

Evaluation of Enhanced Learning Techniques for Segmenting Ischaemic Stroke Lesions in Brain Magnetic Resonance Perfusion Images using a Convolutional Neural Network Scheme

Carlos Uziel Perez Malla¹, Maria del C. Valdes Hernandez^{2,*},
Muhammad Febrian Rachmadi,¹ and Taku Komura¹

¹University of Edinburgh, School of Informatics, Edinburgh, EH8 9AB, UK

²University of Edinburgh, Department of Neuroimaging Sciences, Edinburgh, EH16 4SB, UK

Correspondence*:

Maria del C. Valdes Hernandez
M.Valdes-Hernan@ed.ac.uk

2 ABSTRACT

3

4 Magnetic resonance (MR) perfusion imaging non-invasively measures cerebral perfusion,
5 which describes the blood's passage through the brain's vascular network. Therefore it is widely
6 used to assess cerebral ischaemia. Convolutional Neural Networks (CNN) constitute the state-
7 of-the-art method in automatic pattern recognition and hence, in segmentation tasks. But none
8 of the CNN architectures developed to date have achieved high accuracy when segmenting
9 ischaemic stroke lesions, being the main reasons their heterogeneity in location, shape, size,
10 image intensity and texture, especially in this imaging modality. We use a freely available CNN
11 framework, developed for MR imaging lesion segmentation, as core algorithm to evaluate the
12 impact of enhanced machine learning techniques, namely data augmentation, transfer learning
13 and post-processing, in the segmentation of stroke lesions using the ISLES 2017 dataset, which
14 contains expert annotated diffusion-weighted perfusion and diffusion brain MRI of 43 stroke
15 patients. Of all the techniques evaluated, data augmentation with binary closing achieved the
16 best results, improving the mean Dice score in 17% over the baseline model. Consistent with
17 previous works, better performance was obtained in the presence of large lesions.

18 **Keywords:** ischaemic stroke, medical image analysis, deep learning, computer vision, convolutional neural networks, deepmedic

1 INTRODUCTION

19 Magnetic resonance imaging (MRI) has become a powerful clinical tool for diagnostics. Its application
20 has been expanded to the evaluation of brain function through the assessment of a number of functional
21 and metabolic parameters. One such parameter is cerebral perfusion, which describes the passage of
22 blood through the brain's vascular network. Amongst the several techniques used to measure cerebral
23 perfusion (Fantini et al., 2016; Petrella and Provenzale, 2000), MRI is perhaps the most widely used due
24 to its non-invasiveness. Thus, having great potential in becoming an important tool in the diagnosis and
25 treatment of patients with cerebrovascular disease and other brain disorders. It measures cerebral perfusion
26 via assessment of various hemodynamic measurements such as cerebral blood volume, cerebral blood
27 flow, and mean transit time, from serial tissue tracer concentration measurements. These measurements
28 are analysed in relation to their values in normal tissue regions (e.g. normal-appearing white matter).
29 Therefore, the importance of estimating the location and extent of the abnormal region automatically.

30 Expert delineation is usually performed in the imaging modality that best displays the pathology while
31 simultaneously evaluating other imaging modalities. The quality of this process depends on the expert's

32 experience, and suffers from intra- and inter-observer variability (Kamnitsas *et al.*, 2017). Automated
33 segmentation methods are not only necessary to provide the quantitative information needed to better
34 support clinical decisions, but also to carry out large scale studies, with increased reliability and
35 reproducibility, for which manual delineation is simply unattainable (Maier *et al.*, 2017). Most of these
36 algorithms use expert-labelled data to "learn" the pattern to be segmented until a certain level of accuracy
37 is reached, and are expected to reproduce similar accuracy levels for new unlabelled data. Deep Learning
38 algorithms, such as Convolutional Neural Networks (CNN), have risen in popularity due to their success
39 on computer vision research (Krizhevsky *et al.*, 2012). Though CNNs are typically used for multi-label
40 image classification problems, they can also be employed for segmentation tasks by classifying each voxel
41 according to the region they belong to (Kamnitsas *et al.*, 2017).

42 In MR perfusion imaging, the pathologies' appearance does not follow a clear pattern, which makes
43 their detection far more difficult. Specifically ischaemic lesions can appear anywhere in the brain and
44 their shape and signal intensities vary not only between disease stages but also within them (Maier *et al.*,
45 2017). This variability increases with time from the stroke onset. Also, the intensity within the infarcted
46 region is not necessarily homogeneous (Kamnitsas *et al.*, 2017).

47 1.1 CNN Architectures for Brain Lesion Segmentation - DeepMedic

48 Specifically for the segmentation of brain lesions, different CNNs architectures have been
49 evaluated(Guerrero *et al.*, 2018; He *et al.*, 2016). One of them(Guerrero *et al.*, 2018) proposed a 2D CNN
50 architecture for White Matter Hyperintensities (WMH) segmentation, and reported having achieved state
51 of the art performance in differentiating them from ischaemic stroke lesions. However, by taking a 2D
52 approach, it discards important spatial information, since did not take into account the volumetric nature
53 of the data; and was only evaluated using structural MRI modalities, where lesions are homogeneous and
54 easier to identify.

55 Using a 3D approach to manipulate Magnetic Resonance Imaging (MRI) data is not straightforward,
56 as it requires significantly more computing power and memory than the 2D counterparts (Roth *et al.*,
57 2014). The main factor that attempts against 3D segmentation is the slow inference process. This can be
58 alleviated by taking advantage of dense inference (Sermanet *et al.*, 2013), a property of full convolutional
59 networks that avoids recomputing convolutions for overlapping image patches and thus reduces inference
60 times. 3D CNN architectures have been used to segment pathologies, (Milletari *et al.*, 2016; Brosch *et al.*,
61 2016). However, DeepMedic (Kamnitsas *et al.*, 2017) has emerged as the brain lesion segmentation CNN
62 method for excellence, due to its availability, technical support and versatility, as it has been applied not
63 only to segment hyperintense lesions (Rachmadi *et al.*, 2018b), but also lesions with heterogeneous signal
64 intensities (i.e. tumours) (Kamnitsas *et al.*, 2017). It has a 3D CNN architecture of two pathways that
65 uses dense-inference and adds a 3D fully connected Conditional Random Forest (CRF) as a final post-
66 processing layer. By taking advantage of the dense inference, DeepMedic can be trained using image
67 segments (i.e. image patches of size bigger than the network's receptive field) to avoid recomputing
68 convolutions of overlapping patches. Additionally, the dual pathway is used to compute both local and
69 global (i.e. contextual) features at the same time by processing the same image at different scales. Finally,
70 the CRF is used to remove false positives before returning the final results. DeepMedic reached the first
71 position in the Ischemic Stroke lesion Segmentation (SISS) subchallenge of the Ischemic Stroke LElision
72 Segmentation (ISLES) 2015 challenge¹.

73 Subsequent winners of the ISLES challenges have used other approaches. For example, whilst
74 DeepMedic uses a traditional cross-entropy function (Kamnitsas *et al.*, 2017), the winners of the ISLES
75 2017 challenge (Choi *et al.*, 2017; Lucas and Heinrich, 2017), use a loss function based on Dice Similarity
76 Coefficient (DSC) particularly designed for unbalanced data sets (Sudre *et al.*, 2017). Also, (Choi *et al.*,
77 2017) implement a spatial pyramid pooling layer (He *et al.*, 2014), recently combined with an encoder-
78 decoder (Chen *et al.*, 2018b) to improve segmentation predictions. Spatial pyramid pooling guarantees a
79 fixed output size for different sized inputs (He *et al.*, 2014). This means that the network can process inputs
80 at different scales, similarly to DeepMedic, while keeping the same output size. Dilated convolutions have
81 also proven useful for enhancing the spatial resolution of the network and thus improving the performance
82 for semantic segmentation (Chen *et al.*, 2018a, 2017). These convolutional layers extend the field of view
83 and thus can extract features at different scales.

¹ www.isles-challenge.org/ISLES2015/

84 1.2 Enhancing Learning Techniques

85 Variations in CNN architectures appear to show improvements in the segmentation of certain
86 pathologies. However, these methods suffer a significant loss in performance when these changes are
87 applied to datasets acquired with different imaging protocols, or using different sequences (i.e. task
88 domain changes), they are applied to the assessment of different types of lesions caused by different
89 pathology (e.g. the initial task being to segment tumour lesions, whilst the actual task is to segment
90 ischaemic stroke lesions), or they are expected to perform tasks that are related to but not the same task
91 they were trained for (e.g. lesion segmentation vs. lesion assessment).

92 There are several ways to enhance the performance of the CNN architectures without modifying the
93 architecture itself. In general, they can be enumerated as follows: 1) pre-processing the input data, 2)
94 modifying the input data by adding information derived from internal and external sources (i.e. data
95 augmentation), 3) re-purposing a model trained for one task to perform a second related task (i.e. transfer
96 learning), and 4) post-processing the output from the CNN.

97 1.2.1 Pre-processing the Input Data

98 The importance of pre-processing the data has been highlighted by previous works. For example,
99 Rachmadi and colleagues(Rachmadi et al., 2018b), for segmenting WMH, extract the brain tissue from
100 the originally acquired MRI, and only input this to the CNN architecture. In addition, perform a three-
101 step intensity normalisation: 1) adjust the maximum grey scale value of the MRI brain to 10 percent of the
102 maximum intensity value, 2) adjust the contrast and brightness of the images such that their histograms
103 are consistent, and 3) normalise the intensities of the resultant images to zero-mean and unit-variance.
104 Guerrero and colleagues, for similar task, used two MRI modalities (Guerrero et al., 2018), which were
105 co-registered, resliced to have 1mmx1mm in-plane voxel size, and normalised their intensities. In general,
106 intensity normalisation, contrast adjustment and removal of background features that could confound the
107 algorithms are necessary for achieving a good segmentation. When multiple MRI sequences or imaging
108 modalities are used, co-registration is also necessary.

