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ABSTRACT2

3

Magnetic resonance (MR) perfusion imaging non-invasively measures cerebral perfusion,4
which describes the blood’s passage through the brain’s vascular network. Therefore it is widely5
used to assess cerebral ischaemia. Convolutional Neural Networks (CNN) constitute the state-6
of-the-art method in automatic pattern recognition and hence, in segmentation tasks. But none7
of the CNN architectures developed to date have achieved high accuracy when segmenting8
ischaemic stroke lesions, being the main reasons their heterogeneity in location, shape, size,9
image intensity and texture, especially in this imaging modality. We use a freely available CNN10
framework, developed for MR imaging lesion segmentation, as core algorithm to evaluate the11
impact of enhanced machine learning techniques, namely data augmentation, transfer learning12
and post-processing, in the segmentation of stroke lesions using the ISLES 2017 dataset, which13
contains expert annotated diffusion-weighted perfusion and diffusion brain MRI of 43 stroke14
patients. Of all the techniques evaluated, data augmentation with binary closing achieved the15
best results, improving the mean Dice score in 17% over the baseline model. Consistent with16
previous works, better performance was obtained in the presence of large lesions.17
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1 INTRODUCTION

Magnetic resonance imaging (MRI) has become a powerful clinical tool for diagnostics. Its application19
has been expanded to the evaluation of brain function through the assessment of a number of functional20
and metabolic parameters. One such parameter is cerebral perfusion, which describes the passage of21
blood through the brain’s vascular network. Amongst the several techniques used to measure cerebral22
perfusion (Fantini et al., 2016; Petrella and Provenzale, 2000), MRI is perhaps the most widely used due23
to its non-invasiveness. Thus, having great potential in becoming an important tool in the diagnosis and24
treatment of patients with cerebrovascular disease and other brain disorders. It measures cerebral perfusion25
via assessment of various hemodynamic measurements such as cerebral blood volume, cerebral blood26
flow, and mean transit time, from serial tissue tracer concentration measurements. These measurements27
are analysed in relation to their values in normal tissue regions (e.g. normal-appearing white matter).28
Therefore, the importance of estimating the location and extent of the abnormal region automatically.29

Expert delineation is usually performed in the imaging modality that best displays the pathology while30
simultaneously evaluating other imaging modalities. The quality of this process depends on the expert’s31
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experience, and suffers from intra- and inter-observer variability (Kamnitsas et al., 2017). Automated32
segmentation methods are not only necessary to provide the quantitative information needed to better33
support clinical decisions, but also to carry out large scale studies, with increased reliability and34
reproducibility, for which manual delineation is simply unattainable (Maier et al., 2017). Most of these35
algorithms use expert-labelled data to "learn" the pattern to be segmented until a certain level of accuracy36
is reached, and are expected to reproduce similar accuracy levels for new unlabelled data. Deep Learning37
algorithms, such as Convolutional Neural Networks (CNN), have risen in popularity due to their success38
on computer vision research (Krizhevsky et al., 2012). Though CNNs are typically used for multi-label39
image classification problems, they can also be employed for segmentation tasks by classifying each voxel40
according to the region they belong to (Kamnitsas et al., 2017).41

In MR perfusion imaging, the pathologies’ appearance does not follow a clear pattern, which makes42
their detection far more difficult. Specifically ischaemic lesions can appear anywhere in the brain and43
their shape and signal intensities vary not only between disease stages but also within them (Maier et al.,44
2017). This variability increases with time from the stroke onset. Also, the intensity within the infarcted45
region is not necessarily homogeneous (Kamnitsas et al., 2017).46

1.1 CNN Architectures for Brain Lesion Segmentation - DeepMedic47

Specifically for the segmentation of brain lesions, different CNNs architectures have been48
evaluated(Guerrero et al., 2018; He et al., 2016). One of them(Guerrero et al., 2018) proposed a 2D CNN49
architecture for White Matter Hyperintensities (WMH) segmentation, and reported having achieved state50
of the art performance in differentiating them from ischaemic stroke lesions. However, by taking a 2D51
approach, it discards important spatial information, since did not take into account the volumetric nature52
of the data; and was only evaluated using structural MRI modalities, where lesions are homogeneous and53
easier to identify.54

Using a 3D approach to manipulate Magnetic Resonance Imaging (MRI) data is not straightforward,55
as it requires significantly more computing power and memory than the 2D counterparts (Roth et al.,56
2014). The main factor that attempts against 3D segmentation is the slow inference process. This can be57
alleviated by taking advantage of dense inference (Sermanet et al., 2013), a property of full convolutional58
networks that avoids recomputing convolutions for overlapping image patches and thus reduces inference59
times. 3D CNN architectures have been used to segment pathologies, (Milletari et al., 2016; Brosch et al.,60
2016). However, DeepMedic (Kamnitsas et al., 2017) has emerged as the brain lesion segmentation CNN61
method for excellence, due to its availability, technical support and versatility, as it has been applied not62
only to segment hyperintense lesions (Rachmadi et al., 2018b), but also lesions with heterogeneous signal63
intensities (i.e. tumours) (Kamnitsas et al., 2017). It has a 3D CNN architecture of two pathways that64
uses dense-inference and adds a 3D fully connected Conditional Random Forest (CRF) as a final post-65
processing layer. By taking advantage of the dense inference, DeepMedic can be trained using image66
segments (i.e. image patches of size bigger than the network’s receptive field) to avoid recomputing67
convolutions of overlapping patches. Additionally, the dual pathway is used to compute both local and68
global (i.e. contextual) features at the same time by processing the same image at different scales. Finally,69
the CRF is used to remove false positives before returning the final results. DeepMedic reached the first70
position in the Ischemic Stroke lesion Segmentation (SISS) subchallenge of the Ischemic Stroke LEsion71
Segmentation (ISLES) 2015 challenge1.72

