sequence
disambiguation problem. (B) An example of two sequences with overlap. Here each row is a hypercolumn and each column a
pattern (patterns P1x, P2x , P3x, P4x, P5x, and P6x). The single entries represent the particular unit that was activated for that
hypercolumn and pattern. (C) The superposition of the recall phase for the sequences in (B). Each sequence recall is highlighted by
its corresponding color. We can appreciate inside the gray area that the second and third hypercolumns (sequential overlap of 2) have
the same units activated (depicted in black). This reflects the fact those patterns have a representational overlap of 2

3
(two out of three

hypercolumns).

In general we should expect that sequences with higher representational and sequential overlaps would be harder to
process for the network. To characterize these difficulties systematically we tested for correct sequence recall for
sequences in the zero noise condition for all the possible combinations of representation overlap as well as sequential
overlap that the network allowed. As can be see in Fig. 10A the network can successfully recall overlapping sequences
over a wide range of sequential and representational overlaps. The exception to this is the disambiguation regime in top
of Fig 10A where we see a failure to recall both sequences when overlapped patterns are identical. Next we studied
the recall of sequences with overlapping patterns in the presence of noise. First, we examined the dependence of the
success rate on the noise level for a wide array of sequential and representational overlaps (1, 2, 3 and 4 in Fig. 10A).
The results, as shown by the curves in Fig 10B, illustrate that the success rate vs noise profiles are very similar despite
different degrees of sequential and representational overlap. Second, for a fix value of representational overlap (0.5), we
calculated σ50 for all the possible values of sequential overlap (green horizontal line in Fig. 10A). We also calculated
the values of σ50 for a fix value of sequential overlap (5) and all the possible values of representational overlap (blue
vertical line in Fig. 10A). The results (Fig. 10C,D) show that the network is robust to noise across the spectrum of
possible overlaps except when we get close to the sequence disambiguation regime (right part of Fig 10D), where
the network becomes more sensitive. Those results together suggests that our neural network can consistently recall
sequences correctly over a broad set of overlap conditions.

In the disambiguation regime with no noise (gray line in Fig. 10A) the network is able to solve the disambiguation
problem successfully up to disambiguation windows of size 8. The disambiguation capabilities of the network are due
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to memory effects on the dynamics (here capacitance effects mediated by τs). In fact, we show in Fig. 10E that the
longer the persistence times (and therefore the more time for the memory to fade) the smaller is the disambiguation
window that the system can resolve. Contrary to the results above the network is brittle in the sequence disambiguation
regime. In particular, the success rate decays extremely fast in the presence of noise as show in Fig 10F. However,
an interesting resonance phenomena occurs for low sequential overlaps (blue curve) where the success rate actually
increases with noise. This can be explained with the fact that the noise effectively reduces the mean persistence time
Tper,σ (as shown before in Fig. 7B) which leads to the increased disambiguation power (c.f. 9E).

Figure 10: Sequence recall performance for different overlap conditions. The base line values of the parameters of interest are
Tp = 100ms, ∆Tp = 0ms, τzpre = 25ms, τzpost = 5ms sequence length = 10, # hypercolumns= 10 and Tper = 50ms. (A)
Success rate for pairs of two sequences with different sequential and representation overlaps. We show here the performance over the
parameter space. Success here is determined by correct recall of both sequences. (B) Success rate vs noise level for the sequences
with configurations marked as 1, 2, 3, 4 in A. The values of σ50 are marked as an illustrations for the calculations below. (C) σ50

as a function of the sequential overlap. The values of σ50 are calculated over the sequences with configurations given in the green
horizontal line in A. (D) σ50 as a function of the representation overlap. The values of σ50 are calculated over the sequences with
configurations given in the blue vertical line in A. (E) max disambiguation as a function of Tper . The network loses disambiguation
power with long lasting attractors as the memory of the earlier pattern activation reflected in the currents fades. (F) Success rate vs
noise profile in the disambiguation regime. The three curves correspond to overlapping sequence configurations marked with x,y,
and z in A. Shaded areas correspond to 95% confidence intervals.