109 1.2.2 Data Augmentation

110 Training a machine learning model is equivalent to tune its parameters so that it can map a particular
111 input to an output. The number of parameters needed is proportional to the complexity of the task.
112 These parameters can increase if more information is given. The increase in the amount of input data
113 without necessarily meaning an increase in the contextual or semantic data per se is known as data
114 augmentation and has been used in brain image segmentation tasks. Several studies have introduced
115 global spatial information as an additional input to CNN schemes in form of large 2D orthogonal patches
116 downsampled by a factor(de Brebisson and Montana, 2015), integrated with intensity features from image
117 voxels(Van Nguyen et al., 2015), as a number of hand-crafted spatial location features(Ghafoorian et al.,
118 2016), synthetic volume(Steenwijk et al., 2013; Roy et al., 2015), or set of synthetic images that encode
119 spatial information(Rachmadi et al., 2018b) for mentioning some examples. In other words, all input
120 datasets are acquired under a limited set of conditions (e.g. specific MRI scanning protocols, pathology
121 appearance restricted to few examples,etc.). However, our target application may exist in a variety of
122 conditions (e.g. pathologies in different location, scale, brightness, contrasts, shapes). By synthetically
123 generating data to account for these variations without adding irrelevant features, good results might be
124 obtained. A review of the state of the art in medical image analysis concluded that very similar algorithms
125 could achieve different results due to smart data pre-processing and augmentation (Litjens et al., 2017).

126 1.2.3 Transfer Learning

127 Transfer learning has become a popular choice for re-purposing machine learning models that have
128 proven useful for particular tasks, by means of either fine-tuning pre-trained models with data of another
129 nature (i.e. domain adaptation transfer learning), or using a pre-trained model as a starting point for a
130 model on a second task of interest (i.e. task adaptation transfer learning). Domain adaptation transfer
131 learning, where data domains in training and testing processes differ, has been applied successfully to
132 brain MRI segmentation tasks. For example, one study improved Support Vector Machines (SVM)'s
133 performance using different distribution of training data(Van Opbroek et al., 2015). Another study
134 pre-trained CNN using natural images for segmentation of neonatal to adult brain images(Xu et al.,
135 2017), and other study pre-trained a CNN for brain lesion segmentation using MRI data acquired

136 with other protocols(Ghafoorian et al., 2017). Task adaptation transfer learning has been applied to
137 WMH segmentation, by teaching a CNN to "learn" to detect texture irregularities instead of binary
138 expert-delineated WMH segmentations (Rachmadi et al., 2018a).

139 **1.3 Contributions**

140 Our main contributions are to propose and evaluate data augmentation and transfer learning methods for
141 improving the output of a widely used brain lesion segmentation CNN approach, namely DeepMedic, to
142 identify and delineate the ischaemic stroke lesion from MR perfusion imaging.

2 METHODS

143 **2.1 Data**

144 The ISLES challenge was conceived as a common benchmark for researchers to compare their
145 segmentation algorithms (Maier et al., 2017) for ischaemic stroke lesions. Initially, the first iteration of
146 ISLES (in 2015), included two sub-challenges, namely Stroke Perfusion EStimation (SPES) and SISS.
147 The first sub-challenge was about segmenting stroke lesions in the acute phase, whereas the second
148 focused on sub-acute lesions (Maier et al., 2017).

149 The stroke cases were carefully crafted and included a wide range of lesion variability. Images were
150 obtained in clinical routine, with different amounts of image artifacts and different views (Maier et al.,
151 2017). Also, some subjects suffered from other pathologies that could be mistaken for ischemic stroke
152 lesions. All files are given in uncompressed Neuroimaging Informatics Technology Initiative (NIfTI)
153 format: (*.nii).

154 ISLES 2017 contains 43 and 32 training and testing acute subjects, respectively. Included MRI
155 sequences are Apparent Diffusion Coefficient (ADC), 4D Perfusion Weighted Image (4DPWI), Mean
156 Transient Time (MTT), relative Cerebral Blood Flow (rCBF), relative Cerebral Blood Volume (rCBV),
157 Time to maximum (Tmax) and Time to peak (TTP). Images from all modalities were skull-stripped,
158 anonymised and individually co-registered.

159 The Ground Truth (GT) files, which delimit the actual lesion region, were only provided for training
160 subjects, so as to avoid having participants performing fine-tuning on the test data. They were segmented
161 on T2-weighted and Fluid Attenuation Inversion Recovery (FLAIR) sequences after the stroke had
162 stabilised, but these imaging modalities were not provided.

163 After careful examination, the stroke subjects in the training data were classified into three different
164 stroke subtypes. These are lacunar/subcortical (10 subjects), small cortical (7 subjects) and big
165 cortical/main artery (26 subjects).

166 **2.2 Baseline configuration**

167 The baseline CNN model, including its architecture and hyper-parameters, is based on DeepMedic
168 v0.6.1 (Kamnitsas et al., 2017). The architecture used slightly differs from the initial architecture
169 (Kamnitsas et al., 2017) . It is illustrated in figure 1, including the addition of residual connections.

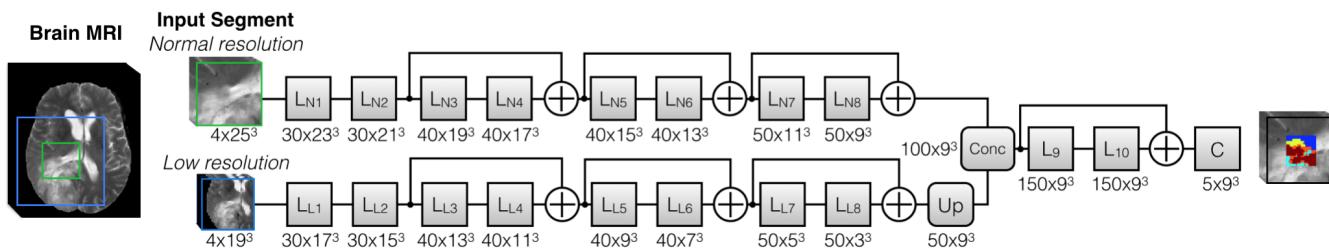


Figure 1. The DeepMedic architecture used, including residual connections. **Source:** github.com/KamnitsasK/deepmedic

170 The number of convolutional layers was 8, and the number of feature maps for each were
171 [30, 30, 40, 40, 40, 50, 50]. The kernel size was (3, 3, 3) for all layers. Residual connections in both
172 pathways were also included so that the input of layers [3, 4, 6] was added to the output of layers [4, 6, 8].

173 The final blocks of the scheme were composed of Fully Connected (FC) layers and a CRF. The number
174 of FC layers was set to two, with 150 feature maps each. The size of the kernels of the first FC layer, which
175 combined the outputs of different scales, was again (3, 3, 3). Additionally, there was a residual connection
176 between the second and first layers, meaning that the input of the first FC layer was added to the output of
177 the second and final FC layer.

178 The second pathway had an additional parameter that determined the downsampling factor applied to
179 the images fed to the second pathway. Additionally, batch normalization(Ioffe and Szegedy, 2015) was
180 added at the end of each convolutional layer.

181 The dimension of the training and validation segments were [25, 25, 25] and [17, 17, 17], respectively.
182 The latter was equal to the receptive field of the network. The size of the segments was limited by the
183 available RAM and GPU memory.

184 The batch size for training, validation and inference were set to 24, 48 and 24, respectively.
185 Dropout(Srivastava et al., 2014) was added in the second FC layer and the final classification layer, both
186 with a rate of 0.5. Weight initialization followed a modified Xavier initialization (Glorot and Bengio,
187 2010) that accounts for nonlinearities (He et al., 2015). This allows the training of deeper networks and
188 works well with Parametric Rectified Linear Units (PReLU) (He et al., 2015), which were the predefined
189 activation units.

190 Also, intracranial volume masks were provided to limit the region where samples were extracted
191 from, which in turn saved time and memory. This means that foreground samples were extracted from
192 the GT label mask and background samples extracted from the region inside the subject mask minus
193 the intersection with the label mask. By default, samples were extracted centered in a foreground or
194 background voxel with equal probability.

195 During training, epochs were divided into subepochs. The number of epochs and subepochs was set to
196 35 and 20, respectively. For each subepoch, 1000 segments were extracted from up to 50 cases.

197 The learning rate was decreased exponentially and the momentum linearly increased. The values that had
198 to be reached at the last epoch were 10^{-4} for the former and 0.9 for the latter. The learning rate, initially
199 set to 10^{-3} , started to lower at epoch 1. Updating learning rates through training is a way of making
200 sure that convergence is reached and in a reasonable time (Jacobs, 1988; Zeiler, 2012). The learning
201 optimizer was RmsProp(Tieleman and Hinton, 2012), with $\rho = 0.9$ (decay rate) and $\epsilon = 10^{-4}$ (smoothing
202 term that avoids divisions by zero). RmsProp was combined with Nesterov momentum(Nesterov, 1983),
203 as proposed by (Sutskever et al., 2013). The momentum value was set to $m = 0.6$ and normalized.
204 Additionally, weight decay was also implemented, in the form of L1 and L2 normalization with values
205 $L1 = 10^{-6}$ and $L2 = 10^{-4}$, respectively.

206 Also, two "online" (done during training) data augmentation techniques were set by default. The first
207 simply involved reflecting images with a 50% probability with respect to the X axis (from left to right). The
208 second consisted in altering the mean and standard deviation of the images, following the next equation:

$$I' = (I + s) * m, \quad (1)$$

209 where s (shift) and m (multi) are drawn from Gaussian distributions of $(\mu = 0, \sigma = 0.05)$ and $(\mu = 1, \sigma =$
210 $0.01)$, respectively.

211 Finally, due to memory limitations, only three out of the six available channels were used to train the
212 model, namely ADC, MTT and rCBF. In some experiments, rCBF was replaced by rCBV. Only two
213 segmentation classes were considered, foreground, representing the lesion, and background, representing
214 everything else.

215 2.3 Experiments

216 To evaluate the use of enhancing learning techniques for identifying ischaemic stroke lesions in
217 perfusion imaging data, six experiments were run (i.e. E0-E5) by varying one aspect of the model at
218 a time, such as the type of data or other parameters. This was done in the form of a pipeline, performing
219 pair-wise comparisons. At each stage of the pipeline, two models, with and without a particular change,
220 were compared. The best performing model of each pair-wise comparison proceeded to the next stage,
221 until the best performing model of all experiments was found.

