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, Abstract

2 1. Estimating survival using data on marked individuals is a key component
3 of population dynamics studies and resulting management and conservation
a decisions. Such decisions frequently require estimating not just survival but
5 also quantifying how much mortality is due to anthropogenic versus natural
6 causes, particularly when individuals vary in their vulnerability to different
7 causes of mortality due to their body size, life-history stage, or location.

8 2. In this study we estimated harvest and background mortality of landlocked,

0 migratory salmonid over half a century. In doing so, we quantified among-
10 individual variation in vulnerability to cause-specific mortality resulting from
1 differences in body size and spawning location relative to a hydropower dam.
12 3. We constructed a multistate mark-recapture model to estimate hazard rates
13 associated with competing harvest and background mortality risks as func-
14 tions of a discret state (spawning location) and an individual time-varying
15 covariate (body size). We further included among-year variation to inves-
16 tigate temporal patterns of and correlations among mortality hazard rates
17 and fit the model to a unique 50-year time-series of mark-recapture-recovery
18 data on brown trout (Salmo trutta) in Norway.

10 4. We found that harvest mortality was highest for intermediate-sized trout,
20 and outweighed background mortality for almost the entire observed size
21 range. For trout spawning above the dam, background mortality decreased
22 for larger body sizes and at lower river discharge. Both mortality causes, as
23 well as the probability of spawning above the dam, varied substantially over
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24 time but a trend was evident only for fishers’ reporting rate, which decreased
25 from an average of 80% to only 10% over half a century.

26 5. Our analysis highlights the importance of body size for cause-specific mor-
27 tality and demonstrates how this can be estimated using a novel hazard
28 rate parameterisation for mark-recapture models. This approach allowed es-
29 timating effects of both size and environment on harvest- and background
30 mortality without confounding, and provided an intuitive way to estimate
31 temporal patterns within and correlation among the mortality sources. In
32 combination with computationally fast custom MCMC solutions this mod-
33 elling framework provides unique opportunities for studying individual het-
34 erogeneity in cause-specific mortality using mark-recapture-recovery data.

= Keywords

s Bayesian statistics, dam, harvesting, hazard rate, mark-recapture, mortality, nim-

37 ble, trout.

= Introduction

30 Population dynamics - particularly of long-lived species - are often very sensitive
s to changes in mortality (Seether and Bakke 2000, Fujiwara and Caswell 2001).
s Mortality itself can have a wide variety of causes (e.g. starvation, predation, dis-
.2 ease, harvest), and vulnerability to cause-specific mortality depends strongly on
a3 individual factors such as age or life stage (Ronget et al. 2017). As a consequence,

s population-level responses to changes in mortality may vary greatly depending on
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s the underlying cause, and disentangling different causes of mortality may thus pro-
ss vide insights crucial for population management and conservation (Williams et al.
sz 2002). This is particularly important in populations where significant mortality
as is linked to human activity; in such cases, knowledge about the relative impact
a9 of human-induced mortality and its potential effect on other sources of mortality
so is crucial for developing sustainable and successful harvest- or culling strategies
s1 (Hilborn and Walters 2013, Koons et al. 2014).

52 Studies of marked individuals constitute a highly valuable source of demo-
53 graphic data for wild animal populations and are crucial for estimating survival,
s« as well as cause-specific mortalities. The recovery of a dead marked animal of-
ss ten provides information on the cause of death. For example, it was evident from
ss the recovery of radio-collared European hares (Lepus eruopaeus) whether they
s7 had died due to hunting, predation, or other causes (Devillard and Bray 2009).
ss Similarly, location and examination of recovered white storks (Ciconia ciconia)
so allowed identifying whether they had died from collision with a power line, or due
s to other causes (Schaub and Pradel 2004). However, unless animals are marked
e1  with radio- or satellite transmitters, most dead individuals will not be found, and
62 this imperfect detection needs to be accounted for when estimating survival or
63 mortality parameters. Moreover, when considering multiple mortality causes, de-
es tection probability frequently depends on the cause of mortality, and some causes
es of mortality may not be observable at all. This is usually the case for natural
es mortality when dead recoveries are exclusively based on the reports of hunters or
o7 fishers (e.g. Servanty et al. 2010, Koons et al. 2014).

