

1 Symmetry transitions during gating of the TRPV2 ion channel in lipid membranes

2 Lejla Zubcevic¹, Allen L. Hsu², Mario J. Borgnia^{1,2}, Seok-Yong Lee¹

3 **Affiliations:**

4 ¹ Department of Biochemistry, Duke University School of Medicine, Durham, North
5 Carolina, 27710, USA.

6 ² Genome Integrity and Structural Biology Laboratory, National Institute of Environmental
7 Health Sciences, National Institutes of Health, Department of Health and Human Services,
8 Research Triangle Park, NC 27709, USA.

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 *Correspondence to:

24 S.-Y. Lee

25 email: seok-yong.lee@duke.edu

26 telephone: 919-684-1005

27

28

29 **Abstract**

30 The Transient Receptor Potential Vanilloid 2 (TRPV2) channel is a member of the
31 temperature-sensing thermoTRPV family. Recent advances in cryo-electronmicroscopy
32 (cryo-EM) and X-ray crystallography have provided many important insights into the gating
33 mechanisms of thermoTRPV channels. Interestingly, crystallographic studies of ligand-
34 dependent TRPV2 gating have shown that the TRPV2 channel adopts two-fold symmetric
35 arrangements during the gating cycle. However, it was unclear if crystal packing forces
36 played a role in stabilizing the two-fold symmetric arrangement of the channel. Here we
37 employ cryo-EM to elucidate the structure of full-length rabbit TRPV2 in complex with the
38 agonist resiniferatoxin (RTx) in nanodiscs and amphipol. We show that RTx induces two-
39 fold symmetric conformations of TRPV2 in both environments. However, the two-fold
40 symmetry is more pronounced in the native-like lipid environment of the nanodiscs. Our data
41 offers insights into a gating pathway in TRPV2 involving symmetry transitions.

42 Introduction

43 Transient Receptor Potential V (TRPV) channels are part of the larger TRP channel family
44 which play important roles in numerous physiological processes¹. A subset of TRPV
45 channels, including subtypes TRPV1-TRPV4, possess an intrinsic capability to sense heat
46 and are therefore referred to as thermoTRPV channels²⁻⁵. TRPV1-TRPV4 are non-selective
47 cation channels which play important physiological roles in sensing noxious heat⁶⁻⁹,
48 maintaining cardiac structure¹⁰ and maintaining skin¹¹⁻¹³, hair¹⁴⁻¹⁶ and bone physiology¹⁷. A
49 distinctive feature of TRPV1 and TRPV2 is their permeability to large organic cations¹⁸, such
50 as the cationic dye YO-PRO-1 and the sodium channel blocker QX-314. This feature has led
51 to proposals to utilize these channels as conduits for delivering small molecules to
52 intracellular targets¹⁹. TRPV1 and TRPV2 possess two activation gates, one at the selectivity
53 filter (termed the SF gate) and second one at the intracellular mouth of the pore (termed the
54 common gate)²⁰⁻²². Both gates must open widely to accommodate the passage of large
55 organic cations. However, the mechanism that enables such opening was long unclear. In
56 order to study the permeation of both metal and large organic cations in TRPV2, we recently
57 crystallized the rabbit resiniferatoxin (RTx)-sensitive²³ TRPV2 channel with a truncation in
58 the pore turret in the presence of the agonist RTx²⁴. This study led to the revelation that the
59 binding of RTx leads to a two-fold symmetric (C2) opening at the selectivity filter gate that is
60 wide enough to permeate YO-PRO-1. This unexpected result offered the first experimental
61 evidence that the homotetrameric TRPV2 can adopt C2 symmetric conformations during the
62 gating cycle. However, it was unclear if crystal contacts or the crystallization conditions (e.g.
63 high concentration of Ca²⁺) played a role in stabilizing the C2 symmetry. In addition, the
64 minimal TRPV2 construct used in the crystallographic study lacked the pore turret, a region
65 that is not essential for function^{20,21,24,25}, but had previously been shown to have a modulatory
66 effect on gating in TRPV1 and TRPV2^{26,27}. It was uncertain if the absence of this region in
67 our crystallographic study affected the symmetry of the channel.

68 In order to answer these questions and further study the role of two-fold symmetry in TRPV
69 channel gating, we conducted cryo-electronmicroscopy (cryo-EM) studies of the full-length,
70 RTx-sensitive rabbit TRPV2²³ channel reconstituted into nanodiscs and amphipol. We
71 present three structures of the TRPV2/RTx complex, one obtained in nanodiscs (TRPV2_{RTx-}
72 _{ND}) and three in amphipol (TRPV2_{RTx-APOL 1-3}) determined to 3.8 Å, 2.9 Å, 3.3 Å and 4.2 Å
73 resolution, respectively. Our data shows that binding of RTx induces C2 symmetric
74 conformations in TRPV2, but the degree of symmetry reduction depends on the environment
75 in which the channel is reconstituted. C2 symmetry is particularly pronounced in the dataset
76 collected from nanodisc-reconstituted TRPV2, which better approximates the physiological
77 environment of the channel. Moreover, the data offers further insights into the allosteric
78 coupling between the RTx binding site and the activation gates in TRPV2, confirms the
79 critical role of the S4-S5 linker π -helix (S4-S5 π -hinge) in ligand-dependent gating of TRPV2,
80 and provides a glimpse of the conformational landscape of TRPV2 gating.

81 **Results**

82 In order to capture the RTx-induced gating transitions in the rabbit TRPV2 channel, we
83 conducted cryo-EM studies of the TRPV2/RTx complex reconstituted into amphipol
84 (TRPV2_{RTx-APOL}) and nanodiscs (TRPV2_{RTx-ND}). Amphipols²⁸ have been a useful tool in
85 structural studies of membrane proteins, and especially TRP channels^{20,21,29-33}. Indeed,
86 Amphipol A8-35 enabled the very first structural determination of the TRPV2 channel²¹.
87 Nanodiscs, on the other hand, represent the closest *in vitro* approximation to the native lipid
88 membranes used in structural studies³⁴. The data was processed using Relion³⁵ (Methods),
89 with no symmetry imposed during classification and 3D reconstruction of the particles in
90 order to avoid obscuring any classes with lower symmetry (C1-C2) that might exist in the
91 sample. Symmetry was only imposed in the last step of the refinement and only if the 3D
92 reconstructions showed clear two-fold (C2) or four-fold (C4) symmetry (Figure Supplements
93 1-2). Classification of the TRPV2_{RTx-APOL} sample revealed the presence three different

94 conformations: one C4 symmetric and two distinct C2 symmetric classes refined to 2.9 Å, 3.3
95 Å and 4.2 Å, respectively (Figure 1, Figure Supplement 1). By contrast, 3D classification of
96 the TRPV2_{RTx-ND} converged on a single C2 symmetric conformation resolved to 3.8 Å
97 (Figure 1, Figure Supplement 2). All four maps were of sufficient quality to enable
98 placement of individual structural motifs with confidence (Figure Supplements 3-6) and the
99 models for all four structures were built to good overall geometry (Table 1).

100 **The transmembrane domains of TRPV2_{RTx-APOL} are trapped in a closed conformation**

101 Unexpectedly, the transmembrane domains (TM) of the three structures obtained from
102 amphipol-reconstituted TRPV2, TRPV2_{RTx-APOL 1-3}, show similarity to our previously solved
103 cryo-EM structure of TRPV2 in its apo form²¹ (TRPV2_{apo}) and adopt non-conducting
104 conformations (Figure Supplement 7). While fully bound to RTx, the TM domains of
105 TRPV2_{RTx-APOL 1} and TRPV2_{RTx-APOL 2} structures largely retain C4 symmetry (Figure 1 and
106 Figure Supplement 8). However, the TMs of TRPV2_{RTx-APOL 3} exhibit a slight departure from
107 C4 symmetry in the pore (Figure Supplement 9). The effects of RTx on the TRPV2_{RTx-APOL}
108 are particularly obvious in the ankyrin repeat domains (ARD) of the two-fold symmetric
109 TRPV2_{RTx-APOL 2} and TRPV2_{RTx-APOL 3} which display pronounced broken symmetry and a
110 range of rotational states (Figure 1, Figure Supplements 9-10).

111 In order to determine the effect of RTx on the TRPV2_{RTx-APOL} sample, we aligned TRPV2<sub>RTx-
112 APOL 1</sub> with TRPV2_{apo}. The transmembrane helices S1-S6 of the two channels aligned
113 remarkably well (C α R.M.S.D = 0.86) (Figure Supplement 8). However, RTx binding induces
114 a 5° clockwise rotation of the ARD when viewed from the extracellular space and a ~10 Å
115 lateral widening of the cytoplasmic assembly (Figure Supplement 8). In addition, RTx causes
116 a conformational change in the S4-S5 linker (Figure Supplement 8), as well as a displacement
117 of the TRP domain (Figure Supplement 8). The conformational change in the S4-S5 linker is
118 caused by the introduction of a π -helical turn at the junction of the S4-S5 linker and the S5

119 helix in the TRPV2_{RTx-APOL 1} structure (S4-S5_{π-hinge}), which is absent in TRPV2_{APO} (Figure
120 Supplement 8). This observation concurs with our previous finding that RTx binding elicits a
121 conformational change in the S4-S5 linker, and that the S4-S5_{π-hinge} is critical for ligand-
122 dependent gating in TRPV2²⁴. In TRPV2_{RTx-APOL 3}, slight C2 symmetry is observed in the TM
123 domains and is evident in the SF gate, PH and the S4-S5 linker (Figure Supplement 9).
124 Nevertheless, the RTx-induced conformational changes in the S4-S5 linker are not efficiently
125 propagated to the TM in the TRPV2_{RTx-APOL} structures, and they fail to open either of the two
126 activation gates (Figure Supplement 7). Instead, RTx only effects changes in its immediate
127 binding site above the S4-S5 linker and in the parts of the channel not bound by amphipol,
128 strongly suggesting that the polymer constricts the TM and prevents conformational changes
129 at the S4-S5 linker and the ARD from propagating to the TM domain. The fact that the
130 TRPV2/RTx complex is stabilized in multiple distinct closed states with different
131 arrangements of the ARD assembly (Figure 1, Figure Supplements 9-10) suggests that the
132 conformational changes in the ARD might represent low-energy, pre-open states that can be
133 achieved without substantial changes in the TM domains.

134 Interestingly, metal ions are not visualized in the pores of any of the TRPV2_{RTx-APOL}
135 structures, despite the high resolutions obtained in this study. Whether this is the result of
136 cryo-EM experimental conditions is unclear, but thus far metal ions occupying the SF and the
137 pores of thermoTRPV channels have only been captured in structures obtained by X-ray
138 crystallography²⁴.

139 **RTx induces a break in symmetry in TRPV2_{RTx-ND}**

140 In stark contrast to the amphipol-reconstituted channel, reconstitution in nanodiscs revealed
141 that RTx binding induces widespread C2 symmetry in TRPV2 which extends throughout the
142 channel. Both activation gates in TRPV2_{RTx-ND} adopt C2 symmetric arrangements (Figure
143 2a). The pore helices of the SF gate are arranged so that the carbonyl oxygens of the

144 selectivity filter in subunits B and D line the entry to the pore while pore helices of subunits
145 A and C are tilted away from the permeation pathway. This arrangement creates a large C2
146 symmetric opening where the narrowest constriction between SF gate residues in
147 diametrically opposing subunits A and C and B and D is ~ 11 Å and ~ 8.3 Å, respectively.
148 This results in an SF gate with ample room to accommodate large organic cations (Figure
149 2b). A closer look at the pore helices reveals that this arrangement in the SF gate is achieved
150 through a $\sim 27^\circ$ swivel of the subunit A pore helix, which brings the N-terminal part of the
151 helix closer to S5 while distancing it from S6 (Figure 2c). The position of the pore helices
152 controls the size and the shape of the SF gate, thereby exerting dynamic control over ion
153 permeation in TRPV2. While the SF gate is widely open, the conformation of the common
154 gate is a hybrid of closed and open states. In subunits A and C, the S6 helix adopts an α -
155 helical, closed conformation, while a secondary structure transition in S6 of subunits B and D
156 results in the presence of a π -helical turn which bends the helix and opens the common gate
157 (Figure 2a).

158 In order to establish the origin of the C2 symmetry in the TRPV2_{RTx-ND} structure, we aligned
159 subunits A and B ($C\alpha$ R.M.S.D = 0.96) (Figure Supplement 11). Similar to our previous
160 findings, this alignment shows that the two subunits diverge at the S4-S5 linker and the PH
161 and indicates that rotation of subunits around the S4-S5 _{π -hinge} appears to result in the distinct
162 C2 symmetric arrangement observed in TRPV2_{RTx-ND} (Figure Supplement 11).

163 When compared to the TRPV2_{apo}, the TM domains of the TRPV2_{RTx-ND} structure appear to
164 contract in an asymmetric manner (Figure 3a), while the ARD assembly expands by ~ 10 Å
165 and rotates by 3° (Figure 3b). The TM domains and the ARDs appear to move as a single
166 rigid body, which is evident when individual subunits from TRPV2_{apo} and TRPV2_{RTx-ND} are
167 superposed ($C\alpha$ R.M.S.D = 1.9 Å) to reveal that only the S4-S5 linker and the pore helix
168 deviate significantly in the two structures (Figure 3c). This coupled movement of the TM and

169 ARD indicates that RTx-binding to TRPV2 in lipid membranes induces a rigid-body rotation
170 of the entire subunit that originates at the S4-S5_{π-hinge} (Figure 3d-e).

171 Interestingly, the TRPV2_{RTx-ND} structure exhibits different degrees of reduced symmetry from
172 the previously determined crystal structure of TRPV2 in complex with RTx (TRPV2_{RTx-}
173 XTAL)²⁴. Compared to the TRPV2_{RTx-XTAL}, the TM domains of subunits A and C in TRPV2_{RTx-}
174 ND are widened, while those of subunits B and D exhibit a contraction (Figure 4a). This
175 conformational change, which stems from rotation of individual TRPV2_{RTx-ND} subunits
176 around the S4-S5_{π-hinge} (Figure Supplement 12), results in an overall fold that is closer to C4
177 symmetry than that of the TRPV2_{RTx-XTAL} (Figure 4b). However, while the TRPV2_{RTx-ND}
178 helices S1-S6 adopt a more C4 symmetric arrangement, the pore helices and the SF gate
179 remain distinctly C2 symmetric (Figure 4c). Remarkably, the SF gate of TRPV2_{RTx-ND} is
180 wider than in TRPV2_{RTx-XTAL}, and the two structures display different C2 symmetric openings
181 at the SF gate (Figure 4c). The two different conformations result from both the different
182 arrangements of subunits and changes in the position and tilt angle of the pore helices (Figure
183 4d-e). In the TRPV2_{RTx-XTAL} structure, the pore helices of subunits B and D, which assume a
184 widened conformation, are free of interactions with the pore domain, while a network of
185 hydrogen bonds (Y542-T602-Y627) in subunits A and C tethers the pore helices to S5 and
186 S6. Our previous work showed that disruption of these hydrogen bonds is detrimental to the
187 permeation of large organic cations, but has no effect on permeation of metal ions²⁴.
188 Interestingly, the hydrogen bond triad is disrupted in all four subunits of the TRPV2_{RTx-ND}
189 structure (Figure Supplement 13). Nevertheless, the SF gate assumes a fully open state that
190 can easily accommodate passage of a large cation. This suggests that the hydrogen bond triad,
191 while not a feature of the fully open SF gate, is an essential part of the transition between
192 closed and open states of the channel.

193 Despite the use of a full-length rabbit TRPV2 construct in this study, we were not able to
194 confidently resolve the entire loop connecting S5 to the pore helix known as the “pore turret”.

195 Interestingly, a recent structure of rat TRPV2 with the pore turret resolved showed that this
196 region, which contains a large number of charged and polar residues, occupies the space
197 within the membrane plane between S5 and the Voltage Sensing Like Domain (VSLD)²⁷.
198 While the density in our cryo-EM maps was not of sufficient quality to build the entire pore
199 turret with confidence, we do observe density following the S5 helix and preceding the pore
200 helix. However, the direction of this density is perpendicular to the membrane and does not
201 agree with the structure reported for rat TRPV2 (Figure Supplement 14). Indeed, the pore
202 turret is amongst the least conserved regions amongst the TRPV2 orthologs, and the
203 variations in its sequence might be reflective of different conformations in TRPV2 channels
204 of different species. Nevertheless, our study clearly shows that the omission of this region
205 from the construct used in the crystallographic study of the TRPV2/RTx complex is not the
206 cause of the C2 symmetry.

207 While both TRPV2_{RTx-ND} and TRPV2_{RTx-XTAL} structures adopt C2 symmetry, the distinct
208 arrangement of subunits within the two channels suggests that the structures represent
209 different functional states. We propose that TRPV2_{RTx-XTAL} precedes TRPV2_{RTx-ND} in the
210 conformational activation trajectory based on two observations. Firstly, the common gate is
211 fully closed in the TRPV2_{RTx-XTAL} while it adopts a partially open state in TRPV2_{RTx-ND}.
212 (Figure Supplement 15). Secondly, our previous studies have shown that the hydrogen bond
213 network between S5 and S6 and the pore helix is essential for the channel's ability to
214 transition to a fully open SF gate that can accommodate large organic cations²⁴. Nevertheless,
215 in TRPV2_{RTx-ND} the pore helices do not interact with S5 and S6 and the SF gate is fully open.
216 Therefore, the conformational step that requires the presence of the hydrogen bond triad must
217 precede the open SF gate conformation seen in TRPV2_{RTx-ND}.