222 To assess the performance of an experiment, k -fold cross-validation was employed, where $k = 5$. Cross-
223 validation is essential to give a good estimate of the real performance of an experiment. If cross-validation
224 hadn't been used, results would have highly depended on the composition of easy/hard cases in each set.
225 For example, if the test set had only been made of easy cases, the performance achieved would have been
226 greater than if they had been difficult cases. Overall, this not only increases the robustness of the results
227 but also the confidence of the decisions related to the changes that have worked best.

228 2.3.1 Data Pre-processing

229 Performing adequate pre-processing of the data is essential to maximize the performance of the model.
230 Some of the necessary pre-processing steps were already done by the ISLES organizers, such as co-
231 registering all images per subject setting them to have the same dimension, also per subject, and removing
232 extracranial tissues.

233 Additional pre-processing involved resampling all images to isotropic (i.e. 1x1x1mm) voxels size,
234 generating intracranial volume masks and normalizing the data to have zero mean and unit variance.
235 The latter is strongly suggested by DeepMedic's creator as it would substantially affect performance. The
236 intracranial volume masks were generating binarising the TTP images, and applying binary dilation before
237 the resampling to improve the boundaries. Due to memory constraints, all images had to be downsampled
238 with a factor of 0.7 so they could fit in memory.

Algorithm 1 Data Pre-processing

```
Initialize  $dF = 0.7$ 
for each subject do
  for each channel do
     $resampled\_channels \leftarrow resample(channel)$ 
  end for
   $mask \leftarrow compute\_mask(channels)$ 
   $mask \leftarrow resample(mask)$ 
   $save\_image(mask)$ 
  for each resampled_channel do
     $img \leftarrow normalize(resampled\_channel, mask)$ 
     $save\_image(img)$ 
  end for
end for
```

239 2.3.2 E0 - Baseline Configuration

240 This experiment (i.e. E0) consisted in training the DeepMedic configuration described previously,
241 with the default parameters using the pre-processed data. It established the baseline results. All future
242 experiments were compared against this or a better performing one. The imaging modalities used as input
243 channels were ADC, MTT and rCBF.

244 2.3.3 E1 - Data augmentation

245 We applied the data augmentation method known as intensity variance. It consists in randomly altering
246 the intensity values within the Region of Interest (ROI) or GT region following a Gaussian distribution of
247 mean and variance equal to the ones computed from the intensity values within the region.

248 The rationale behind this idea was to try to deal with one of the many complications of detecting the
249 ischemic stroke lesion in these types of images: their intensity inhomogeneity. As mentioned by (Maier
250 et al., 2017), the intensity values within the lesion territory can vary significantly. By using a mean and
251 variance based on the already available data, the intensities, while being different from the original, should
252 not be too different so as the lesion is no longer recognizable.

253 This augmentation was done offline, which means that the altered subjects were created and saved to be
254 fed to the network during training. It was decided to do it this way so as to avoid modifying DeepMedic's
255 core code, which would in turn become very time consuming. Each new subject is a "clone" of the
256 original, except for the intensity values within the ROI or GT label. All channels had their intensity
257 modified. Algorithm 2 shows how this was done.

Algorithm 2 Data augmentation

```
Initialize clones_number = 1
for each subject do
    Load label
    for each clones_number do
        Initialize clone_path
        for each channel do
            roi ← channel[nonzero(label)]
            channel[nonzero(label)] ← gaussian(mean(roi), std(roi))
            save_image(channel, clone_path)
        end for
    end for
end for
```

258 This experiment used the same baseline configuration parameters as E0, with the exception that the
259 data had been augmented. The original 43 subjects had been "cloned", following the procedure described
260 above. Thus, the total number of available training subjects became 86. However, since validation or
261 testing in augmented subjects is meaningless, only the subjects inside the training set contained clones.
262 Naturally, clones of the validation and test subjects were not part of the training set.

263 2.3.4 E2 - Transfer learning with error maps

264 The goal of this experiment was to improve the performance of a pre-trained model (i.e. the best
265 performing model so far), by fine-tuning the model with its error maps (i.e. weighted maps), using them
266 to draw more image segments from difficult regions (i.e. those where errors were bigger).

267 Fine-tuning is a type of transfer-learning aimed at improving the performance of a network pre-trained
268 for a different -although similar- task to the one the model was originally trained for (Pan et al., 2010).
269 For example, two different tasks can have the same goal and only vary on the information that is provided
270 to complete them. Usually, this technique involves re-training a network while "freezing" the first layers,
271 meaning that their parameters (weights) are kept fixed during training. Each consecutive layer of a CNN
272 generates more complex features from the ones detected in the previous layer. Consequently, the first
273 layers contain simpler features that are common for similar problems, and thus can be "transferred" to a
274 similar task. Then, new data is used to retrain the final layers, tuning the network to improve performance
275 on the new task.

276 In other words, the aim of fine-tuning is to adapt the network to the small details that make the new task
277 different, which means the learning rate has to account for that by being considerably small compared
278 to the original rate the model was pre-trained with. For that reason, while the learning rate of the initial
279 model was initialized to 10^{-3} , the rate for this experiment was 5×10^{-4} . There are three possible benefits
280 of using transfer learning: a higher start, a higher slope and a higher asymptote (Aytar and Zisserman,
281 2011). When performing transfer learning, it's possible that one, two, all or none of these benefits appear.

282 To improve learning, an adaptive sampling method has been proposed (Berger et al., 2017) for
283 DeepMedic. It consists in extracting more image patches in the regions where the prediction error is
284 bigger, according to error maps generated throughout training. DeepMedic already offers the possibility

285 of using weighted maps for the sampling process, which essentially serves the same function but in a
286 static way (i.e. maps must be generated beforehand and are not updated during training). By using these
287 maps, image segments are extracted more often from those regions where the weights are bigger. Error
288 maps, one per subject and class, were obtained by computing the square error between each voxel of the
289 GT label and the predicted probability map. The probability maps were obtained from the segmented test
290 cases of each fold, meaning that the error maps for all subjects could be computed. These maps were
291 normalized to zero mean and unit variance for homogeneity between subjects.

292 The paths of the computed error maps were included in different files, one for each class. These files
293 were specified in the configuration parameters, each line representing a subject, which had to be coherent
294 between files. Weighted maps can be defined both for training and validation. Since the goal was to
295 improve the network performance, only error maps for the training cases were provided. In these cases,
296 fine-tuning was performed by retraining the best model so far while extracting more image segments in
297 those regions where errors were bigger, with the aid of pre-computed error maps. All convolutional
298 layers were left frozen, thus only tuning the FC layers.

299 **2.3.5 E3, E4 and E5 - Transfer learning with rCBV**

300 Perfusion parametric maps rCBF and rCBV display different appearance depending on the area under
301 consideration. In the core of the stroke both sequences have substantially low values. However, in the
302 penumbra (i.e. affected but salvageable region), while rCBF is slightly reduced, rCBV can be normal or
303 even have higher values compared to normal tissue. Both sequences have been used to segment the stroke
304 (Chen and Ni, 2012).

305 In this experiment, the best performing model so far is retrained using the ADC, MTT and rCBV as
306 input channels. Recall that until now, models have used the ADC, MTT and rCBF as input channels for
307 training, as defined in the baseline configuration.

308 The goal of E3 is to make predictions more robust by tuning the weights of the FC layers, similar to
309 experiment E2 in previous section. This would make the network more sensitive to small changes between
310 rCBF and rCBV, which can be crucial to accurately segmenting the stroke.

311 E4 and E5 are essentially the same as E3 with the exception of the number of frozen layers. E4 has only
312 the first four convolutional layers frozen, whereas E5 has no frozen layers at all. This is useful to also
313 examine the effect of freezing different numbers of layers for the lesion segmentation task.

314 **2.4 Post-processing**

315 In order to test whether the predictions of DeepMedic could be further improved, different post-
316 processing techniques were implemented, based on threshold tuning the DeepMedic's probability output
317 and performing binary morphological operations in the binarised result.

318 However, before applying any of these techniques, DeepMedic outputs (i.e. predicted lesion and class
319 probability maps) had to be resampled to their corresponding subjects' original image space so that results
320 could be interpreted in the same dimensional space as the original data. Hence, we resampled all outputs
321 per subject using the inverse affine transformation applied to transform the original images in the ISLES
322 2017 dataset.

323 **2.4.1 Threshold Tuning**

324 After computing the Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves it is
325 possible to obtain the optimal threshold to be applied to the DeepMedic probabilistic output, which
326 maximizes the desired metrics. To this end, two threshold tuning procedures, one for each curve, were
327 implemented. It is worth noting that both methods were independent and their results were not combined.
328 Also, both curves were computed using the *Scikit-learn* library.

329 The first threshold tuning procedure, Threshold Tuning 0 (THT0), consisted in obtaining the point
330 where $(precision * recall)$ was maximum. This is the furthest point from the bottom-left corner and thus
331 returns the maximum value for the DSC metric. To compute it, we concatenated the original GT and
332 the probability map of the foreground class of all subjects (separately) to compute the curve, and, then,
333 selected the optimal threshold.

334 The second procedure, Threshold Tuning 1 (THT1), based on the ROC curve, consisted in obtaining the
335 point where $(TruePositiveRate(TPR) - FalsePositiveRate(FPR))$ was maximum. This represents
336 the furthest point from the bottom-right corner and thus the optimal threshold, giving the maximum value
337 for the Bookmaker Informedness (BM) metric. Again, all subjects' labels and probability maps were
338 concatenated to compute the curve, and, then, select this threshold.

339 The goal of both procedures was to obtain the best average threshold for the results from the validation
340 set to apply it to the test set. This was done for all folds independently. This guarantees that the tuning is
341 not performed on the test (i.e. validation) cases, which accounts for a real scenario where the GT for the
342 test cases are not available.