68 Schaub and Pradel (2004) developed a multistate mark-recapture-recovery frame-

so work that allows to separately estimate mortality from different causes while ac-
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70 counting for cause-dependent detection probabilities. Specifically, cause-specific
7 mortalities are estimated as transitions from an “alive” state to several “dead from
72 cause of interest” states. When this framework is extended to also include mul-
73 tiple “alive” states, it becomes possible to estimate differences in vulnerability to
7 cause-specific mortality depending on, for example, an individual’s life-stage (e.g.
75 juveniles vs. adults, Schaub and Pradel 2004) or location (Fernandez-Chacon et al.
76 2015). Such group-level differences in mortality can be tremendous and account-
77 ing for them is crucial for modelling population dynamics (Ronget et al. 2017).
7z However, in addition to that, vital rates and population dynamics are often also
70 strongly affected by individual differences in continuous, dynamic traits such as
so body size (De Roos et al. 2003, Vindenes and Langangen 2015). Particularly in
s1 species that are harvested and/or have indeterminate growth (e.g. fish species),
g2 cause-specific mortality is expected to depend strongly on body size. Ferndndez-
sz Chacon et al. (2017) demonstrated this by estimating cause-specific mortalities for
sa different sizes of Atlantic cod (Gadus morhua). However, they did so by lump-
ss ing individuals into either of two size classes (“small” or “large”), thus foregoing
ss the possibility of investigating the continuous relationship between body size and
sz mortality from different causes. While interesting and informative on its own,
ss  knowledge about the relationships between continuous traits and vital rates like
so mortality are also invaluable for studying dynamical processes at the population
o level, (e.g. using integral projection models, Ellner and Rees 2006).

01 In this study, we extended the framework of multiple mortality cause mark-
o2 recapture models to include a continuous individual- and time-varying trait (body
o3 size) as a predictor of vulnerability within different groups of individuals. By mod-

s elling survival and mortality probabilities via cause-specific mortality hazard rates
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os (Ergon et al. 2018) we estimated the effects of body size on, as well as among-
o6 year environmental variation in, different mortality causes without confounding.
oz We then used this extended model to investigate size-dependence of and temporal
e patterns in harvest and background mortality of adult brown trout (Salmo trutta)
9o over half a century (1966 - 2016).

100 Migratory salmonid fishes - such as piscivorous brown trout - are extensively
w1 studied due to their ecological, cultural and economical value (Drenner et al. 2012).
102 Nonetheless, contrary to other parts of the life history, relatively little is known
13 about the mortality of adults residing in the sea or large lakes (Piccolo et al. 2012).
104  Many salmonid populations are heavily impacted by human activity not only in the
105 form of harvesting but also through pollution, fish farming, habitat fragmentation,
s and hydro-electrical power production (dams) in rivers (Aas et al. 2010). Our study
w7 population of migratory brown trout (hereafter “Hunder trout” or just “trout”)
108 inhabits a river-lake system in Eastern Norway and has been a popular target for
100 fishing for decades due to its large body size. The spawning river is dammed, and
1o trout migrating to spawning grounds above the dam face additional risks linked
1 to passing the dam on their up- and downriver migrations. These risks are likely
112 associated with individual body size as well as environmental conditions, and can
13 be avoided entirely if trout instead use the spawning grounds below the dam. Each
us individual’s spawning location thus determines its exposure and vulnerability to
us  some sources of mortality (e.g. those related to the dam), and we accounted for
e this heterogeneity by modelling cause-specific mortality hazard rates not only as
u7 a function of body size, but also as dependent on whether individuals migrate
us  past the dam to spawn. By fitting the resulting model to a unique 50-year time-

10 series of recaptures and recoveries of marked trout, we investigated the detailed
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120 effects of individual- (size, spawning location) and environmental (river discharge)
121 factors on the vulnerability of adult trout to mortality due to harvest, passage of a
122 hydroelectric dam, and natural causes, as well as on the probability of using a fish
123 ladder within the dam to access upriver spawning areas. Additionally, we extended
124 our analyses to also (1) investigate potential early life impacts of hatchery-rearing,
125 since part of the population consist of stocked fish, and (2) estimate the temporal

126 correlation of harvest- and background mortality.