Subsequent winners of the ISLES challenges have used other approaches. For example, whilst73
DeepMedic uses a traditional cross-entropy function (Kamnitsas et al., 2017), the winners of the ISLES74
2017 challenge (Choi et al., 2017; Lucas and Heinrich, 2017), use a loss function based on Dice Similarity75
Coefficient (DSC) particularly designed for unbalanced data sets (Sudre et al., 2017). Also, (Choi et al.,76
2017) implement a spatial pyramid pooling layer (He et al., 2014), recently combined with an encoder-77
decoder (Chen et al., 2018b) to improve segmentation predictions. Spatial pyramid pooling guarantees a78
fixed output size for different sized inputs (He et al., 2014). This means that the network can process inputs79
at different scales, similarly to DeepMedic, while keeping the same output size. Dilated convolutions have80
also proven useful for enhancing the spatial resolution of the network and thus improving the performance81
for semantic segmentation (Chen et al., 2018a, 2017). These convolutional layers extend the field of view82
and thus can extract features at different scales.83

1 www.isles-challenge.org/ISLES2015/
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1.2 Enhancing Learning Techniques84

Variations in CNN architectures appear to show improvements in the segmentation of certain85
pathologies. However, these methods suffer a significant loss in performance when these changes are86
applied to datasets acquired with different imaging protocols, or using different sequences (i.e. task87
domain changes), they are applied to the assessment of different types of lesions caused by different88
pathology (e.g. the initial task being to segment tumour lesions, whilst the actual task is to segment89
ischaemic stroke lesions), or they are expected to perform tasks that are related to but not the same task90
they were trained for (e.g. lesion segmentation vs. lesion assessment).91

There are several ways to enhance the performance of the CNN architectures without modifying the92
architecture itself. In general, they can be enumerated as follows: 1) pre-processing the input data, 2)93
modifying the input data by adding information derived from internal and external sources (i.e. data94
augmentation), 3) re-purposing a model trained for one task to perform a second related task (i.e. transfer95
learning), and 4) post-processing the output from the CNN.96

1.2.1 Pre-processing the Input Data97

The importance of pre-processing the data has been highlighted by previous works. For example,98
Rachmadi and colleagues(Rachmadi et al., 2018b), for segmenting WMH, extract the brain tissue from99
the originally acquired MRI, and only input this to the CNN architecture. In addition, perform a three-100
step intensity normalisation: 1) adjust the maximum grey scale value of the MRI brain to 10 percent of the101
maximum intensity value, 2) adjust the contrast and brightness of the images such that their histograms102
are consistent, and 3) normalise the intensities of the resultant images to zero-mean and unit-variance.103
Guerrero and colleagues, for similar task, used two MRI modalities (Guerrero et al., 2018), which were104
co-registered, resliced to have 1mmx1mm in-plane voxel size, and normalised their intensities. In general,105
intensity normalisation, contrast adjustment and removal of background features that could confound the106
algorithms are necessary for achieving a good segmentation. When multiple MRI sequences or imaging107
modalities are used, co-registration is also necessary.108

1.2.2 Data Augmentation109

Training a machine learning model is equivalent to tune its parameters so that it can map a particular110
input to an output. The number of parameters needed is proportional to the complexity of the task.111
These parameters can increase if more information is given. The increase in the amount of input data112
without necessarily meaning an increase in the contextual or semantic data per se is known as data113
augmentation and has been used in brain image segmentation tasks. Several studies have introduced114
global spatial information as an additional input to CNN schemes in form of large 2D orthogonal patches115
downscaled by a factor(de Brebisson and Montana, 2015), integrated with intensity features from image116
voxels(Van Nguyen et al., 2015), as a number of hand-crafted spatial location features(Ghafoorian et al.,117
2016), synthetic volume(Steenwijk et al., 2013; Roy et al., 2015), or set of synthetic images that encode118
spatial information(Rachmadi et al., 2018b) for mentioning some examples. In other words, all input119
datasets are acquired under a limited set of conditions (e.g. specific MRI scanning protocols, pathology120
appearance restricted to few examples,etc.). However, our target application may exist in a variety of121
conditions (e.g. pathologies in different location, scale, brightness, contrasts, shapes). By synthetically122
generating data to account for these variations without adding irrelevant features, good results might be123
obtained. A review of the state of the art in medical image analysis concluded that very similar algorithms124
could achieve different results due to smart data pre-processing and augmentation (Litjens et al., 2017).125

1.2.3 Transfer Learning126

Transfer learning has become a popular choice for re-purposing machine learning models that have127
proven useful for particular tasks, by means of either fine-tuning pre-trained models with data of another128
nature (i.e. domain adaptation transfer learning), or using a pre-trained model as a starting point for a129
model on a second task of interest (i.e. task adaptation transfer learning). Domain adaptation transfer130
learning, where data domains in training and testing processes differ, has been applied successfully to131
brain MRI segmentation tasks. For example, one study improved Support Vector Machines (SVM)’s132
performance using different distribution of training data(Van Opbroek et al., 2015). Another study133
pre-trained CNN using natural images for segmentation of neonatal to adult brain images(Xu et al.,134
2017), and other study pre-trained a CNN for brain brain lesion segmentation using MRI data acquired135
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with other protocols(Ghafoorian et al., 2017). Task adaptation transfer learning has been applied to136
WMH segmentation, by teaching a CNN to "learn" to detect texture irregularities instead of binary137
expert-delineated WMH segmentations (Rachmadi et al., 2018a).138