343 2.4.2 Binary Morphological Operations

344 Binary morphological operations are mathematical operations used to modify shapes in binary images
345 through a structuring element: a shape to probe the image. Closing is a binary morphological operation
346 that can fill holes in big predicted lesions or join reasonably close small ones to make predictions more
347 robust. It combines two other simpler morphological operations: dilation, which expands shapes in an
348 image, and erosion, which shrinks them. In both cases, the center of the structuring element is placed at
349 every pixel of the image and a decision is made. In the case of dilation, a pixel is set to 1 if there are
350 any pixels equal to one within the shape of the structuring element, otherwise it's set to zero. Erosion
351 performs the exact opposite operation, a pixel is set to 0 as long as there is any pixel of value 0 within the
352 area covered by the structuring element.

353 Furthermore, there are two decisions to make regarding this operation: the shape and size of the
354 structuring element and the number of iterations. While the first determines the final output and thus the
355 goodness of the prediction, the second defines the number of times that the closing operation is repeated.

356 After few experiments, the optimal structuring element was a 3D ball with a radius of 3 voxels, whereas
357 the number of iterations was tuned by selecting the average of the ones that achieved the maximum DSC
358 score on validation cases. This post-processing step was named Filling Holes (FH).

359 2.5 Evaluation

360 At each state of the post-processing pipeline, multiple performance metrics were computed to compare
361 the predicted segmented lesions with the GT. These metrics were TPR, True Negative Rate (TNR),
362 Positive Predictive Value (PPV), Accuracy (ACC), DSC, Matthews Correlation Coefficient (MCC), and
363 Hausdorff Distance (HD). Being True Positives (TP) the voxels predicted to be positives and identified
364 positives by the configuration evaluated, True Negatives (TN) the voxels predicted to be negatives and
365 identified negatives, False Positives (FP) the voxels predicted to be negatives but identified positives and
366 False negatives (FN), the voxels predicted to be positives but identified negatives, these metrics are defined
367 as follows:

368 • **TPR:** Also known as *sensitivity* or *recall*, measures the rate of true positives with respect to the
369 number of real positive cases.

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN} \quad (2)$$

370 • **TNR:** Also known as *specificity*, measures the rate of true negatives with respect to the number of
371 real negative cases.

$$TNR = \frac{TN}{N} = \frac{TN}{TN + FP} \quad (3)$$

372 • **PPV:** Also known as *precision*, measures the proportion of true positives with respect to all predicted
373 positives.

$$PPV = \frac{TP}{P'} = \frac{TP}{TP + FP} \quad (4)$$

374 • **ACC:** Is a measure of statistical bias. Represents how close the predictions are from the true values.

$$ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN} \quad (5)$$

375 • **DSC:** The Dice similarity coefficient measures the harmonic mean of PPV and TPR. (Landis and
 376 Koch, 1977) define the intervals and the associated "strength of agreement": [< 0.00] (Poor), [$0.00 -$
 377 0.20] (Slight), [$0.21 - 0.40$] (Fair), [$0.41 - 0.60$] (Moderate), [$0.61 - 0.80$] (Substantial), [$0.81 - 1.00$]
 378 (Almost perfect).

$$F_i = 2 * \frac{PPV * TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN} \quad (6)$$

379 • **MCC:** Also known as the *phi coefficient* or Matthews correlation coefficient, is considered a balanced
 380 metric of the quality of binary classification, thus robust to class imbalance. Values range from -1
 381 (perfect negative correlation) to 1 (perfect positive correlation), being 0 equal to random prediction.
 382 This metric is considered to be the most meaningful, specially for imbalanced data(Chicco, 2017).

$$MCC = \frac{TP * TN - FP * FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}} \quad (7)$$

383 • **HD:** Measures the distance between two subsets. A_S and B_S are equivalent to P (real true cases) and
 384 P' (predicted true cases), and $d(\cdot)$ is the euclidean distance between two points.

$$HD(A_S, B_S) = \max \left\{ \max_{a \in A_S} \min_{b \in B_S} d(a, b), \max_{b \in B_S} \min_{a \in A_S} d(b, a) \right\} \quad (8)$$

385 Since k-fold cross-validation was employed, these metrics were averaged per fold and also between
 386 folds. This means that performance metrics were available per subject (both for the validation and test
 387 sets' subjects of every fold), per fold and per experiment. Performance curves, known as precision PPV
 388 vs. recall TPR, error bar and Bland-Altman(Bland et al., 1986) plots were also produced. In addition, the
 389 DeepMedic plotting script was slightly modified to generate the progress of metrics such as accuracy or
 390 DSC on training and validation sets through the different epochs.

3 RESULTS

391 3.1 Segmentation Performance during Training

392 The segmentation performance for validation and training sets during the training process is shown in
 393 figure 2. The DSC coefficient was stable after improving during few epochs. On the other hand, sensitivity
 394 (i.e. TPR) improved at first but then worsened and remained stable. Mean accuracy and specificity, while
 395 being very high, did not account for the imbalanced nature of the data.

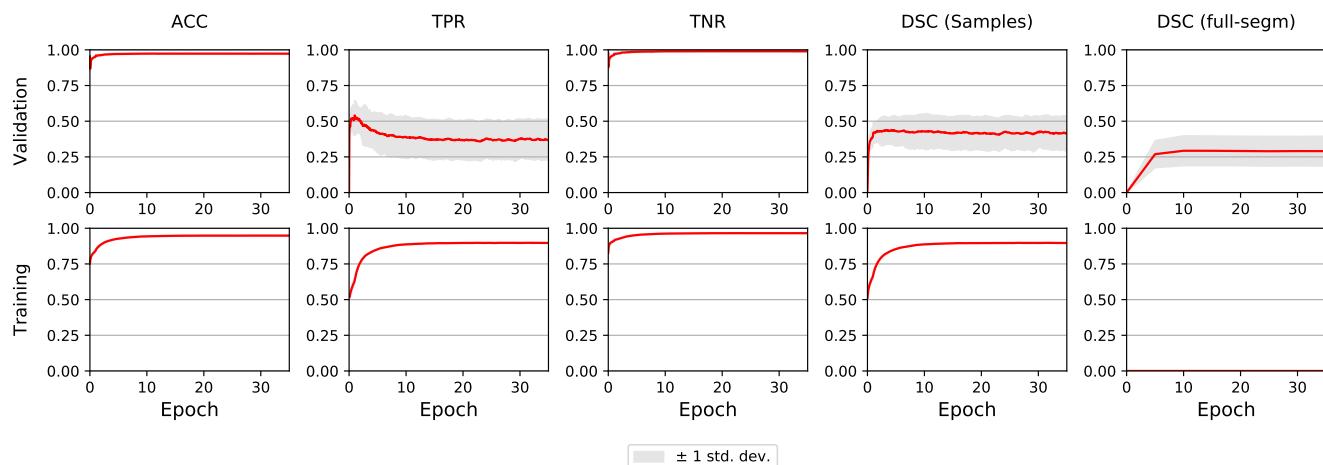


Figure 2. E0 - Segmentation metrics of validation and train subjects during training. The graphs shown are the averages of all 5 folds. The light grey area illustrates ± 1 standard deviation. Full segmentation on training cases was not performed by DeepMedic, reason why the lower-right graph is empty.

396 In E1, sensitivity took more time to reach its peak compared to E0, but when it stabilised the asymptote
397 was slightly higher. Also, while DSC behaved similarly to E0, it also achieved higher values. In E2-E5, the
398 metrics for the first epoch had the same value as for the last epoch in E1, and did not improve throughout
399 the training process.

400 3.2 Baseline Segmentation Performance

401 Figure 3, shows the error bars for each metric, post-processing step and lesion category for E0. TPR was
402 highly variable for small stroke lesions, regardless of whether they were lacunar or cortical, especially
403 after the THT0 and FH post-processing steps. THT1 produced consistently worse results in terms of
404 accuracy for small stroke lesions, despite achieving higher TPR (i.e. sensitivity). The segmentation of big
405 cortical/main artery stroke lesions was considerably better than those for the other stroke subtypes.