3 Discussion

We have evaluated a Hebbian-like BCPNN learning rule with asymmetrical temporal synaptic traces as a sufficient
principle underlying robust sequence learning in an attractor neural network model. The results have revealed the
potential of the network to successfully encode and reliably recall multiple overlapping sequential representations even
in the presence of noise. In this context, we have systematically studied the effect of network modularity as well as the
role of key temporal parameters of the synaptic learning rule. We have also stressed that our network has the capability
to control the temporal structure of the sequential pattern recall by means of an intrinsic adaptation mechanism.

3.1 Previous work and biological context

Here we have followed the modelling philosophy aimed at distilling the architecture of the network to its essential
characteristics that support and control the phenomenon of interest (sequence learning). In the previous models of
particular relevance to our work, complex spike based dynamics and rich biological detail were promoted to provide
insights into the biophysical underpinnings of sequence learning in the cortex (Tully et al., 2016) and as a model of
memory consolidation (Fiebig and Lansner, 2017). While the aforementioned contributions provide a more direct
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mapping between biology and the network, our approach, which reduces the network to its essential characteristics,
necessarily dilutes that mapping. Nevertheless, some key design principles emerging from biology are preserved. Below
we discuss in more detail the main aspects of the relationship between the dynamical as well as structural properties in
our network and the biological substrate that inspired them in the first place.

A general characteristic of cortical circuits is competition (Douglas and Martin, 2004). Competition is modelled in our
network locally with a WTA mechanism but our results do not change qualitatively if a weaker soft-max mechanism
is implemented instead (data not shown). Besides, Douglas and Martin (2004) suggested that such a competition
mechanism could be implemented by basket or chandelier cells. In Tully et al. (2016) this computational principle was
implemented by means of fast inhibitory basket cells with fixed connectivity and produced the same outcome. It is
important to point out that the idea of using diverse forms of local competition to achieve pattern selection in sequence
recall has been examined previously and extensively in the sequence learning literature (Mostafa and Indiveri, 2014;
Murray et al., 2017; Byrnes et al., 2011).

Asymmetrical temporal traces have been proven successful to achieve the effect of sequence learning (Herz et al., 1989;
Coolen and Gielen, 1988; Abbott and Blum, 1996; Lawrence et al., 2006; Veliz-Cuba et al., 2015; Pereira and Brunel,
2018). In our model we have utilized the temporal asymmetric z-traces as the basis of probabilistic learning with the
BCPNN learning rule. The degree of asymmetry of the z-traces and its effects on the connectivity matrix have been
studied through variations in τzpre (Fig. 5C). In this framework lower values of τzpre would correspond to fast AMPA
dynamics (Holthoff et al., 2010) while longer values of τzpre would correspond in turn to slower NMDA dynamics
(Paoletti et al., 2013). Consistently with these observations, throughout this work we have restricted the values of τzpre
to the 5 − 150ms range. A biological account of the z-traces and their connection to the biochemical cascades that
underlie synaptic learning have been presented in a more detailed way by Tully et al. (2014).

It is important to point out that synaptic connections learned in our network with the BCPNN learning rule violate
Dale’s law, i.e. projections emanating from the same unit can mediate both excitatory and inhibitory effects on the target
units. To address this issue, we propose a different interpretation for positive and negative synaptic weights. In the
former, they can be straightforwardly interpreted as the conductance between two units, whereas in the latter case we
interpret them as a disynaptic connection through an inhibitory interneuron. The argument for the biological plausibility
of this arrangement using double bouquet cells as the inhibitory interneurons in this architecture is developed furhter by
Chrysanthidis et al. (2018).

3.2 Control of the temporal structure of the sequence

We have shown that the persistence time, Tper, of our attractors can be quite effectively controlled through the use of
the adaptation gain ga and less effectively by means of the adaptation time constant τa (see Fig. 3 and Eq. 4). The range
of Tper values for the attractor patterns in our network model is within the 10ms and 3.5 s range. This in turn means
that the duration of our sequences corresponds to the milliseconds to minutes interval (considering sequential lengths
of 10 to 100). This range of values is consistent with the variation in sequence duration that Bhalla (2017) found for
biological sequences in the hippocampus. While the mechanisms for temporal phenomena under the millisecond scale
(inter-aural-scale, Carr and Konishi (1990)) and over the minute scale (circadian rhythms, Golombek et al. (2014)) are
already well understood, the nature and origin of temporal phenomena at the intermediate time scales is still a matter of
debate (Paton and Buonomano, 2018). We believe our work contributes to this debate by offering an intrinsic model of
time (Ivry and Schlerf, 2008) capable of both, using the taxonomy of Paton and Buonomano (2018), the production and
reproduction of temporal patterns within the discussed range.

