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Abstract

Recent work has highlighted the scale and ubiquity of subject variability
in observations from functional MRI data (fMRI). Furthermore, it is highly
likely that errors in the estimation of either the spatial presentation of,
or the coupling between, functional regions can confound cross-subject
analyses, making accurate and unbiased representations of functional data
essential for interpreting any downstream analyses.

Here, we extend the framework of probabilistic functional modes
(PFMs) [Harrison et al. 2015] to capture cross-subject variability not only
in the mode spatial maps, but also in the functional coupling between
modes and in mode amplitudes. A new implementation of the inference
now also allows for the analysis of modern, large-scale data sets, and the
combined inference and analysis package, PROFUMO, is available from
git.fmrib.ox.ac.uk/samh/profumo. Using resting-state data from 1,000
subjects collected as part of the Human Connectome Project [Van Essen et
al. 2013], and an analysis of 14 subjects in a variety of continuous task-states
[Kieliba et al. 2018], we demonstrate how PFMs are able to capture, within
a single model, a rich description of how the spatio-temporal structure of
resting-state fMRI activity varies across subjects.

We also compare the new PFM model to the well established inde-
pendent component analysis with dual regression (ICA-DR) pipeline. This
reveals that, under PFM assumptions, much more of the (behaviorally
relevant) cross-subject variability in fMRI activity should be attributed to
the variability in spatial maps. This has fundamental implications for the
interpretation of cross-sectional studies of functional connectivity that do
not capture cross-subject variability to the same extent as PFMs.
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1 Introduction

One of the key changes to the landscape of the analysis of functional connectivity
via rfMRI in recent years has been the proliferation of large population-level
studies [Van Essen et al. 2012b; Breteler et al. 2014; Bamberg et al. 2015; Miller et al.
2016] and multi-site data-sharing initiatives [Biswal et al. 2010; Scott et al. 2011;
Mennes et al. 2013; Poldrack et al. 2013; Thompson et al. 2014; Kennedy et al. 2016;
Gorgolewski et al. 2017]". This has allowed investigations into the population-level
correlates of fine-grained changes in functional connectivity [E. A. Allen et al.
2011; Dubois and Adolphs 2016], with several studies already finding strong links
with a variety of behavioural, genetic and lifestyle factors [Finn et al. 2015; Smith
et al. 2015; Colclough et al. 2017; Elliott et al. 2018]; together, these findings augur
well for the search for clinically relevant, personalised predictions from functional
neuroimaging data [Insel and Cuthbert 2015; Dubois and Adolphs 2016; Abraham
et al. 2017; Stephan et al. 2017]. In sum, there has been a shift in what is required of
analysis techniques, namely that they must be sensitive to subject-level variability,
while at the same time being able to scale to meet the computational demands
posed by large data sets.

1.1 Implications of variability over subjects

In this paper, we are primarily interested in the interpretation of—and character-
isation of the subject variability in—static functional connectivity?. Ultimately,
static functional connectivity is encapsulated by the dense connectome—by which
we mean the voxels-by-voxels connectivity matrix, as defined by the statistical
relationships between time courses as extracted from functional data [Friston et al.
1993; Friston 2011]. However, dense connectomes are cumbersome computation-
ally, and the natural spatial scale of the functional data is likely to be much lower
than the several hundred thousand voxels present in a typical fMRI acquisition
[Van Essen et al. 2012a]. In practice, what we are seeking is a parsimonious sum-
mary of the static functional connectivity that is both readily interpretable and
captures key forms of variability.

The canonical approach for analyses of static functional connectivity is to
summarise the high-dimensional data in terms of a comparatively small number
of either parcels or functional systems®. These are usually defined in terms of
their spatial configuration, at which point it is possible to extract representative

'For a more complete overview of data sharing initiatives, see the Neurolmage special issues
[Eickhoff et al. 2016].

2For the rest of this paper, when we use the term variability in relation to functional measures, it
can be assumed to relate to variability in static functional connectivity over subjects or sessions.
This does not consider, for example, the moment-to-moment fluctuations characterised as dynamic
functional connectivity [Hutchison et al. 2013; Calhoun et al. 2014; Preti and Van De Ville 2017]. This
encodes important within-subject state changes [Tagliazucchi and Laufs 2014], and there is growing
evidence that this captures between-subject trait differences too [Vidaurre et al. 2017].

3Resting-state networks, intrinsic connectivity networks, etc.
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time courses from functional data and analyse these. There will naturally be
variability in functional connectivity in several domains, though based on the above
framework we will focus on two key ones here: firstly, we will refer to variability
in the size, shape and location of functional regions as subject variability in spatial
organisation; secondly, we will use subject variability in temporal features to denote
the changes in summary measures based on said time courses—in particular, the
strength of functional connectivity between regions (i.e. functional connectomes).
Finally, note that for clarity we will use the term functional coupling to specifically
refer to the functional connectivity between regions as described by these low-
dimensional connectomes®.

The assumption that is implicit in either the parcel or system-level analyses is
that registration to a common space means that the time courses we extract based
on group-level spatial descriptions are an accurate, or at least unbiased, description
of each subject’s data. However, given that it is by no means uncommon to observe
three-fold variation in the areal extent of regions of primary visual cortex across
subjects [Andrews et al. 1997; Dougherty et al. 2003]; or that non-homeomorphic
morphological changes, such as subjects exhibiting different number of gyri and
sulci, are prevalent [Shackman et al. 2011; Amiez and Petrides 2014] even in identical
twins [Bartley et al. 1997; Hasan et al. 2011]; or that macroscale anatomical features
are poor predictors of cytoarchitectonic borders [Amunts et al. 2007]; then we
should expect there to be substantial disparities in the presentation of functionally
homologous regions across subjects, even after nonlinear registration [Brett et
al. 2002; Devlin and Poldrack 2007; Van Essen and Dierker 2007; Mueller et al.
2013]. Recent observations have confirmed this for functional data, where it has
been shown that this subject variability in spatial organisation ‘can give rise to
divergent connectivity estimates from the same seed region in different subjects’
[Gordon et al. 2017a]—with the results from several studies also suggesting that
reorganisations of functionally homologous regions that cannot be represented
by diffeomorphic warps seem to be commonplace [Hacker et al. 2013; Harrison
et al. 2015; Laumann et al. 2015; Glasser et al. 2016a; Gordon et al. 2016; Braga and
Buckner 2017; Gordon et al. 2017b; Kong et al. 2018]. Furthermore, these differences
have a substantial impact on the data: cross-subject differences in static functional
connectivity have been shown to be much larger than either cross-site effects [S.
Noble et al. 2017] or cross-condition, within-subject changes [Gratton et al. 2018].

Loosely speaking, these spatial differences in functional connectivity after
registration can arise for four reasons: there will naturally be some errors in
the registration process, resulting in structural features that are not brought into
correspondence; there will be locations where anatomical landmarks bear little
relation to functional subdivisions, meaning structural similarity is not a sufficient
condition for accurate registration; there will be genuine non-homotopic reorgan-
isations, whereby the standard registration approaches based on diffeomorphic

*We make this distinction as the spatial maps, which characterise the location of functional
regions, also capture aspects functional connectivity and organisation.


https://doi.org/10.1101/544817
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/544817; this version posted February 8, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

bioRxiv

warps could never succeed; and there will be dynamic—either moment-to-moment
or state-dependent—changes in the functional connectivity structure [Buckner
etal. 2013; Krienen et al. 2014; Salehi et al. 2018]. If these ‘functional misalignments’
are not accounted for, then one expects the inferred mode time courses to be a
farrago of contributions from the underlying ‘true’ set of modes [Smith et al. 2011;
E. A. Allen et al. 2012]. Worse still, if the structural differences capture meaningful
cross-subject differences—which they almost certainly will do— then the amount
of misalignment, and hence the quality of the extracted time courses, will reflect
information that is anatomical rather than functional in origin [Bijsterbosch et al.
2018]. This breaks the central tenet of investigations into subject variability in
temporal features, as we can no longer assume that a group-level description of
the functional architecture is a reliable description of individual subjects, or even
that we can use these to extract unbiased estimates of functional coupling. How
then, do we proceed from here?

The first approach we could take is to improve the registrations, and hope
that better algorithms and utilising a richer feature set to drive the alignment
will push individual subjects ever closer towards the group description [Robinson
et al. 2014; Tong et al. 2017; Robinson et al. 2018]. Notably however, the multiple
recent observations that single functional regions can be manifested as multiple
disjoint regions in some subjects, is something that not even advanced functional
registration algorithms reliant on diffeomorphic warps can correct for. The min-
imum requirement for this approach is therefore the use of advanced registration
techniques that can non-homotopically reorganise the spatial layout of functional
regions, as, for example, introduced by Conroy et al. [2013], Guntupalli et al. [2016]
and Guntupalli and Haxby [2017], or Langs et al. [2010].

The alternative approach, and the one that we take in this paper, is to build
algorithms that can extract estimates of subject variability in temporal features
while simultaneously accounting for the variable presentation of functional regions
at the subject level. Several methods have been proposed to do exactly this, using
both hierarchical models of functional systems [Varoquaux et al. 2011; Abraham
et al. 2013; Harrison et al. 2015; Li et al. 2017] and parcels [Liu et al. 2012; Langs et al.
2016; Kong et al. 2018]. We provide a more fulsome description of these, and their
counterparts that extract subject-specific information given a fixed group template,
in Appendix A. However, the majority of these methods have what is potentially
a major limitation: the flow of information is almost exclusively from group to
subject. In other words, there are only relatively rudimentary efforts to tap into
what we might hope is a virtuous cycle: we should be able to use our group-level
estimates to infer accurate subject-level information, but, crucially, we should
also be able to utilise the observed variability at the subject level to refine our

5Tt is somewhat contentious whether (structural) registration should be held responsible for the
latter two processes. Our definition of registration is somewhat broader, as we hold it responsible
for bringing subjects into structural and functional correspondence. While structural registration
is unlikely to be sufficient here, this is nevertheless a reasonable aim for multi-modal registration
approaches. For a good discussion of these issues see e.g. Van Essen and Dierker [2007].
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group-level parameterisations. Furthermore, the same process should hold within
subjects, such that accurate estimation of the individual spatial presentations
should improve evaluation of the temporal information, and vice versa.

Finally, while we have tended to focus on connectomes as the principal tem-
poral feature of interest in the above discussion, there are other types of variability
we are interested in. Recent work has shown that, for example, amplitudes—by
which we mean any metric which represents the amount of fluctuation in activity
of a functional region over time—carry a substantial amount of information about
subjects [Zang et al. 2007; Duff et al. 2008; Zou et al. 2008; Miller et al. 2016;
Bijsterbosch et al. 2017], provided we are sufficiently careful in how we distinguish
changes from those in functional coupling [Duff et al. 2018], and then how we
interpret said changes [Qing and Gong 2016]. Amplitudes are therefore another
type of subject-specific information that we would hope analysis methods could
identify, and more importantly disambiguate from, the types of subject variability
we have already discussed. This is an illustrative example of the complexity of
the task of characterising functional connectivity: at every level of any perceptual
hierarchy of features we impose (i.e. separation into spatial and temporal features,
or subdivision of temporal features into amplitudes and coupling), we expect there
to be multiple ways to identify the different features, and substantial cross-subject
variability that is correlated across the different categories.

1.2 Outline

For the rest of this paper, we will outline our approach for simultaneously inferring
group- and subject-level descriptions of functional systems. We use the term mode
to describe our mathematical description of a given system.