»» Materials and methods

s STUDY SYSTEM AND DATA

120 We studied a population of landlocked migratory brown trout inhabiting the
130 lake Mjgsa and its main inlet river, Gudbrandsdalslagen, in Eastern Norway.
. These trout have a life history that is similar to that of Atlantic salmon (Salmo
12 salar)(Aass et al. 1989): Eggs are deposited in the river in fall and develop over
133 winter. After hatching in spring, juvenile trout remain in the river for an average
s of 4 years there before smolting and migrating to the lake. They typically mature
135 after 2 - 3 years of piscivorous diet and fast growth in the lake, and from that point
136 on migrate up the river to spawn every other year (usually in August/September,
17 Figure 1). The adult trout population consists of wild-born trout and stocked
s (first-generation hatchery-reared) trout which are released into the river and lake
130 as smolts but then follow the same general life history. Shortly after the river was
1o dammed in the 1960’s, a fish ladder was installed to enable mature trout to reach

141 their historical spawning grounds above the dam. There are spawning grounds
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12 downriver of the dam as well (Aass et al. 1989), and an individual trout’s spawn-
13 ing location is thus linked to whether or not it uses the fish ladder to travel upriver.
1s  This - in turn - is influenced by body size and hydrological conditions (Haugen
s et al. 2008).

146 From 1966 to 2016 a trap was operated within the fish ladder, allowing for
17 all trout passing the ladder to be captured, measured and individually marked.
s Thus, all adult trout were marked when they used the fish ladder on an upriver
10 Spawning migration for the first time, and were recaptured on subsequent spawning
150 migrations given that they had survived and were passing the ladder again (usually
151 every other year, Figure 1). Over the 50-year time period, 14,890 adult trout were
152 marked and 2,152 of these were recaptured in the ladder later. Since the population
153 has been exposed to fishing over the entire time period, an additional 2,306 marked
152 trout were reported dead by fishers. For more details on the marking scheme,
155 sampling protocol, and resulting data from the mark-recapture-recovery study, see
1ss Moe et al. (2019).

157 In the present study we performed mark-recapture analyses over intervals of two
158 years, as estimating parameters for spawning and non-spawning years separately
159 proved problematic (due to trout being unobservable in non-spawning years, Figure
160 1). We thus summarised the data into individual capture histories y; ;, in which each
11 time index ¢ corresponds to a two-year time step (interval from current spawning
162 year to next spawning year). For each time step within those capture histories, we
163 coded three types of observations: 1 = alive and captured in the ladder, 2 = dead
16 from harvest and reported, and 3 = not observed. Upriver spawning migrations
15 occur over the period from June to November but peak in August (Figure S1.1),

16s and we set y;,; = 1 when an individual was captured in the fish ladder in any
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17 month during time interval ¢t. Harvest of trout happens year-round (Figure S1.1)
16 and if an individual was harvested and reported at any point during interval ¢ we
10 set y;; = 2, unless (a) the individual had also been caught in the fish ladder during
o interval ¢ or (b) the harvest happened after August of the second year within the
i interval ¢. If either (a) or (b) was the case, we moved the harvest observation to
172 the next interval such that y,; 11 = 2. Furthermore, we excluded all individuals
73 that did not follow a strictly biennial spawning cycle (1.5% of all individuals), did
7a 1ot have a single size measurement taken (7.1%), or were of unknown origin (wild
s vs. stocked, <1%). The analyses presented here are based on the remaining 12,875

176 capture histories containing 1,588 trap recaptures and 2,252 harvest recoveries.

»» MODEL FORMULATION

17s General model structure

170 Survival and deaths due to certain causes represent mutually exclusive events and
10 can thus be incorporated into multistate mark-recapture frameworks (Lebreton
11 et al. 1999). When explicitly including not only “alive” but also (observable) cause-
182 specific “newly dead” states, the probability of transitioning from state “alive” to
183 state “newly dead from cause X” represents the probability of dying from cause
18« X (Schaub and Pradel 2004, Servanty et al. 2010). In the trout study population,
185 deaths due to harvest may be reported by fishers and are thus clearly distinguish-
186 able from deaths due to other causes. Individuals in any alive state n can therefore
187 remain alive with survival probability S,, or transition to states “newly dead from
188 harvest” (state 3) or “permanently dead” (state 4) with probabilities ¥ and ¥¢

180 respectively (Figure 2). The “permanently dead” state here represents all unob-
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10 servable dead individuals, which also include those that have recently died from
101 causes other than harvest. Furthermore, we make a distinction between individuals
102 that start the time interval by spawning above versus below the dam. Spawning
103 location may have a considerable effect on mortality, as individuals that spawn
10 above the dam need to pass this obstacle on both the upriver- and downriver
105 spawning migration. Consequently, we included two “alive” states in our model:
s “spawning upriver” (state 1) and “spawning downriver” (state 2). Individuals in
107 each spawning state n have a survival probability S,,, a probability of dying due