In the work of Murray et al. (2017) the control of the temporal structure (control of Tper) is accomplished by means of
input from an external network. Although the ability of our network to control the temporal structure rests on internal
mechanisms, we could also exploit external input for this purpose. By adding external input to our differential equation
during recall and solving the resulting expression (see Appendix A) we obtain an expression for our parameter B in the
following form B = (∆wnext + ∆βnext + ∆I(t))(ga)−1 where ∆I(t) = Iself (t) − Inext(t) is the differential input
between the consecutive units in the sequence. By controlling this differential input, the persistence time of attractor
states in a given sequence can be modulated. This could be used to build a framework where a generalist network learns
the sequential structure of the input and a specialized control network adjusts the temporal structure of the sequence
recall suitable for the task at hand.

3.3 Sequence Disambiguation and overlapping representations

Sequence disambiguation or using past context to determine the trajectory of a sequence has been deemed one of the
most important problems that a sequence prediction network should solve (Levy, 1996). While some networks (Sussillo
and Abbott, 2009; Rajan et al., 2016; Wang et al., 2017) have addressed the problem in their generality, their reliance on
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supervised learning and lack of biological plausibility remain a matter of concern. There have been a few attempts
at the problem of sequence disambiguation in the attractor network framework but most of them rely on non-local
learning rules or require an infeasibly large number of parameters (Fukushima, 1973; Guyon et al., 1988; Amit, 1992).
Minai et al. (1994) proposed an alternative approach using the activity in a random network (what now is called a
reservoir) as a source of context information for disambiguation. In their network, activity in the reservoir evolved in a
path-dependent way, and inter-network connectivity between the disambiguation network and the reservoir conveyed the
necessary information from the latter to the former thus allowing for successful disambiguation. While effective, such
networks require another complete layer to keep a dynamical memory, an approach judged to be inefficient. To address
this issue, context codes with less overhead have been proposed where, instead of a network, the state of a unit or a
collection of units is determined by the dynamical history of the system and that state is then used for disambiguation
(Sohal and Hasselmo, 1998; Samura et al., 2008). In our network, disambiguation can be achieved by building cell
assemblies containing a subset of units that are preferentially connected to the subsequent assembly in the sequence. By
preferential connectivity we mean that those units posses strong excitatory connections to the units of the subsequent
pattern and strong inhibitory connections to the rest. To put it more concretely, the BCPNN learning rule, following its
probabilistic nature, will ensure that the non-overlapping parts in a sequence are connected in such fashion by creating
excitatory units between the units in the non-overlapping parts and the subsequent units in the sequence (as they are
the only ones that actually appeared together) and strong inhibitory connections between the non-overlapping units
and all the units belonging to any other pattern (as they never appeared together). In virtue of the aforementioned
connectivity, activation of the units in the non-overlapping part of the assembly (context units) guarantees a transition to
the subsequent (correct) pattern. As shown in Fig. 10D, the proposed mechanism is very robust to the size of the cell
assembly that gets connected preferentially (the non-overlapping part); degradation of the performance under noise
only becomes evident when the size of the context code becomes less than 20% of the cell assembly. This is consistent
with some experimental evidence of neurons in the hippocampus that fire in such a trajectory dependent fashion (Lipton
et al., 2007).

Even in the absence of context units, i.e. with fully overlapping (the same) assemblies in competing sequences,
our network can still solve a disambiguation task for sequences sharing two consecutive states in their trajectories
(see the resonance phenomena in Fig.10F). While this phenomena allows the network to statistically solve sequence
disambiguation for disambiguation windows of size 2, it does not generalize for longer sequential overlaps. One way
to handle the problem in a more robust, consistent and transparent fashion is to use a mechanism that preserves the
network’s dynamical history in a dynamical variable. In our future work we intend to add such mechanism to the
network in the form of currents dependent on the z-traces that facilitate the longer maintenance of the information about
past activations and thus support the disambiguation of sequences with more challenging overlaps.