1.3 Contributions139

Our main contributions are to propose and evaluate data augmentation and transfer learning methods for140
improving the output of a widely used brain lesion segmentation CNN approach, namely DeepMedic, to141
identify and delineate the ischaemic stroke lesion from MR perfusion imaging.142

2 METHODS

2.1 Data143

The ISLES challenge was conceived as a common benchmark for researchers to compare their144
segmentation algorithms (Maier et al., 2017) for ischaemic stroke lesions. Initially, the first iteration of145
ISLES (in 2015), included two sub-challenges, namely Stroke Perfusion EStimation (SPES) and SISS.146
The first sub-challenge was about segmenting stroke lesions in the acute phase, whereas the second147
focused on sub-acute lesions (Maier et al., 2017).148

The stroke cases were carefully crafted and included a wide range of lesion variability. Images were149
obtained in clinical routine, with different amounts of image artifacts and different views (Maier et al.,150
2017). Also, some subjects suffered from other pathologies that could be mistaken for ischemic stroke151
lesions. All files are given in uncompressed Neuroimaging Informatics Technology Initiative (NIfTI)152
format: (*.nii).153

ISLES 2017 contains 43 and 32 training and testing acute subjects, respectively. Included MRI154
sequences are Apparent Diffusion Coefficient (ADC), 4D Perfusion Weighted Image (4DPWI), Mean155
Transient Time (MTT), relative Cerebral Blood Flow (rCBF), relative Cerebral Blood Volume (rCBV),156
Time to maximum (Tmax) and Time to peak (TTP). Images from all modalities were skull-stripped,157
anonymised and individually co-registered.158

The Ground Truth (GT) files, which delimit the actual lesion region, were only provided for training159
subjects, so as to avoid having participants performing fine-tuning on the test data. They were segmented160
on T2-weighted and Fluid Attenuation Inversion Recovery (FLAIR) sequences after the stroke had161
stabilised, but these imaging modalities were not provided.162

After careful examination, the stroke subjects in the training data were classified into three different163
stroke subtypes. These are lacunar/subcortical (10 subjects), small cortical (7 subjects) and big164
cortical/main artery (26 subjects).165

2.2 Baseline configuration166

The baseline CNN model, including its architecture and hyper-parameters, is based on DeepMedic167
v0.6.1 (Kamnitsas et al., 2017). The architecture used slightly differs from the initial architecture168
(Kamnitsas et al., 2017) . It is illustrated in figure 1, including the addition of residual connections.169

Figure 1. The DeepMedic architecture used, including residual connections. Source: github.com/
Kamnitsask/deepmedic
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The number of convolutional layers was 8, and the number of feature maps for each were170
[30, 30, 40, 40, 40, 50, 50]. The kernel size was (3, 3, 3) for all layers. Residual connections in both171
pathways were also included so that the input of layers [3, 4, 6] was added to the output of layers [4, 6, 8].172

The final blocks of the scheme were composed of Fully Connected (FC) layers and a CRF. The number173
of FC layers was set to two, with 150 feature maps each. The size of the kernels of the first FC layer, which174
combined the outputs of different scales, was again (3, 3, 3). Additionally, there was a residual connection175
between the second and first layers, meaning that the input of the first FC layer was added to the output of176
the second and final FC layer.177

The second pathway had an additional parameter that determined the downsampling factor applied to178
the images fed to the second pathway. Additionally, batch normalization(Ioffe and Szegedy, 2015) was179
added at the end of each convolutional layer.180

The dimension of the training and validation segments were [25, 25, 25] and [17, 17, 17], respectively.181
The latter was equal to the receptive field of the network. The size of the segments was limited by the182
available RAM and GPU memory.183

The batch size for training, validation and inference were set to 24, 48 and 24, respectively.184
Dropout(Srivastava et al., 2014) was added in the second FC layer and the final classification layer, both185
with a rate of 0.5. Weight initialization followed a modified Xavier initialization (Glorot and Bengio,186
2010) that accounts for nonlinearities (He et al., 2015). This allows the training of deeper networks and187
works well with Parametric Rectified Linear Units (PReLU) (He et al., 2015), which were the predefined188
activation units.189

Also, intracranial volume masks were provided to limit the region where samples were extracted190
from, which in turn saved time and memory. This means that foreground samples were extracted from191
the GT label mask and background samples extracted from the region inside the subject mask minus192
the intersection with the label mask. By default, samples were extracted centered in a foreground or193
background voxel with equal probability.194

During training, epochs were divided into subepochs. The number of epochs and subepochs was set to195
35 and 20, respectively. For each subepoch, 1000 segments were extracted from up to 50 cases.196

The learning rate was decreased exponentially and the momentum linearly increased. The values that had197
to be reached at the last epoch were 10−4 for the former and 0.9 for the latter. The learning rate, initially198
set to 10−3, started to lower at epoch 1. Updating learning rates through training is a way of making199
sure that convergence is reached and in a reasonable time (Jacobs, 1988; Zeiler, 2012). The learning200
optimizer was RmsProp(Tieleman and Hinton, 2012), with ρ = 0.9 (decay rate) and ε = 10−4 (smoothing201
term that avoids divisions by zero). RmsProp was combined with Nesterov momentum(Nesterov, 1983),202
as proposed by (Sutskever et al., 2013). The momentum value was set to m = 0.6 and normalized.203
Additionally, weight decay was also implemented, in the form of L1 and L2 normalization with values204
L1 = 10−6 and L2 = 10−4, respectively.205