218

219 **Discussion**

220 Here we have conducted a study that reveals symmetry transitions associated with gating of
221 the TRPV2 channel by RTx. Interestingly, our data shows that RTx induces C2 symmetric
222 conformations of TRPV2 in both amphipol and nanodiscs, and it thereby negates the
223 hypothetical role of crystallization artefacts and crystal packing bias in stabilising two-fold
224 symmetry. Similarly, C2 symmetry in TRPV2 is independent of the presence or absence of
225 the pore turret region, suggesting that this region does not play an essential role in the
226 regulation of the SF gate in rabbit TRPV2. Our study, similar to a previously published study
227 of the magnesium channel CorA³⁶, also emphasizes the notion that careful inspection of the
228 intermediate maps and conservative application of symmetry during refinement of cryo-EM
229 data can result in valuable insights into gating transitions and intermediate states. In addition,
230 we have also investigated how amphipols and nanodiscs affect the conformational space that
231 can be accessed during ligand gating of TRPV2.

232 While both TRPV2_{RTx-APOL} and TRPV2_{RTx-ND} are C2 symmetric, the two-fold symmetry in
233 TRPV2_{RTx-APOL} is confined to regions that are not bound by the amphipol polymer. This is
234 evident in the fact that the TM domains, which are in contact with the amphipol, largely
235 retain four-fold symmetry and the two gates remain firmly closed, while the ARD exhibit
236 symmetry breaking, rotation and lateral expansion. These data, while adding valuable data
237 points to the conformational landscape of TRPV2, also illustrate the caveats of using
238 amphipols in studies of conformational changes in the transmembrane domains of proteins, as
239 they appear to constrict the TM domains and stabilize low-energy pre-open states. By
240 contrast, the TRPV2_{RTx-ND} dataset yielded a single, two-fold symmetric structure thus giving
241 strong evidence that RTx stabilizes two-fold symmetric conformational states in the TRPV2
242 channel in lipid membranes. The ARDs in the TRPV2_{RTx-ND} structure echo the
243 conformational changes observed in TRPV2_{RTx-APOL}. However, in nanodiscs TRPV2 is
244 captured with its SF gate fully open and its common gate in a conformation that reflects a
245 mixture of open and closed states. In this structure, the opening of the SF gate occurs

246 according to a mechanism previously observed in the crystallographic study of the
247 TRPV2/RTx complex where RTx binding in the vanilloid pocket, above the S4-S5 π -hinge,
248 induces a rigid body rotation of the entire subunit. In turn, the rotation causes a break in the
249 hydrogen bond network between the pore helix and helices S5 and S6, allowing the pore
250 helices to reposition and the SF gate to open²⁴.

251 Interestingly, however, the TRPV2_{RTx-ND} structure differs from the previously obtained
252 TRPV2_{RTx-XTAL}. While both structures assume C2 symmetric conformations, the TRPV2<sub>RTx-
253 ND</sub> channel appears to make a return towards C4 symmetry. Because the SF gate in
254 TRPV2_{RTx-ND} is fully open, and two of its S6 helices contain a π -helix and adopt an open
255 conformation, we reason that TRPV2_{RTx-ND} follows the TRPV2_{RTx-XTAL} structure in the
256 conformational trajectory of the channel. Therefore, it is possible that TRPV2, as it travels
257 towards the final open state where both the SF and the common gate are fully open, would
258 adopt further conformations that increasingly approximate C4 symmetry (Figure 5).

259 However, it is interesting to note that while the overall fold of TRPV2_{RTx-ND} indeed is more
260 C4 symmetric than that of TRPV2_{RTx-XTAL}, the extent of C2 symmetry is not diminished in its
261 SF gate. Because the symmetry of the SF gate does not appear to be dictated by the symmetry
262 of the overall channel, we cannot exclude the possibility that the final open state might indeed
263 possess a C2 symmetric SF gate while otherwise adopting a nearly C4 symmetric
264 conformation. Our previous functional studies have shown that C2 symmetric states are
265 critical for the channel's ability to conduct large organic cations and consequently for the full
266 opening of the SF gate²⁴. Hence, the channel might be utilizing C2 symmetric states as means
267 to achieve full opening in a step-wise manner. Similar C2 symmetric states elicited by ligand
268 binding have been observed in TRPV3³³ and TRPM2³⁷ channels, which opens up the
269 possibility that C2 symmetry might be widely associated with gating in members of the TRP
270 channel superfamily. Intriguingly, a recent cryo-EM study of the human BK channel
271 reconstituted in liposomes showed that this channel also enters C2 symmetric states³⁸,

272 suggesting that two-fold symmetry might also play a role in the molecular mechanisms of
273 other tetrameric ion channels.

274 Two-fold symmetry is a well-established feature of mammalian Na^+ selective Two Pore
275 Channels (TPCs) and Voltage Gated Sodium channels (Nav)³⁹⁻⁴². Interestingly, the
276 arrangement of pore helices in TRPV2_{RTx-ND} resembles that observed in TPC and Nav (Figure
277 6) and the selectivity filters in all three channels form a “coin-slot”⁴³ opening. However,
278 while the selectivity filters of TPC and Nav remain static during channel gating in order to
279 maintain the structure necessary for Na^+ selectivity, the SF gate of TRPV2 displays a large
280 degree of plasticity. Moreover, the two-fold symmetry observed in TRPV2 is unique in that
281 it arises in response to conformational changes in the TM domains induced by ligand binding.
282 By contrast, the two-fold symmetry in TPC and Nav stems from the arrangement of their
283 respective homologous tandem repeats.

284 **Methods**

285 **Protein expression and purification**

286 The construct for the RTx sensitive, full-length rabbit TRPV2 (TRPV2_{RTx}) was prepared by
287 introducing four point mutations (F470S, L505M, L508T and Q528E) into the synthesized
288 full-length rabbit TRPV2 gene²³. The construct was cloned into a pFastBac vector with a C-
289 terminal FLAG affinity tag and used for baculovirus production according to manufacturers'
290 protocol (Invitrogen, Bac-to-Bac). The protein was expressed by infecting Sf9 cells with
291 baculovirus at a density of 1.3M cells ml⁻¹ and incubating at 27° C for 72 hours in an orbital
292 shaker. Cell pellets were collected after 72 hours and resuspended in buffer A (50 mM TRIS
293 pH8, 150 mM NaCl, 2 mM CaCl₂, 1 µg ml⁻¹ leupeptin, 1.5 µg ml⁻¹ pepstatin, 0.84 µg ml⁻¹
294 aprotinin, 0.3 mM PMSF, 14.3 mM β-mercapto ethanol, and DNaseI) and broken by
295 sonication (3x30 pulses).

296 For the amphipol-reconstituted TRPV2 (TRPV2_{RTx-APOL}) sample, the lysate was
297 supplemented with 40 mM Dodecyl β-maltoside (DDM, Anatrace), 4 mM Cholesteryl
298 Hemisuccinate (CHS, Anatrace) and 2 µM RTx and incubated at 4° C for 1 hour. Insoluble
299 material was removed by centrifugation (8,000g, 30 minutes), and anti-FLAG resin was
300 added to the supernatant for 1 hour at 4° C.

301 After binding, the anti-FLAG resin was loaded onto a Bio-Rad column and a wash was
302 performed with 10 column volumes of Buffer B (50 mM TRIS pH8, 150 mM NaCl, 2 mM
303 CaCl₂, 1 mM DDM, 0.1 mM CHS, 0.1 mg ml⁻¹ 1,2-dimyristoyl-*sn*-glycero-3-phosphocholine
304 (DMPC, Avanti Polar Lipids), 2 µM RTx) before elution in 5 column volumes of buffer C
305 (50 mM TRIS pH8, 150 mM NaCl, 2 mM CaCl₂, 1mM DDM, 0.1 mM CHS, 0.1 mg ml⁻¹
306 DMPC, 2 µM RTx, 0.1 mg ml⁻¹ FLAG peptide).

307 The eluate was concentrated and further purified by gelfiltration on a Superose 6 column. The
308 peak fractions were collected, mixed with Amphipol A8-35 (Anatrace) in a 1:10 ratio and

309 incubated for 4 hours at 4° C. Subsequently, Bio-Beads SM-2 (Biorad) were added to a 50 mg
310 ml⁻¹ concentration and incubated at 4° C overnight to remove detergent.
311 After reconstitution, the protein was subjected to a second round of gelfiltration on a
312 Superose 6 column in buffer D (50 mM TRIS pH8, 150 mM NaCl, 2 µM RTx), the peak
313 fractions were collected and concentrated to 2- 2.5 mg ml⁻¹ for cryo-EM.
314 For the nanodisc reconstituted TRPV2 (TRPV2_{RTx-ND}), the lysate was supplemented with 40
315 mM Dodecyl β-maltoside (DDM, Anatrace) and 2 µM RTx and incubated at 4° C for 1 hour.
316 The solution was cleared by centrifugation (8,000g, 30 minutes), and anti-FLAG resin was
317 added to the supernatant for 1 hour at 4° C.
318 After binding, the anti-FLAG resin was loaded onto a Bio-Rad column and a wash was
319 performed with 10 column volumes of Buffer B_{noCHS} (50 mM TRIS pH8, 150 mM NaCl, 2
320 mM CaCl₂, 1 mM DDM, 0.1 mg ml⁻¹ DMPC, 2 µM RTx) before elution in 5 column volumes
321 of buffer C_{noCHS} (50 mM TRIS pH8, 150 mM NaCl, 2 mM CaCl₂, 1mM DDM, 0.1 mg ml⁻¹
322 DMPC, 2 µM RTx, 0.1 mg ml⁻¹ FLAG peptide).
323 The eluate from the anti-FLAG resin was concentrated to ~ 500 µl. A 10 mg ml⁻¹ 3:1:1
324 mixture of lipids 1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-
325 oleoyl-*sn*-glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl-*sn*-glycero-3-
326 phospho-(1'-*rac*-glycerol) (POPG) was dried under argon, resuspended in 1 ml 50 mM Tris
327 pH8, 150 mM NaCl and clarified by extrusion, before being incubated for 1 hour with 10mM
328 DDM. The membrane scaffold protein MSP2N2 was prepared as previously described⁴⁴. The
329 concentrated TRPV2 was combined with MSP2N2 and the prepared lipid mixture in a
330 1:3:200 ratio and incubated at 4° C for 1 hour. After the initial incubation, 50 mg ml⁻¹ Bio-
331 Beads SM-2 were added and the mixture was incubated for another hour at 4° C, following
332 which the reconstitution mixture was transferred to a fresh batch of Bio-Beads SM-2 at 50
333 mg ml⁻¹ and incubated overnight at 4° C. Finally, the reconstituted channels were subjected to

334 gelfiltration on Superose 6 in buffer D, the peak fractions collected and concentrated to 2- 2.5
335 mg ml⁻¹ for cryo-EM.

336

337 **Cryo-EM sample preparation**

338 TRPV2_{RTx-APOL} and TRPV2_{RTx-ND} were frozen using the same protocol. Before freezing, the
339 concentrated protein sample was supplemented with 300 μ M RTx and incubated ~30 minutes
340 at 4° C. 3 μ l sample was dispensed on a freshly glow discharged (30 seconds) UltrAuFoil
341 R1.2/1.3 300-mesh grid (Electron Microscopy Services), blotted for 3 seconds with Whatman
342 No. 1 filter paper using the Leica EM GP2 Automatic Plunge Freezer at 23° C and > 85%
343 humidity and plunge-frozen in liquid ethane cooled by liquid nitrogen.

344 **Cryo-EM data collection**

345 Data for both TRPV2_{RTx-APOL} and TRPV2_{RTx-ND} was collected using the Titan Krios
346 transmission electron microscope (TEM) operating at 300 keV using a Falcon III Direct
347 Electron Detector operating in counting mode at a nominal magnification of 75,000x
348 corresponding to a physical pixel size of 1.08 Å/pixel.

349 For the TRPV2_{RTx-APOL} 1293 movies (30 frames/movie) were collected using a 60 second
350 exposure with an exposure rate of ~0.8 e⁻/pixel/s, resulting in a total exposure of 42 e⁻/Å² and
351 a nominal defocus range from -1.25 μ m to -3.0 μ m.

352 For TRPV2_{RTx-ND}, 2254 movies were collected (30 frames/movie) with 60 second exposure
353 and exposure rate of ~0.8 e⁻/pixel/s. The total exposure was of 42 e⁻/Å² and a nominal
354 defocus range from -1.25 μ m to -3.0 μ m.

355

356 **Reconstruction and refinement**

357 *TRPV2_{RTx-APOL}* MotionCor2⁴⁵ was used to perform motion correction and dose-weighting on
358 1293 movies. Unweighted summed images were used for CTF determination using GCTF⁴⁶.
359 Following motion correction and dose-weighting and CTF determination, micrographs which
360 contained Figure of Merit (FoM) values of < 0.12 and astigmatism values > 400 were
361 removed, leaving 1207 micrographs for further analysis. An initial set of 1660 particles was
362 picked manually and subjected to reference-free 2D classification (k= 12, T=2) which was
363 used as a template for automatic particle picking from the entire dataset (1207 micrographs).
364 This yielded a stack of 580,746 particles that were binned 4 x 4 (4.64 Å/pixel, 64 pixel box
365 size) and subjected to reference-free 2-D classification (k=58, T=2) in RELION 3.0⁴⁷.
366 Classes displaying the most well-defined secondary structure features were selected (470,760
367 particles) and an initial model was generated from the 2D particles using the Stochastic
368 Gradient Descent (SGD) algorithm as implemented in RELION 3.0. 3D auto-refinement in
369 RELION 3.0 was performed on the 470,760 particles with no symmetry imposed (C1), using
370 the initial model, low-pass filtered to 30 Å, as a reference map. This resulted in an 8.9 Å 3D
371 reconstruction, which was then used for re-extraction and re-centering of 2 x 2 binned
372 particles (2.16 Å/pixel, 128 pixel box size). 3D classification (k=4, T=8) without imposed
373 symmetry (C1) was performed on the extracted particles, using a soft mask calculated from
374 the full molecule. Classes 2-4 (90,862, 109,623 and 101,570 particles, respectively) all
375 possessed well-defined secondary structure, but visual inspection of the maps suggested that
376 the classes represented distinct conformational states. Therefore, each class was processed
377 separately. For each class, the particles were extracted and unbinned (1.08 Å/pixel, 256 pixel
378 box size), and soft masks calculated. 3D auto-refinement of the individual classes without
379 symmetry imposed (C1) yielded 4.7 Å (class 2), 3.6 Å (class 3) and 3.2 Å (class 4) 3D
380 reconstructions. Inspection of these volumes revealed that classes 2 and 3 adopted two-fold
381 (C2) symmetry, while class 4 was four-fold symmetric (C4). Particles from class 2 were
382 subjected to particle movement and dose-weighting using the “particle polishing” function as

383 implemented in RELION 3.0. The shiny particles were input into 3D auto-refinement with a
384 soft mask and C2 symmetry applied, resulting in a 4.19 Å reconstruction (TRPV2_{RTx-APOL 3}).
385 Similarly, particles from class 3 were subjected to polishing, and the following 3D auto-
386 refinement with a soft mask and C2 symmetry applied resulted in a 3.3 Å final reconstruction
387 (TRPV2_{RTx-APOL2}). Particles from class 4 were first subjected to CTF refinement using the
388 “CTF refine” feature in RELION 3.0. Particle polishing was then performed, followed by 3D
389 auto-refinement with a soft mask and C4 symmetry applied, yielding a 2.91 Å reconstruction
390 (TRPV2_{RTx-APOL 1}). All resolution estimates were based on the gold-standard FSC 0.143
391 criterion^{48,49}.