3.4 Learning rule stability, competition and homeostasis

The stability of the learning dynamics of a firing rate network subject to associative learning tends to be accomplished
by introducing weight dependent terms into weight updates (Van Rossum et al., 2000). This constrain is usually
motivated and biologically interpreted as a homeostatic mechanism. Sequence learning models are not exempt from this
necessity. One of the simpler approaches amounts to combining STDP with hetero-synaptic plasticity (Fiete et al., 2010).
However, it is not straightforward how these two forces should be balanced. There are a plethora of models that rely on
weight clipping with arbitrarily handpicked upper and lower limits (Mostafa and Indiveri, 2014; Veliz-Cuba et al., 2015;
Murray et al., 2017). While this approach is analytically transparent, fine tuning between potentiation and depression
is usually required. In a similar vein, Byrnes et al. (2011) introduced a combination of subtractive and multiplicative
normalization as a mechanism of weight stabilization, which also has to be arbitrarily tuned. Verduzco-Flores et al.
(2012) proposed a more complex approach that combines hetero-synaptic competition with a mechanism that limits
both the total value of the weights and the total incoming current to a unit in order to achieve stability Pereira and
Brunel (2018), on the other hand, resorted to a combination of synaptic normalization and multiplicative homoeostasis
to avoid runaway excitation. While these two learning rules are able to prevent runaway instabilities and have varying
degrees of biological plausibility, the number of parameters involved, and the complexity of the model are excessively
high. As opposed to this complexity, the probabilistic nature of our BCPNN learning rule automatically accounts for
weight competition during learning leading the network to a stable regime of sequential or attractor dynamics without
requiring extra parameters or balancing different forces (as discussed more thoroughly by Tully et al. (2014)).

3.5 Limitations and further work

Although multiple studies of the cortical micro-circuitry have revealed distance dependent connectivity profiles (Xu
et al., 2016; Jiang et al., 2015), we have ignored this design principle in our model. Previous spiking implementations
of this model architecture have included to some degree both distance dependent effects in connectivity and distance
dependent delays (Lundqvist et al., 2006; Tully et al., 2016; Fiebig and Lansner, 2017), which had impact on the
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network’s temporal dynamics. In our non-spiking network model the expected implications of such spatio-temporal
diversity would be prolonged (temporally spread) attractor reactivation and transition processes. Still there should be no
qualitative functional changes in the network’s behaviour as the key mechanisms would not be compromised (although
see Spreizer et al. (2018) for a sequence production mechanism that arises itself from asymmetries in the spatial profile
of connectivity). Due to the mesoscale nature of our model and interest in network phenomena, we obviously do not
account for any dendritic related phenomena in sequence processing such as as the capacity of single neurons to work
as sequence recognition devices through spatial effects (Branco et al., 2010) and the use of distal dendritic inputs to
prime sequential activations (Hawkins and Ahmad, 2016).

In the presented work there are some phenomena that we have not systematically characterized in their generality. For
example, in most simulations we exploited temporally homogeneous training protocols. To test the performance of
our network under the conditions of varying pulse time, Tp, and inter-pulse-interval, ∆Tp, across patterns, we have
ran preliminary tests and obtained promising results (data not shown). We intend to conduct a more comprehensive
characterization of the network’s behaviour subject to highly variable training protocols (temporal pattern heterogeneity)
in our future work.

4 Methods

4.1 Training and recall protocol

For our training protocol we created a time series s(t) to represent the input. s(t) encodes the information about the
pulse time Tp and the inter-pulse interval IPI (Fig. 4B). We then performed off-line batch learning of the parameters
using the integral formulation of the dynamic equations presented above (Eq. 6-7).

To avoid the ill-defined case for p = 0 we set the lower bound of ε = 10−7 for the argument of the logarithm. That is,
if the value of p is less than ε we equate it to ε.

For training the two sequences with the overlapping representations we created the sequences in succession but separated
among them by 1s. This ensured that the sequences in the training protocol were uncoupled from each other.

We say that pattern is active if the corresponding units are active for longer than τs (the smallest time constant in the
system). The sequence is considered to be correctly recalled if by activating the first pattern all the others patterns in the
sequence are subsequently activated in that given order. Given that for many possible tasks it suffices that the network
state ends in the correct pattern or that only a part of the sequence is recalled correctly our success criteria is rather
conservative.