Also, two "online" (done during training) data augmentation techniques were set by default. The first206
simply involved reflecting images with a 50% probability with respect to the X axis (from left to right). The207
second consisted in altering the mean and standard deviation of the images, following the next equation:208

I ′ = (I + s) ∗m, (1)

where s (shift) and m (multi) are drawn from Gaussian distributions of (µ = 0, σ = 0.05) and (µ = 1, σ =209
0.01), respectively.210

Finally, due to memory limitations, only three out of the six available channels were used to train the211
model, namely ADC, MTT and rCBF. In some experiments, rCBF was replaced by rCBV. Only two212
segmentation classes were considered, foreground, representing the lesion, and background, representing213
everything else.214
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2.3 Experiments215

To evaluate the use of enhancing learning techniques for identifying ischaemic stroke lesions in216
perfusion imaging data, six experiments were run (i.e. E0-E5) by varying one aspect of the model at217
a time, such as the type of data or other parameters. This was done in the form of a pipeline, performing218
pair-wise comparisons. At each stage of the pipeline, two models, with and without a particular change,219
were compared. The best performing model of each pair-wise comparison proceeded to the next stage,220
until the best performing model of all experiments was found.221

To assess the performance of an experiment, k-fold cross-validation was employed, where k = 5. Cross-222
validation is essential to give a good estimate of the real performance of an experiment. If cross-validation223
hadn’t been used, results would have highly depended on the composition of easy/hard cases in each set.224
For example, if the test set had only been made of easy cases, the performance achieved would have been225
greater that if they had been difficult cases. Overall, this not only increases the robustness of the results226
but also the confidence of the decisions related to the changes that have worked best.227

2.3.1 Data Pre-processing228

Performing adequate pre-processing of the data is essential to maximize the performance of the model.229
Some of the necessary pre-processing steps were already done by the ISLES organizers, such as co-230
registering all images per subject setting them to have the same dimension, also per subject, and removing231
extracranial tissues.232

Additional pre-processing involved resampling all images to isotropic (i.e. 1x1x1mm) voxels size,233
generating intracranial volume masks and normalizing the data to have zero mean and unit variance.234
The latter is strongly suggested by DeeMedic’s creator as it would substantially affect performance. The235
intracranial volume masks were generating binarising the TTP images, and applying binary dilation before236
the resampling to improve the boundaries. Due to memory constraints, all images had to be downsampled237
with a factor of 0.7 so they could fit in memory.238

Algorithm 1 Data Pre-processing
Initialize dF = 0.7
for each subject do

for each channel do
resampled_channels← resample(channel)

end for
mask ← compute_mask(channels)
mask ← resample(mask)
save_image(mask)
for each resampled_channel do

img ← normalize(resampled_channel,mask)
save_image(img)

end for
end for

2.3.2 E0 - Baseline Configuration239

This experiment (i.e. E0) consisted in training the DeepMedic configuration described previously,240
with the default parameters using the pre-processed data. It established the baseline results. All future241
experiments were compared against this or a better performing one. The imaging modalities used as input242
channels were ADC, MTT and rCBF.243

2.3.3 E1 - Data augmentation244

We applied the data augmentation method known as intensity variance. It consists in randomly altering245
the intensity values within the Region of Interest (ROI) or GT region following a Gaussian distribution of246
mean and variance equal to the ones computed from the intensity values within the region.247
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The rationale behind this idea was to try to deal with one of the many complications of detecting the248
ischemic stroke lesion in these types of images: their intensity inhomogeneity. As mentioned by (Maier249
et al., 2017), the intensity values within the lesion territory can vary significantly. By using a mean and250
variance based on the already available data, the intensities, while being different from the original, should251
not be too different so as the lesion is no longer recognizable.252

This augmentation was done offline, which means that the altered subjects were created and saved to be253
fed to the network during training. It was decided to do it this way so as to avoid modifying DeepMedic’s254
core code, which would in turn become very time consuming. Each new subject is a "clone" of the255
original, except for the intensity values within the ROI or GT label. All channels had their intensity256
modified. Algorithm 2 shows how this was done.257

Algorithm 2 Data augmentation
Initialize clones_number = 1
for each subject do

Load label
for each clones_number do

Initialize clone_path
for each channel do

roi← channel[nonzero(label)]
channel[nonzero(label)]← gaussian(mean(roi), std(roi))
save_image(channel, clone_path)

end for
end for

end for

This experiment used the same baseline configuration parameters as E0, with the exception that the258
data had been augmented. The original 43 subjects had been "cloned", following the procedure described259
above. Thus, the total number of available training subjects became 86. However, since validation or260
testing in augmented subjects is meaningless, only the subjects inside the training set contained clones.261
Naturally, clones of the validation and test subjects were not part of the training set.262

2.3.4 E2 - Transfer learning with error maps263

The goal of this experiment was to improve the performance of a pre-trained model (i.e. the best264
performing model so far), by fine-tuning the model with its error maps (i.e. weighted maps), using them265
to draw more image segments from difficult regions (i.e. those where errors were bigger).266

Fine-tuning is a type of transfer-learning aimed at improving the performance of a network pre-trained267
for a different -although similar- task to the one the model was originally trained for (Pan et al., 2010).268
For example, two different tasks can have the same goal and only vary on the information that is provided269
to complete them. Usually, this technique involves re-training a network while "freezing" the first layers,270
meaning that their parameters (weights) are kept fixed during training. Each consecutive layer of a CNN271
generates more complex features from the ones detected in the previous layer. Consequently, the first272
layers contain simpler features that are common for similar problems, and thus can be "transferred" to a273
similar task. Then, new data is used to retrain the final layers, tuning the network to improve performance274
on the new task.275