To begin with, we present our probabilistic model for these modes, including
the way we parameterise subject variability in both spatial and temporal features,
and our approach for inference. This is a significant extension of the proof-of-
concept method [Harrison et al. 2015] in several key ways: we introduce a new
hierarchical model to better capture the functional coupling between modes, in-
corporate a model for mode amplitudes to engender a cleaner separation between
different types of functional variability, and we overhaul the entire implementation
to help the inference scale to large data sets.

We then compare the performance of our method with existing approaches,
both on the complete set of rfMRI data as released by the Human Connectome
Project and on a more conventionally sized study, before offering some brief
discussions as to the significance of our results.
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2 Model

Our approach infers subject-level probabilistic functional modes (PFMs)—each of
which can be thought of as being described by a subject-specific spatial map and a
set of time courses—across the whole cohort simultaneously. Ensuring that there
is correspondence between the inferred modes across the cohort is a challenge
[Esposito et al. 2005], especially on resting-state data where we cannot assume
any common temporal structure.

However, we can use the information at the group-level to inform the subject-
specific decompositions: both the subject-specific spatial maps and the low-
dimensional, between-mode functional connectomes are constrained to vary
around their group-level descriptions, and we can also leverage the expected
properties of the hsemodynamic response to further constrain the time courses.
Moreover, we can use the subject-specific modes to learn about the variability of
all these properties, thereby allowing us to not only describe typical patterns of
activity, but to also quantify the extent to which observed patterns are atypical.
We do this by building, and then inferring upon, a hierarchical probabilistic model
for rfMRI data as described by a set of modes, and it is this that we outline in the
following section.

2.1 Matrix factorisation models

Defining a mode in terms of a spatial map and time course means that it is fun-
damentally a matrix factorisation approach, a mathematical formulation which
underpins principal component analysis, independent component analysis, non-
negative matrix factorisation, dictionary learning and several other of the well
established methods for extracting modes from rfMRI data. For completeness,
we briefly introduce our notation for this class of models before introducing our
extensions.

Firstly, each subject, s, from a cohort of S subjects, is scanned R, times. Note
that we do not assume that each of the runs for a given subject (i.e. » € {1,...,R;})
are identical from a modelling standpoint: they could, for example, represent
different time points in a longitudinal study, or different conditions®, and we may
therefore want to treat them differently. The fMRI data are acquired in V voxels
and at T time points, which we reshape into a data matrix D" € RV*T. We do
all our analyses after the data has been registered into a common space, so the
number of voxels is constant across subjects. We do however allow the number of
time points per run to vary (ie. D67 € RV T(Sr)), but for notational simplicity we
drop any superscripts on T.

The problem we are faced with is defining an extension to the standard matrix
factorisation approach to account for these multiple data. In the spatial domain, as
discussed in the Introduction, we expect between-subject variability in the locations

®Eyes-open, eyes-closed, pre/post an intervention, various ‘active-state’ paradigms etc.
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of functional regions, even after registration, and we expect these effects to be
amongst the dominant sources of functional variability. We make the pragmatic
decision to focus on differences in the static configuration of functional systems
specifically, and we target our spatial approach towards what are essentially
misalignments.

Therefore, as in Harrison et al. [2015], we model subject and run variability
within the matrix factorisation framework as follows. We are looking for a set
of M modes, and we assume that the subject variability in spatial organisation
we observe across subjects, by virtue of it being driven primarily by cortical
reorganisations, is consistent across all runs for a given subject. This gives a set
of subject-specific spatial maps, P € RV*M, that will potentially be observed
multiple times. Furthermore, each run will have its own unique set of time courses,
AL € RM *T as well as a set of mode amplitudes, K0 € RM. For convenience
we adopt the following convention: H®") € RM*M = diag(h(*")). Finally, note that
in general we infer a small number of PFMs relative to V and T, which gives a
parsimonious description of the data. However, this means that the factorisation
will not be exact, so we express the data as the contribution from the PFMs and
a noise term, £ € RV*T. This set of assumptions allows us to describe the
complete model for one run as

DD _ p g(sr) AGP) 4 g(s7) )

In the following sections, we describe how we model the dependencies between
these run-specific decompositions, as well as the key properties of rfMRI data that
we are trying to capture.

2.2 Spatial Model

The spatial model remains conceptually similar to the approach we used in Harrison
et al. [ibid.]. For each mode, there is a rich group-level description capturing the
mean group maps and typical subject variability around these; as Van Essen and
Dierker [2007] discuss, in light of subject variability, it is essential that ‘[regions are]
represented probabilistically whenever possible, in a way that reflects variability
in cortical convolutions and in [their] size, location, and internal (e.g., topographic)
organization’. Similarly, subject maps are parameterised such that they retain
the key characteristics of the group maps, but allow for genuine variability while
being robust to spurious correlations induced by noise.

A key modification we make to the previous model is to change the way we
model the spatial map distribution, by relaxing the delta-Gaussian mixture model
to a double-Gaussian mixture model. Previously, the weights in voxels which were
inferred to be outside of a given mode were set to exactly zero. In reality however,
essentially all voxels will exhibit a weak correlation with a given mode time course’,
and, particularly in studies like the Human Connectome Project with thousands

’Cf. the noisy estimates of beta values from a GLM fit.
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of time points per subject, there is often sufficient evidence a posteriori to model
this noise as small, but nevertheless non-zero, Weightsg. The new model allows
for exactly this type of ‘spurious’ (i.e. statistically but not biologically significant)
correlation by including a noise distribution to capture small deviations from zero
in the spatial map weights. While we are not interested in these small weights per
se, if we do not include a more explicit noise model then the model will erroneously
include them as signal thereby hindering our ability to detect genuine ‘neural’
signal.

This contamination by structured noise happens for two main reasons. Firstly,
as Bright and Murphy [2015] recently showed, even well-characterised functional
modes can be identified from noise processes like subject motion. Conversely,
this implies that even accurately identified modes may well correlate with non-
neural processes. Secondly, given the complex, long-range spatial autocorrelations
present in fMRI data [Kriegeskorte et al. 2008], fMRI noise processes have a
non-trivial structure. This is heightened by spatial smoothing, which is an often
used pre-processing step for fMRI data (though less so for modern high spatial
and temporal resolution data [Glasser et al. 2016b]). This is advantageous as it
ameliorates the problem of residual spatial mis-alignment after registration, but
induces heightened spatial correlations in the noise. While it would be possible
to model this, estimating—and then correcting for—the true number of spatial
degrees of freedom in the data is notoriously difficult [Worsley et al. 1996; Eklund
et al. 2016], and would be computationally expensive over a large number of voxels.
Therefore, we make the pragmatic decision to account for these effects in the spatial
model, rather than trying to incorporate a more complex mechanistic model for
the noise.

The resulting model takes the following form. For voxel v in mode m, the
subject-specific spatial weights are distributed as follows:

PP = 1) = NPty 02
PG = 0) = NP0, ()2 2)
(s) (s)
PGS = () (1 = 71,10

P = N0, v2)

@)

Where qs,s,)n is a binary indicator variable which represents whether a given voxel’s
weight is drawn from the signal or the noise component.

This distribution is defined in terms of several group-level hyperparameters:
the probability that a given weight is drawn from the signal rather than the noise
distribution, 7,,,; the mean and standard deviation of the signal component, y,,,,
and o, respectively; and the new parameters, the standard deviation of the noise

8See Colclough et al. [2018] for a discussion of exactly this effect in relation to inference of
functional couplings between regions.


https://doi.org/10.1101/544817
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/544817; this version posted February 8, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

bioRxiv

component, which we parameterise as r](,,sl) {, for reasons which we explain in detail
later.

Note how much richer this description is than the single set of group-level
means that most currently used techniques, like ICA, infer. For example, the o,,,
parameters can capture the types of spatial non-uniformity in subject variability
observed by Mueller et al. [2013]. Therefore, when inferring subject maps, the
inference will automatically be informed by the data more than the group mean in
regions inferred to exhibit high functional heterogeneity over subjects, and vice
versa for regions with low subject-to-subject variability.

The model also includes the set of distributions over the group-level hyperpriors
(see Appendix C for the exact values these, and all subsequent, hyperparameters
take). Starting with the hyperpriors on the ‘signal’ component, we place a mixture
model prior over the group means, which, as in the previous work, is inspired by
the spike-slab distribution [Mitchell and Beauchamp 1988; George and McCulloch
1993; Ishwaran and Rao 2005; Titsias and Lazaro-Gredilla 2011]. This encourages
sparsity in the group-level spatial maps, thereby encoding ideas about functional
segregation, as well as allowing more flexibility when specifying the distribution
of the non-zero weights. However, we introduce an extension and model the
non-zero weights with a combination of two Gaussians with different variances.
This allows the group-level distribution of non-zero spatial weights to have heavier
tails than the single Gaussian used in the previous incarnation of the model.

PWymlpym = 2) = N(ﬂvm|7y2’ )/,32)
Plymlpym = 1) = N(va|Tu1, Yil)

p(/lvm|pvm =0) = 5(.uvm) (3)
p(pvm) _ H (A’ui)[pvmzl]
i€{0,1,2}

Where p,,,,, is the probability that a voxel in the group map is drawn from each of
the three distributions, and [p,,, = i] is the Iverson bracket.
The group signal standard deviations, o, ,,, take an inverse-gamma hyperprior:

P(ym) = T(oynlag. b,) (4)

Returning to the hyperpriors on the ‘noise’ component, in Equation 2, the
standard deviation of the noise component of the subject-specific spatial map distri-
bution is parameterised as US,S,) {,- The {,, parameter encodes spatial inhomogeneity
in the noise variance: for example, we expect more structured noise due to motion
around the edges of the brain; similarly, we expect more physiological noise in the
brainstem. This group noise standard deviation, ¢, also takes an inverse-gamma
hyperprior:

p(&) = T(& % ag, by) (5)

However, we also expect different signal-to-noise ratios, both across subjects

. S . .
and modes. Therefore, we include an extra parameter, ry(m), which captures vari-
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ations in the noise level’. We place a weak prior on qifl), as we want the overall

scale of each spatial map to be determined by the signal rather than the noise, as
this makes cross-subject analyses more informative:

P = N (ttyml0, ¥2) (6)

Finally, the last hyperprior to specify is that on the group membership probab-
ilities. This follows a beta distribution:

p(”vm) = ﬁ(”vm|a7r’ bﬂ) (7)

In summary, the model has rich descriptions of the spatial maps, both at the
group and subject level, and allows us to encode typical patterns of variability.
Furthermore, while we have included a weak sparsity constraint at the group-level,
there is no explicit constraint on, for example, orthogonality of the spatial maps.
Therefore, the model can capture modes that are highly spatially overlapping in
what is arguably a more natural way than ICA—even despite a historic tendency
to overstate those criticisms [Beckmann et al. 2005; Smith et al. 2012; Calhoun
et al. 2013].

One last point to note is that when we present our results, the group maps we
show are the marginal posterior means of the whole spatial distribution, rather than
the p parameters themselves. The group-level maps are therefore E[x,,,, 1, ,,| D],
which has the nice property that it incorporates the uncertainty about whether
each voxel is is drawn from the signal or the noise component.

2.3 Temporal Model

In the temporal domain, the unconstrained nature of rfMRI data means that we can
say relatively little about the time courses from a given run, as there are no external
events from which we can search for consistent time-locked patterns of mode
activation. However, functional connectomics has shown that, as well as having
a consistent group structure, both the interactions between modes and simple
amplitude measures encode interesting information about subjects. Similarly, the
haemodynamic processes lend neural processes a distinct temporal signature. That
being the case, we wish to formulate a model that primarily captures these two
phenomena.