4.2 Control and estimation of persistence time

In order to estimate the persistent time for a pattern P during recall we calculated the difference between the time t1 at
which pattern P was activated and the time at which the next pattern was activated t2. Tper = t2 − t1.

As shown in Eq. 4, Tper time depends on both the weight and bias differences, ∆wnext = wself − wnext and
∆β = βself − βnext respectively and the adaptation gain ga. This offers flexibility in controlling the duration of

patterns activations by adjusting the adaptation gain ga as follows: ga = (∆wnext + ∆β)(1 − τs
τa

)(1 − τs
τa

− e
Tper
τa )−1.

We use this adjustment to control Tper during recall in order to decouple the effects of training from the recall process.

4.3 Noise

Noise was included in our simulations as additive white noise with variance σ2
in in the differential equation for the s

variable . The current s, however, behaves almost as an Ornstein–Uhlenbeck (OU) process and therefore its standard
deviation is given by σ2

out = τs
2 σ

2
in. Based on this fact we characterized the effects of noise with the size of σout instead

of σin The rational behind this choice is that σout will be closer to the standard deviation of the variable s in Eq. 1
and therefore comparable in magnitude to the value of currents in the network. It is important to say that thanks to
the separation of times scales (τs � τa) the dynamics of s behaves mostly as an OU process and it is only the WTA
dynamics around the transition points that induces deviations.

The incorporation of noise to the network makes the trajectories and, thereby, the recall process stochastic. To quantify
the recall performance under noise (probability of successful recall at a given level of noise) we averaged the number of
correct recalls in a given number of trials. The estimated probability of successful recall p̂ follows from a Bernoulli
process and we can therefore quantify the uncertainty of our estimates with the Wald method to provide 95% confidence

16

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2019. ; https://doi.org/10.1101/545871doi: bioRxiv preprint 

https://doi.org/10.1101/545871
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - FEBRUARY 16, 2019

intervals (Ntrials = 1000):

p̂± 1.96

√
p̂(1 − p̂)

Ntrials
(9)

In order to systematically characterize how different parameters of our training protocol affect the sensitivity of the
resulting network to noise, we estimated σ50 as the value of noise variance σ for which the probability of correctly
recalling a given sequence is 0.5. Finding such σ is an instance of the Stochastic Root Finding Problem (Pasupathy,
2010). To estimate this we used the naive bisection algorithm for deterministic functions by using the averages as
estimates of the actual values. We stopped the algorithm as soon as the success rate corresponding to our estimate of
σ50 was contained in the Wald confidence interval given in Eq. 9. We find that our method was consistently able to find
solutions to the root finding problem (see Fig. S 1 in the supplement).

To test for spread in the distribution of failure points we also calculated σ75 and σ25 (defined in an analogous manner to
σ50) for the parameters under consideration. We found agreement in trend with our analysis (data not shown).

5 Aknowledgments

We thank Arvind Kumar for reading a draft of this work and providing valuable comments.

Appendix

A Complete treatment of the persistence time.

To characterize the transition from patternm to pattern n (standing for Pm and Pn) in the units belonging to hypercolumn
i we calculate the difference in their respective currents smni(t) = smi(t) − smi(t). Where we have adopted the
convention that mi and ni give the index of the unit belonging to pattern m and n in the hypercolumn i respectively. To
obtain a solution for smpi(t) we solve the resulting differential equation with the method of undetermined coefficients.

sinf
mni =

1

H

H∑
j

∆wmjni + ∆βmpi + ∆Imni − ga

smni(t) = sinf
mni + ga

(
1 − ami(0) + ani(0)

1 − τs
τa

)
e−

t
τa

+

(
smni(0) − sinf

mni + ga

(
1 − ami(0) + ani(0)

1 − τs
τa

))
e−

t
τs (10)

Where ∆wmjni = wmjmi−wmj ,ni are the weights of the differential input coming to hypercolumn i from hypercolumn
j, ∆βmni = βmi − βni is the local (same hypercolumn) differential in intrinsic excitability and ∆Imni = Imi − Ini is
the differential external input to the units belonging to m and n in the hypercolumn i.