392 *TRPV2_{RTx-ND}* The 2254 collected movies were subjected to motion correction and dose-
393 weighting (MotionCor2) and CTF estimation (GCTF) in RELION 3.0. Micrographs with
394 FoM values < 0.13 and astigmatism values > 400 were removed, resulting in a selection of
395 1580 good micrographs. From these, 2015 particles were picked manually, extracted (1x1
396 binned, 1.08 Å/pixel, 256 pixel box size) and subjected to reference-free 2D classification
397 (k=12, T=2) that was used as a template for autopicking. This resulted in a 1,407,292 stack of
398 particles that were binned 4x4 (4.32 Å/pixel, 64 pixel box size) and subjected to reference-
399 free 2D classification (k=100, T=2). Classes exhibiting the most well-defined secondary
400 structure features were selected, resulting in 482,602 particles. These were re-extracted (2x2
401 binned, 2.16 Å/pixel, 128 pixel box size) and put into 3D auto-refinement, using the
402 previously obtained map of apo TRPV2 (EMD-6455) filtered to 30 Å as a reference with no
403 symmetry applied (C1). The 3D auto-refinement yielded a 5.4 Å reconstruction. The particles
404 were then subjected to 3D classification (k=6, T=8), with a soft mask and the 5.4 Å volume
405 as a reference without imposed symmetry (C1). Only two of the six classes (classes 1 and 6)
406 contained significant density in the TM domains. They were selected (112,622 particles), re-
407 extracted, re-centered and unbinned (1.08 Å/pixel, 256 pixel box size) before being input into
408 3D auto-refinement without symmetry imposed (C1) and with a soft mask and the previous

409 5.4 Å reconstruction filtered to 30 Å as a reference. The 3D auto-refinement resulted in a
410 4.12 Å map, which was then subjected to Bayesian particle polishing. 3D auto-refinement
411 was then performed on the resulting shiny particles with no symmetry applied (C1), resulting
412 in a 4 Å reconstruction. The particles were then subjected to CTF refinement, yielding a 3D
413 reconstruction resolved to 4 Å (C1). However, visual inspection of the map revealed a strong
414 tendency towards two-fold symmetry. Therefore, 3D auto-refinement was repeated with C2
415 symmetry applied, resulting in a map resolved to 3.84 Å as estimated by gold-standard FSC
416 0.143 criterion

417 **Model building**

418 The TRPV2_{RTx-APOL} and TRPV2_{RTx-ND} models were built into the cryo-EM electron density
419 map in Coot⁵⁰, using the structures of TRPV2 (PDB 5AN8 and 6BWM) as templates. The
420 structures were real-space refined in Coot, and iteratively refined using the
421 phenix.real_space_refine as implemented in the Phenix suite⁵¹. Structures were refined using
422 global minimization and rigid body, with high weight on ideal geometry and secondary
423 structure restraints. The Molprobity server⁵² (<http://molprobity.biochem.duke.edu/>) was used
424 to identify problematic areas, which were subsequently manually rebuilt. The radius of the
425 permeation pathways was calculated using HOLE⁵³. All analysis and structure illustrations
426 were performed using Pymol (The PyMOL Molecular Graphics System, Version 2.0) and
427 UCSF Chimera⁵⁴.

428 **Acknowledgements**

429 Cryo-EM data were collected at the Shared Materials Instrumentation Facility at Duke
430 University as part of the Molecular Microscopy Consortium, and screening was performed at
431 NIEHS. We thank Alberto Bartesaghi for a pre-processing interface. **Funding:** This work
432 was supported by the National Institutes of Health (R35NS097241 to S.-Y.L.) and by the
433 National Institutes of Health Intramural Research Program; US National Institute of

434 Environmental Health Science (ZIC ES103326 to M.J.B). The EM maps and atomic models
435 have been deposited with the Electron Microscopy Data Bank (accession numbers ###, ###,
436 ###, and ###) and the Protein Data Bank (entry codes ###, ###, ###, and ###), respectively.

437 **Competing Interests**

438 The authors declare no competing interests.

439

440 **References**

- 441 1 Clapham, D. E., Runnels, L. W. & Strubing, C. The TRP ion channel family. *Nat Rev Neurosci* **2**, 387-396 (2001).
- 442 2 Cao, E., Cordero-Morales, J. F., Liu, B., Qin, F. & Julius, D. TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. *Neuron* **77**, 667-679, doi:10.1016/j.neuron.2012.12.016 (2013).
- 443 3 Liu, B. & Qin, F. Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2. *Biophys J* **110**, 1523-1537, doi:10.1016/j.bpj.2016.03.005 (2016).
- 444 4 Smith, G. D., Gunthorpe, M. J., Kelsell, R. E., Hayes, P. D., Reilly, P., Facer, P., Wright, J. E., Jerman, J. C., Walhin, J. P., Ooi, L., Egerton, J., Charles, K. J., Smart, D., Randall, A. D., Anand, P. & Davis, J. B. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. *Nature* **418**, 186-190, doi:10.1038/nature00894 (2002).
- 445 5 Chung, M. K., Lee, H. & Caterina, M. J. Warm temperatures activate TRPV4 in mouse 308 keratinocytes. *J Biol Chem* **278**, 32037-32046, doi:10.1074/jbc.M303251200 (2003).
- 446 6 Bolcskei, K., Tekus, V., Dezsi, L., Szolcsanyi, J. & Petho, G. Antinociceptive desensitizing actions of TRPV1 receptor agonists capsaicin, resiniferatoxin and N-oleoyldopamine as measured by determination of the noxious heat and cold thresholds in the rat. *Eur J Pain* **14**, 480-486, doi:10.1016/j.ejpain.2009.08.005 (2010).
- 447 7 Julius, D. TRP channels and pain. *Annu Rev Cell Dev Biol* **29**, 355-384, doi:10.1146/annurev-cellbio-101011-155833 (2013).
- 448 8 Marwaha, L., Bansal, Y., Singh, R., Saroj, P., Bhandari, R. & Kuhad, A. TRP channels: potential drug target for neuropathic pain. *Inflammopharmacology* **24**, 305-317, doi:10.1007/s10787-016-0288-x (2016).
- 449 9 Mitchell, K., Lebovitz, E. E., Keller, J. M., Mannes, A. J., Nemenov, M. I. & Iadarola, M. J. Nociception and inflammatory hyperalgesia evaluated in rodents using infrared laser stimulation after Trpv1 gene knockout or resiniferatoxin lesion. *Pain* **155**, 733-745, doi:10.1016/j.pain.2014.01.007 (2014).
- 450 10 Katanosaka, Y., Iwasaki, K., Ujihara, Y., Takatsu, S., Nishitsuji, K., Kanagawa, M., Sudo, A., Toda, T., Katanosaka, K., Mohri, S. & Naruse, K. TRPV2 is critical for the maintenance of cardiac structure and function in mice. *Nat Commun* **5**, 3932, doi:10.1038/ncomms4932 (2014).
- 451 11 Eytan, O., Fuchs-Telem, D., Mevorach, B., Indelman, M., Bergman, R., Sarig, O., Goldberg, I., Adir, N. & Sprecher, E. Olmsted syndrome caused by a homozygous recessive mutation in TRPV3. *J Invest Dermatol* **134**, 1752-1754, doi:10.1038/jid.2014.37 (2014).
- 452 12 Imura, K., Yoshioka, T., Hirasawa, T. & Sakata, T. Role of TRPV3 in immune response to development of dermatitis. *J Inflamm (Lond)* **6**, 17, doi:10.1186/1476-9255-6-17 (2009).
- 453 13 Kim, H. O., Cho, Y. S., Park, S. Y., Kwak, I. S., Choi, M. G., Chung, B. Y., Park, C. W. & Lee, J. Y. Increased activity of TRPV3 in keratinocytes in hypertrophic burn scars with postburn pruritus. *Wound Repair Regen* **24**, 841-850, doi:10.1111/wrr.12469 (2016).

479 14 Asakawa, M., Yoshioka, T., Matsutani, T., Hikita, I., Suzuki, M., Oshima, I., Tsukahara, K.,
480 Arimura, A., Horikawa, T., Hirasawa, T. & Sakata, T. Association of a mutation in TRPV3
481 with defective hair growth in rodents. *J Invest Dermatol* **126**, 2664-2672,
482 doi:10.1038/sj.jid.5700468 (2006).

483 15 Imura, K., Yoshioka, T., Hikita, I., Tsukahara, K., Hirasawa, T., Higashino, K., Gahara, Y.,
484 Arimura, A. & Sakata, T. Influence of TRPV3 mutation on hair growth cycle in mice.
485 *Biochem Biophys Res Commun* **363**, 479-483, doi:10.1016/j.bbrc.2007.08.170 (2007).

486 16 Xiao, R., Tian, J., Tang, J. & Zhu, M. X. The TRPV3 mutation associated with the hairless
487 phenotype in rodents is constitutively active. *Cell Calcium* **43**, 334-343,
488 doi:10.1016/j.ceca.2007.06.004 (2008).

489 17 Masuyama, R., Vriens, J., Voets, T., Karashima, Y., Owsianik, G., Vennekens, R., Lieben, L.,
490 Torrekens, S., Moerman, K., Vandenberg Bosch, A., Bouillon, R., Nilius, B. & Carmeliet, G.
491 TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. *Cell Metab*
492 **8**, 257-265, doi:10.1016/j.cmet.2008.08.002 (2008).

493 18 Chung, M. K., Guler, A. D. & Caterina, M. J. TRPV1 shows dynamic ionic selectivity during
494 agonist stimulation. *Nat Neurosci* **11**, 555-564, doi:10.1038/nn.2102 (2008).

495 19 Puopolo, M., Binshtok, A. M., Yao, G. L., Oh, S. B., Woolf, C. J. & Bean, B. P. Permeation
496 and block of TRPV1 channels by the cationic lidocaine derivative QX-314. *J Neurophysiol*
497 **109**, 1704-1712, doi:10.1152/jn.00012.2013 (2013).

498 20 Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by
499 electron cryo-microscopy. *Nature* **504**, 107-112, doi:10.1038/nature12822 (2013).

500 21 Zubcevic, L., Herzik, M. A., Jr., Chung, B. C., Liu, Z., Lander, G. C. & Lee, S. Y. Cryo-
501 electron microscopy structure of the TRPV2 ion channel. *Nat Struct Mol Biol*,
502 doi:10.1038/nsmb.3159 (2016).

503 22 Huynh, K. W., Cohen, M. R., Jiang, J., Samanta, A., Ladowski, D. T., Zhou, Z. H. &
504 Moiseenkova-Bell, V. Y. Structure of the full-length TRPV2 channel by cryo-EM. *Nat
505 Commun* **7**, 11130, doi:10.1038/ncomms11130 (2016).

506 23 Zhang, F., Hanson, S. M., Jara-Oseguera, A., Krepkiy, D., Bae, C., Pearce, L. V., Blumberg,
507 P. M., Newstead, S. & Swartz, K. J. Engineering vanilloid-sensitivity into the rat TRPV2
508 channel. *eLife* **5**, doi:10.7554/eLife.16409 (2016).

509 24 Zubcevic, L., Le, S., Yang, H. & Lee, S. Y. Conformational Plasticity in the Selectivity Filter
510 of the TRPV2 Ion Channel. *Nat Struct Mol Biol*, in press, DOI:10.1038/s41594-41018-40059-
511 z (2018).

512 25 Yao, J., Liu, B. & Qin, F. Pore turret of thermal TRP channels is not essential for temperature
513 sensing. *Proc Natl Acad Sci U S A* **107**, E125; author reply E126-127,
514 doi:10.1073/pnas.1008272107 (2010).

515 26 Jara-Oseguera, A., Bae, C. & Swartz, K. J. An external sodium ion binding site controls
516 allosteric gating in TRPV1 channels. *eLife* **5**, doi:10.7554/eLife.13356 (2016).

517 27 Dosey, T. L., Wang, Z., Fan, G., Zhang, Z., Serysheva, II, Chiu, W. & Wensel, T. G.
518 Structures of TRPV2 in distinct conformations provide insight into role of the pore turret. *Nat
519 Struct Mol Biol* **26**, 40-49, doi:10.1038/s41594-018-0168-8 (2019).

520 28 Zoonens, M. & Popot, J. L. Amphipols for Each Season. *J Membrane Biol* **247**, 759-796,
521 doi:10.1007/s00232-014-9666-8 (2014).

522 29 Cao, E., Liao, M., Cheng, Y. & Julius, D. TRPV1 structures in distinct conformations reveal
523 activation mechanisms. *Nature* **504**, 113-118, doi:10.1038/nature12823 (2013).

524 30 Paulsen, C. E., Armache, J. P., Gao, Y., Cheng, Y. & Julius, D. Structure of the TRPA1 ion
525 channel suggests regulatory mechanisms. *Nature* **520**, 511-517, doi:10.1038/nature14367
526 (2015).

527 31 Yoo, J., Wu, M., Yin, Y., Herzik, M. A., Jr., Lander, G. C. & Lee, S. Y. Cryo-EM structure of
528 a mitochondrial calcium uniporter. *Science* **361**, 506-511, doi:10.1126/science.aar4056
529 (2018).

530 32 Hirschi, M., Herzik, M. A., Jr., Wie, J., Suo, Y., Borschel, W. F., Ren, D., Lander, G. C. &
531 Lee, S. Y. Cryo-electron microscopy structure of the lysosomal calcium-permeable channel
532 TRPML3. *Nature* **550**, 411-414, doi:10.1038/nature24055 (2017).

533 33 Zubcevic, L., Herzik, M. A., Jr., Wu, M., Borschel, W. F., Hirschi, M., Song, A. S., Lander,
534 G. C. & Lee, S. Y. Conformational ensemble of the human TRPV3 ion channel. *Nat Commun*
535 **9**, 4773, doi:10.1038/s41467-018-07117-w (2018).

536 34 Denisov, I. G. & Sligar, S. G. Nanodiscs for structural and functional studies of membrane
537 proteins. *Nat Struct Mol Biol* **23**, 481-486, doi:10.1038/nsmb.3195 (2016).

538 35 Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure
539 determination. *J Struct Biol* **180**, 519-530, doi:10.1016/j.jsb.2012.09.006 (2012).

540 36 Matthies, D., Dalmas, O., Borgnia, M. J., Dominik, P. K., Merk, A., Rao, P., Reddy, B. G.,
541 Islam, S., Bartesaghi, A., Perozo, E. & Subramaniam, S. Cryo-EM Structures of the
542 Magnesium Channel CorA Reveal Symmetry Break upon Gating. *Cell* **164**, 747-756,
543 doi:10.1016/j.cell.2015.12.055 (2016).

544 37 Yin, Y., Wu, M., Hsu, A., Borschel W.F., Borgnia, M., Lander, G.C., Lee, S-Y. Visualizing
545 structural transitions of ligand-dependent gating of the TRPM2 channel. *BioRxiv*,
546 doi:<https://doi.org/10.1101/516468> (2018).

547 38 Tongu, L., Wang, L. Broken symmetry in the human BK channel. *BioRxiv*,
548 doi:<https://doi.org/10.1101/494385> (2018).

549 39 She, J., Guo, J., Chen, Q., Zeng, W., Jiang, Y. & Bai, X. C. Structural insights into the voltage
550 and phospholipid activation of the mammalian TPC1 channel. *Nature* **556**, 130-134,
551 doi:10.1038/nature26139 (2018).

552 40 Shen, H., Zhou, Q., Pan, X., Li, Z., Wu, J. & Yan, N. Structure of a eukaryotic voltage-gated
553 sodium channel at near-atomic resolution. *Science* **355**, doi:10.1126/science.aal4326 (2017).

554 41 Pan, X., Li, Z., Zhou, Q., Shen, H., Wu, K., Huang, X., Chen, J., Zhang, J., Zhu, X., Lei, J.,
555 Xiong, W., Gong, H., Xiao, B. & Yan, N. Structure of the human voltage-gated sodium
556 channel Nav1.4 in complex with beta1. *Science* **362**, doi:10.1126/science.aau2486 (2018).

557 42 Shen, H., Li, Z., Jiang, Y., Pan, X., Wu, J., Cristofori-Armstrong, B., Smith, J. J., Chin, Y. K.
558 Y., Lei, J., Zhou, Q., King, G. F. & Yan, N. Structural basis for the modulation of voltage-
559 gated sodium channels by animal toxins. *Science* **362**, doi:10.1126/science.aau2596 (2018).

560 43 Hille, B. The permeability of the sodium channel to organic cations in myelinated nerve. *J
561 Gen Physiol* **58**, 599-619 (1971).

562 44 Ritchie, T. K., Grinkova, Y. V., Bayburt, T. H., Denisov, I. G., Zolnerciks, J. K., Atkins, W.
563 M. & Sligar, S. G. Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer
564 nanodiscs. *Methods Enzymol* **464**, 211-231, doi:10.1016/S0076-6879(09)64011-8 (2009).

565 45 Zheng, S. Q., Palovcak, E., Armache, J. P., Verba, K. A., Cheng, Y. & Agard, D. A.
566 MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron
567 microscopy. *Nat Methods* **14**, 331-332, doi:10.1038/nmeth.4193 (2017).

568 46 Zhang, K. Gctf: Real-time CTF determination and correction. *Journal of structural biology*
569 **193**, 1-12, doi:10.1016/j.jsb.2015.11.003 (2016).

570 47 Zivanov, J., Nakane, T., Forsberg, B. O., Kimanius, D., Hagen, W. J. H., Lindahl, E. &
571 Scheres, S. H. W. New tools for automated high-resolution cryo-EM structure determination
572 in RELION-3. *Elife* **7**, doi:ARTN e4216610.7554/eLife.42166 (2018).