In other words, the aim of fine-tuning is to adapt the network to the small details that make the new task276
different, which means the learning rate has to account for that by being considerably small compared277
to the original rate the model was pre-trained with. For that reason, while the learning rate of the initial278
model was initialized to 10−3, the rate for this experiment was 5x10−4. There are three possible benefits279
of using transfer learning: a higher start, a higher slope and a higher asymptote(Aytar and Zisserman,280
2011). When performing transfer learning, it’s possible that one, two, all or none of these benefits appear.281

To improve learning, an adaptive sampling method has been proposed (Berger et al., 2017) for282
DeepMedic. It consists in extracting more image patches in the regions where the prediction error is283
bigger, according to error maps generated throughout training. DeepMedic already offers the possibility284
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of using weighted maps for the sampling process, which essentially serves the same function but in a285
static way (i.e. maps must be generated beforehand and are not updated during training). By using these286
maps, image segments are extracted more often from those regions where the weights are bigger. Error287
maps, one per subject and class, were obtained by computing the square error between each voxel of the288
GT label and the predicted probability map. The probability maps were obtained from the segmented test289
cases of each fold, meaning that the error maps for all subjects could be computed. These maps were290
normalized to zero mean and unit variance for homogeneity between subjects.291

The paths of the computed error maps were included in different files, one for each class. These files292
were specified in the configuration parameters, each line representing a subject, which had to be coherent293
between files. Weighted maps can be defined both for training and validation. Since the goal was to294
improve the network performance, only error maps for the training cases were provided. In these cases,295
fine-tuning was performed by retraining the best model so far while extracting more image segments in296
those regions where errors where bigger, with the aid of pre-computed error maps. All convolutional297
layers were left frozen, thus only tuning the FC layers.298

2.3.5 E3, E4 and E5 - Transfer learning with rCBV299

Perfusion parametric maps rCBF and rCBV display different appearance depending on the area under300
consideration. In the core of the stroke both sequences have substantially low values. However, in the301
penumbra (i.e. affected but savageable region), while rCBF is slightly reduced, rCBV can be normal or302
even have higher values compared to normal tissue. Both sequences have been used to segment the stroke303
(Chen and Ni, 2012).304

In this experiment, the best performing model so far is retrained using the ADC, MTT and rCBV as305
input channels. Recall that until now, models have used the ADC, MTT and rCBF as input channels for306
training, as defined in the baseline configuration.307

The goal of E3 is to make predictions more robust by tuning the weights of the FC layers, similar to308
experiment E2 in previous section. This would make the network more sensitive to small changes between309
rCBF and rCBV, which can be crucial to accurately segmenting the stroke.310

E4 and E5 are essentially the same as E3 with the exception of the number of frozen layers. E4 has only311
the first four convolutional layers frozen, whereas E5 has no frozen layers at all. This is useful to also312
examine the effect of freezing different numbers of layers for the lesion segmentation task.313

2.4 Post-processing314

In order to test whether the predictions of DeepMedic could be further improved, different post-315
processing techniques were implemented, based on threshold tuning the DeepMedic’s probability output316
and performing binary morphological operations in the binarised result.317

However, before applying any of these techniques, DeepMedic outputs (i.e. predicted lesion and class318
probability maps) had to be resampled to their corresponding subjects’ original image space so that results319
could be interpreted in the same dimensional space as the original data. Hence, we resampled all outputs320
per subject using the inverse affine transformation applied to transform the original images in the ISLES321
2017 dataset.322

2.4.1 Threshold Tuning323

After computing the Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves it is324
possible to obtain the optimal threshold to be applied to the DeepMedic probabilistic output, which325
maximizes the desired metrics. To this end, two threshold tuning procedures, one for each curve, were326
implemented. It is worth noting that both methods were independent and their results were not combined.327
Also, both curves were computed using the Scikit-learn library.328

The first threshold tuning procedure, Threshold Tuning 0 (THT0), consisted in obtaining the point329
where (precision ∗ recall) was maximum. This is the furthest point from the bottom-left corner and thus330
returns the maximum value for the DSC metric. To compute it, we concatenated the original GT and331
the probability map of the foreground class of all subjects (separately) to compute the curve, and, then,332
selected the optimal threshold.333
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The second procedure, Threshold Tuning 1 (THT1), based on the ROC curve, consisted in obtaining the334
point where (TruePositiveRate(TPR)− FalsePositiveRate(FPR)) was maximum. This represents335
the furthest point from the bottom-right corner and thus the optimal threshold, giving the maximum value336
for the Bookmaker Informedness (BM) metric. Again, all subjects’ labels and probability maps were337
concatenated to compute the curve, and, then, select this threshold.338

The goal of both procedures was to obtain the best average threshold for the results from the validation339
set to apply it to the test set. This was done for all folds independently. This guarantees that the tuning is340
not performed on the test (i.e. validation) cases, which accounts for a real scenario where the GT for the341
test cases are not available.342