However, we expect the inferred time courses to be corrupted by noise, even if
we properly make allowances for the global noise process €67 As mentioned in
the Spatial Model section, there are likely to be structured noise processes that
violate our heemodynamic assumptions. This needs to be accounted for before we
can introduce the targeted models of the BOLD signal.

Analogously to the the spatial model, we extend the model from Harrison et al.
[2015] by making the pragmatic decision to allow noisy time courses. Therefore,

°See e.g. Gelman [2006] for a related discussion of redundant parameterisations of variance.

10


https://doi.org/10.1101/544817
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/544817; this version posted February 8, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

bioRxiv

our time course model contains two terms: the first represents the clean BOLD
time courses, BGY , while the second represents the noise that corrupts these, & (1),
This gives:

A(sr) _ B(sr) + g;(sr) (8)

There is an additional benefit of this explicit parameterisation of the BOLD
time courses. Recent work has claimed that the [fractional] Amplitude of Low
Frequency Fluctuations ([f]ALFF) [Zang et al. 2007; Zou et al. 2008; Zuo et al.
2010a], as derived from rfMRI data, captures aspects of subject variability related
to disease. Our parameterisation allows us to derive a related quantity, which
we term the fractional amplitude of BOLD time courses (fABT). This is simply
defined as the power in the clean BOLD time courses B®"), relative to the power
in the noise time courses &7, calculated for each mode and each run individually.
Conceptually, this is very closely related to fALFF, but it has the clear advantage
that it does not require defining ‘low’ frequencies in terms of an arbitrary threshold;
rather, the signal of interest is based on an explicit model of the HRF. While it is
perhaps not immediately self-evident why such a measure would carry information
above and beyond the amplitudes themselves given that, in general, there is no
control over whether these reflect neuronal or non-neuronal processes, we include
it because of the increasing popularity of [f]ALFF type measures.

2.31 Haemodynamic model

We use the heemodynamic response function (HRF) based model that we intro-
duced in Harrison et al. [2015]. This is a relatively simple, computationally efficient,
linear model that captures the gross properties of the HRF via the temporal auto-
correlations that it induces in the data. We assume a white noise ‘neuronal’ process
convolved with a canonical HRFY, whose autocorrelation function we can capture
using a full covariance matrix, Kz € RT*T, for all the time points in a given run.
As the overall variance of the time courses is arbitrary given the explicit amplitude
parameters, we simply ensure that Kp is scaled such that all entries on the main
diagonal are unity.

2.3.2 Subject-level mode interactions

The major extension relative to the previous model is an explicit parameterisation
of the functional coupling between modes. As discussed earlier, we expect to
observe temporal interactions between modes, and this will lend some structure
to the mode time courses. We define these interactions in terms of the precision
matrix between the mode time courses. In other words, we combine the HRF-
derived autocorrelation structure with a prior on the between-mode precision
matrix, aG"”) € RM *M in a matrix normal distribution.

For adult populations, both the SPM double-gamma HRF [Friston et al. 2007] or the principal
component of the FLOBS basis in FSL [Woolrich et al. 2004] are provided, though this can be replaced
for different populations as appropriate e.g. [Arichi et al. 2012].
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The combined prior on the heemodynamic time course for all the PFMs in a
given run is then:

p(B(sr)|a(sr)) _ MN(B(”)|0, C,(sr)‘1’ Kp) 9)

2.3.3 Group-level mode interactions

The temporal interactions between modes have been characterised as having a
consistent structure across the group [Shehzad et al. 2009], so we introduce a
hierarchical model to capture this. Subject- or run-level variability will manifest
itself as deviations from this set of group interactions. This formulation we use
is, in essence, the same model as that proposed by Marrelec et al. [2006], but
where we have two principal advantages: firstly, inference is informed by the full
posteriors on the rest of the model (i.e. rather than point estimates); and, secondly,
that the regularisation that arises from these priors will inform the inference of
the rest of the model parameters.

Starting at the subject level, we estimate the subject/run-specific temporal
precision matrix ") to keep track of the functional connectivity between modes.
These precision matrices follow a Wishart distribution, and we introduce a hyper-
parameter, B € RM*M that encourages the interactions to be consistent across
subjects and/or runs. This takes the form of a hyperprior on the subject-specific
scale matrices, and again this follows a Wishart distribution.

p(@M|B) = W(a*Dlag, B)  p(B) = W(Blag, Bp) (10)

Furthermore, we can also place restrictions on the type of variability we want
the model to capture. If, for example, subjects are scanned multiple times but
always under the same conditions, then it may well be appropriate to generate
a consensus set of interactions for that subject by pooling over runs. We can
do this straightforwardly by setting o) = o). Alternatively, if the runs vary
across the group in a consistent way (e.g. ‘before’ and ‘after’ scans) then we may
want to explicitly model these conditions as separate entities. We can do this by
introducing a family of group-level interactions, {ﬁ(’ )}f_l, and selectively using

these as the hyperpriors on a1 as appropriate. This gives us enormous flexibility
and allows us to increase our statistical power by making targeted assumptions
about the key modes of variation.

2.3.4 Time course specific noise model

. . . Sr . . .
The noise time course of mode m at time ¢, §,(nt), is simply drawn from a Gaussian

distribution with precision wS,i’). This gives

-1
PESDISTY = N(ESD)0, 0" ) (11)

m m

Each wE,i’) takes a gamma hyperprior:

P = T(w$a,, b,) (12)

12


https://doi.org/10.1101/544817
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/544817; this version posted February 8, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

bioRxiv

2.4  Amplitude Model

Again, the amplitude model is an extension to our previous work. This has a
straightforward formulation, with these parameters simply designed to account
for the run-to-run variations in the overall activity of each mode. These are
parameterised in terms of H") = diag(h®"), and follow a Gaussian distribution:

(RS s ) = NS g, ) (13)

The group-level parameters, p and X}, capture any consistent cross-subject
relationships between the mode amplitudes. For example, Bijsterbosch et al. [2017]
recently reported that the amplitudes of sensorimotor modes are correlated with
one another, as are the amplitudes of cognitive networks. It is exactly these types
of effects that these hyperpriors are able to capture.

The hyperpriors are formulated as follows:

M

pn) = [T Nl i) (14)
m=1

p(Zp) = W(Z,ap. By) (15)

Furthermore, we impose a post-hoc positivity constraint on these variables as
part of the inference procedure. As there is a multiplicative ambiguity as to the
signs of the components in a matrix factorisation model, we can do this without
loss of generality.

2.5 Noise Model

The final part of the model left to specify is the noise process, 67 which we
assume is zero-mean, white Gaussian noise, with an overall precision for each run,

) This specifies the likelihood:

p(e57) = MN (670, (YD) 1Ty, I)

_ (DG - PO 6N AGD) (16)

This noise precision then takes a standard gamma hyperprior:

p(p) = T(y)ay, b)) (17)

This relatively simple structure assumes that the noise variance is the same in
every voxel, which is particularly useful as it allows us to exploit the properties of
the matrix normal distribution, leading to very computationally efficient inference
[Stegle et al. 2011]. We can preprocess the data in such a way that this is a reasonable
assumption to make, and this is discussed in Appendix D.

What is perhaps more problematic is that this model does not acknowledge
the spatial smoothness of fMRI data, which means that the noise is not truly inde-
pendent over voxels. It would be possible to model this, for example by inferring a
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full spatial covariance matrix for the noise that acknowledged the dependencies
between voxels that smoothing introduces. Again, we decide that the benefits of
this more complex model are outweighed by the increased computational burden,
and again we discuss a way in which we can mitigate the effects of this model
misspecification via a relatively straightforward adjustment for the spatial degrees
of freedom introduced by Groves et al. [2011], as discussed in Appendix F .

2.6 Inference Approach

We use a computationally efficient variational Bayesian approach to infer upon
the probabilistic model outlined above. This technique is well established for
graphical models that have a conjugate-exponential structure, as is the mean-field
approximation that renders the inference tractable [Attias 2000; MacKay 2003;
Winn and Bishop 2005; Blei et al. 2017]; as such, we will not cover the details of
that here. In the Appendices, we outline several of the implementation details,
including our data preprocessing pipeline, the way we handle large data sets,
tweaks to the model and the initialisation procedure.

The combined inference and analysis package, PROFUMO (from PRObabilistic
FUnctional MOdes) is available from git.fmrib.ox.ac.uk/samh/profumo and is com-
patible with FSL [Jenkinson et al. 2012]. All subsequent analyses were performed
with version 0.8.2, for which the above description of the model is also consistent,
as are the values the various fixed hyperparameters take [Appendix C].

The validation of the inference procedure with regard to its performance on
simulated data has been covered previously, both in Harrison et al. [2015] for
the original model and subsequently in Bijsterbosch et al. [2019] for the model
as detailed in this manuscript. Furthermore, given the wholesale changes to the
implementation—and, in particular, the advances that make it possible to process
larger data sets—we will not perform any explicit comparisons with the version of
the model as previously published.

2.7 Model Summary

In summary, we explicitly model many of the properties of rfMRI data within the
PROFUMO framework. In the spatial domain, we have a complex group-level
model that captures both mean effects and typical patterns of variability, and use
these to regularise the subject-specific spatial maps. The temporal model is based
around the physiological properties of the BOLD signal, and includes another hier-
archical model for the functional coupling between modes. Similarly, we capture
differences in the overall activity levels of modes via the amplitude parameters.
Finally, we can generate additional summaries by combining parameters as desired,
which includes, for example, the measures related to the fractional amplitudes of
the BOLD signal.
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3 Results

3.1 Human Connectome Project data

To evaluate the ability of PROFUMO to detect subtle subject-specific variations
in functional connectivity, we use data from the Human Connectome Project
(HCP) [Van Essen et al. 2012b; 2013]. This is for two main reasons. Firstly, the
most recent data release includes high-quality functional data from over 1,000
subjects and, as such, is an ideal test for methods that purport to be suitable for
population-level studies as mentioned in the Introduction. Secondly, the functional
pipeline has been published [Smith et al. 2013a] and the results are available to
download—thereby offering a comparison that is independently verifiable. The
pipeline uses spatial ICA and dual regression (ICA-DR) to characterise subject
variability in both spatial and temporal features. While it would also be possible to
examine the equivalent pipeline based on temporal ICA, this has not been used so
extensively: for example, the HCP’s MegaTrawl analyses are based on the spatial
ICA pipeline'.

A key aim of modern, large-scale studies of functional connectivity is to
relate neurobiological changes to individual differences in genetic, lifestyle and
behavioural factors. Using the HCP data also allows us to do this by comparing
our results with a wide range of information about subjects. The data involves a
battery of cognitive tests, and also records a range of metrics based on health and
lifestyle: we will refer to differences in these as subject variability in behavioural
measures. We can indirectly assess the effects of genetics and environement by
calculating the heritability of key imaging metrics; we do this by utilising the fact
that many twins and siblings were involved in the study. Finally, we can examine
subject variability in structural measures by relating functional measures to the
thicknesses, areas and volumes of key cortical and subcortical structures as derived
from the structural MRI scans [Glasser et al. 2013]. In this way, we can quantify
to what extent different methods are able to capture key aspects of functional
variability, and if there are meaningful relationships with other measures.

A more detailed overview of the data, and the tests we carry out here, can be
found in Appendix H.