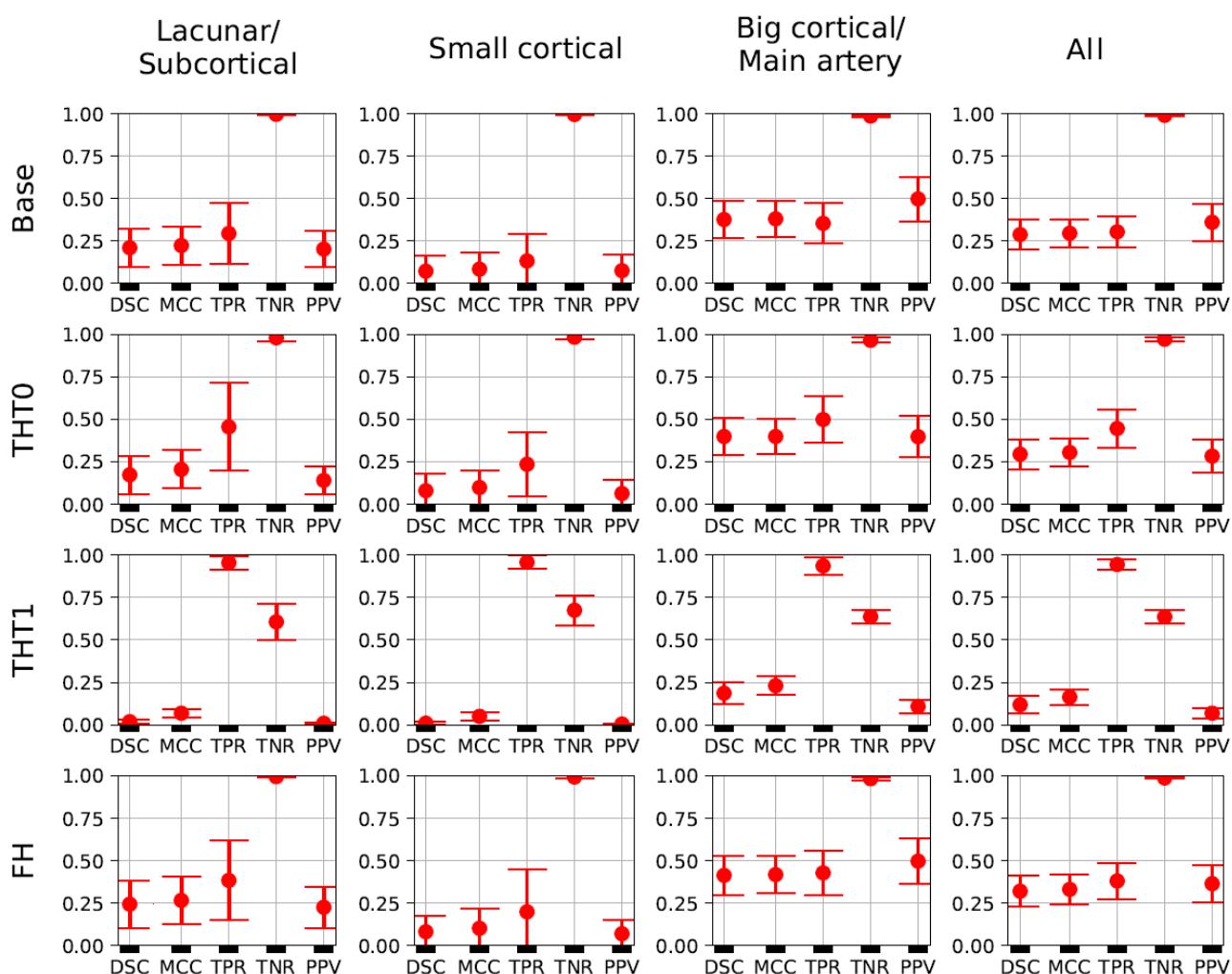


Figure 3. E0 - Error bars. Each metric for each post-processing step and lesion category is presented. A fourth column, representing all subjects, is also included. Each marker represent the mean value, and the upper and lower limits represent the 95% confidence interval. The metrics shown are: Dice similarity coefficient (DSC), Matthews correlation coefficient (MCC), True positive rate (TPR), True negative rate (TNR), and Positive predicted value (PPV).

406 The Bland-Altman plot showing the volumetric agreement between the GT and the results from E0
407 after each post-processing step can be seen in figure 4. THT1 produced the worst results in terms of
408 volumetric agreement regardless of the stroke subtype, considerably inflating the stroke lesion volume.

409 This method for selecting the optimal threshold for binarising the probabilistic stroke lesion maps
 410 obtained, overestimated the stroke lesion size in general.

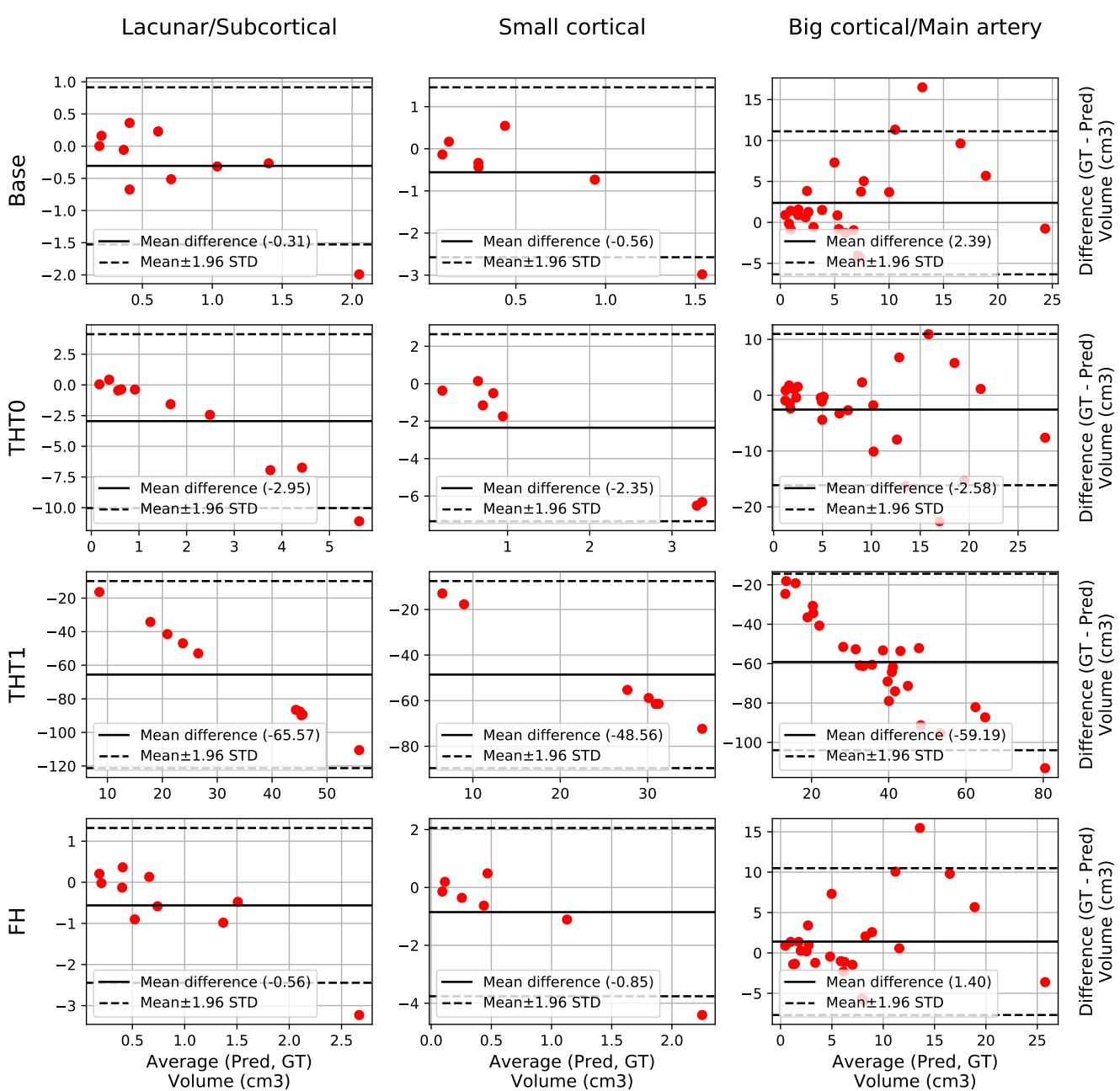


Figure 4. E0 - Volume Bland-Altman analysis. Each lesion category (lacunar/subcortical, small cortical and big cortical) and post-processing step (THT0, THT1, FH and base) are included. Each point represents one subject. The black line is the mean difference, whereas the black dotted-line represents the limits of agreement, computed as mean ± 1.96 Standard deviation (STD). The x axis is the average volume between the predicted segmentation and the ground truth, whereas the y label is the difference.

411 **3.3 Experiments' Results**

412 E1 was the best performing model, with an average DSC of 0.34 after applying FH. This proves the
 413 efficacy of using the data augmentation method selected (i.e. intensity variance). It also proves the

414 importance of performing post-processing tasks, such as THT0 and FH, instead of simply focusing on
415 pre-processing and then relying on the output of the network.

416 Table 1 and figure 5 contain a summary of all experiments. E1 was superior to E0 and the rest
417 experiments yielded results close to E1, but they were not able to improve it. E4 and E5 are not
418 shown because their results were very similar to E3 but slightly inferior. In general, the transfer learning
419 approaches (E2-E5) evaluated did not improve the accuracy in the results.

420 Table 1 shows the key metrics of each experiment both for all post-processing steps. On average, FH
421 performed best. PPV and consequently DSC were the metrics that determined the best performing model.

422 Figure 5 depicts the DSC error bars for all post-processing steps and lesion categories. Big cortical
423 lesions were easier to segment than the rest (i.e. small lesions).

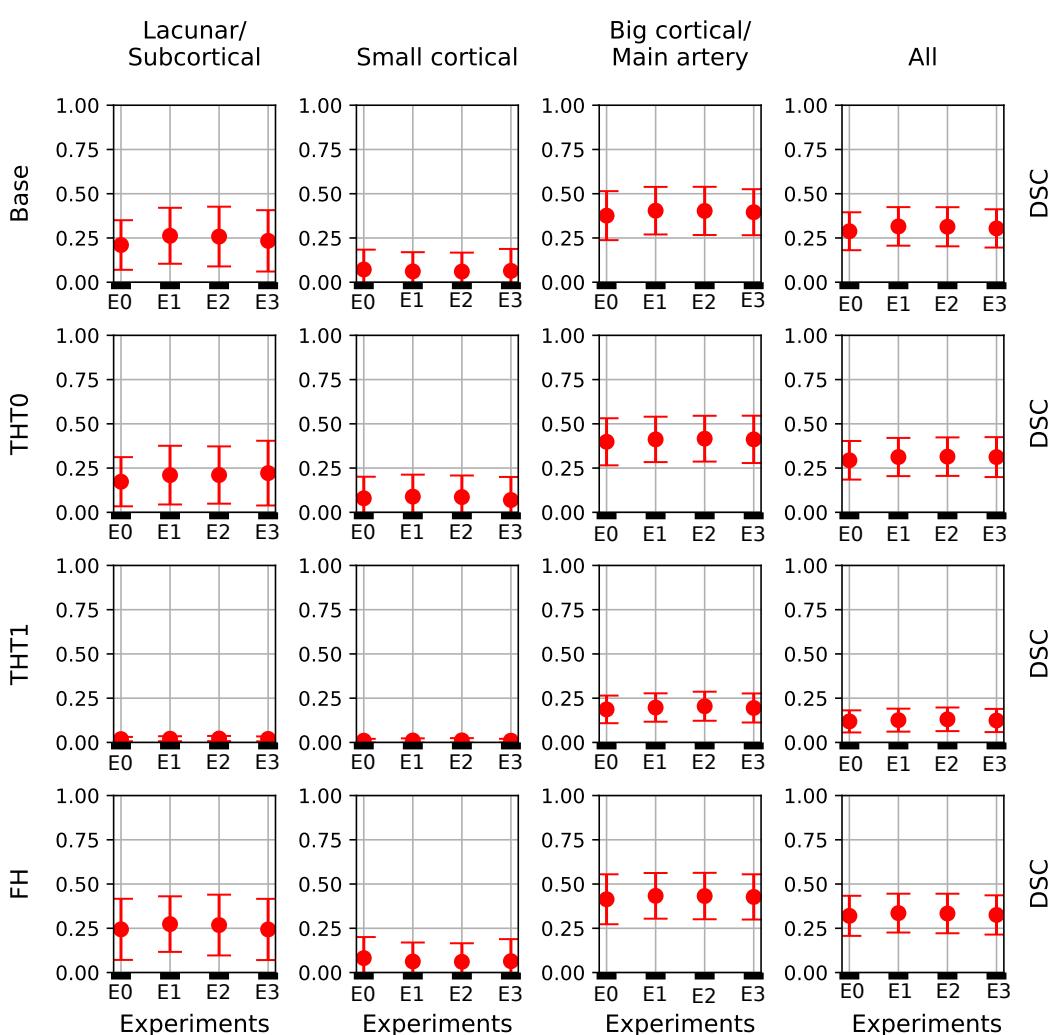


Figure 5. DSC error bars of all experiments for the base prediction and FH and each lesion category.