2.4.2 Binary Morphological Operations343

Binary morphological operations are mathematical operations used to modify shapes in binary images344
through a structuring element: a shape to probe the image. Closing is a binary morphological operation345
that can fill holes in big predicted lesions or join reasonably close small ones to make predictions more346
robust. It combines two other simpler morphological operations: dilation, which expands shapes in an347
image, and erosion, which shrinks them. In both cases, the center of the structuring element is placed at348
every pixel of the image and a decision is made. In the case of dilation, a pixel is set to 1 if there are349
any pixels equal to one within the shape of the structuring element, otherwise it’s set to zero. Erosion350
performs the exact opposite operation, a pixel is set to 0 as long as there is any pixel of value 0 within the351
area covered by the structuring element.352

Furthermore, there are two decisions to make regarding this operation: the shape and size of the353
structuring element and the number of iterations. While the first determines the final output and thus the354
goodness of the prediction, the second defines the number of times that the closing operation is repeated.355

After few experiments, the optimal structuring element was a 3D ball with a radius of 3 voxels, whereas356
the number of iterations was tuned by selecting the average of the ones that achieved the maximum DSC357
score on validation cases. This post-processing step was named Filling Holes (FH).358

2.5 Evaluation359

At each state of the post-processing pipeline, multiple performance metrics were computed to compare360
the predicted segmented lesions with the GT. These metrics were TPR, True Negative Rate (TNR),361
Positive Predictive Value (PPV), Accuracy (ACC), DSC, Matthews Correlation Coefficient (MCC), and362
Hausdorff Distance (HD). Being True Positives (TP) the voxels predicted to be positives and identified363
positives by the configuration evaluated, True Negatives (TN) the voxels predicted to be negatives and364
identified negatives, False Positives (FP) the voxels predicted to be negatives but identified positives and365
False negatives (FN),the voxels predicted to be positives but identified negatives, these metrics are defined366
as follows:367

• TPR: Also known as sensitivity or recall, measures the rate of true positives with respect to the368
number of real positive cases.369

TPR =
TP

P
=

TP

TP + FN
(2)

• TNR: Also known as specificity, measures the rate of true negatives with respect to the number of370
real negative cases.371

TNR =
TN

N
=

TN

TN + FP
(3)

• PPV: Also known as precision, measures the proportion of true positives with respect to all predicted372
positives.373

PPV =
TP

P ′
=

TP

TP + FP
(4)

• ACC: Is a measure of statistical bias. Represents how close the predictions are from the true values.374

ACC =
TP + TN

P +N
=

TP + TN

TP + TN + FP + FN
(5)

Frontiers 9

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 11, 2019. ; https://doi.org/10.1101/544858doi: bioRxiv preprint 

https://doi.org/10.1101/544858
http://creativecommons.org/licenses/by/4.0/


Perez Malla et al.

• DSC: The Dice similarity coefficient measures the harmonic mean of PPV and TPR. (Landis and375
Koch, 1977) define the intervals and the associated "strength of agreement": [< 0.00] (Poor), [0.00−376
0.20] (Slight), [0.21− 0.40] (Fair), [0.41− 0.60] (Moderate), [0.61− 0.80] (Substantial), [0.81− 1.00]377
(Almost perfect).378

Fi = 2 ∗ PPV ∗ TPR
PPV + TPR

=
2TP

2TP + FP + FN
(6)

• MCC: Also known as the phi coefficient or Matthews correlation coefficient, is considered a balanced379
metric of the quality of binary classification, thus robust to class imbalance. Values range from -1380
(perfect negative correlation) to 1 (perfect positive correlation), being 0 equal to random prediction.381
This metric is considered to be the most meaningful, specially for imbalanced data(Chicco, 2017).382

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(7)

• HD: Measures the distance between two subsets. AS and BS are equivalent to P (real true cases) and383
P′ (predicted true cases), and d(·) is the euclidean distance between two points.384

HD(As, Bs) = max{max
a∈As

min
b∈Bs

d(a, b),max
b∈Bs

min
a∈As

d(b, a)} (8)

Since k-fold cross-validation was employed, these metrics were averaged per fold and also between385
folds. This means that performance metrics were available per subject (both for the validation and test386
sets’ subjects of every fold), per fold and per experiment. Performance curves, known as precision PPV387
vs. recall TPR, error bar and Bland-Altman(Bland et al., 1986) plots were also produced. In addition, the388
DeepMedic plotting script was slightly modified to generate the progress of metrics such as accuracy or389
DSC on training and validation sets through the different epochs.390

3 RESULTS

3.1 Segmentation Performance during Training391

The segmentation performance for validation and training sets during the training process is shown in392
figure 2. The DSC coefficient was stable after improving during few epochs. On the other hand, sensitivity393
(i.e. TPR) improved at first but then worsened and remained stable. Mean accuracy and specificity, while394
being very high, did not account for the imbalanced nature of the data.395
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Figure 2. E0 - Segmentation metrics of validation and train subjects during training. The graphs shown
are the averages of all 5 folds. The light grey area illustrates ±1 standard deviation. Full segmentation on
training cases was not performed by DeepMedic, reason why the lower-right graph is empty.
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In E1, sensitivity took more time to reach its peak compared to E0, but when it stabilised the asymptote396
was slightly higher. Also, while DSC behaved similarly to E0, it also achieved higher values. In E2-E5, the397
metrics for the first epoch had the same value as for the last epoch in E1, and did not improve throughout398
the training process.399

3.2 Baseline Segmentation Performance400

Figure 3, shows the error bars for each metric, post-processing step and lesion category for E0. TPR was401
highly variable for small stroke lesions, regardless of whether they were lacunar or cortical, especially402
after the THT0 and FH post-processing steps. THT1 produced consistently worse results in terms of403
accuracy for small stroke lesions, despite achieving higher TPR (i.e. sensitivity). The segmentation of big404
cortical/main artery stroke lesions was considerably better than those for the other stroke subtypes.405

Figure 3. E0 - Error bars. Each metric for each post-processing step and lesion category is presented.
A fourth column, representing all subjects, is also included. Each marker represent the mean value, and
the upper and lower limits represent the 95% confidence interval.The metrics shown are: Dice similarity
coefficient (DSC), Matthews correlation coefficient (MCC), True positive rate (TPR), True negative rate
(TNR), and Positive predicted value (PPV).