3.1.1 Analyses

Both PROFUMO and spatial ICA were run at a dimensionality of 50, at which point
the modes were reordered for visualisation and noise components—or, in the case of
PROFUMO, modes eliminated by the Bayesian model complexity penalties—were
removed. Even on the extensive and high-quality HCP data, PROFUMO does not
identify more than 50 PFMs: when run at higher dimensionalities, more PFMs
are simply eliminated from the model. We discuss why PROFUMO is likely to be
conservative in this regard in more detail later.

db.humanconnectome.org/megatrawl/index.html
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For the full HCP data, PROFUMO therefore infers the posterior over of the order
of 5,000,000,000 parameters (1,000 subjects, 100,000 grayordinates, 50 modes).

Finally, note that subsequent figures display spatial maps on the cortical surface
for simplicity and concision. However, all grayordinates (comprising approxim-
ately 60,000 cortical vertices and 30,000 subcortical voxels [Glasser et al. 2013])
were used in all analyses.

3.1.2 Overview of the PFM spatial model

To begin with, in Figures 1 and 2 we show examples of the group- and subject-level
spatial maps for four PFMs in order to demonstrate the richness of information
contained within the PFM model. We do this to emphasise that PROFUMO is
able to identify PFMs with strong spatial relationships with one another (in terms
of overlap and anti-correlations), while at the same time being able to identify
complex, subject-specific reorganisations of the group templates.

The most striking feature of the subject maps in Figure 2 is simply how much
variability relative to the group maps there is. As we and several others have
demonstrated, there are pronounced differences between subjects, with both shifts
in the relative location of functional regions over surprisingly large distances, and
complex, non-homotopic splittings and reorganisations of the regions themselves.
Furthermore, these results are from data already aligned using surface-based
registration driven by functional features, which arguably represent the current
‘gold-standard’ for warp-based registrations [Glasser et al. 2016b].

However, while the descriptions of modes in terms of the group-level mean
spatial maps are familiar, a key advantage of the PFM framework is the more
detailed group-level parameterisation. In Figure 3 we take the default mode
network (DMN) [Panel (a) of Figure 1] as an example and plot the four key group-
level spatial parameters: the probability that a given voxel belongs to the DMN,
the mean and variability over subjects of the signal component of the DMN’s
voxelwise weights, and the standard deviation of the spatial noise component. The
information encoded by the mean weights is familiar, but the other parameters
add novel and complementary information.

For example, the memberships [Panel (b)] demonstrate that default mode
activity is distributed over a surprisingly large area, with consistently detected
activity across much of the lateral prefrontal cortex. This is an effect that has
been captured by several recent, high-powered single-subject analyses [Gonzalez-
Castillo et al. 2012; Laumann et al. 2015; Poldrack et al. 2015; Huth et al. 2016].
However, while the activity is widespread, it is also distinct: the areas of high
and low probability are sharply delineated. Similarly, the standard deviations
[Panel (c)] add extra information by telling us about variability in the size of the
weights—that is, in the strength of the detected activity—and we can see that, in
this instance, the activity in the inferior parietal lobule is much more variable in
strength across subjects than that in the precuneus.
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Figure 1: Group-level spatial maps for four example PFMs, as inferred from the
HCP data. The PFMs are (a) the default mode network (DMN) [Shulman et al. 1997;
Raichle et al. 2001; Greicius et al. 2003; Buckner et al. 2008]; (b) a mode described
as a variant of the DMN by Braga and Buckner [2017]; (c) a mode with strong
spatial anticorrelations with the DMN; and (d) the mode containing functional
activity within POS2 [Glasser and Van Essen 2011] (referred to as the PMPL in
Harrison et al. [2015]).


https://doi.org/10.1101/544817
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/544817; this version posted February 8, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

bioRxiv

Figure 2: Subject-level equivalents of the modes shown in Figure 1, for subject
149337. See Figure 1 for a more detailed description of the modes themselves.

This detailed characterisation of non-homogeneous variability across the cortex
is a key advantage of the more complex group-level model we have adopted, and
we expand upon this in Figure 4. This summarises the membership probabilities
and weight standard deviations across all modes. There is a clear pattern whereby
association cortex contains more overlapping modes than sensory cortices [Panel
(a)], and that the spatial weights are also more variable in association cortex [Panel
(b)]—note how this is in agreement with the results of Mueller et al. [2013]. Finally,
the uncertainty in the memberships themselves [Panel (c)] tells us about shifts in
locations between subjects. For example, note the very clear area of variability in
medial frontal cortex between SMA and pre-SMA [Johansen-Berg et al. 2004]. This
metric is presumably particularly sensitive to this region because variability here
tends to manifest itself as relatively simple anterior-posterior shifts of the SMA/pre-
SMA boundary, whereas more complicated 2D rearrangements of overlapping
PFMs are present elsewhere.

In summary, the PFM spatial model captures familiar group-level modes, and
exhibits many of the complex subject-specific rearrangements already described
in the literature. However, the key advantage is the way in which we have para-
meterised this model. Crucially, the richness of the group description allows us to
make specific claims about the patterns of variability across the population that
are ordinarily hard to tease apart.
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Figure 3: Example of the key group-level spatial parameters for the PFM repres-
enting the default mode network [Panel (a) of Figure 1], as inferred from the HCP
data. The parameters are the (a) posterior means of the signal component, ,,,;
(b) posterior memberships, 7,,,; (c) posterior standard deviations of the signal

vm;
component, 0,,,; (d) posterior standard deviations of the noise component, {,.

ms

Figure 4: Summaries of the group-level spatial parameters encoding different
aspects of variability across subjects. The panels are (a) mode overlap; (b) variab-
ility in mode strength; (c) variability in mode memberships.

Mode overlap is defined as the posterior memberships averaged across all modes,
%4 ZVm 7T,m- Variability in mode strength is captured by the weighted average of

the posterior standard deviations, (¥, 7,,0,,)/(2,, 7yy,). Finally, variability
in mode memberships is given by the average entropy, in bits, of the membership
distributions, ; ¥ H(7,,,)-
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3.1.3 Comparison with spatial ICA

To begin with, we examine the performance of the different models in terms of
their inference of the group-level spatial descriptions. In Figure 5 we plot the
similarity between these group-level descriptions. The maps themselves can all be
found in the Supplementary Material.

There are several key points to note. Firstly, there are strong spatial correlations
between the PFM maps, especially within the different categories. By way of
contrast, the independence assumptions in spatial ICA preclude this. Secondly,
PROFUMO is relatively conservative: it only infers 33 signal modes compared to
the 48 found by ICA, and the difference is particularly pronounced in the subcortical
regions. This subcortical difference is predominantly driven by the different signal
properties of the HCP data between cortical and subcortical grayordinates, and
the different data normalisation strategies the two algorithms use. The result
is that ICA tends to find subcortical regions appearing in components without
much cortical involvement, whereas PROFUMO tends to find subcortical regions
appearing in components with cortical involvement. Finally, despite the above
differences, there is fundamentally a strong relationship between the two sets of
maps. Most cortical modes appear in both decompositions, and often look fairly
similar; this is encouraging, as we do not expect a radically different patterns of
functional connectivity at the group level given how many published methods
have converged on similar descriptions.

3.1.4 Properties of subject variability in spatial organisation

Given that the group-level descriptions are fairly similar between PFMs and sICA,
the obvious question are to what extent does the extra group-level information in
the PFM model regularise the subject-specific decompositions, and in what ways
do the subject-specific maps diverge from the group-level representations? We
deal with the former first, and in Figure 6 we look at that the consistency of the
subject maps as inferred by PROFUMO and the ICA-DR pipeline. As expected
given the regularisation from the group-level priors, the PFM maps are much more
consistent across subjects.

We can also gain further insights into this observation by utilising the HCP’s
retest data. 46 subjects underwent the full HCP imaging and behavioural testing
protocol twice, of which there is full rfMRI data from 42. This allows us to examine
how the algorithms perform on the hitherto unseen retest scans. The group-level
representations from the full data (i.e. the ICA spatial maps, and the group-level
PFM posteriors) were used to derive new subject maps from the independently
acquired retest data.

In Figure 7 we compare subject-specific realisations of the language mode
as derived by PROFUMO and the ICA-DR pipeline. This particular mode was
chosen because a characteristic split in area 55b in some subjects was reported
and examined in some detail by Glasser et al. [2016a]. In terms of a comparison
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Figure 5: Spatial similarity between the sets of group-level spatial maps as inferred
by PROFUMO and ICA. Modes were split into five categories and reordered: visual
(Vis); motor (Mot); auditory (Aud); cognitive (Cog); and subcortical (Sub). This
ordering is used for all subsequent sections and the maps themselves can be found
in the Supplementary Material.

DR
DCOO

PFMs 00 I : ICA-DR

Figure 6: Similarity between the subject-specific spatial maps, for both PFMs
and ICA-DR, as inferred from the HCP data. For each voxel and in every pair
of subjects, we compute the Pearson correlation coefficient between the two M-
dimensional vectors of mode weights. The maps shown here are the correlation
coeflicients averaged over every pair of subjects.
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Group 149337 Retest

-99.5% T 99.5%
Figure 7: Example spatial maps for the language mode, for both PFMs and ICA-

DR, as inferred from the full HCP data and the HCP retest data. As in Figure 2,
subject 149337 is chosen as the exemplar. Only the left lateral surface is shown.

PFMs

ICA-DR

between PROFUMO and ICA-DR, both are clearly sensitive to the same gross
re-organisations that occur. For example, both can detect the rearrangement of
area 55b in the original and retest data for the subject shown here. However, the
most marked difference is in the noise-level and appearance of anticorrelations.
Relative to ICA-DR, the PFMs show much reduced background noise in regions
not associated with the networks, and do not exhibit anticorrelations (indicated
by negative weights, shown in blue) tightly interposed between positive weights.

From this example, it appears that the extra information that the PFMs model
encodes about variability at the group level seems to increase the fidelity of subject-
specific PFM variants. The information encoded by the group memberships sup-
presses the background noise in regions that are not part of the language network,
but in a way that does not preclude inferring complicated rearrangements of
functional regions.

To assess the reliability of the different decompositions on the retest data more
quantitatively, we compute the spatial similarity between the new subject-specific
spatial maps from the retest data, and the original set from the full data, for every
pair of subjects. We pool these retest results over all modes and subjects, and this
is shown in Figure 8.

The subject-specific PFM maps are much more reproducible than their ICA-
DR counterparts, which we attribute to the regularisation provided by the more
complex group-level descriptions. However, this increase in consistency could also
be explained if the subject-specific PFM spatial maps were simply pushed closer to
the group maps by the priors, thereby being less faithful to the ‘true’ patterns of
functional connectivity at the subject level. While this does not appear to be the
case for the exemplar language maps, what we really want to quantify is whether
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Figure 8: Spatial similarity between the subject-specific spatial maps as inferred
from both the original and retest HCP data by PROFUMO and ICA. The retest
data consists of 42 subjects who underwent the full scanning protocol twice,
at different times. We use the group results as presented from the full data to
derive subject-specific spatial maps in the unseen retest data, and compare the
similarities of the spatial maps within subjects across the two data sets.

they are capturing ‘interesting’ aspects of subject variability in spatial organisation.
In other words, are the differences between the approaches meaningful, and do
they make different predictions about the subjects themselves?

To investigate this, we use the fact that the HCP includes data from twins and
siblings to investigate the influence of genetics and environment. We estimate the
voxelwise broad-sense heritability of the subject-specific spatial maps we observe:
in each voxel and each subject, we extract the vector of PFM or ICA map weights,
and look to see if these weight vectors are more consistent in monozygotic than
dizygotic twins (see Appendix H for full methodological details). The results of
this analysis are shown in Figure 9.