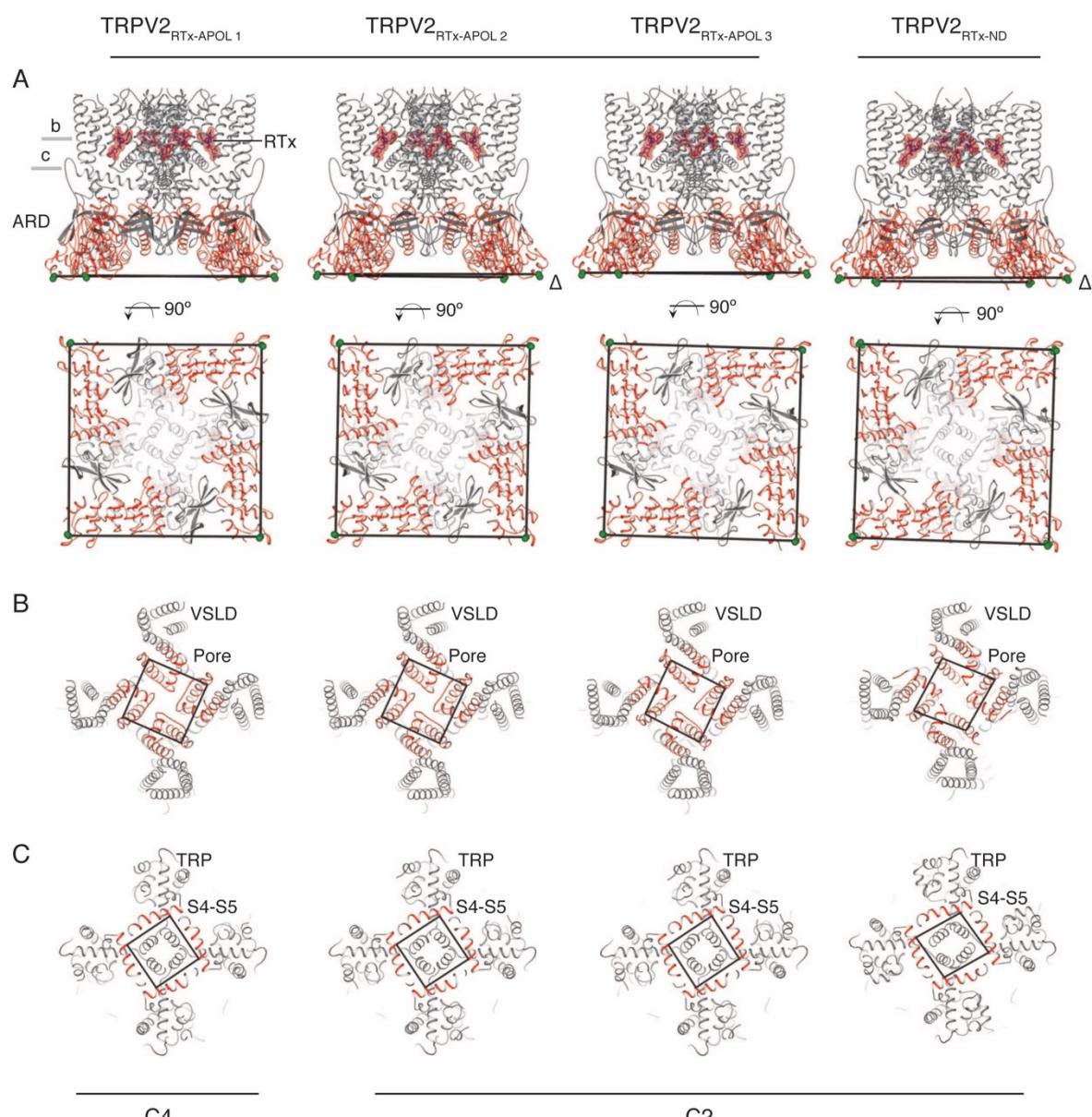
573 48 Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. *Nat
574 Methods* **9**, 853-854, doi:10.1038/nmeth.2115 (2012).

575 49 Chen, S., McMullan, G., Faruqi, A. R., Murshudov, G. N., Short, J. M., Scheres, S. H. &
576 Henderson, R. High-resolution noise substitution to measure overfitting and validate
577 resolution in 3D structure determination by single particle electron cryomicroscopy.
578 *Ultramicroscopy* **135**, 24-35, doi:10.1016/j.ultramic.2013.06.004 (2013).

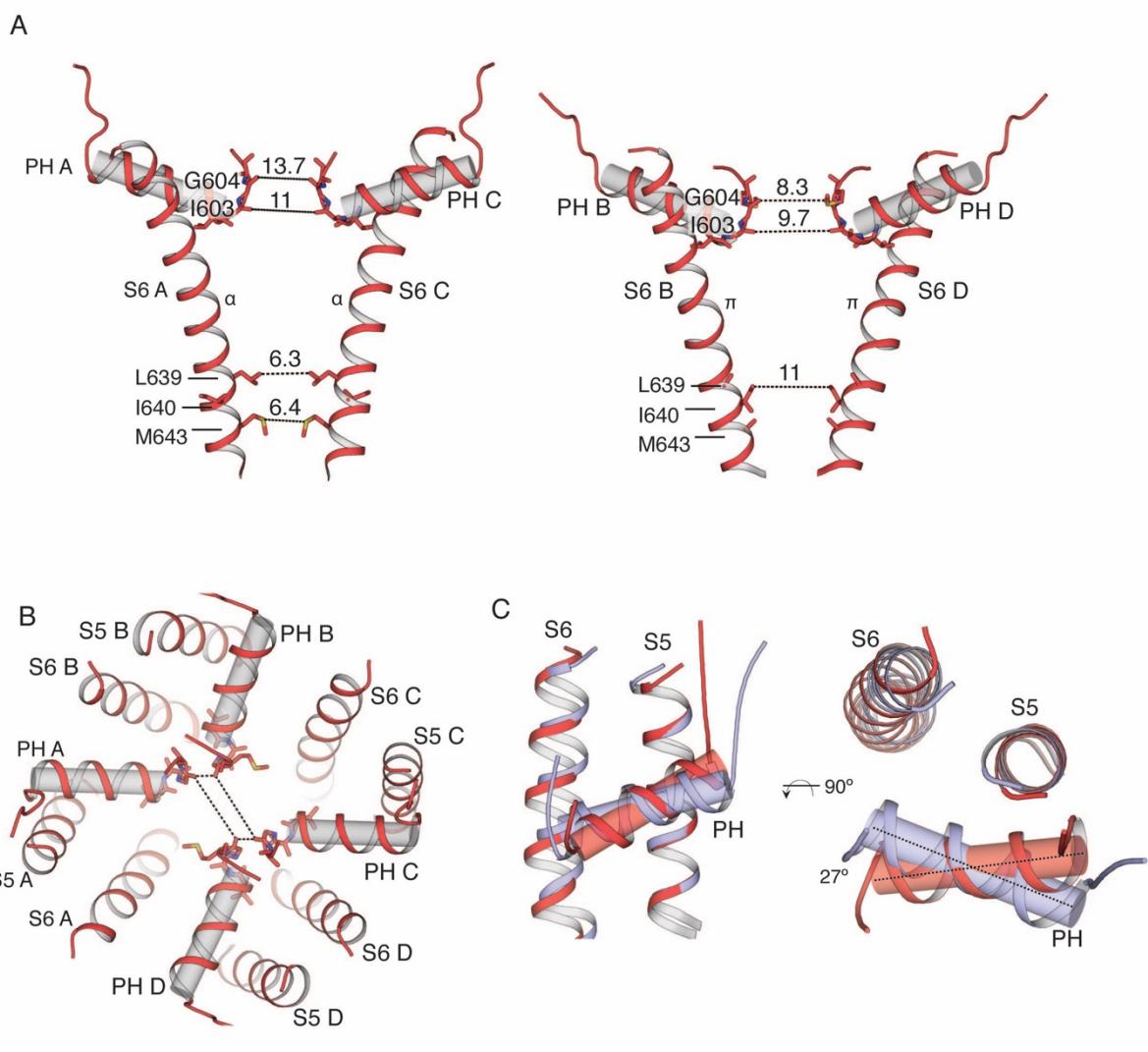
579 50 Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta Crystallogr
580 D Biol Crystallogr* **60**, 2126-2132, doi:S0907444904019158
581 [pii]10.1107/S0907444904019158 (2004).

582 51 Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J.
583 J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W.,
584 Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. & Zwart, P.
585 H. PHENIX: a comprehensive Python-based system for macromolecular structure solution.
586 *Acta Crystallogr D Biol Crystallogr* **66**, 213-221, doi:S0907444909052925
587 [pii]10.1107/S0907444909052925 (2010).

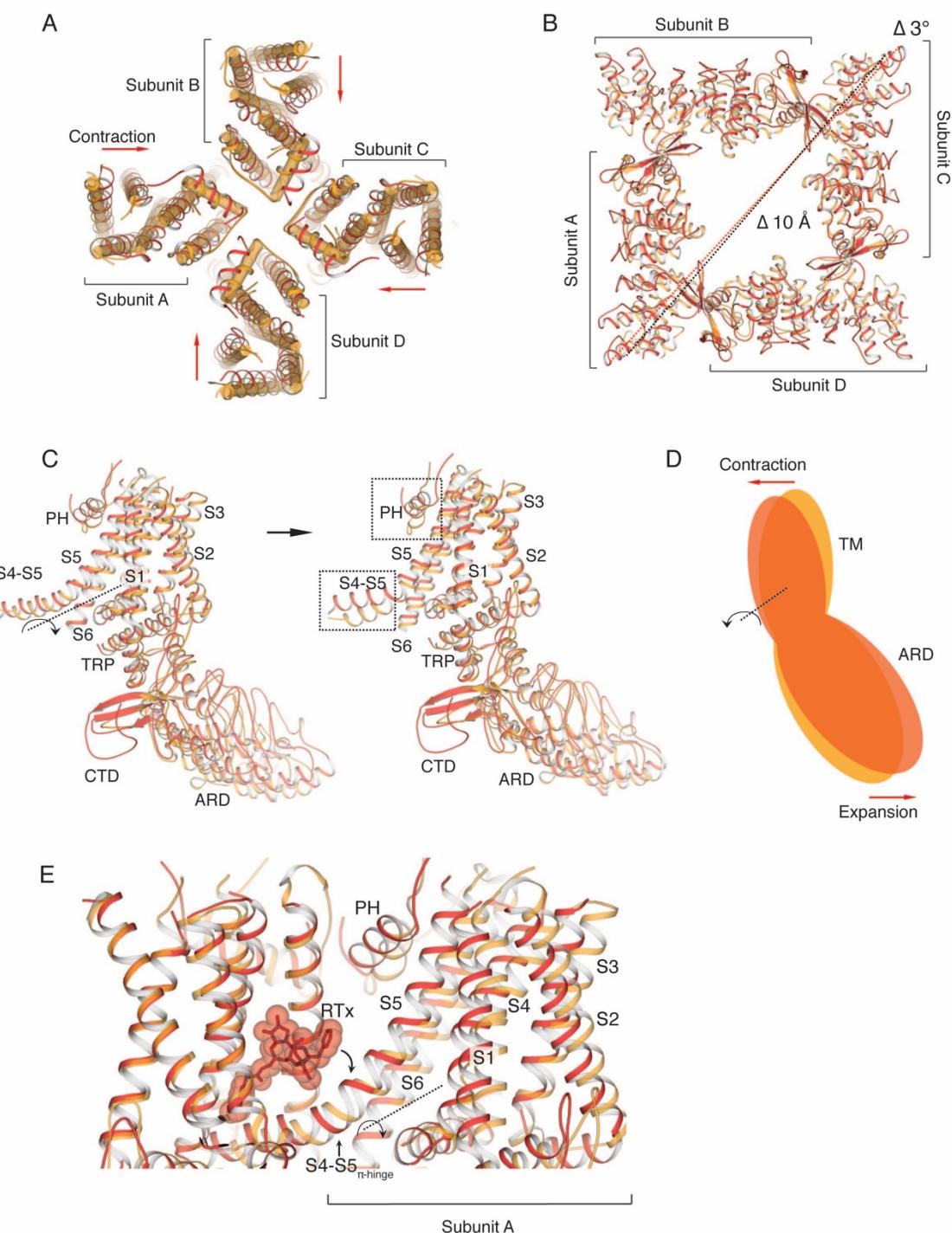
588 52 Chen, V. B., Arendall, W. B., 3rd, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G.
589 J., Murray, L. W., Richardson, J. S. & Richardson, D. C. MolProbity: all-atom structure


590 validation for macromolecular crystallography. *Acta Crystallogr D Biol Crystallogr* **66**, 12-
591 21, doi:10.1107/S0907444909042073 (2010).
592 53 Smart, O. S., Neduvvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program
593 for the analysis of the pore dimensions of ion channel structural models. *J Mol Graph* **14**,
594 354-360, 376 (1996).
595 54 Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C.
596 & Ferrin, T. E. UCSF chimera - A visualization system for exploratory research and analysis.
597 *J Comput Chem* **25**, 1605-1612, doi:10.1002/jcc.20084 (2004).

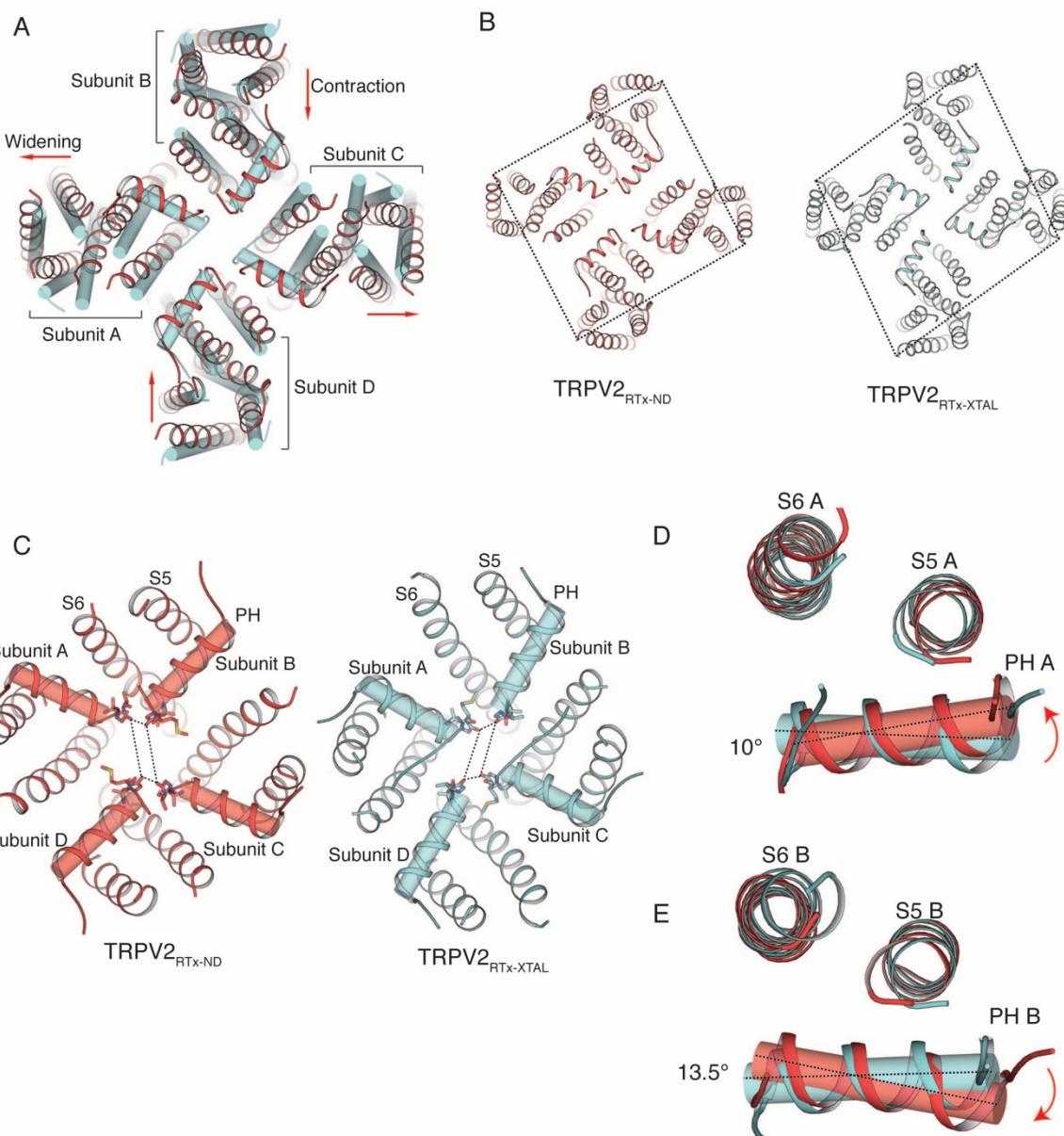
598


	TRPV2 _{RTx-ND}	TRPV2 _{RTx-APOL 1}	TRPV2 _{RTx-APOL 2}	TRPV2 _{RTx-APOL 3}
Data collection and processing				
Electron microscope	Titan Krios		Titan Krios	
Electron detector	Falcon III		Falcon III	
Magnification	75,000x		75,000x	
Voltage (kV)	300		300	
Electron exposure (e ⁻ /Å ²)	42		42	
Defocus range (μm)	-1.25 to -3.0		-1.25 to -3.0	
Pixel size (Å)	1.08		1.08	
Detector	Counting		Counting	
Total extracted particles (no.)	1,407,292		580,746	
Refined particles (no.)	482,602		470,760	
Reconstruction				
Final particles (no.)	112,622	101,570	109,623	90,862
Symmetry imposed	C2	C4	C2	C2
Nominal Resolution (Å)	3.8	2.9	3.3	4.19
FSC 0.143 (unmasked/masked)	3.6/3.9	2.9/3.05	3.2/3.5	4.0/4.3
Map sharpening <i>B</i> factor (Å ²)	-90	-78	-92	-133
Refinement				
Model composition				
Non-hydrogen atoms	16,819	18,228	18,452	17,548
Protein residues	2,409	2,404	2,440	2,440
Ligands	6EU: 4	6EU: 4	6EU: 4	6EU: 4
Validation				
MolProbity score	1.63	1.35	1.28	1.37
Clashscore	6	6.4	2.7	2.7
Poor rotamers (%)	0	0	0	0
Ramachandran plot				
Favored (%)	96.3	98.3	96.6	95.5
Allowed (%)	3.7	1.7	3.4	4.5
Disallowed (%)	0	0	0	0