The Bland-Altman plot showing the volumetric agreement between the GT and the results from E0406
after each post-processing step can be seen in figure 4. THT1 produced the worst results in terms of407
volumetric agreement regardless of the stroke subtype, considerably inflating the stroke lesion volume.408
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This method for selecting the optimal threshold for binarising the probabilistic stroke lesion maps409
obtained, overestimated the stroke lesion size in general.410
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Figure 4. E0 - Volume Bland-Altman analysis. Each lesion category (lacunar/subcortical, small cortical
and big cortical) and post-processing step (THT0, THT1, FH and base) are included. Each point represents
one subject. The black line is the mean difference, whereas the black dotted-line represents the limits of
agreement, computed as mean±1.96 Standard deviation (STD). The x axis is the average volume between
the predicted segmentation and the ground truth, whereas the y label is the difference.

3.3 Experiments’ Results411

E1 was the best performing model, with an average DSC of 0.34 after applying FH. This proves the412
efficacy of using the data augmentation method selected (i.e. intensity variance). It also proves the413
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importance of performing post-processing tasks, such as THT0 and FH, instead of simply focusing on414
pre-processing and then relying on the output of the network.415

Table 1 and figure 5 contain a summary of all experiments. E1 was superior to E0 and the rest416
experiments yielded results close to E1, but they were not able to improve it. E4 and E5 are not417
shown because their results were very similar to E3 but slightly inferior. In general, the transfer learning418
approaches (E2-E5) evaluated did not improve the accuracy in the results.419

Table 1 shows the key metrics of each experiment both for all post-processing steps. On average, FH420
performed best. PPV and consequently DSC were the metrics that determined the best performing model.421

Figure 5 depicts the DSC error bars for all post-processing steps and lesion categories. Big cortical422
lesions were easier to segment than the rest (i.e. small lesions).423
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Figure 5. DSC error bars of all experiments for the base prediction and FH and each lesion category.

Additionally, figure 6 shows the precision-recall curves for all experiments. Results are very different424
depending on the cases that fall in each fold. This is a clear sign of the heterogeneous nature of the data425
and the inability of the network to generalising well. Also from these graphs, results from E1 are slightly426
superior to E0 and similar to E2. Interestingly, while E3 produced the worst results, its predictions were427
the least heterogeneous (i.e. the curves are more closer to each other than in any other experiment).428

The winner (Choi et al., 2017) of the ISLES 2017 challenge, achieved 0.31 DSC and 103.64 HD when429
the final results were published in September of 2017, but since then the challenge has remained open.430
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Figure 6. Performance curves of E0-E3. The grey lines indicate the iso-F1 Score (F1S) curves, the value
of DSC for each point in the graph. The Average Precision (AP) metrics are also included.

Post-proc DSC HD MCC TPR TNR PPV

E0
Base 0.29 62.22 0.30 0.30 0.99 0.36

THT0 0.29 72.83 0.30 0.45 0.97 0.28
THT1 0.12 99.62 0.16 0.94 0.64 0.07

FH 0.32 59.47 0.33 0.38 0.99 0.36

E1
Base 0.32 49.89 0.32 0.34 0.99 0.38

THT0 0.31 72.33 0.33 0.49 0.97 0.30
THT1 0.13 100.29 0.18 0.96 0.65 0.07

FH 0.34 47.85 0.35 0.40 0.99 0.39

E2
Base 0.31 48.48 0.32 0.34 0.99 0.38

THT0 0.31 71.42 0.33 0.48 0.97 0.30
THT1 0.13 100.19 0.18 0.96 0.68 0.08

FH 0.33 46.74 0.35 0.40 0.99 0.38

E3
Base 0.30 57.37 0.31 0.36 0.99 0.36

THT0 0.31 66.37 0.32 0.42 0.98 0.32
THT1 0.12 99.94 0.17 0.97 0.63 0.07

FH 0.33 53.94 0.34 0.42 0.99 0.36

Table 1 Summary of the main metrics for all experiments (i.e. E0-E3). Average metrics from the base
prediction and all post-processing steps are shown. These are: Threshold tuning 0 (THT0), Threshold
tuning 1 (THT1) and Filling holes (FH). The metrics shown are: Dice similarity coefficient (DSC),
Hausdorff distance (HD), Matthews correlation coefficient (MCC), True positive rate (TPR), True
negative rate (TNR), and Positive predicted value (PPV).