108 to harvest w1

n

and a probability of dying due to other causes ¥°. Additionally,
100 there is a probability of using the fish ladder, p, which links the two alive states
200 and is assumed to be independent of previous spawning location (Figure 2). The

201 resulting model can be expressed with the state transition matrix

states (t + 1)

1 2 3 4
O 1| Syiwpigrr Srie(l—piga) 95, w2,
é 2| Syilipr1 Szip(l—pig) U, U9,
T30 0 0 1
4 0 0 0 1

202 The elements of this matrix represent the probabilities of any individual 7 in a
203 given state (rows) transitioning to another state (columns) over the time interval
204 from t to t + 1. As such, all probabilities within a given row sum to 1.

205 Similarly, these same states 1-4 are linked to the three types of observations
206 in the data through a matrix of observation probabilities (columns) given a state

200 (rOws):

10
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observations (t)

1 2 3

111 0 0
0 0 1

states (t)

2
30 Tt 1 — Tt
410 0 1

206 where 1 = alive and captured in the ladder, 2 = dead from harvest and reported,
200 and 3 = not observed. r; is the reporting rate of fishers for the 2-year interval from

210 t—1tot.

-1 Parameterisation by mortality hazard rates

212 Different cause-specific mortality probabilities (¥) are not independent of one an-
213 other; if a certain cause of mortality becomes more prevalent (e.g. due to some
214 event or change in the environment), not only will the probability of dying from
215 that cause increase, but the probability of dying from any other cause will decrease
216 at the same time. This confounding complicates inference, but Ergon et al. (2018)
217 have recently shown how it can be avoided by parameterising mark-recapture mod-
218 els with mortality hazard rates instead of probabilities. Doing so not only facili-
210 tates biological interpretation of model parameters, but also comes with additional
20 advantages such as easy rescaling of covariate effects across different time inter-
an vals and straight-forward calculation of temporal correlations among mortality
222 causes (Ergon et al. 2018). Assuming that the intensities of mortality from differ-
223 ent causes remain proportional within time intervals, we can re-define the survival-

24 and mortality probabilities in the trout model using harvest (mf) and other-cause

11
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225 (hereafter “background”) mortality hazard rates (m©):

Sn it = _(mf,i,t"‘mr?,i,t)
H
m .
t
Urt = (1= Snit) ———
n,i,t n,i,t H O
mn,i,t + mn,i,t
o
mY.
O _ TL,’L,t
Uiz = 1= Snit) =5

mn,i,t + mn,i,t

»s MODEL IMPLEMENTATION

27 Individual and temporal variation in parameters

228 Body size and hydrological conditions are often key determinants of vital rate
220 variation in freshwater fish, including our study population (e.g. Carlson et al.
230 2008, Letcher et al. 2015, Haugen et al. 2008). We thus used individual body size
231 at the beginning of the time-interval and average river discharge during the relevant
232 season as covariates in our model. We further accounted for additional among-year
233 variation in several parameters using normally distributed random effects.

234 Harvest in our study system has been done mostly using fishing rods or gillnets;
235 the former is often positively correlated with body size (Lewin et al. 2006) while
236 the latter has bell-shaped selectivity curves (Hamley 1975). To account for this,
237 we modelled harvesting mortality hazard rate as a quadratic function of size on

238 the log-scale:

log(mfh) =log(u™) + B3 x size;y + By * size], + €

230 where pff is the median harvest mortality hazard rate, 8 and Sf are slope pa-

12
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20 Tameters for linear and quadratic size effects respectively, and e are normally
2a1  distributed random effects. size;; is the individual length at spawning. As harvest
202 in our study system happens predominantly in the lake, we have not included
a3 an effect of river discharge on mf{t Harvest is also limited during the spawning
24« migration and as the duration of the spawning migration is also short relative to
a5 the two-year interval of analysis, we further assumed that harvest mortality is the
226 same for above- and below-dam spawners (thus omitted the index n here).