424 Additionally, figure 6 shows the precision-recall curves for all experiments. Results are very different
425 depending on the cases that fall in each fold. This is a clear sign of the heterogeneous nature of the data
426 and the inability of the network to generalising well. Also from these graphs, results from E1 are slightly
427 superior to E0 and similar to E2. Interestingly, while E3 produced the worst results, its predictions were
428 the least heterogeneous (i.e. the curves are more closer to each other than in any other experiment).

429 The winner (Choi et al., 2017) of the ISLES 2017 challenge, achieved 0.31 DSC and 103.64 HD when
430 the final results were published in September of 2017, but since then the challenge has remained open.

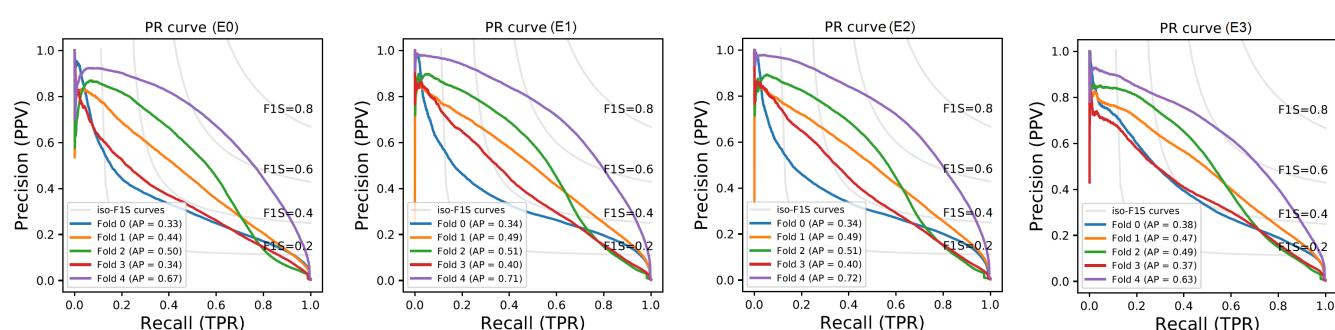


Figure 6. Performance curves of E0-E3. The grey lines indicate the iso-F1 Score (F1S) curves, the value of DSC for each point in the graph. The Average Precision (AP) metrics are also included.

	Post-proc	DSC	HD	MCC	TPR	TNR	PPV
E0	Base	0.29	62.22	0.30	0.30	0.99	0.36
	THT0	0.29	72.83	0.30	0.45	0.97	0.28
	THT1	0.12	99.62	0.16	0.94	0.64	0.07
	FH	0.32	59.47	0.33	0.38	0.99	0.36
E1	Base	0.32	49.89	0.32	0.34	0.99	0.38
	THT0	0.31	72.33	0.33	0.49	0.97	0.30
	THT1	0.13	100.29	0.18	0.96	0.65	0.07
	FH	0.34	47.85	0.35	0.40	0.99	0.39
E2	Base	0.31	48.48	0.32	0.34	0.99	0.38
	THT0	0.31	71.42	0.33	0.48	0.97	0.30
	THT1	0.13	100.19	0.18	0.96	0.68	0.08
	FH	0.33	46.74	0.35	0.40	0.99	0.38
E3	Base	0.30	57.37	0.31	0.36	0.99	0.36
	THT0	0.31	66.37	0.32	0.42	0.98	0.32
	THT1	0.12	99.94	0.17	0.97	0.63	0.07
	FH	0.33	53.94	0.34	0.42	0.99	0.36

Table 1 Summary of the main metrics for all experiments (i.e. E0-E3). Average metrics from the base prediction and all post-processing steps are shown. These are: Threshold tuning 0 (THT0), Threshold tuning 1 (THT1) and Filling holes (FH). The metrics shown are: Dice similarity coefficient (DSC), Hausdorff distance (HD), Matthews correlation coefficient (MCC), True positive rate (TPR), True negative rate (TNR), and Positive predicted value (PPV).

431 Consequently, more participants have joined the challenge and the current top performer, as of the time of
 432 writing this manuscript, achieved 0.36 DSC and 29.37 HD.

433 To perform a fair comparison between our E1 and the current state of the art performance, E1 was
 434 retrained using all train data for training and tested on the unlabeled test set of the challenge. FH was then
 435 applied to the predicted lesions using the average number of iterations in E1 and the results uploaded to
 436 the SMIR web page².

437 E1 achieved 0.29 DSC and 49.75 HD on the test set, as reported by the SMIR web page. This value
 438 is inferior to the 0.34 DSC achieved in the E1 experiment and also to the current first position of the
 439 challenge. This difference could be because of the fact that either the network or the number of iterations
 440 for FH computed in E1 were not able to generalize well on the test data.

441 3.4 Visual Evaluation of the Results

442 Figures 7, 8 and 9 show the results from E1 for representative axial slices superimposed in the ADC
 443 image, from three subjects randomly selected from each category. In general, stroke lesion predictions
 444 were better in E1, but not by a large margin, and these figures, overall, exemplify the results obtained.

² www.smir.ch

445 Compared to E0, some cases were better segmented, but this was not always the case. For example, the
446 stroke lesion prediction for subject 9 (lacunar infarct) achieved a DSC score of 0.45 in E0, whereas in E1
447 it achieved 0.56. However, for subject 21 (small cortical infarct), the DSC score for E0 was 0.26, whereas
448 in E1 it was 0.24, i.e. a slightly worse score. In general, E1's DSC was 10.34% better than E0's and 6.25%
449 for FH. Most results were visually very similar. Also, in E1, post-processing steps (i.e. THT0, THT1, FH)
450 did not improve results as much as they did in E0.

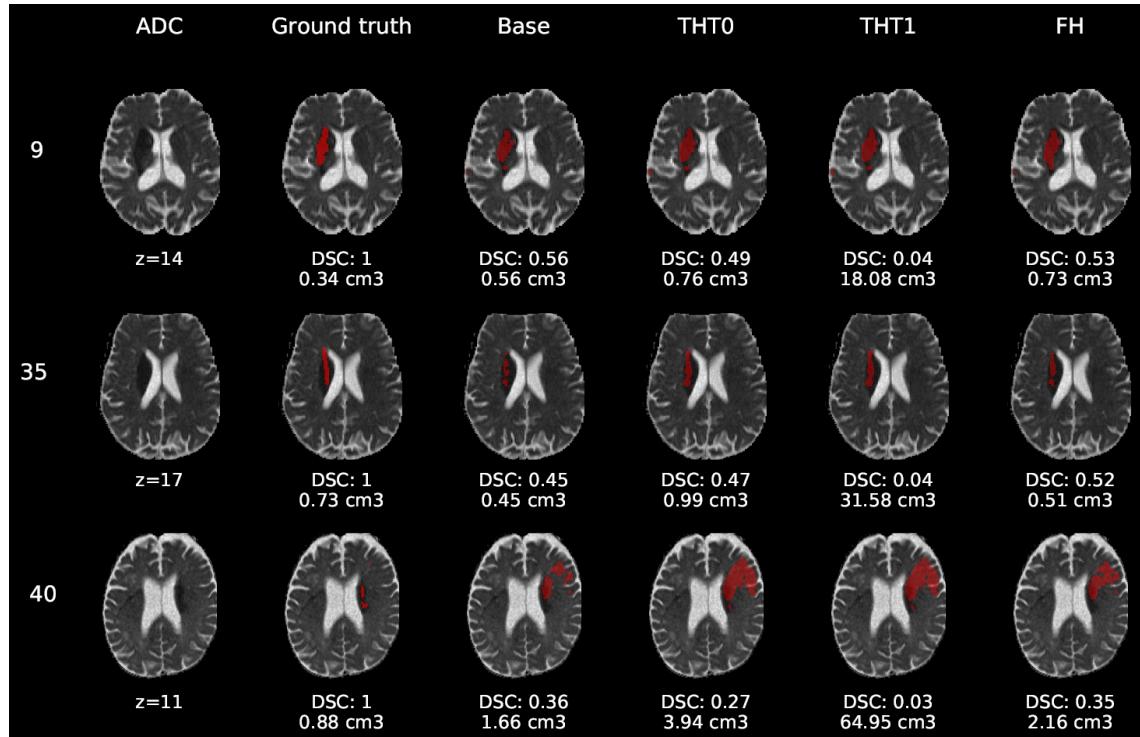


Figure 7. E1 - Visual segmentation comparison of lacunar/subcortical lesions. The examples include the predicted lesions after each post-processing step. Images are 2D slices, their cut coordinate in the z axis is included, as well as the volume of each segmentation and the DSC achieved.