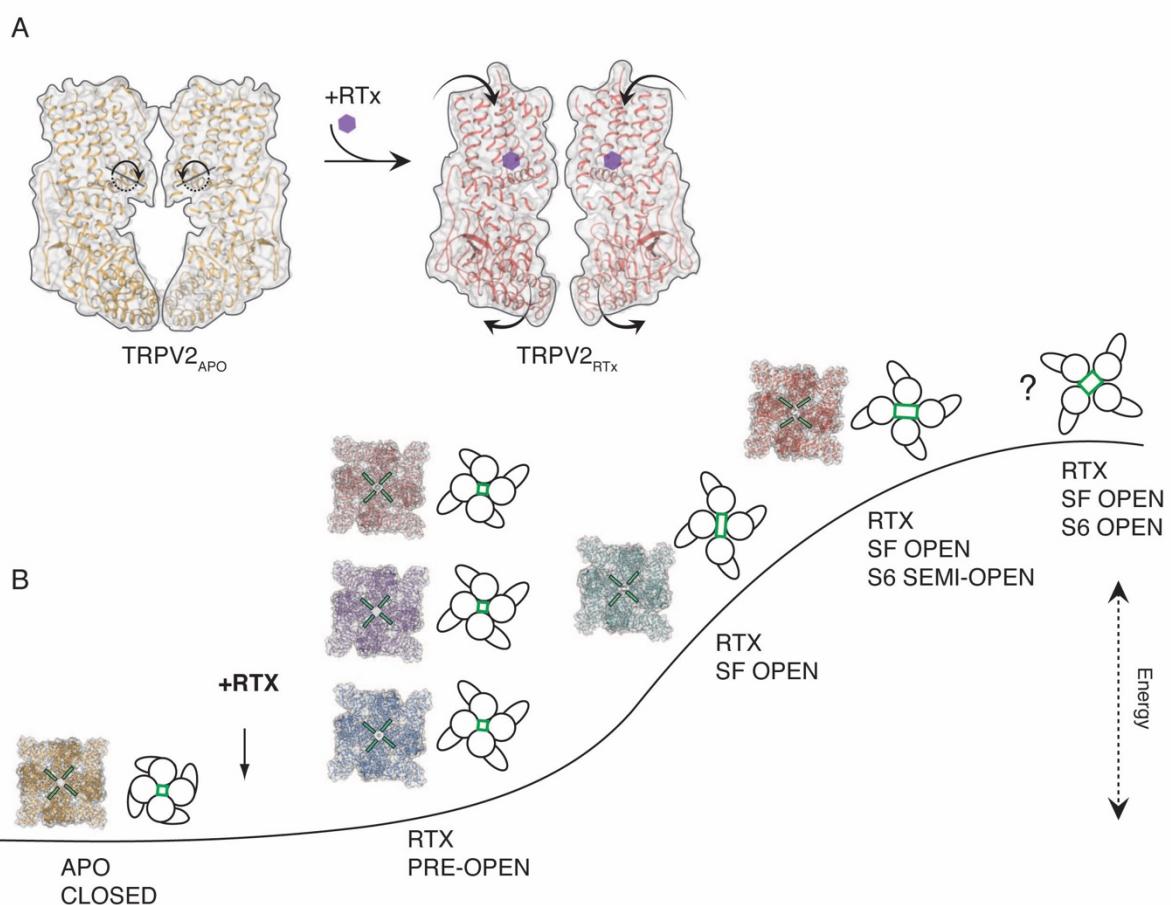
599


600 **Table 1** Data collection and refinement statistics

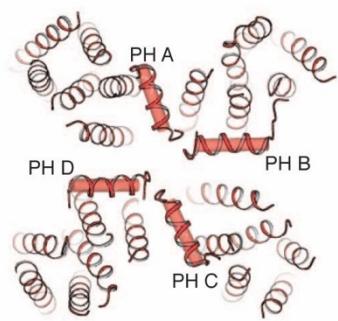
602 **Figure 1**



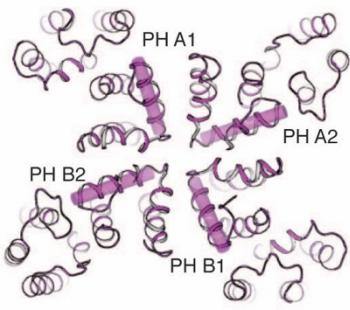
604 **Figure 2**


605

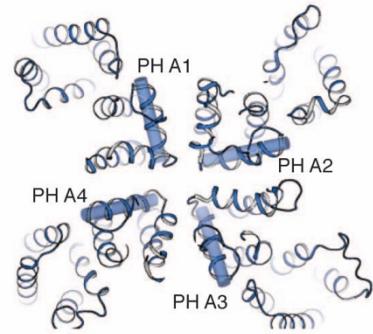
606 **Figure 3**

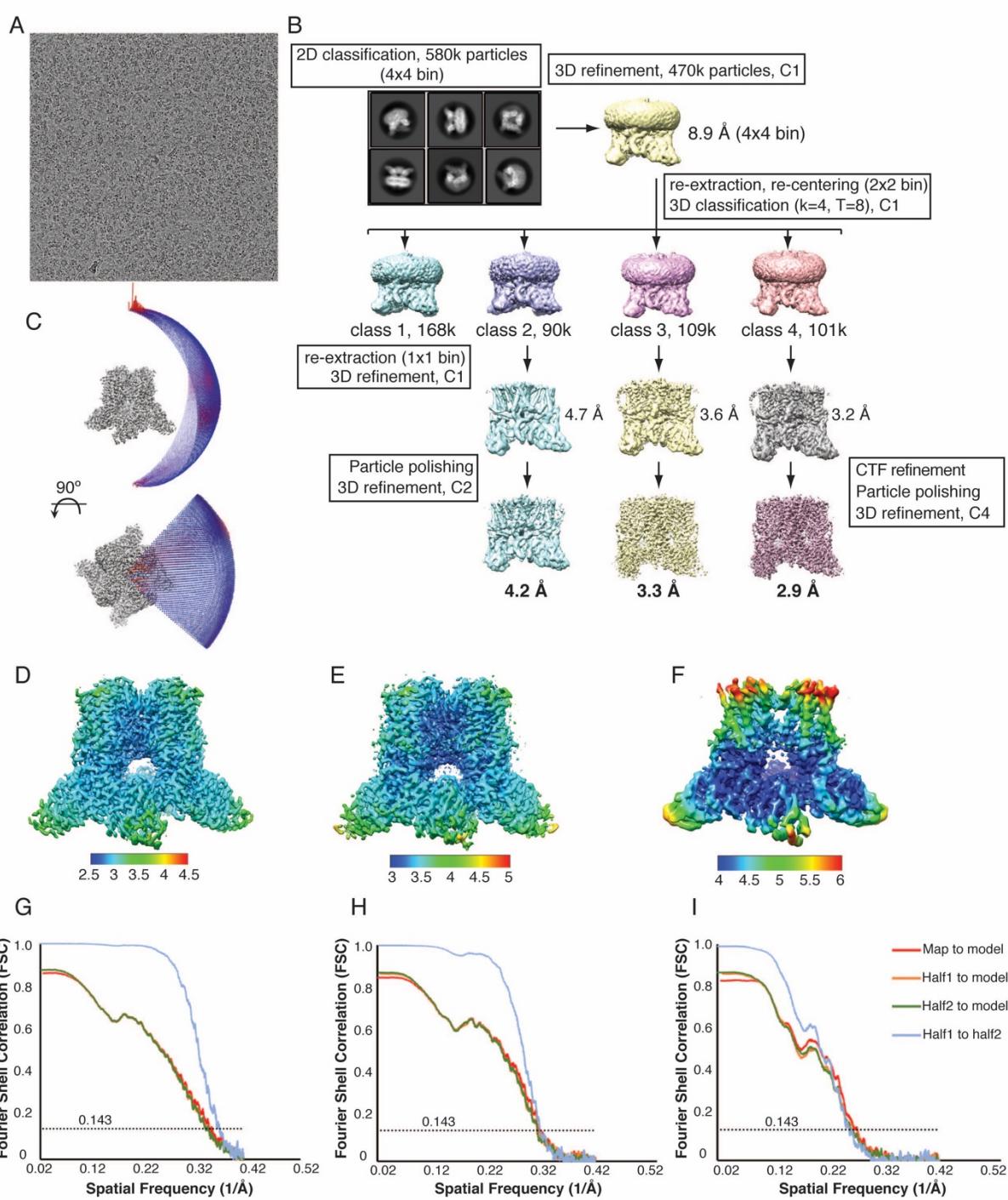

607

608 **Figure 4**

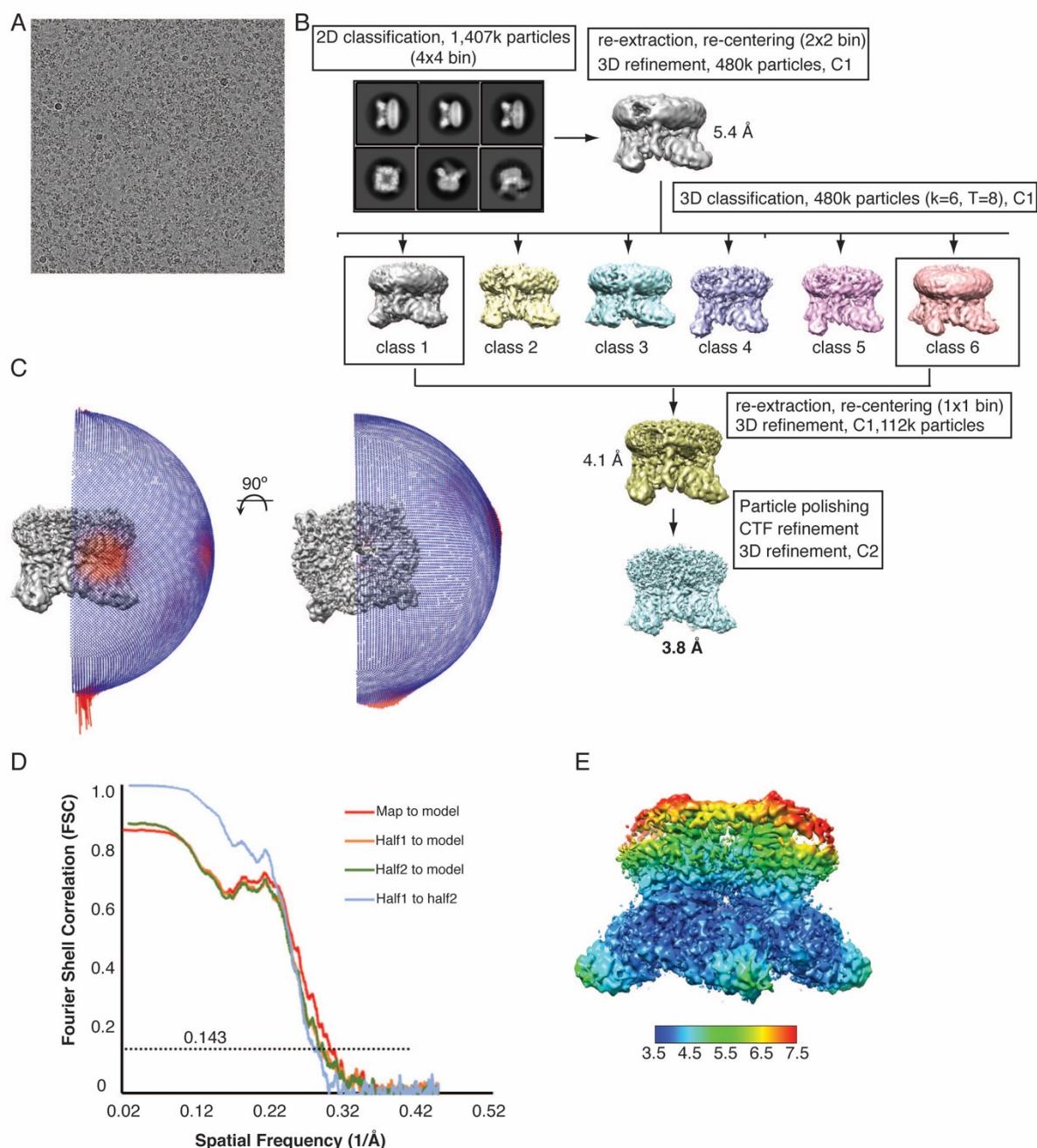


609

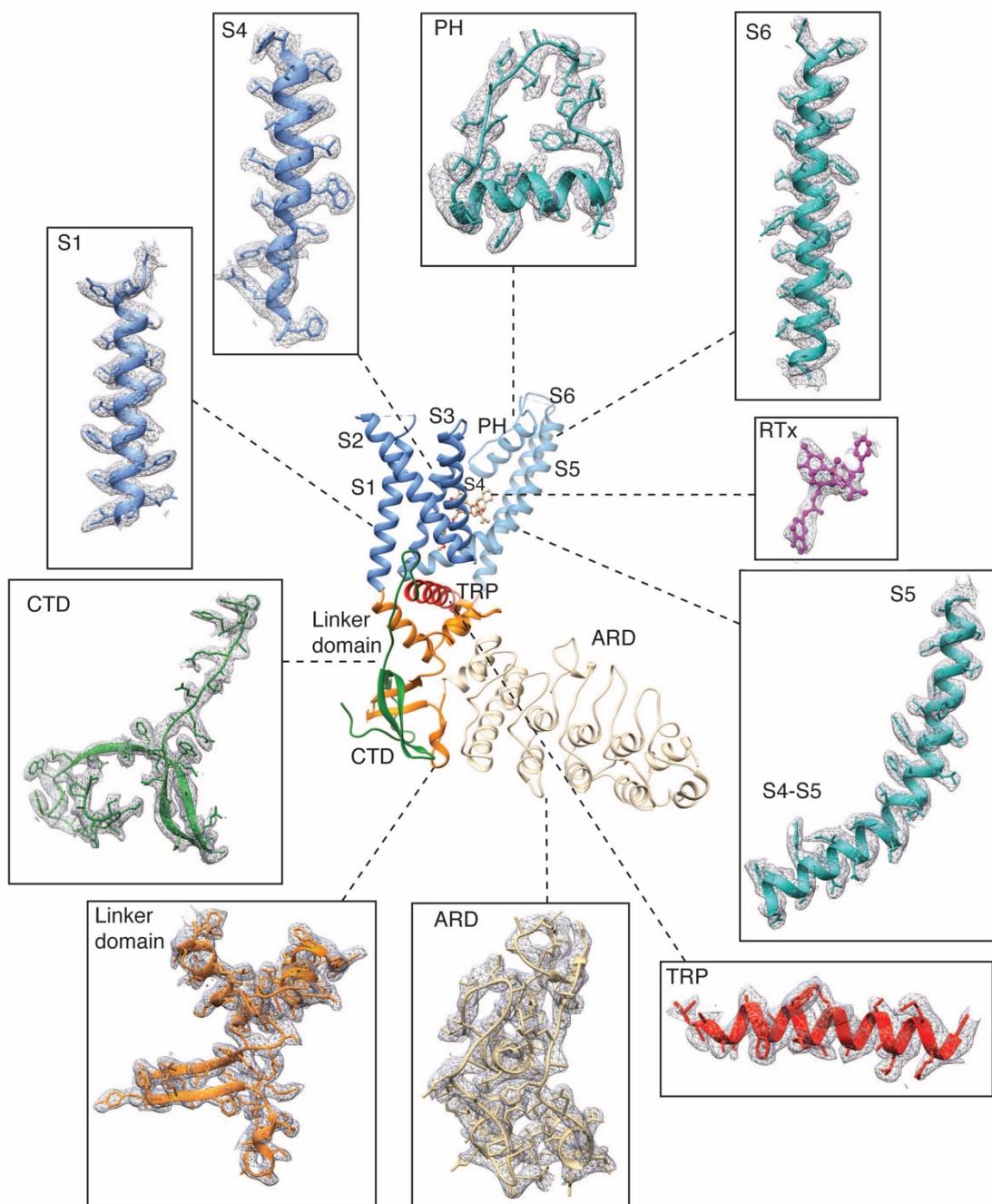

610 **Figure 5**


611 TRPV2_{RTx-ND}

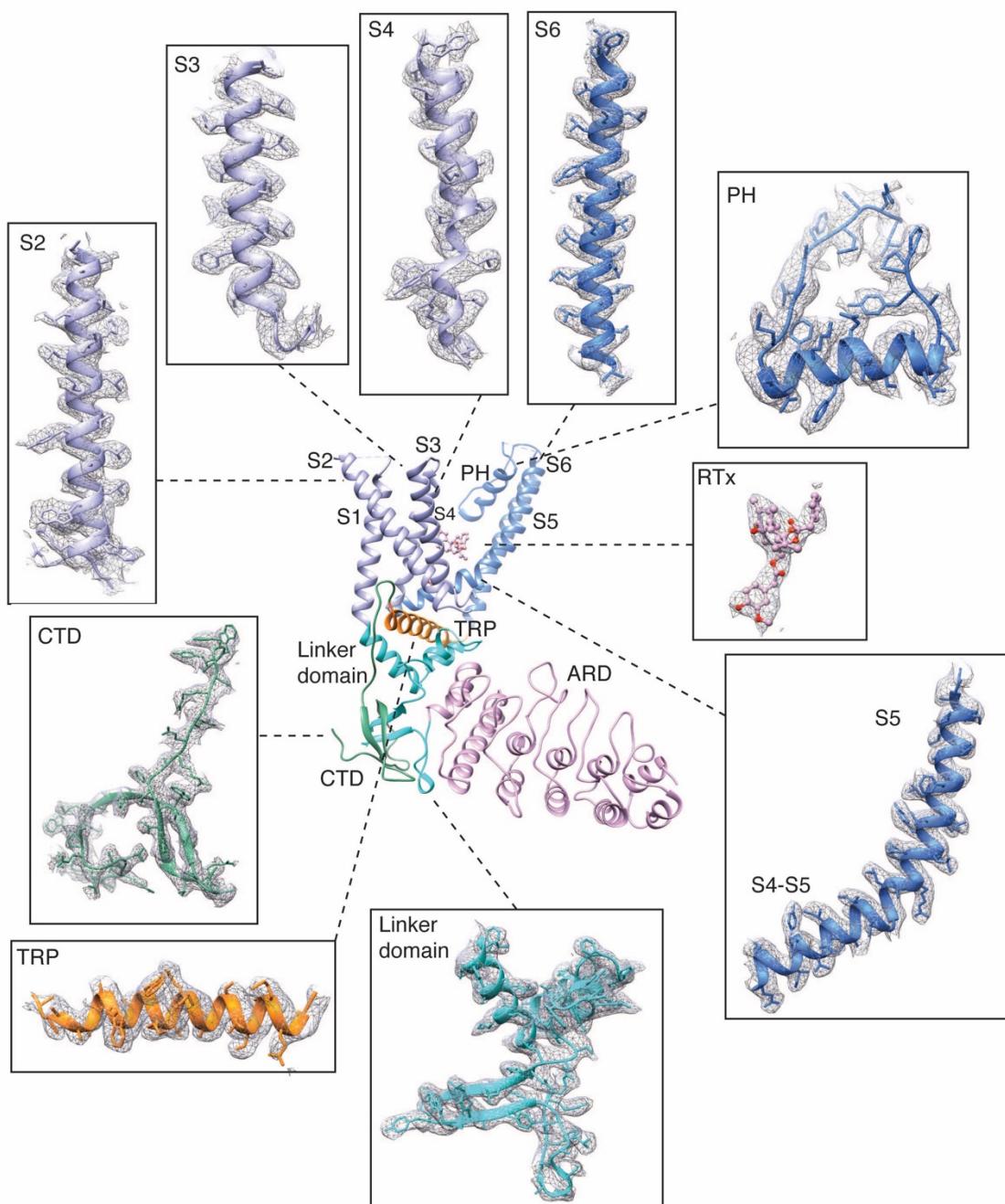
612 TPC (PDB 6C96)



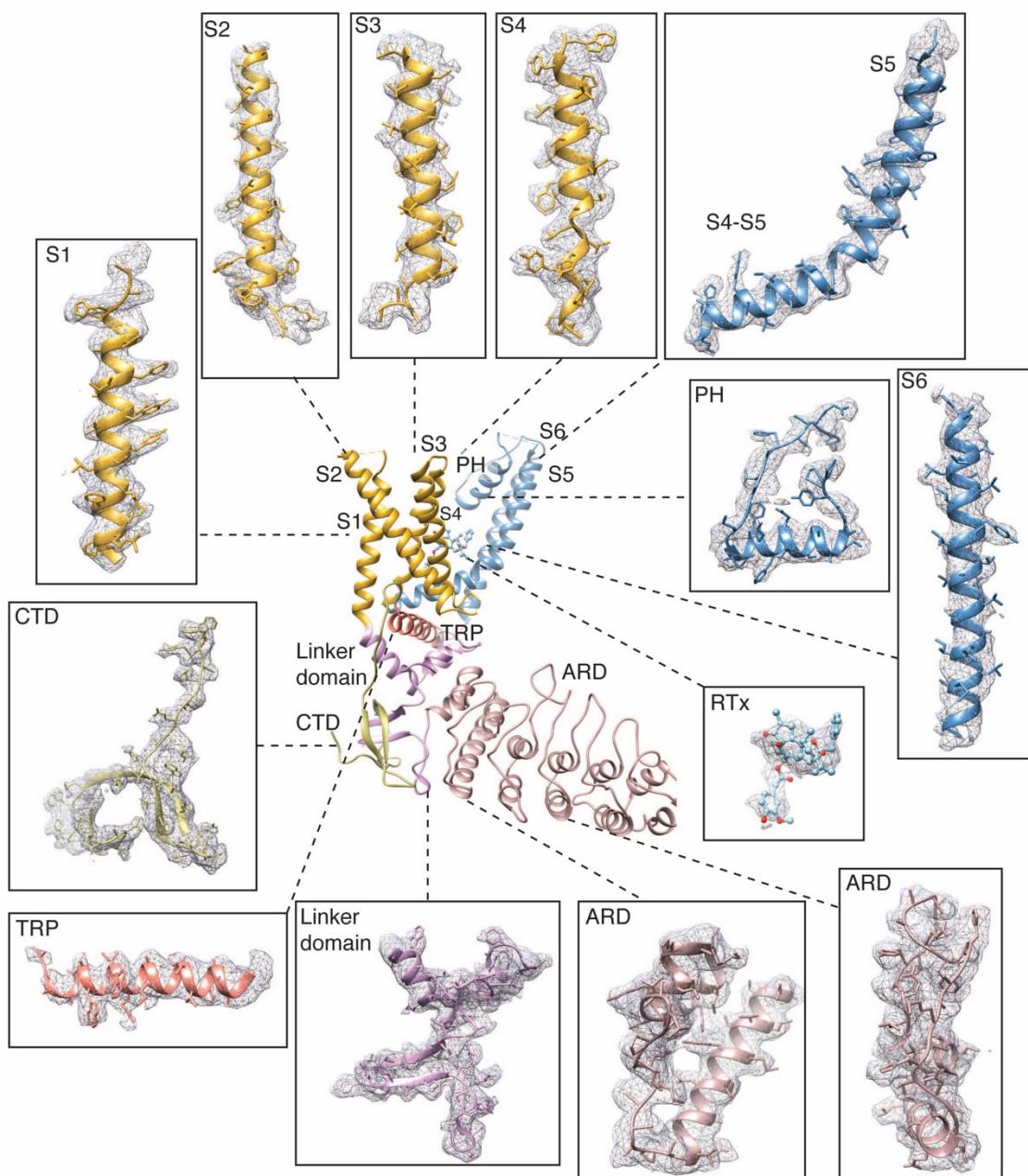
Na_v1.4 (PDB 6A95)