The results show a clear increase in heritability for the PFM spatial maps,
suggesting that they are more sensitive to subject variability that we can attribute
to genetic factors. Furthermore, this is not simply attributable to a reduction in
noise or as the result of the priors pushing the subject maps closer to the group.
While the PFM maps are more consistent across subjects than ICA-DR [Figure 6],
the heritability relates to the difference in consistency between monozygotic and
dizygotic twins and, as such, a global increase in consistency is not enough to
explain the increased heritability.

In summary, the comparisons with ICA-DR have demonstrated that while the
group-level descriptions are similar, the more complex hierarchical modelling in
PROFUMO allows us to infer spatial maps that are more consistent—on both the
original data and the held-out retest data—as well as capturing more informative
aspects of cross-subject variability.
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Figure 9: Analyses of the heritability of the subject-specific mode maps, for both
PFMs and ICA-DR, as inferred from the HCP data. In (a) and (b) we display the
voxelwise estimates of broad-sense heritability (H?), and in (c) we compare the

two as a scatter plot.
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3.1.5 Overview of the PFM temporal model

Here, we briefly give a summary of the key temporal parameters—that is, the
amplitudes and the functional coupling between modes—as inferred by PROFUMO
on the HCP data. Note again that these are new parameters: in other words, it
was only possible to investigate these in a post-hoc fashion based on the previous
PFM model. Firstly, in Figure 10 we plot the cross-subject correlations between
the mode amplitudes, as captured by the X}, parameter. Encouragingly, we see a
clear replication of the results of Bijsterbosch et al. [2017], who reported strong
correlations between the amplitudes of sensorimotor modes, as well as between
cognitive modes, but relatively weak correlations across the two categories. How-
ever, the crucial difference between this result and the original observation is
that this behaviour was initially demonstrated from a purely post-hoc analysis of
the ICA-DR results, whereas it is explicitly parameterised and inferred within the
PFMs model. What this means is that this knowledge of the systematic relationship
between mode amplitudes is available during inference, and it is therefore naturally
incorporated as an extra factor regularising the subject-specific decompositions.
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Figure 10: Cross-subject relationships between the amplitudes of the PFMs, as
inferred from the HCP data. For visualisation purposes, we display the posterior
precision matrix, X, after transforming it to both full and partial correlation
coefficients.

Secondly, in Figure 11 we plot the PFM functional coupling parameters,
and a®) (these represent the group- and subject-level temporal network matrices
respectively). What is striking is how weak the functional coupling is between
modes in these network matrices (netmats), especially given that we have an
explicit hierarchical model to allow for just these interactions. This is not trivial
to explain away as a spatial effect either: despite the fact that these interactions
are more similar to what we would expect from temporal ICA, the PFM spatial
maps are similar to those inferred by spatial ICA which typically infers strong
functional coupling between modes. We quantify the implications of this different
view on functional coupling from the PFM model in the following section.
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Figure 11: Group- and subject-level functional coupling between the PFMs, as
inferred from the HCP data. For visualisation purposes, we display the pos-
terior parameters B (group-level) and a® (subject-level) as partial correlation
coefficients. As in Figures 2 and 7, subject 149337 is chosen as the exemplar.

3.1.6 Multivariate relationships with behavioural variables

How then, are we to interpret the differences between the PFM and ICA-DR
approaches? Do they simply represent a different trade-off between sensitivity and
specificity in the spatial and temporal domains, or are they telling us something
fundamentally different about brain activity?

To probe this further, we performed a series of multivariate analyses to invest-
igate the different ways in which the two models encode cross-subject information.
Like in Smith et al. [2015], canonical correlation analysis (CCA)—a multivariate
analysis technique used to find the linear relationships between sets of variables
[Hotelling 1936]—was used to summarise the key correspondences (see Appendix H
for methodological details). Furthermore, as some sets exhibit more than one strong
linear relationship, we use the RV coefficient [Robert and Escoufier 1976] to give
a principled summary of the multivariate information reported by the CCA. In
Figure 12, we examine the full set of pairwise relationships between the behavi-
oural and structural variables from the HCP, and the spatial maps, amplitudes and
network matrices from both PROFUMO and ICA-DR.

There are several key results we can glean from this analysis. Firstly, the
cross-subject information captured by the different aspects of the PFM model is
relatively distinct. Comparing the similarity between the PFM measures with those
for the ICA-DR variables (i.e. the on-diagonal blocks), we can see that the scores
are typically lower for the PFMs. In other words, the temporal measures derived
from the PFMs carry relatively different information from the spatial measures
about the subjects themselves, at least compared to their ICA-DR equivalents.

Secondly, if we examine the relationships with the behavioural and structural
measures in the bar graph on the right, there are several striking differences
between the methods. As we would expect from our heritability analyses, the
PFM spatial maps are the best predictors of structural variables. They are also
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Figure 12: Relationships between the cross-subject information encoded by dif-
ferent analyses. The non-functional variables (NFVs) have been separated into
variables from the HCP’s battery of behavioural tests, and variables derived from
structural MRI relating to brain size and morphology. On the left we plot the RV
coeflicient calculated between the subspaces of the top ten CCA components as
calculated between every pair of sets of variables, and on the right we reproduce
the relationships with the non-functional variables (i.e. the top two rows / two
leftmost columns) as a bar chart for ease of visualisation.

good predictors of the behavioural variables, though slightly less so than the
ICA-DR netmats. However, the stories for the temporal information are very
different. The PFM amplitudes, fABT and netmats are relatively poor predictors
of both behavioural and structural variables, though, intriguingly, they are better
predictors of behaviour than structure. By way of contrast, the ICA-DR amplitudes
and netmats are better behavioural predictors, though surprisingly they are also
good predictors of structure (e.g. one can predict the sizes and thicknesses of
cortical areas better than behavioural measures from the ICA-DR amplitudes).

Again, there are multiple possible explanations for these results. The first
is that the PFM temporal measures are simply noisier, which could arise if the
complex spatial model overfits to the detriment of the temporal portion of the
model. The second, and essentially opposite, interpretation is that the ICA-DR
temporal measures are being confounded by the way they are inferred based on the
group maps, and that information that we should regard as being spatial in origin
is ‘bleeding through’ into what we typically regard as the temporal properties of
the data.

3.1.7 Summary

Given the full set of results presented on the HCP data, the implication is that
the PFMs, by virtue of the improved spatial modelling in particular, are better
able to capture interesting information about cross-subject variability in spatial
organisation. However, this does not address the relative lack of information
encoded in the various temporal measures that PFMs capture. In other words, has
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the improved spatial sensitivity simply come at the expense of temporal sensitivity?
We address this point using another data set in the following section.

3.2 Active-state data

Given the way that subject variability in spatial and temporal features simultan-
eously co-varies with a wide range of non-imaging derived subject measures, it
is very challenging to conclusively disambiguate them from studies like the HCP.
However, if we manipulate the functional connectivity at the subject level, for
example by changing the cognitive state [Krienen et al. 2014; Vanderwal et al. 2017;
Gratton et al. 2018; Kieliba et al. 2018; Salehi et al. 2018], then we can begin to
examine temporal differences in more detail. Crucially, by looking at multiple
conditions for the same subject we essentially eliminate the influence of structural
variability from the functional data.

To do this, we use a dataset collected where subjects were scanned when
in different active states—these are induced by performing simple, continuous
tasks in the scanner, of which rest (i.e. eyes-open fixation) is just one [Duff et al.
2018; Kieliba et al. 2018; Sala-Llonch et al. 2018]. There are five runs for every
subject, each collected under different steady-state conditions: a standard resting-
state acquisition (Rest); a finger-tapping based motor task (Mot); a passive visual
condition (Vis); an independent combination of the visual stimulus and motor
task (V-M); and a condition where the specifics of the motor task changed based on
the visual stimulus (V+M). A more detailed descriptions of the tasks and data itself
can be found in Kieliba et al. [2018]. Furthermore, this dataset offers a validation
of our method on data acquired using a more conventional sequence and scan
duration than the HCP, with fewer subjects, shorter scan durations, and all analyses
performed on volumetric rather than surface-based data.

3.21 Analyses

As per the modelling assumptions, PROFUMO infers one consensus spatial map per
subject, but a separate set of time courses per run. We choose to infer run-specific
temporal precision matrices, ") with a consistent group-level hyperprior, g,
which is shared across all conditions. Note that we could have chosen to use
condition-specific group-level priors, {ﬁ(r )}}:—1’ but this has the side-effect of in-
validating the assumptions behind any subject-level statistics where we compare
between conditions. In short, it reduces the cross-subject, within-condition vari-
ance which invalidates the typical null hypothesis we use. We leave the problem of
performing statistical inference on these types of models for future investigations.

We infer 30 modes for both PROFUMO and ICA-DR, which again seems to
be close to the upper limit for PROFUMO on this relatively small dataset. Again,
artefactual modes were eliminated and those remaining were reordered for visual-
isation.
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For the ICA-DR pipeline, we use MELODIC [Beckmann and Smith 2004; Beck-
mann et al. 2005] to infer a set of group maps, followed by dual regression to
generate the run-specific time courses.

3.2.2 Overview of the PFM model

In Figure 13 we show the group-level properties of the default mode as inferred from
this data set. This is directly comparable with Figure 3, and simply demonstrates
that we are able to infer similar summaries of the mode itself, and heterogeneous
variability, from fourteen subjects rather than one thousand.

Figure 13: Example of the key group-level spatial parameters for the PFM rep-
resenting the default mode network, as inferred from the active-state data. The
parameters are as per Figure 3, along with the group map. The panels are the (a)
group map; (b) posterior means, y,,,; (c) posterior memberships, x,,,; (d) posterior

standard deviations, o,,,; (€) posterior noise standard deviations, {,.

vm

In Figure 14, we demonstrate some of the properties of the inferred time
courses from the PFMs. This data is more challenging than the HCP in that the
runs are shorter, and the data has not benefited from resampling onto the cortical
surface. Nevertheless, the HRF-based prior constraint results in a temporally
smooth timecourse, which we are able to cleanly separate from the high-frequency
noise which contaminates them. Furthermore, this is stable when we undo the
temporal blurring that the HRF induces, with straightforward estimation of the
underlying ‘neural’ process via whitening with respect to the autocorrelation
induced by the HRF.
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Figure 14: Example PFM time courses, and observed frequency content, from the
active-state data.

Panel (a): Example time course for one mode in one run. ‘Combined’ refers to
the time course which includes the noise terms (A" = B¢ + £67), “clean’ refers
to the BOLD portion specifically (B¢"), while ‘decorrelated’ refers to the clean
time course after correcting for the temporal autocorrelation induced by the HRF
(B K",

Panels (b) & (c): Frequency content of the combined and clean time courses
respectively, pooled over all runs and subjects. The magnitude of the DFT coeffi-
cients are calculated for each time course, and for visualisation purposes, we fit a
gamma distribution to the histogram of observed magnitudes for each frequency
bin. The mode of this distribution is plotted in red, and the grey region represents
the 95 % highest density interval [Kruschke 2014].
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Finally, in Figure 15, we display examples of the network matrices to illustrate
the typical patterns of, and subject variability in, the functional coupling between
PFMs. Interestingly, in this data, PROFUMO infers PFMs with much stronger
functional coupling between them than from the HCP data.