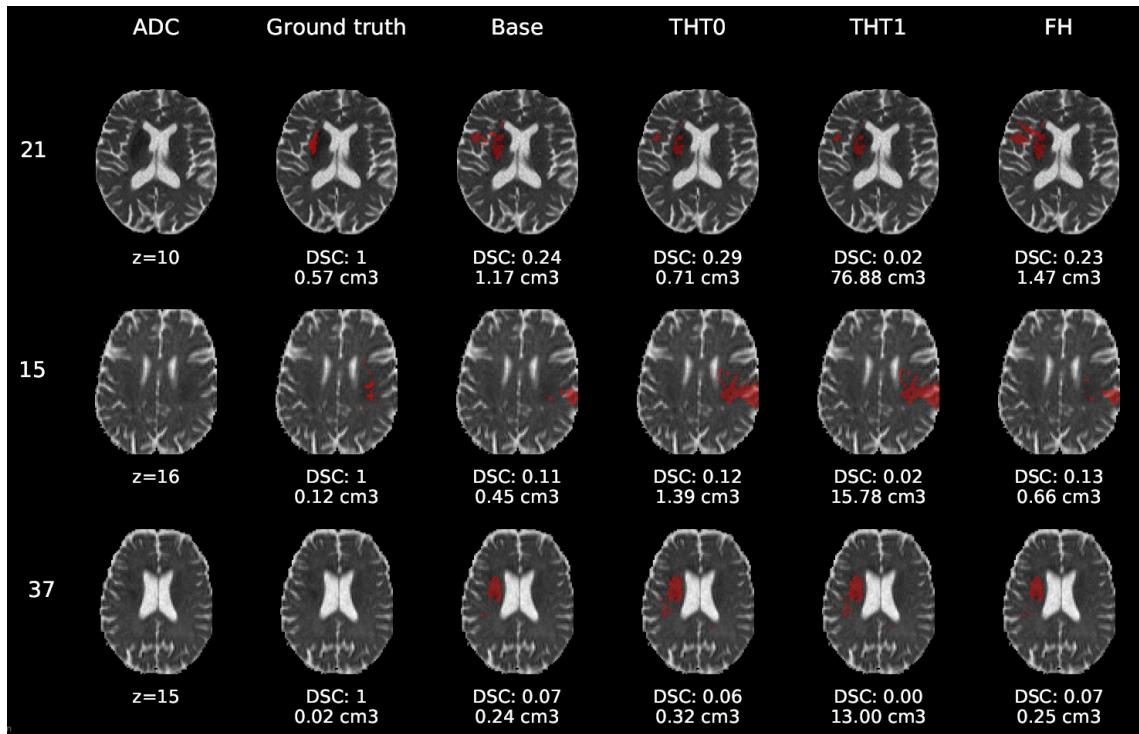


Figure 8. E1 - Visual segmentation comparison of small cortical lesions. The examples include the predicted lesions after each post-processing step. Images are 2D slices, their cut coordinate in the z axis is included, as well as the volume of each segmentation and the DSC achieved.

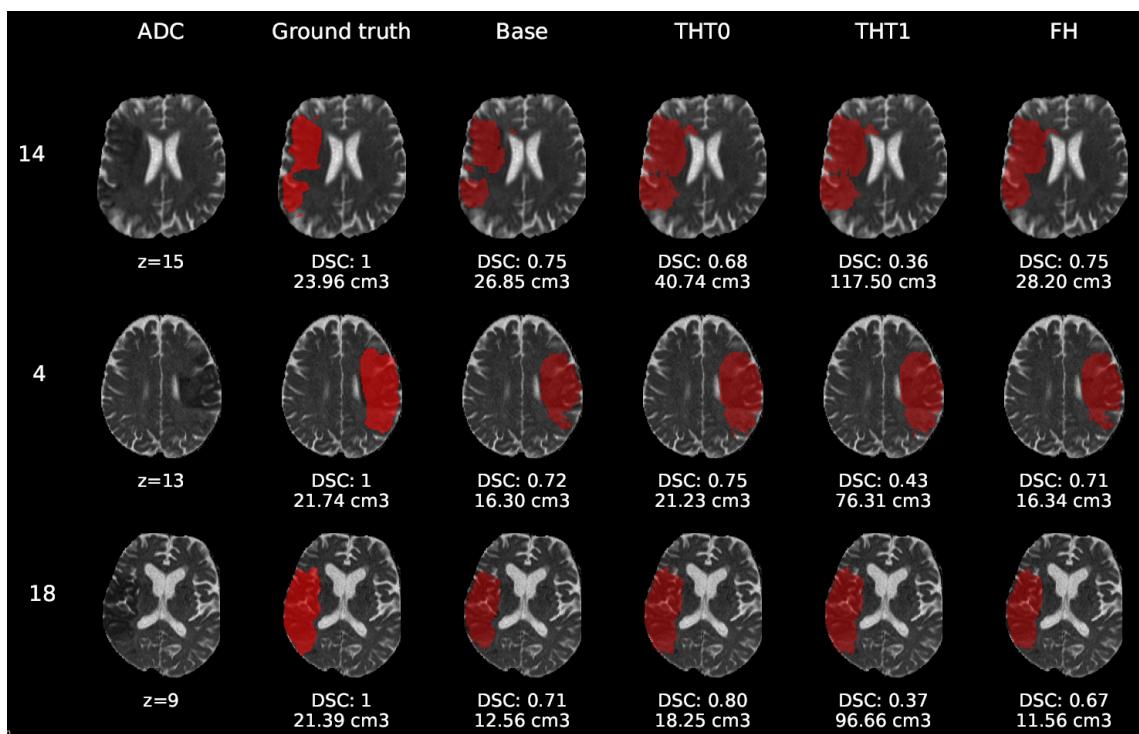


Figure 9. E1 - Visual segmentation comparison of big cortical lesions. The examples include the predicted lesions after each post-processing step. Images are 2D slices, their cut coordinate in the z axis is included, as well as the volume of each segmentation and the DSC achieved.

451 The GT, obtained from the structural T2-weighted images, not always includes the whole regions with
452 restricted diffusion (i.e. dark regions in the ADC map). Contrastingly, in cases of large strokes, it includes
453 the cerebrospinal fluid in the sulci. For cases in which the GT extent agrees with the region of restricted
454 diffusion, the results are better (e.g. cases 9 and 32).

455 Visually, results obtained applying THT1 to the DeepMedic's output does not appear to be disparately
456 wrong compared to those obtained applying THT0 and/or FH.

4 DISCUSSION

457 The model that used data augmentation had the best performance, achieving an average DSC score of 0.34
458 for the test cases after applying FH. This was a reasonable outcome considering that the network clearly
459 suffered from overfitting, for which data augmentation is a well-known remedy.

460 Also, of all post-processing steps evaluated, FH produced the best improvements on average over the
461 base prediction by the network. The second best was THT0, which in some cases surpassed FH. The
462 results from applying THT1, although worst in terms of accuracy, were not visually very different.

463 Despite the enhancing learning strategy proposed slightly improved the segmentation results in the
464 majority of cases, our results are still suboptimal. We used the default configuration, batch size, learning
465 rate and activation functions of a CNN scheme designed to segment tumours from structural MRI
466 sequences. Also, instead of pre-training the network with data of similar nature, but a varied, larger
467 dataset, and fine-tune it with this ISLES 2017 dataset, we directly trained it with a subset from the latter.
468 Therefore, overfitting was still a problem even with data augmentation. Reducing it could be achieved by
469 modifying the number of layers and the size of kernels, and thus the number of network parameters. It
470 could also be remedied by using data from other challenges, or even past iterations of ISLES that also
471 contain the same sequences for segmenting the stroke lesion. Moreover, the learning rate schedule should
472 lower the learning rate at predefined epochs. We used the DeepMedic's default without prior training the
473 model to determine when it would be more convenient to lower the learning rate, and the schedule was
474 set to exponential decrease. Further work should try to lower the learning rate only when necessary.

475 Despite the limitations previously mentioned, the GT used should be put into question. As the
476 examples selected show, it did not accurately cover the region of restricted diffusion in the ADC images,
477 underestimating it mainly for small infarcts and overestimating in cases of large infarcts, including
478 regions of cerebrospinal fluid in the sulci. The GT was generated using the structural T2-weighted images
479 (i.e. including FLAIR), not provided. The mismatch between structural, diffusion and perfusion MRI
480 modalities is well-known (Motta et al., 2015; Chen and Ni, 2012; Straka et al., 2010).

481 Precisely, the perfusion/diffusion mismatch has been reported to provide a practical and approximate
482 measure of the tissue at risk, being used to identify acute stroke patients that could benefit from
483 reperfusion therapies. Clinical studies also show that early abnormality on diffusion-weighted imaging
484 can overestimate the infarct core by including part of the tissue "at risk", and the abnormality on perfusion
485 weighted imaging overestimates this "at risk" tissue by including regions of benign tissue with reduced
486 blood perfusion (Chen and Ni, 2012).

487 The diffusion/fluid attenuated inversion recovery (DWI/FLAIR) mismatch is also well known. Together
488 with the perfusion/diffusion mismatch it is recognised as an MRI marker of evolving brain ischemia. A
489 clinical trial that examined whether the DWI/FLAIR mismatch was independently associated with the
490 diffusion/perfusion mismatch or not, concluded that in the presence of the latter, the DWI/FLAIR pattern
491 could indicate a shorter time between the scan and the last time the tissue seen was normal (Wouters et al.,
492 2015). The CNN scheme evaluated does not take into account the time from the stroke onset - information
493 not provided.

494 Finally, the types of infarcts were not evenly represented in the dataset. The large cortical strokes were
495 predominant, which could explain the bias in the results favouring the cases when the stroke was of this
496 subtype. The involvement of personnel with relevant clinical knowledge in the generation of datasets to
497 be used for developing algorithms aimed to clinical research would be advisable in the future.

Perez Malla *et al.*

CONFLICT OF INTEREST STATEMENT

498 All authors (C.U.P.M., M.C.V.H., M.F.R., and T.K.) declare that the research was conducted in the absence
499 of any commercial or financial relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS

500 C.U.P.M., M.C.V.H., M.F.R., and T.K. conceived and presented the idea. C.U.P.M. and M.C.V.H. planned
501 the experiments. C.U.P.M. carried out the experiments. All authors provided critical feedback and
502 analysis, and contributed for the manuscript.

FUNDING AND ACKNOWLEDGEMENTS

503 This study was partially funded by the Indonesia Endowment Fund for Education (LPDP) of
504 Ministry of Finance, Republic of Indonesia (M.F.R.), Row Fogo Charitable Trust (Grant No. BRO-
505 D.FID3668413)(M.C.V.H.), the European Union Horizon 2020 [PHC-03-15, project No 666881,
506 'SVDs@Target'] (M.C.V.H.), and the UK Biotechnology and Biological Sciences Research Council
507 (BBSRC) through the International Partnership Award BB/P025315/1 (M.C.V.H.).