247 Background mortality, on the other hand, is expected to depend on both spawn-
2e8  ing location and on river discharge, as above- and below-dam spawners encounter
2s0  different hydrological conditions during/after spawning and only the former need
250 to pass the dam on their downriver migration. Mortality associated with the spawn-
251 ing migration in general, and passing of the dam in particular, may also depend

252 on body size. We thus modelled background mortality hazard rate as:

log(mgmt) = log(ug) + 61?” * discF, + ﬁgn * size; s + eto

23 Here the index n indicates the alive state (1 or 2), discF; is the average discharge
2« during the fall when post-spawned trout are expected to migrate downriver (Oct -
255 Nov), ﬂfn and I are slope parameters for size- and discharge effects respectively,
6 and € are random effect which are independent of state n.

257 In a previous analysis of a subset of our data, Haugen et al. (2008) found that
258 the probability of using the fish ladder and thus spawning above the dam depended
250 on a complex interplay of individual body size and river discharge. We adopted
260 their basic model structure and extended it by allowing for random among-year

261 variation such that

13
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logit(pi) = logit(u?) + B * discSy + B * size;, + B * discSy * sizey, + B * size], + €

262 The discharge covariate used here, discS;, represents the average discharge over the
263 summer season when trout undertake their upriver spawning migration (Jul-Oct),
26s  While size;; is the individual length during the upriver spawning migration.

265 The last main parameter in the model is reporting rate r and this can be
266 expected to vary considerably over a time period of 50 years. To accommodate
267 this large expected variation, we estimated 5 average reporting rates u”, each of
268 which corresponded to a period of 10 years, and further allowed for the same level

260 of random time-variation within each period.

o70  Extrapolation of individual body size

onn Body size is a continuous individual trait that changes over time due to growth.
o2 Using such a trait as a covariate in a mark-recapture model comes with a missing
73 data problem related to imperfect detection, as body size can only be measured
272 when an individual is actually captured (Pollock 2002). There are several ways to
215 deal with this problem including integrated growth models (Bonner and Schwarz
276 2006, Letcher et al. 2015) and inter-/extrapolation using other available data or
77 separate models. Here, we adopted the latter approach and used a detailed growth
27s model previously developed for the study population of brown trout (Nater et al.
270 2018) to impute missing values in the individual size covariate. Specifically, we
280 re-fitted the growth model of Nater et al. (2018) to an extended set of growth data

21 from 5,158 individuals spanning the years 1952 to 2002 and used the resulting

14
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232 parameter estimates to calculate all missing entries in the body size covariate. We
283 chose imputation with an externally run growth model largely due to prohibitive
g4 computational demands that would result from analyzing the growth- and mark-
g5 recapture data in an integrated framework. The imputation procedure, as well as
286 implementation and results of the growth analysis, are described in more detail in

2s7 Appendix S5.

255  Additional model extensions

280 In addition to the model structure outlined above, we ran two sets of extended
200 models. First, we accounted for the fact that 3,183 (25%) of the 12,875 individuals
201 in our analysis were reared in a hatchery and stocked into the wild population
202 after smolting. To investigate whether these individuals differed from their wild-
203 born conspecifics, we included an effect of individual origin (stocked vs. wild) on

H

204 harvest- and background mortality hazard rates (m;; and m?

wi1), as well as and

205 ladder usage probability (p; ;).
206 Second, we attempted to estimate the temporal correlation between harvest
207 and background mortality hazard rates. To do so, we re-expressed the random

208 effects on the hazard rates such that

el = ol 5 el ¢ ~ Normal(0, 1)
@ =¢0 +rx&l, €9 ~ Normal(0,0?)
200 where o/ and o are the standard deviations for the random effects on harvest and

300 background mortality hazard rates respectively. The scaling parameter 7 can then

s be used to calculate the correlation between random effects as C = 7/4/(6?)? + 72.

15
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302 Implementation with Nimble

33 We implemented the model in a Bayesian framework using the R package nimble
304 (de Valpine et al. 2017). To accommodate the 2-year interval of our analysis, we
305 split the data into two sets containing only individuals spawning in even years
a6 and in odd years respectively. We then formulated the likelihood for both datasets
sor  separately, but analysed them jointly under the assumption that they share the
308 same intercept-, slope-, and variance parameters.

309 Markov Chain Monte Carlo (MCMC) sampling of (multistate) mark-recapture
s10 models traditionally includes not only the parameters underlying state transition
s and observation processes but also the latent states of all individuals ¢ at every
312 point in time ¢ (Kéry and Schaub 2011). With extensive datasets (many individ-
a1z uals, long time periods), such hierarchical models can easily end up with a very
a1 large number of nodes in the graphical structure, giving rise to prohibitively long
sis. MCMC runtimes. This problem is exacerbated by individual covariates, as their
a1 inclusion further increases the number of nodes and also makes the use of reduced
a7 data representations such as “m-arrays” (e.g. Kéry and Schaub 2011) impossible.