1 (=]
o o
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uone|a.1I03 [ered

Group s25; Rest s25; Mot s25; Vis

Figure 15: Example PFM network matrices, capturing the functional coupling
between the mode timeseries. We display the group network matrix alongside
the network matrices from subject 25 in the rest, motor and visual conditions.
As in Figure 11, we display the posterior precision matrices (i.e. f for the group
level and a®" at the run level) as partial correlations. Modes were split into three
categories and reordered for visualisation of the network matrices: visual (Vis);
motor (Mot); and cognitive (Cog).

3.2.3 Comparison with ICA-DR

One would hope that the PFM model allows us to more accurately infer the true
functional coupling between modes. To begin with, we look at the relationships
between the condition-specific network matrices as inferred by PROFUMO and
ICA-DR. These are shown in Figure 16. While the PFM network matrices are less
consistent between conditions and subjects than their ICA-DR counterparts, there
is some indication that there is condition-specific modulation across subjects (as
indicated by the block diagonal). By way of contrast, the ICA-DR network matrices
are dominated by the subjects themselves (i.e. the multiple strong off-diagonal
lines in the ICA-DR plot), with no real indication of condition-specific modulations.

In summary, ICA-DR computes netmats that are more similar within subjects
than they are within conditions across subjects. By way of contrast, PROFUMO
infers netmats that are somewhat more similar within conditions than within
subjects. Again, this suggests that the different models for subject variability
in spatial organisation have a profound influence on downstream estimates of
functional connectivity.

While this is compelling, it is very plausible that the different conditions induce
relatively focal changes to the between-mode patterns of functional connectivity,
and as such these may not show up in the previous analysis which summarises the
changes across the entire network matrix. To investigate this, we ran an analysis
that looks for modulations at the level of individual network matrix edges, and
the results are shown in Figure 17.
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Figure 16: Correlations between the network matrices, for both PFMs and ICA-
DR, as inferred from the active-state data. The network matrices are grouped
by condition, and the subjects have a consistent ordering within each block.
Correlation is the Pearson correlation coefficient between the unwrapped upper-
triangle of the network matrices.
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Figure 17: Changes in between-mode functional connectivity as induced by
different active states relative to the rest condition. The raw difference between
the group mean network matrix during the active condition and during rest is
shown above the diagonal, and any significant changes (p<0.05) are highlighted
by blue or red squares, for increases and decreases in coupling respectively, below
the diagonal. Changes in amplitudes are shown on the diagonal. All tests were
family-wise error corrected and computed using the accelerated permutation
inference in PALM [Winkler et al. 2014; 2016a]. The black dots denote elements that
were significant under a non-parametric combination of the individual contrasts
[Winkler et al. 2016b]. As per Figure 15, modes were split into three categories
and reordered for visualisation of the network matrices: visual (Vis); motor (Mot);
and cognitive (Cog).
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Both the PFM and ICA-DR pipelines detect changes in the coupling of visual
regions induced by the visual stimulus, and it appears they both have similar
sensitivity to the changes in coupling induced by the changes in cognitive state.
There are some differences between the methods: for example, the visual changes
detected by PROFUMO are more consistent across the three conditions with visual
stimuli than for ICA-DR. Similarly, the types of changes for the combined visuo-
motor condition are somewhat different, with ICA-DR finding changes in amplitude
predominantly, whereas there are more changes in coupling for PROFUMO.

However, the results are fundamentally fairly similar and the numbers of edges
that exhibit significant changes is relatively low—and, perhaps, lower than we
might expect given the strong manipulations of cognitive state'’—suggesting that
the statistical power might be the limiting factor here, especially given that there
are only 14 subjects included in this analysis. Therefore, we do one further set
of tests to probe whether the multivariate information in the network matrices
and amplitudes captures condition-specific information. Repeating the analysis of
Sala-Llonch et al. [2018], we investigate whether a support vector machine (SVM)
can be trained to distinguish between network matrices from different conditions.
The accuracy of the SVM classification is tested using a leave-one-subject-out
cross-validation framework [Varoquaux et al. 2017], of which we provide more
methodological details in Appendix L

As well as comparing PROFUMO and ICA-DR in this way, we additionally
examine the effect that the heemodynamic model has on the temporal information
that we infer. In other words, can the changes to estimates of functional connectiv-
ity be attributed to the advanced spatial modelling alone, or does the regularisation
in the time domain improve our estimates too? As well as the explicitly inferred
PFM network matrices, we do a post-hoc estimation of the temporal network
matrices based on both the BOLD time courses and the combined time courses (i.e.
AGT ), which includes both the BOLD and noise time courses) to assess what, if
any, effect the modelling hierarchy has.

The results from the SVM analysis are presented in Figure 18. While the
conclusions we can draw are again limited by statistical power, the PFM results are
at least as good as those from ICA-DR. Again, the implication is that the temporal
information captured by the PFM model does carry meaningful information, but
that the functional coupling in particular appears in a surprisingly different form
to the features derived from ICA-DR.

2Note also that Figure 2 from Sala-Llonch et al. [2018] uses FDR with ¢ = 0.2 for the background,
whereas the tests here use a more stringent FWE p < 0.05 test for significance.
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Figure 18: Posterior classification rates for a multi-class SVM trained to distin-
guish between the different active-state conditions. The results on the left (NM)
are when the off-diagonal elements of the network matrices are fed in, and the
results on the right are when the amplitudes are used as features as well (NM & A).
Posterior densities are based on the number of correct and incorrect classifications
out of the full set of 70 tests (14 subjects; 5 conditions), combined with Haldane’s
uninformative beta prior [Haldane 1932]. The modes of the distributions are
shown by the black bars.

PFMs: network matrices inferred as part of the PFM model, abn,

PFM (BT): network matrices estimated as the partial correlations between the
PFM BOLD time courses B&".

PFEM (CT): network matrices estimated as the partial correlations between the
combined time courses AC"” = BG4 g01),

No differences are significant at the p < 0.05 level; McNemar’s test (mid-p variant),
Bonferroni corrected [Fagerland et al. 2013].
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4 Discussion

All analyses of complex, multivariate functional data require us to make simplify-
ing assumptions, and, as such, the results we see are inevitably coloured by the
modelling choices we make, be that when we decide whether to run a parcel- or
mode-based analysis, or when deciding which specific method to use. As such, it
is essentially impossible to conclusively decide that one method more accurately
characterises the general organisational principles or subject variability from the
functional data alone. However, we feel that above results demonstrate that PRO-
FUMO and the PFMs model are providing a novel and worthwhile perspective on
the analysis and interpretation of functional MRI data.

The results presented above demonstrate three key attributes of PROFUMO.
Firstly, the algorithm scales to modern, large-scale data, whereby it is exquisitely
sensitive to cross-subject variability in spatial organisation. Secondly, the joint
inference framework allows estimation of subject variability in temporal features
that does not appear to be confounded by spatial differences, which at times
leads to a radically different view of functional connectivity. Finally, while these
results suggest that the relationship between functional coupling and behavioural
variability is much weaker than has been previously reported, this does not seem
to relate to the inference per se, as PROFUMO remains sensitive to changes in
within-subject functional coupling.

41 Relationship with other methods for identifying functional modes

The comparisons in this paper have been with ICA-DR, as this is probably the
most common method for finding functional modes from resting-state data and
is a key part of the HCP’s pipelines. The subject-specific spatial maps identified
by ICA-DR are superficially similar to the PFM maps, but seem to lack sensitivity
to behavioural variability. As far as we can tell, this arises not because ICA-
DR is unable to detect spatial differences between subjects, but rather that the
variability itself is hard to distinguish given the high noise floor. This accounts for
the counterintuitive result that the PFM maps are at once both more consistent
and capture more variability than their ICA-DR counterparts. However, the main
point of difference between the methods appears to be in the temporal domain;
because the ICA-DR time courses are derived from the group-level spatial maps,
the estimation of these at the subject-level is systematically affected by any biases
in the spatial maps themselves. This provides a mechanism by which subject
variability in temporal features may get conflated with genuine subject variability
in temporal features [Bijsterbosch et al. 2018; 2019], a point which we return to
later.

However, while PROFUMO certainly appears to perform better on many of
these subject-level tests, the fundamentally different models for group-level ana-
lyses means that PROFUMO and ICA-DR are complementary in some respects.
While the Bayesian model complexity penalties seem to result in no more than
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thirty or forty PFMs being identified, essentially regardless of the pre-specified
model dimensionality, ICA seems to be able to identify up to several hundred plaus-
ible components, that ultimately begin to resemble a parcellation [Kiviniemi et al.
2009; Smith et al. 2013b]. This disparity arises because of the different assumptions
the two methods make. In PROFUMO, for a mode to appear at the group-level it
has to be resolvable in the majority of individual subjects. While more subjects
do offer increased regularisation of the subject-level modes, this can only do so
much. By way of contrast, the majority of group-level ICA methods assume all
subjects are in a common space, and proceed to analyse the data without recourse
to individual decompositions. This formulation gives much more flexibility for the
group-level decomposition to utilise the extra statistical power that concatenating
over subjects affords, and this means that the ICA modes depart—at times fairly
radically—away from what we can resolve at the subject level.

That being said, the comparison is not simply between PROFUMO and ICA-DR,
as other methods more focused on subjects themselves are also available. As far
as we are aware, none of these have been demonstrated on a comparable dataset
to the full HCP cohort. A key advantage of HCP-like data sets, where the data
is widely available with the same pre-processing pipelines applied, is that they
should engender more principled comparisons between methods. Of course, that
by no means completely solves the problem as we still need to define, in general
terms at least, how we might rate the performance of different methods on the
same data. While, for example, the ability to detect cross-subject variability is one
way in which we could do this [E. A. Allen et al. 2011], the presence of confounds
that are themselves behaviourally relevant—such as head motion [Power et al.
2012; Satterthwaite et al. 2012; Van Dijk et al. 2012; Couvy-Duchesne et al. 2014;
Hodgson et al. 2017; Laumann et al. 2017], physiological noise [Power et al. 2017;
Glasser et al. 2018] or brain volume [Bartley et al. 1997; McDaniel 2005; Qing and
Gong 2016]—makes this very challenging in practice. We return to this thorny
issue of interpretability in the next section.

4.2 Implications for the analysis and interpretation of functional connectiv-
ity

One of the key messages from this work, in line with other recent reports [Hacker
et al. 2013; Harrison et al. 2015; Laumann et al. 2015; Glasser et al. 2016a; Gordon
et al. 2016; Braga and Buckner 2017; Gordon et al. 2017a; b; Kong et al. 2018],
is that complex rearrangements of functional regions in individual subjects are
ubiquitous and of a surprisingly large spatial scale (of which Figures 2 and 7 provide
reasonable examples). Furthermore, this spatial variability has a seemingly involute
relationship with subject variability in temporal features [Bijsterbosch et al. 2018].
While much of the following discussion is, for now, necessarily qualitative, we
feel that these observations have some definite consequences for analyses of
neuroimaging data and that a more explicit examination of these is warranted.
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4.21 Group-level representations and inherent spatial scales

Even after the advanced multi-modal, surface-based registration employed by the
HCP, one often observes spatial rearrangements where subject-specific features
are shifted relative to the group by many millimetres. At the group-level, the
effective resolution of the data relates to the characteristic size of these residual
misalignments between subjects, whereas the subject-level data is limited by the
properties of the data itself: 2 mm isotropic voxels are now common, and the
spatial characteristics of the HRF do not appear to blur much beyond this [Shmuel
et al. 2007]. In other words, misalignments are now often larger in scale than the
fundamental resolution limits imposed by the physics and physiology that governs
the properties of the data itself. What this means is that functional MRI currently
occupies an interesting liminal space, where the spatial resolution of high-powered
single-subject analyses can now surpass that of studies that employ multitudes
of subjects. This probably explains the recent resurgence of exploratory studies
based on small numbers of subjects [Gonzalez-Castillo et al. 2012; Raemaekers
et al. 2014; Laumann et al. 2015; Poldrack et al. 2015; Huth et al. 2016; Braga and
Buckner 2017; Gordon et al. 2017b; Salehi et al. 2018].