613

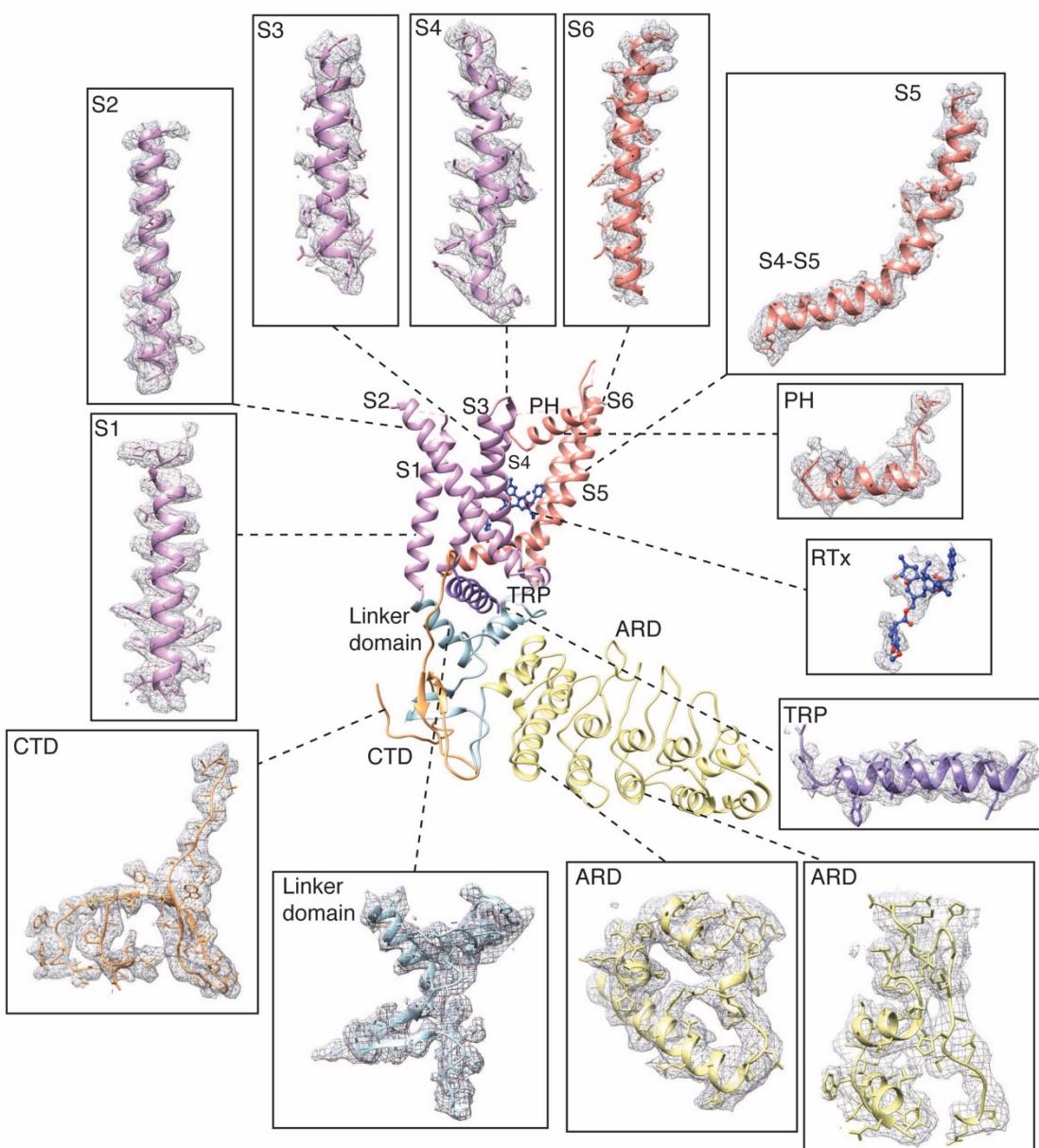
614 **Figure Supplement 1**


615

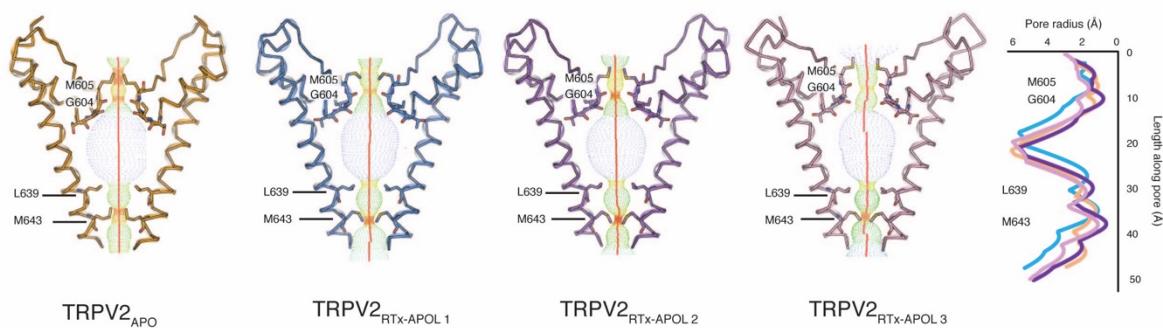
616 **Figure Supplement 2**


617

618 **Figure Supplement 3**

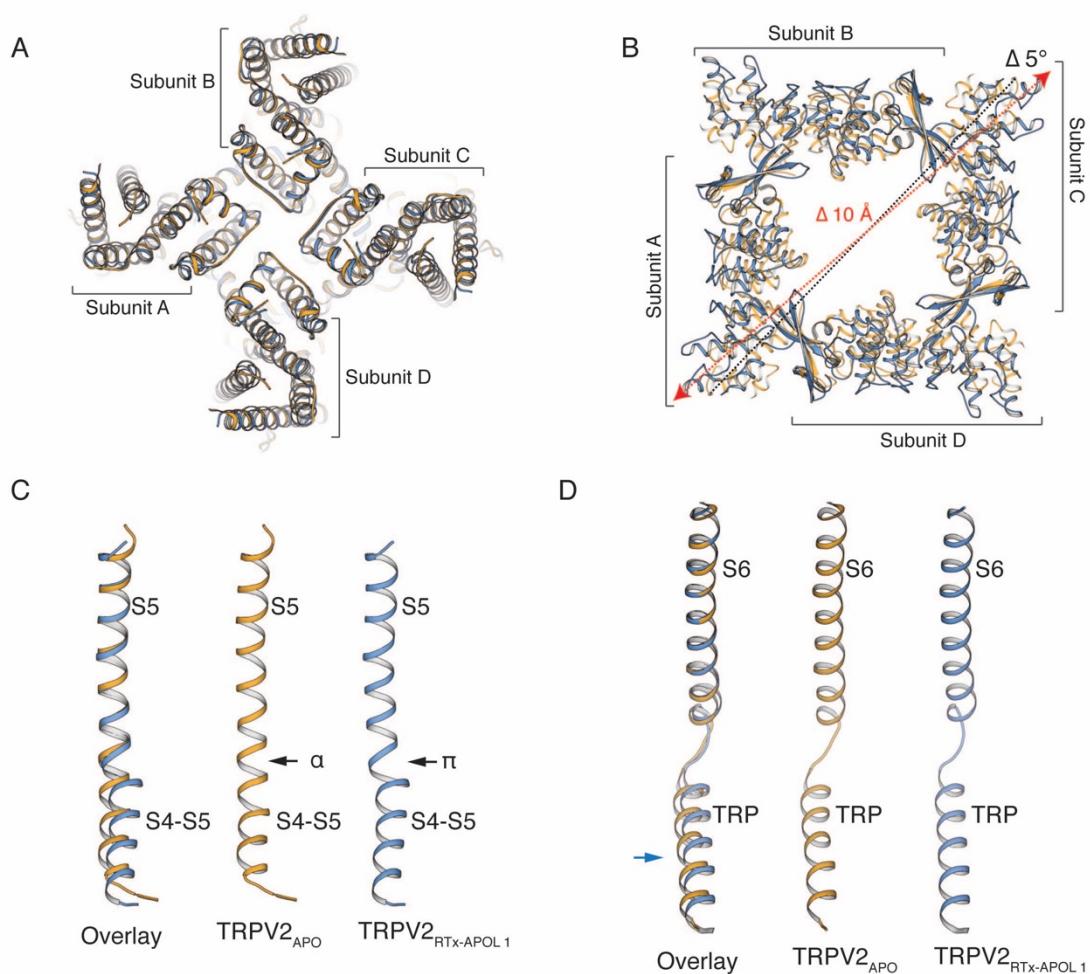

619

620 **Figure Supplement 4**

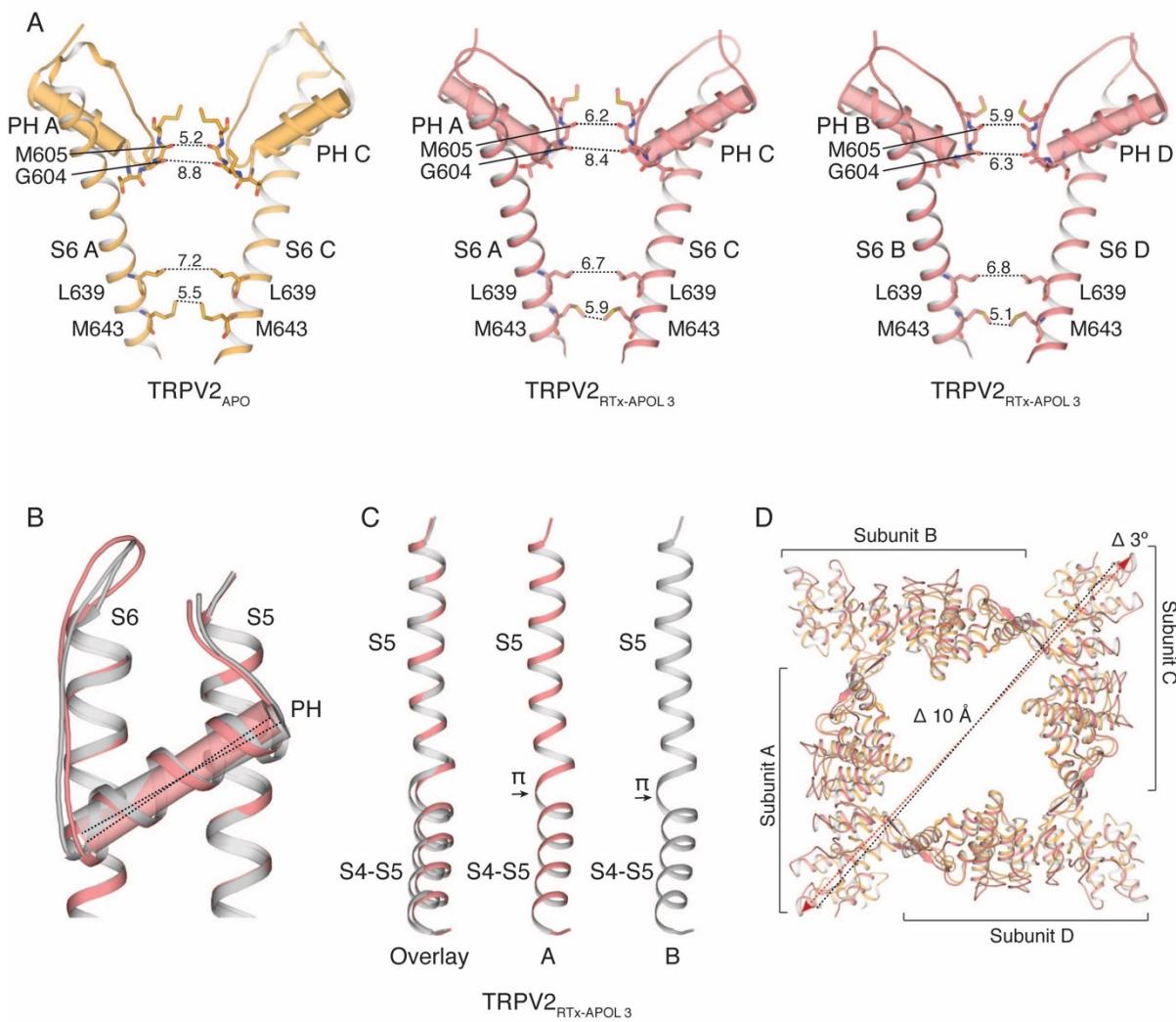

621

622 **Figure Supplement 5**

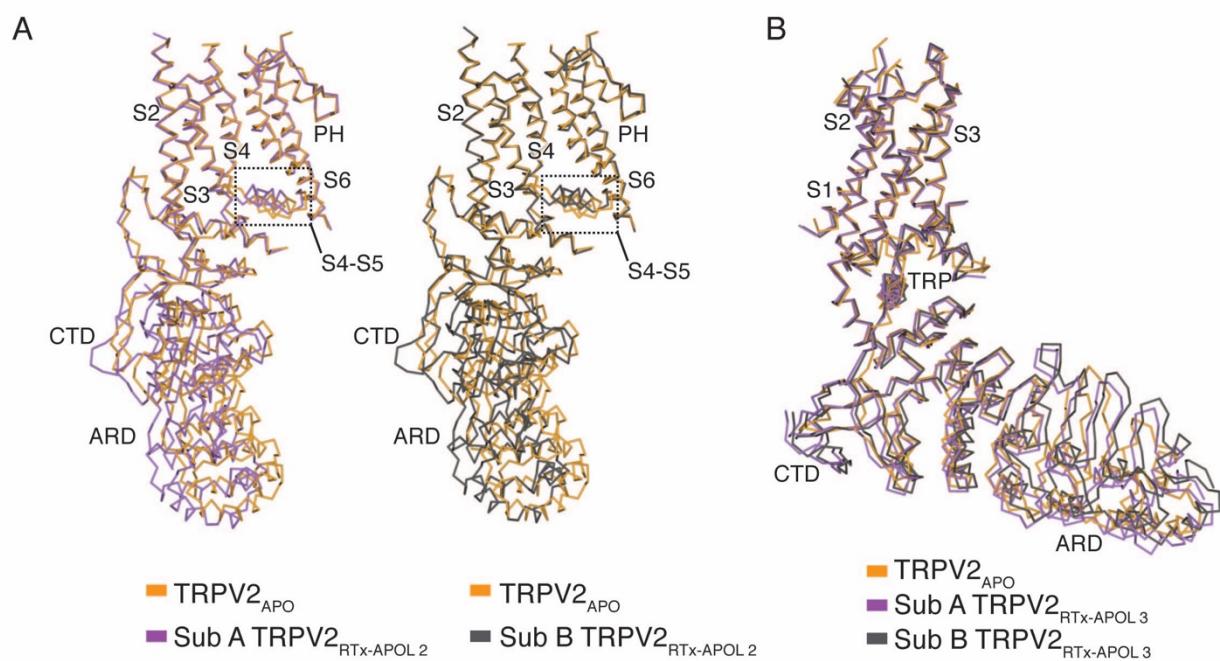
623


624 **Figure Supplement 6**

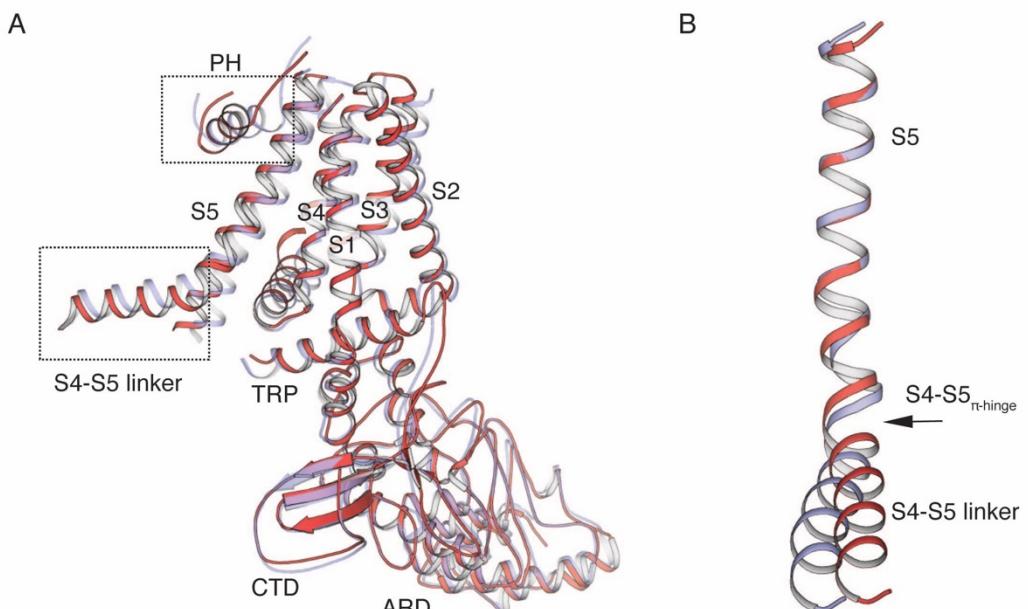
625


626 **Figure Supplement 7**

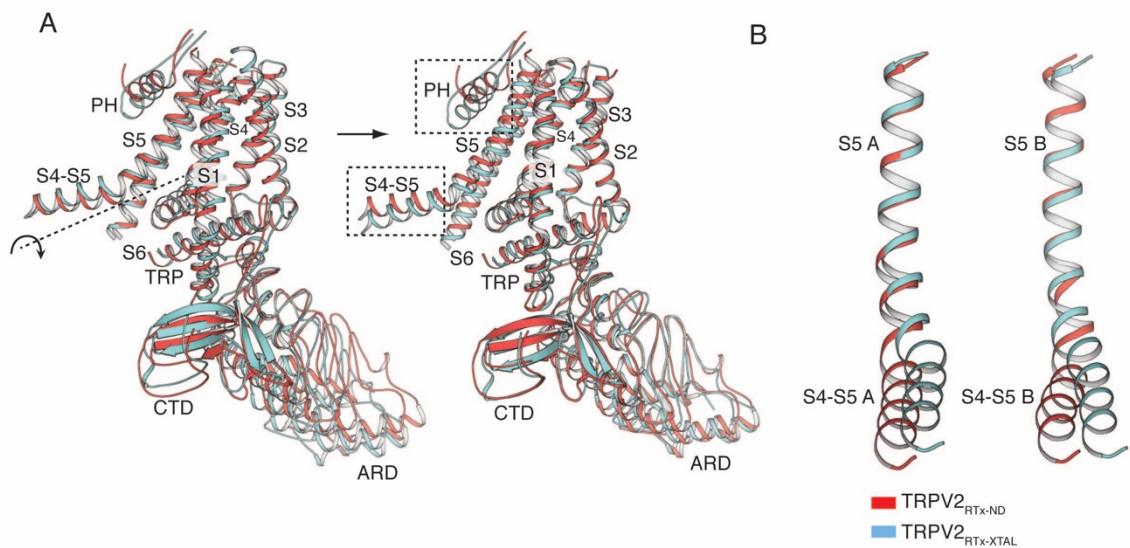
627


628

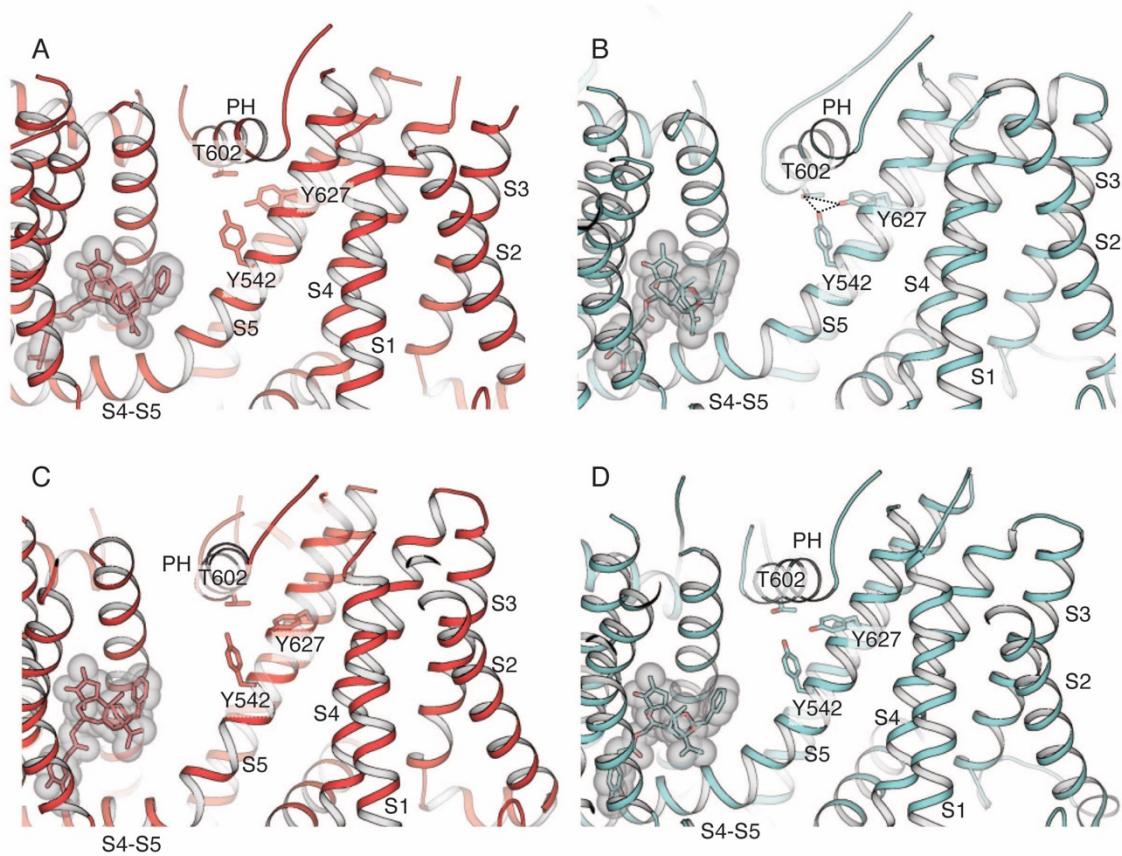
629 **Figure Supplement 8**


630

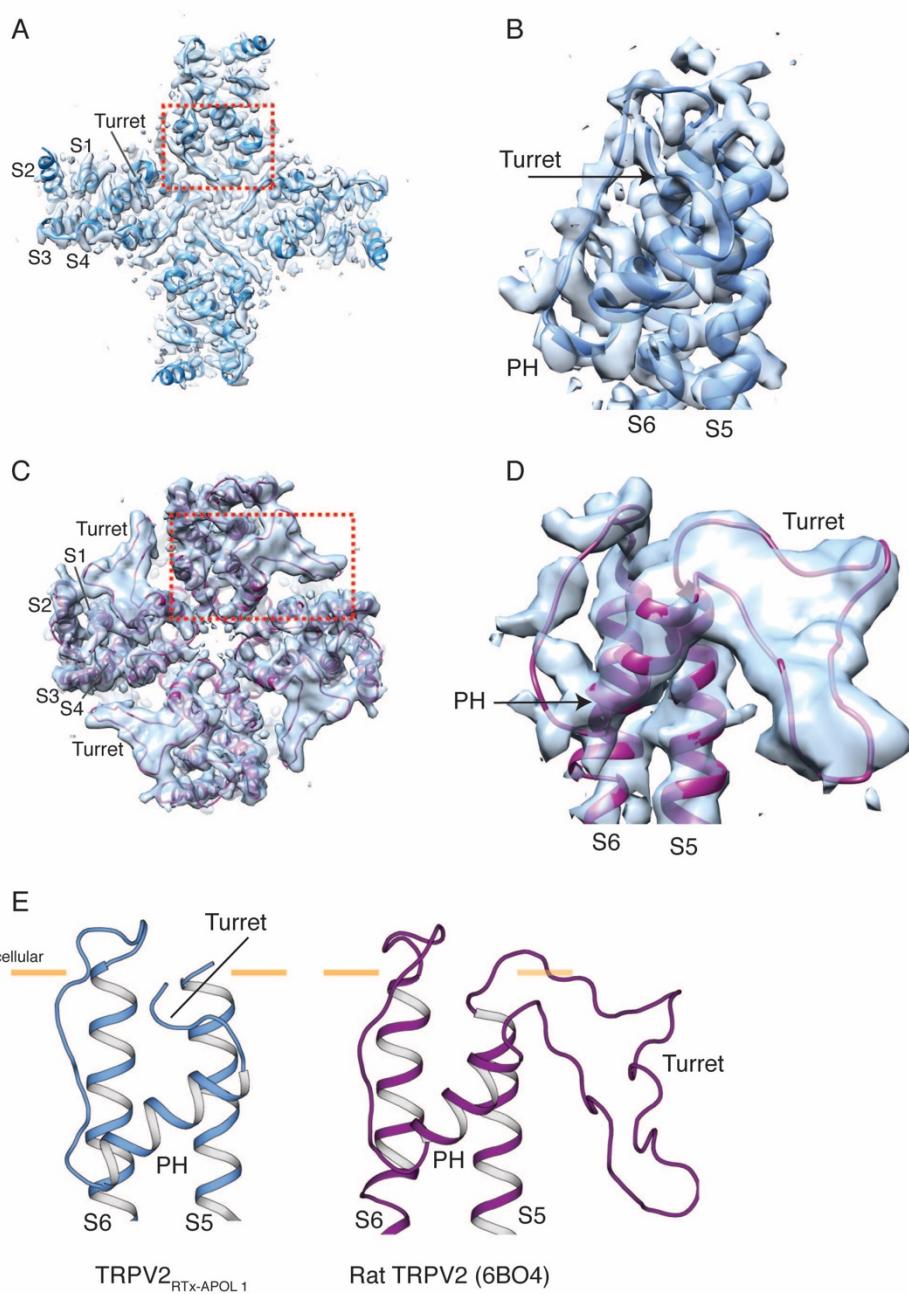
631 **Figure Supplement 9**


632

633 **Figure Supplement 10**

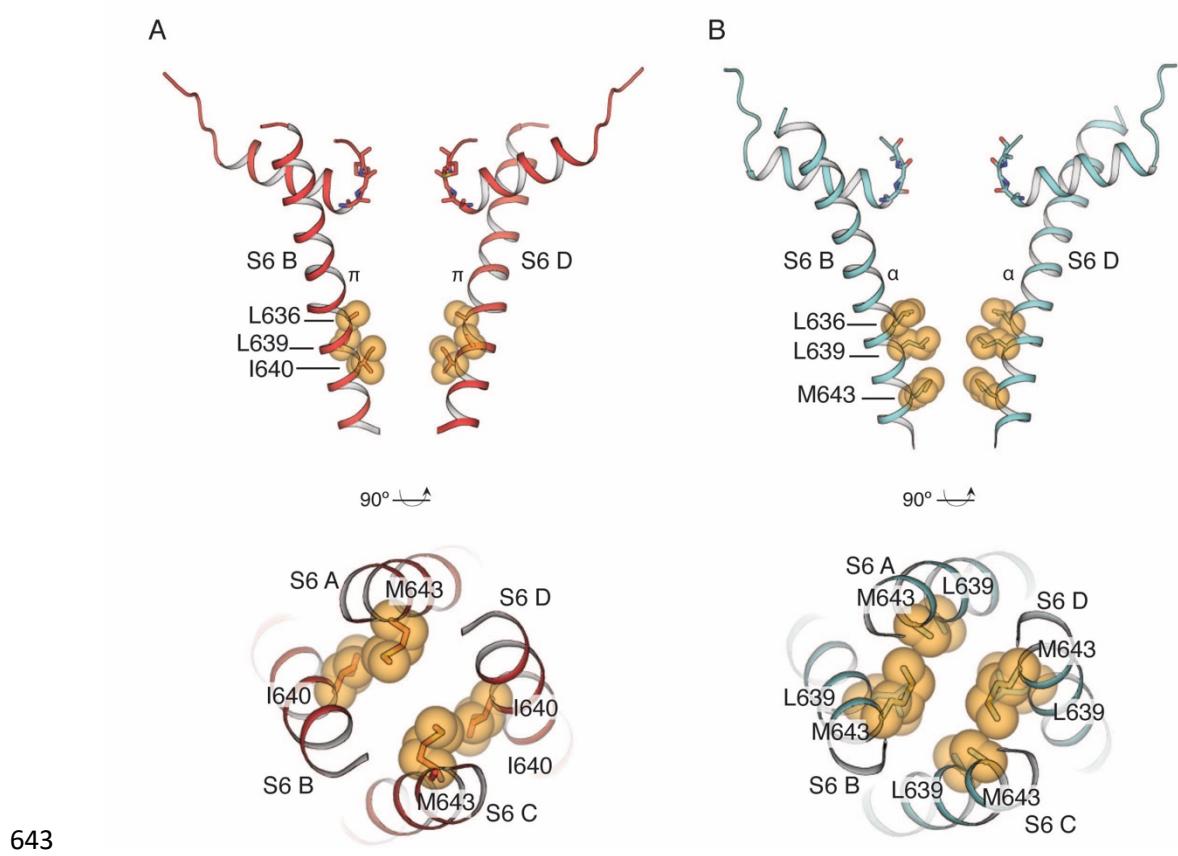

634

635 **Figure Supplement 11**


636

637 **Figure Supplement 12**

639 **Figure Supplement 13**


640

rabbitTRPV2 558 SREAQNSRTPAGPNATEVGQPGAGQEDEAPPYRS ILDA 594
ratTRPV2 560 SREARSPKAPEDNNSTVTEQPTVGQEEEAPPYRS ILDA 596

641
642

Figure Supplement 14

643

644 **Figure Supplement 15**

645 **Figure Legends**

646 **Figure 1** Overview of TRPV2_{RTx-APOL} and TRPV2_{RTx-ND} structures. **A**, Orthogonal view of
647 TRPV2_{RTx-APOL} 1-3 and TRPV2_{RTx-ND} structures. TM domains are colored in gray and the
648 cytoplasmic domains (ARD and C-terminal domain) are colored in red. RTx is shown in stick
649 and sphere representation and colored in red. Lines drawn between diagonally opposite
650 ARDs (residue E95, shown in green spheres) illustrate the relative position of ARDs in the
651 tetramer. **B**, Bottom-up view of the ARD (red). Lines drawn between residues E95 (green
652 spheres) illustrate the symmetry and rotation of the ARD assemblies. **C**, Top view of the
653 channel (red). Lines drawn between residues V620 in the S6 helix illustrate the symmetry
654 within the pore domain (red). **D**, Lines drawn between residues Y523 show symmetry in the
655 S4-S5 linker (red).

656

657 **Figure 2** Overview of the pore in the TRPV2_{RTx-ND} structure. **A**, S6 and pore helices of
658 subunits A and C (left) and subunits B and D (right). Pore helices are shown in both cartoon
659 and cylinder representation (gray). Dashed lines and values represent distances between the
660 indicated residues. S6 helices in A and C are α -helical, while a π -helical turn is introduced in
661 subunits B and D. **B**, Top view of the TRPV2_{RTx-ND} pore, with pore helices shown in both
662 cartoon and cylinder representation. Dashed lines illustrate the distances between residues
663 G604 in the selectivity filter. **C**, Overlay of the TRPV2_{RTx-ND} pore domains (S5, S6 and pore
664 helices). Subunit A is shown in red and subunit B in violet. The pore helix of subunit A
665 swivels by $\sim 27^\circ$ relative to subunit B.

666

667 **Figure 3** Comparison of TRPV2_{RTx-ND} (red) and TRPV2_{APO} (orange). **A**, Overlay of
668 TRPV2_{RTx-ND} and TRPV2_{APO}, top view. TRPV2_{RTx-ND} is shown in cartoon representation and

669 TRPV2_{APO} as cylinders. Relative to TRPV2_{APO}, the TM subunits of TRPV2_{RTx-ND} exhibit
670 contraction (red arrows). **B**, Top view of the ARDs in TRPV2_{RTx-ND} and TRPV2_{APO}. TM
671 helices are removed for ease of viewing. Dashed lines represent distances between residues
672 T100, showing a 10 Å expansion and 3° rotation of the TRPV2_{RTx-ND} ARD assembly relative
673 to TRPV2_{APO}. **C**, A rigid-body rotation of TRPV2_{RTx-ND} subunit B around the S4-S5 linker
674 achieves alignment with the subunit B from TRPV2_{APO}. Following alignment, only the S4-S5
675 linkers and the pore helices (PH) diverge in the two subunits (dashed box). **D**, Cartoon
676 illustrating how the movements of the TM and the ARD in TRPV2_{RTx-ND} are coupled. The red
677 and orange shapes represent a single subunit of TRPV2_{RTx-ND} and TRPV2_{APO}, respectively.
678 The rotation of the subunit is manifested as “contraction” in the TM domains “expansion” of
679 the ARD. **E**, RTx binding in the vanilloid binding pocket exerts force on the S4-S5 linker,
680 changing the conformation of the junction from α - to π -helix, and induces the rotation of the
681 subunit around the S4-S5 π -hinge.

682 **Figure 4** Comparison of TRPV2_{RTx-ND} (red) and TRPV2_{RTx-XTAL} (cyan). **A**, Overlay of
683 TRPV2_{RTx-ND} and TRPV2_{RTx-XTAL}, top view. TRPV2_{RTx-ND} is shown in cartoon representation
684 and TRPV2_{RTx-XTAL} as cylinders. Relative to TRPV2_{RTx-APOL 1}, subunits A and C of
685 TRPV2_{RTx-ND} are widened, while subunits B and D exhibit contraction (red arrows). **B**,
686 Comparison of two-fold symmetry in TRPV2_{RTx-ND} and TRPV2_{RTx-XTAL}. Dashed lines