318 To reduce the MCMC runtime for the model presented here, we implemented a
s10 - custom likelihood function in nimble for use in the hierarchical model. Building on
320 the work of Turek et al. (2016), this custom function analytically integrates over
a1 the discrete set of latent states to exactly calculate the likelihood of each capture
32 history, conditional on values of the model parameters. Here, with a finite set of
323 latent states, this integration takes the form of a summation over the latent state
324 values. In doing so, we removed a total of 60,641 latent states from the hierarchical

35 model, thus reducing the dimension of the posterior distribution (and equivalently

16


https://doi.org/10.1101/544742
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/544742; this version posted March 26, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

326 the MCMC sampling problem) by that same number. This also serves to improve
327 the MCMC mixing of the remaining posterior dimensions, as it no longer relies on
12¢  MCMC integration over the nuisance dimensions. Specifically, for model parame-
20 ters f and capture histories y = {1, ..., y,}, the posterior distribution is updated

330 according to:

n

p(0ly) o< p(6) [ [ p(w:l0),

i=1
s where the likelihood p(y;|0) of capture history y; is calculated using the custom
322 likelihood function, and p(#) is the prior specification. Our implementation extends
;i3 that of Turek et al. (2016) by incorporating individual-specific covariates (in this
s case, body length) into the likelihood calculation. In addition, to further speed up
335 computation time, our custom implementation strictly uses linear calculations in
136 lieu of the matrix operations used in Turek et al. (2016). This forgoes the need
337 to construct multi-dimensional arrays for storing state transition and observation
a3 probabilities, which were found to be prohibitively large. Using this approach to
330 re-define the model resulted in 5.6- and 31.7-fold increases in minimum MCMC
sa0 efficiency relative to the latent state model run in nimble and JAGS respectively.
31 Within nimble, re-defining the model also allowed 370 times faster model building,
32 twelve times faster compilation, and a 93% reduction in memory usage relative to
343 the latent state model. For more details on the comparison of the custom distribu-
sas  tion and standard approaches, see Appendix S2, as well as the supplementary file
35 nimbleDHMM.R for code to define the custom likelihood distribution and to specify
a6 the complete multistate mark-recapture model.

347 For running the model on the trout data we used non-informative priors for
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aas  all parameters, and made use of nimble’s default set of samplers. The MCMC
a0 algorithm was run for 25,000 iterations, discarding the first 5,000 samples as burn-
0 in. Analyses were run in R 3.5.0(R Core Team 2018) using version 0.6-13 of the
;51 nimble package (NIMBLE Development Team 2018).

s MODEL IDENTIFIABILITY & VALIDATION

353 With increasing model complexity, and particularly when unobserved states are
ssa included, it is not obvious whether all parameters within a multi-state mark-
35 recapture model can be estimated (Cole 2012). Failure to estimate parameters may
36 be due to intrinsic parameter redundancy or data limitations. Using an extended
ss7 (hybrid) symbolic method (Cole et al. 2010, Cole 2012) implemented in the com-
s puter algebra package Maple, we looked at intrinsic parameter redundancy in the
150 above described model including different covariate- and random effect structures.
0 The analyses of parameter redundancy are described in more detail in Appendix
1 O3 and accompanying Maple code is also provided as supplementary material.

362 Subsequently, we tested the ability of our models to correctly and accurately
363 estimate parameters given the available data. This we did by running the model on
64 simulated even- and odd-year data sets generated using parameter values similar to
365 those obtained from models run on real data. We explored the overall performance
s Of models with independent and correlated random effects on sets of simulated
367 data with the same number of years and similar number of individuals as present
ses  in the real data. Additionally, we looked into the sensitivity of model performance
360 to variation in the true value of a potentially problematic parameter, the median

a0 background mortality of the unobservable state (below-dam spawners). The setup
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sn  and results from model tests with simulated data are described in Appendix S4.

