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Abstract

In the past few years, drug discovery processes have been relying more and more
on computational methods to sift out the most promising molecules before time and
resources are spent to test them in experimental settings. Whenever the protein target
of a given disease is not known, it becomes fundamental to have accurate methods for
ligand-based Virtual Screening, which compare known active molecules against vast
libraries of candidate compounds. Recently, 3D-based similarity methods have been
developed that are capable of scaffold-hopping and to superimpose matching molecules.
Here, we present InterLig, a new method for the comparison and superposition of
small molecules based on 3D, topologically-independent alignments of atoms. We test
InterLig on a standard benchmark and show that it compares favorably to the best
currently available 3D methods.
InterLig is open source and is available to everyone at: http://wallnerlab.org/interlig.

1 Introduction

Virtual Screening (VS) is a computational technique for the discovery of new,
biologically active drug molecules. The idea behind VS is to analyze vast
databases of libraries of untested compounds with in-silico methods that should
sift out the most promising leads before these are tested in experimental set-
tings. Given the costs associated with laboratory experiments, it is no surprise
that huge efforts are being put in developing more accurate methods for VS, so
that fewer resources are wasted in pursuing potential dead ends. There are two
main approaches to VS, based on structure or ligand. In structure-based VS
(SBVS) candidate ligands are docked on the structure of a known receptor [1],
while in ligand-based VS (LBVS) the similarity of an active ligand is used to
expand the number of potential canditate ligands. The SBVS explicitly model
the ligand-receptor interaction enable potentially better results [9]. However,
when the structure of the receptor is unknown or not accurate enough LBVS
can still be used.

LBVS methods are based on the assumption that structurally similar com-
pounds have a higher chance of binding to the same receptor [2]. The structural
similarity can be calculated by comparing 2D fingerprints of compounds or by
more accurate 3D structural alignments [11, 5] that also allow scaffold hop-
ping [6, 10] and provide starting points for 3D docking.

Most methods using 3D are shape-based, representing molecules as a mix-
ture of gaussians and structure comparisons as overlaps between them [3, 12, 11],
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more recently more detailed atom-level comparisons have shown promising re-
sults [5].

In this study, we present InterLig, an open-source software for 3D-based
LBVS. InterLig uses a simulated annealing-based procedure to map sets of
atoms from two molecules in a topologically-independent fashion, which makes
it particularly suited for scaffold hopping. The simulated annealing procedure
makes InterLig especially fast, making it possible to compare tens of thousand
of molecules within minutes (see Table S5 in the supplementary). Moreover,
along with the similarity score, a p-value is calculated to assess the statisti-
cal significance. InterLig is benchmarked against two state-of-the-art softwares
for 3D LBVS and outperforms both according to several standard performance
measures.

2 Datasets

InterLig is benchmarked against DUD-E (Database of Useful Decoys: Enhanced) [7],
a standard benchmark for VS softwares. DUD-E contains 22,886 active lig-
ands against 102 protein targets and 50 times more inactive decoys with similar
physico-chemical properties but dissimilar 2D topology.

To account for flexible molecules, multiple conformers of DUD-E ligands and
decoys are generated using OMEGA (OpenEye Inc.) [4] with the “strict” flag set
to false and minimum RMSD between two conformers set to 2A. Approximately
300K additional ligands and 8M additional decoys are generated this way.

3 Results and Discussion

InterLig is based on the InterComp algorithm that we recently developed and
successfully applied to the comparison of protein interfaces [8]. It is capable of
performing topologically-independent alignments of sets of atoms in a 3D space
while taking into account both the relative position and the chemical similarity
of the aligned atoms. The core of the adapted algorithm in InterLig is identical
to InterComp, the difference is only in two parameters involving a cutoff dis-
tance, and the trade-off between coordinate and chemical similarity. In addition,
to account for the differences in similarity measure the statistical significance
of a hit also had to be recalculated. Because the similarity measure used by
InterLig is dependent on the size of the compounds, and smaller ligands have
a higher probability to obtaining a high score by chance (Fig. S2), the signifi-
cance (p-value) of a score is calculated by fitting an extreme value distribution
to scores between non-related compounds of different sizes in Fig. S2. For more
details on the algorithm and the statistical significance, see Supplementary in-
formation.