687 represent distances between residues A427. **C**, Top view of the SF gate in TRPV2_{RTx-ND} and
688 TRPV2_{RTx-XTAL}. Pore helices are shown in both cartoon and cylinder representation. Dashed
689 lines represent distances between residues G604 in the selectivity filter. **D-E**, Overlay of the
690 pore domains of TRPV2_{RTx-ND} and TRPV2_{RTx-XTAL} subunit A (**D**) and subunit B (**E**) show that
691 the pore helices A and B in TRPV2_{RTx-ND} swivel by ~10° and 13.5°, respectively, compared
692 to TRPV2_{RTx-XTAL}.

693

694 **Figure 5** Conformational states associated with RTx-mediated gating of TRPV2. **A**, TRPV2
695 subunit rotation upon binding of RTx. Rotation axis and direction is indicated in dashed line
696 and circular arrow in apo TRPV2 (left). The rotation results in contraction of the TM domains
697 and widening of the cytoplasmic assembly (right). **B**, Hypothetical trajectory of TRPV2
698 gating with associated conformational states. Upon addition of RTx, TRPV2 first enters low-
699 energy pre-open states that are characterized by rotation, widening and symmetry breaking in
700 the ARD (TRPV2_{RTx-APOL 1-3}, models shown in cartoon and surface representation). In the
701 next step, the channel assumes C2 symmetric state with an open SF gate, but closed common
702 (S6) gate (TRPV2_{RTx-XTAL}, model shown in cartoon and surface representation). This is
703 followed by a less C2 symmetric state with an open SF gate and semi-open S6 gate
704 (TRPV2_{RTx-ND}, model shown in cartoon and surface representation). Finally, we propose that
705 the channel assumes a high-energy fully open state that is C4 symmetric but might have C2
706 symmetry in the SF gate. The SF gate is indicated in green in models and cartoons.

707 **Figure 6** Comparison of TRPV2_{RTx-ND} (red), TPC (PDB 6C96, purple) and Nav1.4 (PDB
708 6A95, blue). Top view, pore helices are indicated.

709

710 **Figure Supplement 1** Cryo-EM data collection and processing, TRPV2_{RTx-APOL}. **A**,
711 Representative micrograph from the TRPV2_{RTx-APOL} dataset. **B**, 3D reconstruction workflow
712 resulting in 3 distinct TRPV2_{RTx-APOL} structures. **C**, Euler plot distribution. Red regions
713 signify the best represented views. **D-F**, Local resolution estimates calculated in Relion for
714 TRPV2_{RTx-APOL 1} (**D**), TRPV2_{RTx-APOL 2} (**E**), TRPV2_{RTx-APOL 3} (**F**). **G-I**, FSC curves calculated
715 between the half maps (blue), atomic model and the final map (red), and between the model
716 and each half-map (orange and green) for TRPV2_{RTx-APOL 1} (**G**), TRPV2_{RTx-APOL 2} (**H**),
717 TRPV2_{RTx-APOL 3} (**I**).

718

719 **Figure Supplement 2** Cryo-EM data collection and processing, TRPV2_{RTx-ND}. **A**,
720 Representative micrograph from the collected TRPV2_{RTx-ND} dataset. **B**, 3D reconstruction
721 workflow. **C**, Euler distribution plot. Red regions indicate best represented views. **D**, FSC
722 curves calculated between the half maps (blue), atomic model and the final map (red), and
723 between the model and each half-map (orange and green). **E**, Local resolution estimate,
724 calculated in Relion.

725

726 **Figure Supplement 3** Representative electron densities in the TRPV2_{RTx-APOL 1} cryo-EM
727 map. Densities are contoured at level 0.06 and radius 2.

728

729 **Figure Supplement 4** Representative electron densities in the TRPV2_{RTx-APOL 2} cryo-EM
730 map. Densities are contoured at level 0.06 and radius 2.

731

732 **Figure Supplement 5** Representative electron densities in the TRPV2_{RTx-APOL 3} cryo-EM
733 map. Densities are contoured at level 0.02 and radius 2.

734

735 **Figure Supplement 6** Representative electron densities in the TRPV2_{RTx-ND} cryo-EM map.
736 Densities are contoured at level 0.015-0.03 and radius 2.

737

738 **Figure Supplement 7** Pore comparison of TRPV2_{APO} (orange) and TRPV2_{RTx-APOL 1-3} (blue,
739 purple and salmon, respectively). HOLE profiles (dots and graph) indicate that both the
740 selectivity filter and the common gates are closed in TRPV2_{RTx-APOL 1-3}.

741

742 **Figure Supplement 8** Comparison of TRPV2_{RTx-APOL 1} (blue) and TRPV2_{APO} (orange). **A**,
743 Overlay of the TM helices. Individual subunits are indicated. **B**, Top view of the cytoplasmic
744 domains. The TMs are removed for ease of viewing. Distance measured between residues
745 T100 in TRPV2_{APO} (black dotted line) and TRPV2_{RTx-APOL 1} (red dotted line). The
746 cytoplasmic assembly rotates by 5° and widens by 10Å in the presence of RTx. **C**, Overlay of
747 S5 helices. In the presence of RTx, a π -helix is formed at the junction of the S4-S5 linker