However, this subject-based approach cannot answer every question we might
have; group-level analyses are essential as we (almost always) want to be making
claims that relate to general principles, rather than pertaining to specific sub-
jects. To give a concrete example, we can only make the claims pertaining to
non-homogeneous spatial variability that are illustrated in Figure 4 if we can
consistently identify equivalent functional systems across multiple subjects.

The difficulty we face when working at the group-level is that the summary
features we extract are not necessarily representative of those at the subject-level;
they are, and should always be thought of as, probabilistic representations [Van
Essen and Dierker 2007]. What this means is that we cannot automatically expect
that it will be straightforward to project group-level results back to meaningful
characterisations of functional connectivity at the subject level. Furthermore, the
characteristic size of misalignments probably represents a limit in terms of the
size of functional features we can project from the group back to the subject-level;
while the native resolution of the subject-level data may well be higher, methods
that work on the functional data alone like ICA-DR or PROFUMO will always
struggle in the absence of additional constraints if the misalignments are large
enough to mean some regions do not overlap with their group-level homologues
at all. Fortunately, recent work has suggested that there is scope to further reduce
the size of the residual misalignments [Guntupalli and Haxby 2017], and use multi-
modal data to help identify regions at the subject-level [Glasser et al. 2016a], both
of which will be essential parts of the push towards finer spatial scales.
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4.2.2 Analyses of functional coupling

A key claim of the related recent work on subject variability in functional con-
nectivity by Bijsterbosch et al. [2018] is that it is impossible to make meaningful
claims about the relationships between functional regions if said regions are not
properly delineated at the subject level. The results presented here appear to
bear that out, with the findings that the improved spatial sensitivity of the PFMs
results in a drastic reduction in the amount of behavioural information carried
by the functional coupling between modes, despite an increased sensitivity to
manipulations of this within-subjects.

Concerns about the interpretability of functional connectivity in the presence
of anatomical variability are far from new [Brett et al. 2002]—rather it is the scale,
complexity and seeming ubiquity of subject variability in spatial organisation that
has recently come to the fore [Hacker et al. 2013; Harrison et al. 2015; Laumann
et al. 2015; Glasser et al. 2016a; Gordon et al. 2016; Braga and Buckner 2017; Gordon
et al. 2017a; b; Kong et al. 2018]. Furthermore, the effect that subject variability
in spatial organisation might have on its temporal counterpart has been noted
in simulation studies. For example, E. A. Allen et al. [2012] observed a sharp
decrease in the ability of a variant of ICA-DR to detect subject-specific modes in
the presence of subject variability in spatial organisation, an effect which was
compounded by spatial overlap between modes'*. This links to functional coupling
via the work of Smith et al. [2011], who noted that if ROIs were misspecified such
that the time courses contained a range of contributions from the true underlying
regions, then ‘[t]he results are extremely bad’. It is the latter result in particular
which is particularly shocking: if we do not extract accurate subject-level estimates
of functional regions then it is essentially impossible to characterise the functional
coupling between them.

This is not to say that the functional coupling between regions does not
carry any information, but rather that it is far harder to detect than previously
reported—note how in the active state data only a handful of changes to network
matrix edges pass significance, even despite the concerted manipulation of cog-
nitive state, in line with the results of Kieliba et al. [2018] (see also Gratton et al.
[2018]). Taken together, these results suggest that it may be necessary to make
several changes to the analyses we do of functional coupling. As well as consider-
ing principled methods for dealing with subject variability in spatial organisation
as a prerequisite, it seems likely that more sophisticated statistical methods will be
needed to detect these subtle changes [Ng et al. 2014; Colclough et al. 2018; Duff
et al. 2018]. Similarly, given the fine-scale variations in the map weights and the
amount of overlap between PFMs, it may be that we need multivariate analysis
techniques that go beyond one summary time course per parcel to capture the
richness of the functional data at sub-parcel spatial scales [Geerligs et al. 2016;
Haak et al. 2018]. Furthermore, it may well be the case that to do cross-subject
analyses the number of modes or parcels will need to be restricted to ensure re-

BFigures 4 and 5 in particular.
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gions are properly delineated at the subject-level, with a couple of hundred regions
probably out of reach for all but the most comprehensive data sets [Abou-Elseoud
et al. 2010; Fornito et al. 2010; Bellec et al. 2015; Glasser et al. 2016a; Coalson et al.
2018]. Finally, there have been many—oftentimes conflicting—estimates of how
much data is required to accurately characterise functional coupling [Van Dijk
et al. 2010; Anderson et al. 2011; Birn et al. 2013], but, for a variety of reasons, there
seem to be clear advantages of collecting more data where possible [Hacker et al.
2013; Glasser et al. 2016b; Gordon et al. 2017b; Horien et al. 2018a].

4.2.3 Interoperability with existing pipelines

One key question that relates to the issues raised above, is how do these resting-
state derived results fit into a wider analysis framework? While the results presen-
ted here are clearly interesting in their own right, and illuminate several strong
brain-behaviour links, most neuroimaging studies now include structural, func-
tional and diffusion MRI data, as well as electrophysiological recordings, and
analyses are therefore increasingly becoming multi-modal in nature. In other
words, how do we leverage these resting-state results to improve sensitivity of
other analyses too?

The key observation is that if the subject-specific PFM spatial maps really
do represent an improvement in our ability to localise functional systems in
individual subjects, then we should be able to utilise that information to improve
any other cross-subject analyses we perform. Firstly, this could be in the form of
improved registrations, as we would hope the PFM maps would enhance multi-
modal registrations [Robinson et al. 2014]. Secondly, one would hope that it
is also possible to increase the fidelity of subject-specific parcellations in this
manner, with all the concomitant benefits in terms of consistent localisation and
increased statistical power they afford [Glasser et al. 2016a; b]. In other words, for
multi-modal analyses, the power of resting-state data may be that it represents
a task-independent functional localiser with whole-brain coverage [Smith et al.
2009; Tavor et al. 2016].

4.2.4 Understanding spatial variability

On a final note, we have often discussed subject variability in spatial organisation
with recourse to its influence on subject variability in temporal features, but it
warrants a more fulsome examination in its own right.

Firstly, there has been much recent interest in ‘functional fingerprints’—that
is, whether functional connectivity acts as a unique signature with which we can
identify subjects. There have been several elegant demonstrations of this, suggest-
ing that the functional information that we are able to capture with fMRI does
indeed distinguish individuals'* [Finn et al. 2015; Horien et al. 2018b]. However,

“Though there is still scope to improve the specificity somewhat [Finn et al. 2017; Vanderwal
et al. 2017; Waller et al. 2017].
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we arguably already have a much more compelling way of fingerprinting subjects:
structural data and the macro-anatomical folding patterns give a way to identify
subjects that is simple, reliable and stable over decades.

Secondly and similarly, why do spatial rearrangements of functional regions
seem to be so predictive in cross-subject analyses, and how do we interpret them?
One hypothesis is that this variability in spatial organisation of functional regions
is simply reflecting variability in the brain’s macroscale structure, for which there
are already well established links between environmental, genetic and lifestyle
factors [Reiss et al. 1996; Shaw et al. 2006; Stein et al. 2012; Douaud et al. 2014;
K. G. Noble et al. 2015; Elliott et al. 2018].

However, it would be an enormous surprise if this reductionist reading of these
functional changes as simply reflecting structural variability is the whole story,
especially after the registration approaches used. Rather, it is vitally important
to understand both what mechanisms give rise to these spatial changes, and, in
particular, what unique information does the functional variability carry over and
above what can be derived from other techniques and modalities.
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Appendices

A Alternative approaches

There are now several methods that characterise resting brain activity in terms
of functional modes, both at the group and subject level. The standard pipeline is
essentially a two-step process, where the group-level modes are estimated before
some form of back-projection is used to extract subject-specific versions of these.
Dual regression and related variants thereof, typically combined or integrated
with a group-level spatial independent component analysis (ICA) [Calhoun et
al. 2001; Beckmann et al. 2005], have been the de facto standard for analyses of
the subject variability in spatial and, more recently, temporal features of modes
for at least the past decade. Dual regression proceeds by regressing the group-
level spatial maps into the data to get a set of time courses—from which subject
variability in temporal features may be estimated via any number of functional
connectivity metrics—before regressing the time courses back into the data to get
subject-specific spatial maps [Calhoun et al. 2001; Beckmann et al. 2009; Zuo et al.
2010b; Erhardt et al. 2011; Nickerson et al. 2017].

This approach has been extended over the years, with several proposed refine-
ments to either the method for identifying group-level modes [Damoiseaux et al.
2006; Varoquaux et al. 2010; Lee et al. 2011; Smith et al. 2012; G. I. Allen et al. 2014;
Hjelm et al. 2014; Karahanoglu and Van De Ville 2015; Dohmatob et al. 2016], or to
the way subject-specific information is extracted [Du and Fan 2013; Hacker et al.
2013; Zoller et al. 2018].

However, there have been several more extensive departures from the above
framework that are more similar in spirit to the hierarchical PFMs model. For
example, Varoquaux et al. [2011] and Abraham et al. [2013] proposed a more holistic
model that finds a set of systems regularised by not only the group-level properties,
but also by the consistency of both spatial and temporal information at the subject
level. More recently, Li et al. [2017] introduced a model based on non-negative
matrix factorisation (NMF) that jointly optimises subject-specific decompositions
such that the spatial maps are both sparse and consistent over subjects, though
without explicitly leveraging any information about temporal consistency.

As mentioned in the Introduction, these methods all have potential shortcom-
ings in terms of the extent to which typical patterns of variability are learnt from
the multiple subject-specific decompositions. These shortcomings are particularly
apparent for dual regression type approaches, where the estimation of subject
variability is completely post-hoc (and, moreover, the estimated subject variability
in spatial organisation only indirectly informs the subject variability in temporal
features), but it is also problematic for the more complex models which we have
mentioned, for which no explicit parameterisation for the observed variability
over subjects is inferred.

More recent methodological work has focused on deriving subject-specific
parcellations, both based on a fixed group-level template [Dhillon et al. 2014; Wang
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et al. 2015; Glasser et al. 2016a; Chong et al. 2017; Gordon et al. 2017a; Salehi et al.
2017], and formulated as a hierarchical model [Liu et al. 2012; Langs et al. 2016;
Kong et al. 2018]. However, while both mode- and parcel-based approaches have
shown promise, our concern is that the subject variability in spatial organisation
that has been reported often features reorganisations of a similar scale to our
current best estimates of the sizes of distinct functional regions [Van Essen and
Dierker 2007; Van Essen et al. 2012a], and as such, reliable identification at this
scale is arguably beyond all but the most sophisticated, multimodal approaches
utilising high quality data [Glasser et al. 2016a]. Therefore, in this work, we stick
to a system-level description and base our method on a decomposition into a set
of modes. Intuitively, a functional system is more protected from the deleterious
effects of misalignment than a functional region in two key ways: firstly, functional
systems have a greater spatial extent than parcels; secondly, a reorganisation of
one region within a larger system can be straightforwardly corrected for if the
other regions are relatively stable.