InterLig is benchmarked using standard performance measures for VS (see
Supplementary information) against LS-align [5] and LIGSIFT [11], two state-
of-the-art softwares for 3D LBVS. LS-align has, to the best of our knowledge,
the best performance on the DUD-E benchmark, while LIGSIFT had the best
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performance on the older DUD set. To ensure a fair comparison each software
was run using the default parameters both the DUD-E benchmark and the mul-
tiple conformer set, if more than one similarity measure is reported, the measure
that showed the highest performance was used. LS-align has a “flexible” option
to generate its own set of conformers, however when benchmarked it showed
better performance in “rigid” mode with the multiple conformers generated as
above (see Table S4). As in previous studies [13], whenever multiple ligands or
decoys have the same ID (including multiple conformers), only the most similar
to the seed ligand (highest ranked) is used in the analysis.

In the test on the regular DUD-E dataset, InterLig has signficantly larger
(P<0.05) AUC and enrichment factors across all top rank percentages com-
pared to both LIGSIFT and LS-align, see Table 1. The performance metrics for
LS-align are actually slightly better than those reported in the original publi-
cation [5], most likely because how multiple compounds with the same ID are
treated. Looking per target, InterLig has a higher AUC compared to LS-align
for 60 and LIGSIFT for 76 (out of 102) targets, see Fig. S3(a).

For the multiple conformers set, InterLig is significantly better compared to
LIGSIFT and LS-align on all performance metrics, except for EF'% on which
it does have a higher EF but not in a significant way, see Table 2. Tables
with detailed target-by-target results are available for regular in Table S2 and
for multiple conformers in Table S3. The results for multiple conformers is
overall slightly better compared single conformers, indicating that it might be
worth spending some additional time generating conformers to achieve optimal
performance (Fig. S4). However, the difference is not huge and if speed is of
essence it is almost as good to not generate the conformers.

It was further noted that the per target performance for InterLig and LS-
align were quite different, see Fig. S3. Thus, there should be potential to com-
bine the two approaches to achieve even higher performance. To test this hy-
pothesis, a combination of InterLig and LS-align was constructed by multiplying
the reported p-values and resort the hits. Indeed, the combination InterLig+LS-
align is superior to both individual methods, demonstrating that the results from
the two methods are complementary, see Table 2.

EF EF°% EF10% AUC
LIGSIFT 16.88 (10~%) 6.16 (1075) 3.95 (10=%) 0.71 (10~ 7)
LS-align  20.70 (0.05)  7.19 (0.03)  4.44 (0.01)  0.75 (0.009)
InterLig ~ 22.28 7.63 4.77 0.76

Tab. 1: Average Enrichment Factors (EF) for different percentage of top hits
and Average Area Under the Curve (AUC) on the DUD-E dataset. The
highest values for each column are highlighted in bold. The significance
of the improvement between InterLig and the other methods is reported
for each measure in brackets (Wilcoxon signed-rank test p-value).
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EF'™ EF5% EF10% AUC

LIGSIFT 22.18 (0.1) 7.48 (0.019) 4.63 (0.03) 0.75 (0.003)

LS-align 22.77 (0.16) 7.50 (0.002) 4.63 (0.005) 0.75 (0.001)
InterLig 23.13 8.07 4.91 0.78
InterLig 4+ LS-align 25.12 8.72 5.27 0.79

Tab. 2: Average Enrichment Factors (EF) for different percentage of top hits
and Average Area Under the Curve (AUC) on the DUD-E multiple
conformer dataset. The highest values for each column are highlighted
in bold. The significance of the improvement between InterLig and
the other methods is reported for each measure in brackets (Wilcoxon
signed-rank test p-value).
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