- Results

s MODEL IDENTIFIABILITY AND PERFORMANCE

sra - We found that in the absence of random effects the only model structures that
ars were intrinsically identifiable were those where harvest mortality depended on an
srs individual time-varying covariate (e.g. body size) and background mortality was
sr7  either constant or dependent on an environmental covariate (Table S3.1). However,
ss  all models (irrespective of covariate structure) became identifiable when random
sro  year effects were included on at least harvest mortality hazard or reporting rates
ss0  (Table S3.1).

381 When run on simulated data, the independent random effect model produced
;2 posterior estimates closely resembling the true parameter values (Appendix S4.2).
;3 While there was considerable uncertainty in estimates of some parameters (e.g.
ssa certain random effect levels, covariate effects on m$), true values were always
sss  within the central 97% interval of posterior posterior distributions. This was also
sss the case for models with correlated random effects. However, we found the esti-
;7 mation of the coefficient of the random effect correlation (C') to be problematic:
sss models tended to correctly predict the sign of the correlation, but uncertainty was
330 very large and prohibited drawing conclusions regarding the actual strength of the
300 correlation (Appendix S4.4).

301 Posterior distributions for all parameters (including random effect levels) es-

32 timated from the real data and using the independent random effect model are
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303 plotted in Figures S1.2 to S1.10.

w SIZE-DEPENDENT FISH LADDER USAGE

305 ' The probability of using the fish ladder - and thus spawning above the dam - de-
36 pended strongly on both individual size and river discharge (Figures 3). Intermediate-
307 sized trout (around 550 mm) were most likely to pass the dam under any condi-
308 tions. Smaller trout were much more likely to pass the dam when river discharge
390 was high, whereas the probability decreased rapidly with length for larger trout ir-
a0 respective of hydrological conditions. Ladder usage probability fluctuated strongly
a1 over time (Figures 5¢) and was predicted to be slightly lower for stocked (0.722)

a2 than wild-born (0.739) trout (Figures S1.11).

ws CAUSE- AND SIZE-DEPENDENT MORTALITY

sa  Median mortality hazard rates were estimated at 0.889 (harvest), 0.238 (back-
a5 ground above-dam), and 0.045 (background below-dam) per two years for average-
a0s sized trout (670 mm). The resulting probabilities of dying during a 2-year interval
a7 due to harvest (UH) and due to other causes (V) were 0.533 and 0.143 for above-
as dam spawners and 0.578 and 0.029 for below-dam spawners. Harvest mortality
a0 hazard rate was predicted to be highest for individuals with a length around 500
a0 mm while background mortality hazard rate was substantial only for small to
a1 intermediate sized individuals spawning above the dam (up to ~700mm, Figure
a2 4a). Background mortality hazard rate of below-dam spawners, on the other hand,
a3 was predicted to be very low for all except the very largest individuals. Conse-

aa  quently, survival probability increased with length for all trout, but more so for
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a5 those spawning above the dam (Figure 4b). River discharge was predicted to in-
a6 crease background mortality of above-dam spawners only, but this effect was weak
a1z compared to the effect of length (Figure S1.2). Residual among-year random vari-
sz ation was substantial in both harvest- and background mortality (Figures S1.2
a0 - S1.6), with hazard rates at the 97.5 percentile being 2.86- and 4.85-fold higher
420 than at the 2.5 percentile respectively. No strong time-trends were evident in either
a1 mortality cause (Figures ba & 5b).

422 Model results did not support differences in harvest- or background mortal-
23 ity due to trout origin: hazard ratios of stocked and wild trout were 0.999 (95%
a2a CI [0.846, 1.151]) and 1.081 (95% CI [0.749, 1.427]) for harvest and background
a5 mortality respectively (Figures S1.11).

426 The temporal correlation between harvest and background mortality hazard
427 rates was estimated with large uncertainty and a negative posterior mean of -0.237

428 (Figure 6)

2 TEMPORAL PATTERNS IN REPORTING RATE

a0 Reporting rates varied considerably over time with averages estimated at 0.791
a1 (1966-1976), 0.544 (1977-1986), 0.366 (1987-1996), 0.118 (1997-2006), and 0.101
a2 (2007-2016, Figure S1.2). Within-period among-year variation was estimated at
a3 0.476 (SD on logit scale) and a clear decrease in reporting rates over the 50-year

s time-period was evident (Figure 5d).
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=5 Discussion

a3s  Within populations of animals, individuals can differ greatly in their vulnerability
437 to various sources of mortality. Such differences can arise when mortality causes
a3 are related to individual traits such as body size, or when there is heterogeneity in
430 exposure to certain mortality causes as a consequence of, for example, reproductive
a0 state or movement. Accounting for individual differences in cause-specific mortality
an rates is particularly important when some causes are directly related to human
a2 activities, and in this study we investigated factors determining vulnerability to
a3 harvest- and background mortality of large brown trout exposed to fishing as well
a2 as a hydroelectric dam on their migration route.