748 and the S5 helix changing the position of the S4-S5 linker. **D**, Overlay of S6 helices and the
749 TRP domain. The TRP domain is displaced in the presence of RTx.

750

751 **Figure Supplement 9** Two-fold symmetry in TRPV2_{RTx-APOL 3} (salmon). **A**, Pore of the four-
752 fold symmetric TRPV2_{APO} (orange) compared to the pore of the two-fold symmetric
753 TRPV2_{RTx-APOL 3} (salmon) subunits A and C (middle) and subunits B and D (right). **B**,
754 Position of the pore helix in TRPV2_{RTx-APOL 3} subunit A (salmon) compared to the subunit B
755 (grey). **C**, Conformation of the S4-S5 linker in TRPV2_{RTx-APOL 3} subunit A (salmon)
756 compared to subunit B (grey). **D**, Comparison of TRPV2_{RTx-APOL 3} (salmon) and TRPV2_{APO}
757 (orange) ARD. The TMs are removed for ease of viewing. The dashed lines represent the
758 distance between diagonally opposite residues T100 in TRPV2_{APO} (black line) and
759 TRPV2_{RTx-APOL 3} (red line). The ARD are rotated and expanded in TRPV2_{RTx-APOL 3}.

760

761 **Figure Supplement 10** Symmetry breaking in the TRPV2_{RTx-APOL 2-3} ARD. **A**, Two-fold
762 symmetry in the ARD and S4-S5 linker of the TRPV2_{RTx-APOL 2} structure. Subunit A (purple)
763 overlaid with TRPV2_{APO} (orange) (left). Subunit B (purple) overlaid with TRPV2_{APO} (orange).
764 In both subunits, TM domains are aligned but ARD and the S4-S5 linker (dashed line box)

765 diverge. **B**, TRPV2_{RTx-APOL} 2 subunits A and B (purple) assume distinct conformations in the
766 ARD.

767

768 **Figure Supplement 11** Comparison of TRPV2_{RTx-ND} subunits A (red) and B (violet). **A**,
769 Overlay of the subunits. The regions that diverge from the overlay, the S4-S5 linker and the
770 pore helix (PH), are indicated by a dashed line box. **B**, Overlay of S5 helices. The alignment
771 diverges at the S4-S5 linker π -helix (S4-S5 _{π -hinge}) giving rise to different conformations of the
772 S4-S5 linker in the two subunits.

773

774 **Figure Supplement 12** Comparison of subunits B in TRPV2_{RTx-APOL} (red) and TRPV2_{RTx-}
775 _{XTAL} (cyan). **A**, Rotation of subunit B from TRPV2_{RTx-APOL} around the S4-S5 π -hinge aligns it
776 to subunit B from TRPV2_{RTx-XTAL}. The S4-S5 linker and the PH (dashed box) diverge from
777 the alignment. Rotation axis indicated with dashed line and arrow. **B**, Overlay of TRPV2_{RTx-}
778 APOL and TRPV2_{RTx-XTAL} S5 helices from subunit A (left) and subunit B (right) show that the
779 S4-S5 linkers assume different conformations.

780

781 **Figure Supplement 13** Interactions between the pore helix (PH) and S5 and S6. RTx is
782 shown in stick and transparent surface representation. **A-B**, Side view of subunits A in
783 TRPV2_{RTx-ND} (**A**) and TRPV2_{RTx-XTAL} (**B**). The hydrogen bond triad (Y542-T602-Y627) is
784 present in subunit A of TRPV2_{RTx-XTAL}. The triad is broken in TRPV2_{RTx-ND}. **C-D**, Side view
785 of subunits B in TRPV2_{RTx-ND} (**C**) and TRPV2_{RTx-XTAL} (**D**). The hydrogen bond triad is absent
786 in both structures.

787

788 **Figure Supplement 14** The pore turret in TRPV2_{RTx-APOL 1} (blue) and rat TRPV2 (PDB
789 6BO4, purple). **A**, Top view of the map and model of TRPV2_{RTx-APOL 1} with the pore domain
790 indicated by dashed red box. **B**, Side view of the map and model of the pore domain in
791 TRPV2_{RTx-APOL 1}. S5, S6, PH and pore turret are indicated. **C**, Top view of the map and
792 model of rat TRPV2 with the pore domain indicated by dashed red box. **D**, Side view of the
793 map and model of the pore domain in rat TRPV2. S5, S6, PH and pore turret are indicated. **E**,
794 Position of the turret relative to the membrane (yellow lines) in TRPV2_{RTx-APOL 1} and rat
795 TRPV2. The sequence of the turret shows conservation (gray boxes) and amino acids colored
796 in red indicate charged or polar residues

797 **Figure Supplement 15** The common gate in TRPV2_{RTx-ND} (red) and TRPV2_{RTx-XTAL} (cyan).
798 **a**, Side view of the TRPV2_{RTx-ND} pore showing subunits B and D (top). Gate residue I640 is
799 shown in yellow spheres, along with the hydrophobic residues L636 and L639 (side chains
800 not built). Bottom-up view (bottom) shows the contribution of all four subunits to the
801 common gate (M643 in subunits A and C, I640 in subunits B and D). **b**, Side view of the
802 TRPV2_{RTx-XTAL} pore, showing subunits B and D (top). Gate residue M643 is shown in yellow
803 spheres, along with hydrophobic pore lining residues L636 and L639. Bottom-up view of the
804 common gate (bottom) shows gate residues M643 (side chain not built in subunits A and C).