Consequently, more participants have joined the challenge and the current top performer, as of the time of431
writing this manuscript, achieved 0.36 DSC and 29.37 HD.432

To perform a fair comparison between our E1 and the current state of the art performance, E1 was433
retrained using all train data for training and tested on the unlabeled test set of the challenge. FH was then434
applied to the predicted lesions using the average number of iterations in E1 and the results uploaded to435
the SMIR web page2.436

E1 achieved 0.29 DSC and 49.75 HD on the test set, as reported by the SMIR web page. This value437
is inferior to the 0.34 DSC achieved in the E1 experiment and also to the current first position of the438
challenge. This difference could be because of the fact that either the network or the number of iterations439
for FH computed in E1 were not able to generalize well on the test data.440

3.4 Visual Evaluation of the Results441

Figures 7, 8 and 9 show the results from E1 for representative axial slices superimposed in the ADC442
image, from three subjects randomly selected from each category. In general, stroke lesion predictions443
were better in E1, but not by a large margin, and these figures, overall, exemplify the results obtained.444

2 www.smir.ch
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Compared to E0, some cases were better segmented, but this was not always the case. For example, the445
stroke lesion prediction for subject 9 (lacunar infarct) achieved a DSC score of 0.45 in E0, whereas in E1446
it achieved 0.56. However, for subject 21 (small cortical infarct), the DSC score for E0 was 0.26, whereas447
in E1 it was 0.24, i.e. a slightly worse score. In general, E1’s DSC was 10.34% better than E0’s and 6.25%448
for FH. Most results were visually very similar. Also, in E1, post-processing steps (i.e. THT0, THT1, FH)449
did not improve results as much as they did in E0.450

Figure 7. E1 - Visual segmentation comparison of lacunar/subcortical lesions. The examples include the
predicted lesions after each post-processing step. Images are 2D slices, their cut coordinate in the z axis
is included, as well as the volume of each segmentation and the DSC achieved.
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Figure 8. E1 - Visual segmentation comparison of small cortical lesions. The examples include the
predicted lesions after each post-processing step. Images are 2D slices, their cut coordinate in the z axis
is included, as well as the volume of each segmentation and the DSC achieved.

Figure 9. E1 - Visual segmentation comparison of big cortical lesions. The examples include the
predicted lesions after each post-processing step. Images are 2D slices, their cut coordinate in the z axis
is included, as well as the volume of each segmentation and the DSC achieved.
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The GT, obtained from the structural T2-weighted images, not always includes the whole regions with451
restricted diffusion (i.e. dark regions in the ADC map). Contrastingly, in cases of large strokes, it includes452
the cerebrospinal fluid in the sulci. For cases in which the GT extent agrees with the region of restricted453
diffusion, the results are better (e.g. cases 9 and 32).454

Visually, results obtained applying THT1 to the DeepMedic’s output does not appear to be disparately455
wrong compared to those obtained applying THT0 and/or FH.456

4 DISCUSSION

The model that used data augmentation had the best performance, achieving an average DSC score of 0.34457
for the test cases after applying FH. This was a reasonable outcome considering that the network clearly458
suffered from overfitting, for which data augmentation is a well-known remedy.459

Also, of all post-processing steps evaluated, FH produced the best improvements on average over the460
base prediction by the network. The second best was THT0, which in some cases surpassed FH. The461
results from applying THT1, although worst in terms of accuracy, were not visually very different.462

Despite the enhancing learning strategy proposed slightly improved the segmentation results in the463
majority of cases, our results are still suboptimal. We used the default configuration, batch size, learning464
rate and activation functions of a CNN scheme designed to segment tumours from structural MRI465
sequences. Also, instead of pre-training the network with data of similar nature, but a varied, larger466
dataset, and fined-tune it with this ISLES 2017 dataset, we directly trained it with a subset from the latter.467
Therefore, overfitting was still a problem even with data augmentation. Reducing it could be achieved by468
modifying the number of layers and the size of kernels, and thus the number of network parameters. It469
could also be remedied by using data from other challenges, or even past iterations of ISLES that also470
contain the same sequences for segmenting the stroke lesion. Moreover, the learning rate schedule should471
lower the learning rate at predefined epochs. We used the DeepMedic’s default without prior training the472
model to determine when it would be more convenient to lower the learning rate, and the schedule was473
set to exponential decrease. Further work should try to lower the learning rate only when necessary.474

Despite the limitations previously mentioned, the GT used should be put into question. As the475
examples selected show, it did not accurately cover the region of restricted diffusion in the ADC images,476
underestimating it mainly for small infarcts and overestimating in cases of large infarcts, including477
regions of cerebrospinal fluid in the sulci. The GT was generated using the structural T2-weighted images478
(i.e. including FLAIR), not provided. The mismatch between structural, diffusion and perfusion MRI479
modalities is well-known (Motta et al., 2015; Chen and Ni, 2012; Straka et al., 2010).480

Precisely, the perfusion/diffusion mismatch has been reported to provide a practical and approximate481
measure of the tissue at risk, being used to identify acute stroke patients that could benefit from482
reperfusion therapies. Clinical studies also show that early abnormality on diffusion-weighted imaging483
can overestimate the infarct core by including part of the tissue "at risk", and the abnormality on perfusion484
weighted imaging overestimates this "at risk" tissue by including regions of benign tissue with reduced485
blood perfusion (Chen and Ni, 2012).486

The diffusion/fluid attenuated inversion recovery (DWI/FLAIR) mismatch is also well known. Together487
with the perfusion/diffusion mismatch it is recognised as an MRI marker of evolving brain ischemia. A488
clinical trial that examined whether the DWI/FLAIR mismatch was independently associated with the489
diffusion/perfusion mismatch or not, concluded that in the presence of the latter, the DWI/FLAIR pattern490
could indicate a shorter time between the scan and the last time the tissue seen was normal (Wouters et al.,491
2015). The CNN scheme evaluated does not take into account the time from the stroke onset - information492
not provided.493

Finally, the types of infarcts were not evenly represented in the dataset. The large cortical strokes were494
predominant, which could explain the bias in the results favouring the cases when the stroke was of this495
subtype. The involvement of personnel with relevant clinical knowledge in the generation of datasets to496
be used for developing algorithms aimed to clinical research would be advisable in the future.497
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