DATA AVAILABILITY STATEMENT

508 The dataset used in this study can be found in the ISLES Challenge 2015 repository ([www.
509 isles-challenge.org/ISLES2015/](http://www.isles-challenge.org/ISLES2015/)). The code that corresponds with the experiments described
510 and analysed in this manuscript can be found in [https://github.com/CarlosUziel/
511 ischleseg](https://github.com/CarlosUziel/ischleseg).

REFERENCES

512 Aytar, Y. and Zisserman, A. (2011). Tabula rasa: Model transfer for object category detection. In
513 *Computer Vision (ICCV), 2011 IEEE International Conference on* (IEEE), 2252–2259

514 Berger, L., Hyde, E., Cardoso, J., and Ourselin, S. (2017). An adaptive sampling scheme to efficiently
515 train fully convolutional networks for semantic segmentation. *arXiv preprint arXiv:1709.02764*

516 Bland, J. M., Altman, D. G., et al. (1986). Statistical methods for assessing agreement between two
517 methods of clinical measurement. *lancet* 1, 307–310

518 Brosch, T., Tang, L. Y., Yoo, Y., Li, D. K., Traboulsee, A., and Tam, R. (2016). Deep 3d convolutional
519 encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion
520 segmentation. *IEEE transactions on medical imaging* 35, 1229–1239

521 Chen, F. and Ni, Y.-C. (2012). Magnetic resonance diffusion-perfusion mismatch in acute ischemic stroke:
522 An update. *World journal of radiology* 4, 63

523 Chen, L., Papandreou, G., Schroff, F., and Adam, H. (2017). Rethinking atrous convolution for semantic
524 image segmentation. *CoRR* abs/1706.05587

525 Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2018a). Deeplab: Semantic
526 image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. *IEEE
527 transactions on pattern analysis and machine intelligence* 40, 834–848

528 Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. (2018b). Encoder-decoder with atrous
529 separable convolution for semantic image segmentation. *arXiv preprint arXiv:1802.02611*

530 Chicco, D. (2017). Ten quick tips for machine learning in computational biology. *BioData mining* 10, 35

531 Choi, Y., Kwon, Y., Paik, M. C., and Joon, B. (2017). Ischemic stroke lesion segmentation with
532 convolutional neural networks for small data. *ISLES 2017 Challenge*

533 de Brebinson, A. and Montana, G. (2015). Deep neural networks for anatomical brain segmentation. In
534 *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops*. 20–28

535 Fantini, S., Sassaroli, A., Tgavalekos, K. T., and Kornbluth, J. (2016). Cerebral blood flow and
536 autoregulation: current measurement techniques and prospects for noninvasive optical methods.
537 *Neurophotonics* 3, 031411

538 Ghafoorian, M., Karssemeijer, N., van Uden, I. W., de Leeuw, F.-E., Heskes, T., Marchiori, E., et al.
539 (2016). Automated detection of white matter hyperintensities of all sizes in cerebral small vessel
540 disease. *Medical physics* 43, 6246–6258

541 Ghafoorian, M., Mehrtash, A., Kapur, T., Karssemeijer, N., Marchiori, E., Pesteie, M., et al.
542 (2017). Transfer learning for domain adaptation in mri: Application in brain lesion segmentation.
543 In *International Conference on Medical Image Computing and Computer-Assisted Intervention*
544 (Springer), 516–524

545 Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural
546 networks. In *Proceedings of the thirteenth international conference on artificial intelligence and
547 statistics*. 249–256

548 Guerrero, R., Qin, C., Oktay, O., Bowles, C., Chen, L., Joules, R., et al. (2018). White matter
549 hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks.
550 *NeuroImage: Clinical* 17, 918–934

551 He, K., Zhang, X., Ren, S., and Sun, J. (2014). Spatial pyramid pooling in deep convolutional networks
552 for visual recognition. In *european conference on computer vision* (Springer), 346–361

553 He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level
554 performance on imagenet classification. In *Proceedings of the IEEE international conference on
555 computer vision*. 1026–1034

556 He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
557 *Proceedings of the IEEE conference on computer vision and pattern recognition*. 770–778

558 Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing
559 internal covariate shift. *arXiv preprint arXiv:1502.03167*

560 Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. *Neural networks*
561 1, 295–307

562 Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D., Menon, D. K., et al. (2017).
563 Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. *Medical
564 image analysis* 36, 61–78

565 Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional
566 neural networks. In *Advances in neural information processing systems*. 1097–1105

567 Landis, J. R. and Koch, G. G. (1977). The measurement of observer agreement for categorical data.
568 *biometrics* , 159–174

569 Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., et al. (2017). A survey
570 on deep learning in medical image analysis. *Medical image analysis* 42, 60–88

571 Lucas, C. and Heinrich, M. P. (2017). 2d multi-scale res-net for stroke segmentation. *ISLES 2017
572 Challenge*

573 Maier, O., Menze, B. H., von der Gabeltz, J., Häni, L., Heinrich, M. P., Liebrand, M., et al. (2017). Isles
574 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral mri.
575 *Medical image analysis* 35, 250–269

576 Milletari, F., Navab, N., and Ahmadi, S.-A. (2016). V-net: Fully convolutional neural networks for
577 volumetric medical image segmentation. In *3D Vision (3DV), 2016 Fourth International Conference
578 on* (IEEE), 565–571

579 Motta, M., Ramadan, A., Hillis, A. E., Gottesman, R. F., and Leigh, R. (2015). Diffusion–perfusion
580 mismatch: an opportunity for improvement in cortical function. *Frontiers in neurology* 5, 280

581 Nesterov, Y. E. (1983). A method for solving the convex programming problem with convergence rate o
582 $(1/k^2)$. In *Dokl. Akad. Nauk SSSR*. vol. 269, 543–547

583 Pan, S. J., Yang, Q., et al. (2010). A survey on transfer learning. *IEEE Transactions on knowledge and
584 data engineering* 22, 1345–1359

585 Petrella, J. R. and Provenzale, J. M. (2000). Mr perfusion imaging of the brain: techniques and
586 applications. *American Journal of roentgenology* 175, 207–219

587 Rachmadi, M. F., del C. Valdés-Hernández, M., and Komura, T. (2018a). Transfer learning for task
588 adaptation of brain lesion assessment and prediction of brain abnormalities progression/regression using
589 irregularity age map in brain mri. In *Predictive Intelligence in MEDicine*, eds. I. Rekik, G. Unal,
590 E. Adeli, and S. H. Park (Cham: Springer International Publishing), 85–93

591 Rachmadi, M. F., del C. Valdés-Hernández, M., Agan, M. L. F., Perri, C. D., and Komura, T. (2018b).
592 Segmentation of white matter hyperintensities using convolutional neural networks with global spatial
593 information in routine clinical brain mri with none or mild vascular pathology. *Computerized Medical
594 Imaging and Graphics* 66, 28 – 43. doi:<https://doi.org/10.1016/j.compmedimag.2018.02.002>

595 Roth, H. R., Lu, L., Seff, A., Cherry, K. M., Hoffman, J., Wang, S., et al. (2014). A new 2.5
596 d representation for lymph node detection using random sets of deep convolutional neural network
597 observations. In *International Conference on Medical Image Computing and Computer-Assisted
598 Intervention* (Springer), 520–527

599 Roy, P. K., Bhuiyan, A., Janke, A., Desmond, P. M., Wong, T. Y., Abhayaratna, W. P., et al. (2015).
600 Automatic white matter lesion segmentation using contrast enhanced flair intensity and markov random
601 field. *Computerized Medical Imaging and Graphics* 45, 102–111

602 Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2013). Overfeat: Integrated
603 recognition, localization and detection using convolutional networks. *arXiv preprint arXiv:1312.6229*

604 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a
605 simple way to prevent neural networks from overfitting. *The Journal of Machine Learning Research*
606 15, 1929–1958

607 Steenwijk, M. D., Pouwels, P. J., Daams, M., van Dalen, J. W., Caan, M. W., Richard, E., et al. (2013).
608 Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors
609 (knn-ttpp). *NeuroImage: Clinical* 3, 462–469

610 Straka, M., Albers, G. W., and Bammer, R. (2010). Real-time diffusion-perfusion mismatch analysis in
611 acute stroke. *Journal of Magnetic Resonance Imaging* 32, 1024–1037

612 Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S., and Cardoso, M. J. (2017). Generalised dice overlap
613 as a deep learning loss function for highly unbalanced segmentations. In *Deep Learning in Medical
614 Image Analysis and Multimodal Learning for Clinical Decision Support* (Springer). 240–248

615 Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of initialization and
616 momentum in deep learning. In *International conference on machine learning*. 1139–1147

617 Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average of its
618 recent magnitude. *COURSERA: Neural networks for machine learning* 4, 26–31

619 Van Nguyen, H., Zhou, K., and Vemulapalli, R. (2015). Cross-domain synthesis of medical images using
620 efficient location-sensitive deep network. In *International Conference on Medical Image Computing
621 and Computer-Assisted Intervention* (Springer), 677–684

622 Van Opbroek, A., Ikram, M. A., Vernooij, M. W., and De Bruijne, M. (2015). Transfer learning improves
623 supervised image segmentation across imaging protocols. *IEEE transactions on medical imaging* 34,
624 1018–1030

625 Wouters, A., Dupont, P., Ringelstein, E. B., Norrving, B., Chamorro, A., Grond, M., et al. (2015).
626 Association between the perfusion/diffusion and diffusion/flair mismatch: data from the axis2 trial.
627 *Journal of Cerebral Blood Flow & Metabolism* 35, 1681–1686

628 Xu, Y., Géraud, T., and Bloch, I. (2017). From neonatal to adult brain mr image segmentation in a few
629 seconds using 3d-like fully convolutional network and transfer learning. In *Image Processing (ICIP),
630 2017 IEEE International Conference on* (IEEE), 4417–4421

631 Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. *arXiv preprint arXiv:1212.5701*