When pattern m becomes active the units that belong to it start experiencing intrinsic adaptation through the terms ami
and in consequence smi starts decreasing. It follows that the current smi will become smaller than sni at some point in
time and transition will occur. We denote such time as T permni to emphasize that we are talking about transition from
pattern m to n in hypercolumn i. Formally, this time can be found by setting smni , above equal to 0. If we disregard
the short-term fluctuations of the term e−

t
τs we obtain the following expression:

T permni = τa log

(
1 − ∆amni(0)

1 −Bmni

)
+ τa log

(
1

1 − τs
τa

)
(11)

Where Bmni =
1
H

∑H

j
∆wmjni+∆βmni+∆Imni

ga
and ∆amni(0) = ami(0) − ani(0). Note that the previous presence of

adaptation in the unit of pattern m, ami(0), decreases the persistence time and previous presence of adaptation in the
unit of pattern n, ani(0), has the opposite effect.
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In the case of multiple hypercolumns there is a value of Bmni for every hypercolumn i determining how fast the
transition happens at that hypercolumn. As a matter of fact the transition happens only if all the Bmni are less than 1.
The transition is fast for Bmni close to 0 and slow for Bmni equal to 1 (modified by memory effects of the adaptation).
These two effects combined will give the order in which the units of a pattern belonging to different hypercolumns
undergo transition. However, the exact timings at which the transitions happen are modified after the first transition
takes place; this is because the currents that the rest of the units of pattern n receive (the ones in the other hypercolumns)
are modified as well. In general this will have the effect of accelerating the transition of the other units belonging
pattern n. By taking this modifications into account we can derive conditions for the modification of Tper in the
remaining hypercolumns after a transition in hypercolumn k has happened (up to time differences in the order of τs due
to membrane capacitance effects):

T permnl
= τa log

(
1 − ∆amnl(T

per
mnk

)

1 −Bnewmnl

)
+ τa log

(
1

1 − τs
τa

)
(12)

Bnewmnl
= Boldmnl −

1

gaH

(
∆wmknl
repeated

+ ∆wnkml
back

)
(13)

∆anml(T
per
nmk

) = 1 − (1 − ∆anml(0))e−
T
per
nmk
τa (14)

The Bnewnml
term is now reduced by the lost self-excitatory current from unit mk, wmkml (we also subtract the lost of the

feed-forward current wmknl) This reduction is reflected in the subtraction of the term ∆wmknl = wmkml − wmknl .
The now activated unit nk induces a backward current: wnkml . Also there is a recurrent current helping to fix the ml

unit coming from hypercolumn k, wnknl . These contributions are reflected in the addition of the terms wnkml − wnknl
to the expression above which we write with a minus sign as: ∆wnkml = wnknl − wnkml . The overall effect of these
new currents (mainly coming from the backwards negative current wnkml ) is to reduce the value of Bnewmnl

with respect
to Boldmnl thus effectively hastening the transition. Moreover, as time passes, the adaptation current tends to become
larger in the units that are activated and smaller in the units that are not which also contributes to speed up the transition.
This effect is reflected in the quantity ∆amnl(t) becoming closer to 1. We can use this effect iteratively to calculate the
values of T permnl

for every hypercolumn using the formula above recursively.

To derive conditions for synchronous transition we notice that if the term inside the logarithm becomes less than 1 it
means that the quantity becomes negative implying instantaneous transition. This is accomplished when the following
condition is satisfied:

Bnewmnl
< ∆a(T permnk

) (15)

As long as there is a hypercolumn for which this value is satisfied the transition takes place there. This in turn, means
that the values of B have to be updated again (making them smaller) rendering a transition in the other hypercolumns
more likely. This creates a cascade effect where the latter transitions happen overwhelmingly faster than the first ones.

Please note that while this provides us with transition times for all the hypercolumns between two patterns, it does not
guarantee that the aforementioned transitions will be the ones that happen. It is still possible that other values of T permnl
are smaller and those are the transitions that in fact occur.

Supplementary figures
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Figure S 1: Calibration of σ50 estimation. (A) two success rate vs noise profiles for Tp = 50ms and Tp = 200ms. The values of
p50 are annotated for reference. (B-F) We show the values of p50 obtained after running the algorithm in Fig. 8. For every value we
see that the values of the found roots (p50, blue lines) was within confidence bounds (here blue shaded) of the expected value (0.5,
horizontal lien in gray).
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