B Implementation

The code that does the probabilistic inference is written in C++ (isocpp.org). The
bulk of the computation is done using single precision floats as this reduces the
memory footprint and results in a significant computational speed-up. This is
handled by the Armadillo linear algebra library (Sanderson and Curtin [2016], arma.
sourceforge.net) and OpenBLAS (github.com/xianyi/OpenBLAS). The inference
procedure parallelises very neatly over subjects: holding the group parameters
fixed, all the subject specific updates can be performed independently of each other.
The code is parallelised using OpenMP (openmp.org) and also relies on several
functions from the Boost libraries (boost.org).

Postprocessing and visualisation of the results is done in Python (python.
org). This relies on NumPy (numpy.org), SciPy (scipy.org) and NiBabel (nipy.org/
nibabel), and all plots are generated by matplotlib (matplotlib.org/).

C Model Parameters

This manuscript, including the model description and analyses performed, is based
on version 0.8.2 of PROFUMO. The specific values that the various hyperpriors
take can be found in the following file, git.fmrib.ox.ac.uk/samh/profumo/blob/0.
8.2/Source/ModelManager.c++, where the exact definition of the key distribu-
tions is available in git.fmrib.ox.ac.uk/samh/profumo/blob/0.8.2/Documentation/
UpdateRules/KeyDistributions/KeyDistributions.pdf. The key update rules can be
found at git.fmrib.ox.ac.uk/samh/profumo/tree/master/Documentation/UpdateRules.
While there are a relatively large number of hyperparameters, there are several
ways to simplify their specification. Firstly, the data normalisation procedure (see
Appendix D) is based on the spatial maps, amplitudes and time courses being
approximately unit variance. Secondly, many the parameters of many conjugate
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priors have an interpretation as a number of ‘pseudo-observations’, and we set
many of the group-level priors to be equivalent in strength to observing a small
number of ‘pseudo-subjects’. Taken together, these drastically reduce the number
of free parameters we need to specify.

D Preprocessing

The aim of the preprocessing pipeline is to normalise the data such that it has a
consistent scale across subjects, and that the properties of the unstructured noise
follow the assumptions that are contained in the generative model. The approach
is as follows.

o Voxelwise normalisation. For each voxel independently, the time course (i.e.

DS")) is set to zero mean and unit variance. This ensures that each voxel
has a roughly equal contribution to the SVD in the next step.

o Voxelwise normalisation of the noise subspace. Each voxel is independently
normalised such that the variance of the unstructured noise is unity. This
matches the assumption of isotropic noise in the generative model. The
unstructured noise subspace is estimated via the SVD. The whole data mat-
rix is decomposed and the M components with the highest singular values
are assumed to represent the structured signal subspace and are removed.
The noise subspace is reconstructed from the remaining components, the
variance is calculated in each voxel, and the data is renormalised on a
voxelwise basis such that the variance becomes unity.

e Global normalisation of the signal subspace. There is one final degree of free-
dom remaining. The generative model assumes isotropic noise, but does not
assume a fixed variance. Therefore we can apply a global renormalisation
to set the overall variance of the modes we observe. As an approximation,
if D = PHA and we assume independence over modes, then we can say
that E[D%t] = ZA,,/f:l E[P?,m] E[h%n] E[A%nt]. In other words, if the maps,
amplitudes and time courses have unit variance then the signal variance
will be equal to M. Therefore we use another SVD decomposition and set
the overall variance of the assumed signal subspace (i.e. the first M com-
ponents) to match the above by applying exactly the same normalisation
to each voxel.

E Data reduction

The scale of modern rfMRI studies is now such that even manipulating all the
data in its raw form simultaneously is impossible. For approaches that start by
inferring group-level descriptions of the data, such as ICA, it is possible to use on-
line algorithms that work by passing over the data sequentially [Smith et al. 2014;
Mensch et al. 2017], thereby removing the dependence between memory required
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and the number of subjects under study. However, our approach is explicitly
designed to simultaneously extract group- and subject-level features, and as such
we need the data from each subject to be available.

To facilitate analyses of large data-sets, we apply subject specific data reduc-
tions, but do not collapse these down further to group-level summaries. The
approach we take is to approximate each run with a low-rank singular value de-
composition (SVD). As our model is defined in terms of both spatial and temporal
features, we have to retain both the spatial and temporal singular vectors. However,
as the PFM model assumes that subject-specific spatial maps are conserved across
all runs for a given subject, we make further savings by only maintaining a single
set of spatial singular vectors per subject.

To do this, we calculate the SVD of the matrix formed by temporally concat-
enating all data from a given subject. This combined data matrix, D ¢ RV*RT,
is then represented by U®), §&) and V(9. To approximate this with a low rank
SVD, we simply only retain the singular vectors associated with the top N singular
values. For example, assuming V > R T and ignoring columns associated with sin-
gular values equal to zero, U®) € RV*RT is replaced by U®) € RV*N. Finally, we
can partition the temporal singular vectors, according to the order the individual
runs were concatenated, in order to reconstruct the data from each run individu-
ally, or in other words, V®®) € RRT*N j5 decomposed into a set of V") € RT*N,
In summary, each data matrix, D", has three approximating matrices, namely
U® e RV*N, §) € RN*N and v € RT*N,

The last thing we do is to combine these three matrices into two matrices. This
simply saves some computation each time we need to calculate any expectations
involving the data. The final form for the approximate data is therefore

WO = (TO)(50)?
X070 = (80902 (V6n)T (18)
DG~ W x(sr)

We can simply substitute this approximate expression for D) any time we
need access to the data in the inference procedure, and this has the added bonus of
being computationally, as well as space, efficient. However, we explicitly calculate,
and cache, the overall data variance from the full data, rather than ignoring the
contribution from the subspace of discarded singular values'. This means that
the estimate for the noise precision, "), will be comparable whether or not we
choose to utilise this low-rank approximation, or indeed across different values of
N.

We now have an explicit method for reducing large data-sets to a more manage-
able size. However, there is one final complication: computationally, calculating

BMore explicitly, we use Tr((D(”))TD(S’)) rather than Tr(( WO XENT ) x 60 ) whenever re-
quired.
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the SVD of every D actually turns out to be prohibitively expensive in most
cases. In order to circumvent this, we utilise the fact that we are explicitly looking
for a low-rank approximation and implement an extremely efficient randomised
algorithm to directly calculate the truncated SVD. This approach is described in
the excellent review by Halko et al. [2011].

F Degrees of freedom correction

fMRI data has an inherent spatial smoothness—such that there are non-trivial
spatial autocorrelations in the noise processes—which is amplified by the spatial
smoothing that is a standard pre-processing step for most analyses. As discussed
earlier, this is not acknowledged in our specification of our model of the noise
process. In essence, this means that the model assumes that there are more
independent spatial measurements than actually exist.

Fortunately, as Groves et al. [2011] discuss, there is a simple way to mitigate
some of the effects of this within the Bayesian framework. Intuitively, if we
have smoothed the data then we should be able to downsample it without loss of
information. At some stage, this would result in the noise becoming genuinely
spatially independent again, thereby satisfying the assumptions of the generative
model. However, this presents several practical problems, so rather than actually
downsample the data, we simply downweight the spatial information by a factor
v. This represents the proportion of voxels that would be retained if we were to
optimally downsample. “This is analogous to fixing that only a random fraction of
the data points will be kept, but at each stage averaging over all possible choices
of decimated voxels’ [ibid.].

While this approach still does not explicitly acknowledge the relationship
between noise in nearby voxels, it does counter most of the deleterious effects of
this model misspecification, especially when combined with the models for noise
in the subject-specific spatial maps and time courses. The main advantage of this
approach, compared to a more formal model for smoothness, is that it remains
particularly computationally efficient.

G Initialisation

With a model of this complexity, it is important that the algorithm is appropriately
initialised. By doing so, we can improve reliability and computational stability
whilst reducing the computational time required for convergence. Our approach
is to compute a consensus group-level set of modes, and use these to initialise the
full model.

To do this, we mimic the temporal concatenation approach employed by most
existing algorithms and compute a consensus set of spatial singular vectors (this
can be done even more efficiently if we have already utilised the data reduction
technique described previously Calhoun et al. [2001]) using another randomised
SVD algorithm that streams over the data. We then run a Bayesian version of
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spatial ICA—with the spatial priors set to mimic the group-level priors of the full
model—to generate the group-level modes. We can then propagate this set of group-
level modes through the rest of the algorithm, thereby ensuring all parameters are
initialised with plausible values.

H Human Connectome Project data and analyses

For the HCP analyses, all data was from the 1,200 Subjects Data Release: humanconnectome.
org/study/hcp-young-adult/document/1200-subjects-data-release. We used the
1,003 subjects for whom there was full behavioural, structural and rfMRI data (i.e. 4
runs, each of 1,200 volumes). All analyses are of the MSMAII and FIX cleaned data
(i.e. rfMRI_REST1_LR_Atlas_MSMAll_hp2000_clean.dtseries.nii etc. from the
Extensively Processed fMRI Data: humanconnectome.org/study/hcp-young-adult/
document/extensively-processed-fmri-data-documentation). Two further subjects
were excluded from the behavioural analyses because not all the information
needed to build the PALM exchangeability blocks was available in the data dic-
tionary.

For all behavioural analyses, we first removed any variables that were either
more than 20 % NaN, or those for which more than 95 % of subjects had exactly the
same entries. We then imputed any missing values using the SoftImpute method
[Mazumder et al. 2010] as implemented in the fancyimpute Python package
(github.com/iskandr/fancyimpute). The following were regressed out as confounds
in all subsequent analyses: recon, rfMRI_motion, age, sex, Height, Weight, BMI,
FS_IntraCranial_Vol, FS_BrainSeg_Vol, BPSystolic, BPDiastolic,Hematocrit_1,
Hematocrit_2. A detailed description of all variables can be found at wiki.humanconnectome.
org/display/PublicData/HCP+Data+Dictionary+Public- +Updated+for+the+1200+Subject+
Release.

Heritability was estimated via Falconer’s formula, Hg = 2(r,,, — r4,) [Falconer
1960]. We calculate the correlations, r,,, and r,;,, between the voxelwise spatial
map weights. In other words, for each subject and each voxel we extract a length

M vector of weights: PE,S) using the PFM notation, and compute the correlation
between these for every pair of subjects.

For the CCA analyses, the structural variables were all those in the FreeSurfer
category; all other variables were taken as behavioural. All groups of variables
were normalised and then reduced to their top 25 components via the SVD, before
a CCA was run on every pair of variable groups. The RV coeflicient was then
calculated between the top 10 paired components from each CCA.

The ICA-DR amplitudes and netmats were estimated from the time courses:
the amplitudes were taken as the standard deviations, while the netmats were the
partial correlation matrices. Tikhonov regularisation was used when calculating
the inverse of the full correlation matrices, with I' = 0.1
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| Active-state data and analyses

Data was acquired from fifteen subjects, but for these analyses we excluded Subject
07 due to potential artefacts in several of their scans. Preprocessing was as previ-
ously published (i.e. brain extraction, B0 unwarping, high-pass temporal filtering,
motion correction, and FIX cleaning) [Kieliba et al. 2018]. However, we did not
apply mean-based intensity normalisation or low-pass filter the data. Finally, the
pre-processed functional scans were then registered to MNI space and spatially
smoothed (2 mm FWHM).

As with the HCP data, the ICA-DR amplitudes and netmats were estimated from
the time courses: the amplitudes were taken as the standard deviations, while the
netmats were the partial correlation matrices. Tikhonov regularisation was used
when calculating the inverse of the full correlation matrices, with I' = 0.1L The
SVM was from scikit-learn, and was the sklearn.svm.SVC with default parameters.
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