as5 We found harvest and background mortality of trout to strongly depend on
as individual body size. Harvest mortality was highest for intermediate-sized trout
a7 and outweighed background mortality for most of the observed range of body
as  sizes. Background mortality of trout spawning above the dam was high for small
a0 individuals but decreased rapidly with increasing body size. Survival of above-
a0 dam spawners was positively size-dependent as a consequence, possibly indicating
a1 a survival cost of passing the dam for small individuals. Survival also generally
a2 increased with size for trout spawning below the dam (up to ~800 mm), but data
ss3  limitations made direct comparisons with above-dam spawners difficult.

454 Size-dependent survival is well documented for salmonid fishes, but the direc-
a5 tion and strength of size effects vary widely across populations, years, and life
56 history stages for stream-, lake- and marine habitats (Carlson et al. 2008, Drenner
ss7 et al. 2012). The positive size-dependence of survival found in this study aligns

sss with previous findings for the study population (Haugen et al. 2008). However, un-
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a5 like the previous analysis, we were able to separate the underlying size-dependent
a0 Mmortality rates with respect to harvest and other causes. The relationship between
a1 harvest mortality and trout length was non-linear with a peak mortality at around
s> 500 mm (Figure 4a). This peak is well below the average length in the spawning
a3 population (670 mm), indicating that smaller mature fish are harvested dispro-
a2 portionately more in this population. While the bell-shaped relationship between
a5 vulnerability and body size is consistent with selectivity curves for gillnets (Ham-
w6 ley 1975), the lack of positive size-dependence may seem surprising given that 43%
a7 of the reported captures were due to angling in our system and that vulnerabil-
ass ity to angling is usually higher for larger fish (Lennox et al. 2017). Nonetheless,
a0 larger fish may be less vulnerable to angling if they had a lower probability of ap-
a0 proaching lures due to lower feeding frequency, use of different foraging habitat, or
an preferred prey characteristics differing from those of employed lures (Lewin et al.
a2z 2006, Wilde et al. 2003, Arlinghaus et al. 2008). Alternatively, individual learning
a3 or cohort selection may have resulted in individuals that have survived to large
a4 sizes being more cautious towards fishing gear (“timdity syndrome”, Lennox et al.
a5 2017). Despite the relatively lower harvest mortality of large individuals, however,
aze  the risk of dying due to fishing was higher than the risk of dying due to any other
a7z cause for most of the observed size range. This suggests fishing as the main source
ars of adult mortality in this population (see Kleiven et al. 2016, for a similar result
a9 on Atlantic cod).

480 Effects of body size on background mortality were predicted to be markedly
a1 different for trout spawning above and below the dam (Figure 4a). Among above-
a2 dam spawners, smaller individuals were much more likely to die from causes other

a3 than harvest relative to larger individuals. Background mortality of small (but
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ssa not intermediate to large) trout spawning above the dam was also predicted con-
ass  siderably above the levels of natural mortality typically expected for freshwater
ass  fish of that size (Lorenzen 1996), indicating that passing the dam itself may come
a7 with a survival cost for small individuals. Several candidate mechanisms, operat-
ass ing during different phases of the spawning migration, could be responsible for
ago such a cost. During upriver migration through the fish ladder, for instance, all
a0 trout were trapped and handled. This may increase stress levels (Sharpe et al.
a1 1998, Mékinen et al. 2000) and cause injuries or even death (Harnish et al. 2011),
s> and smaller individuals may be more vulnerable to these (Brakensiek and Hankin
a3 2007). However, this is unlikely to be the main cause here, as trout found dead
a0 within or in close proximity of the dam were usually larger - not smaller - than
a5 the average ascending trout (data not shown). During downriver migration after
a6 spawning above the dam, trout have to swim through the floodgates or the turbine
a7 shaft as they pass the dam again to reach the lake. On many hydroelectric dams -
a8 including the Hunderfossen dam - racks are installed in front of turbine intakes to
200 prevent downriver migrating fish from entering and being exposed to high turbine
so0o mortality (e.g. Fjeldstad et al. 2018, Haraldstad et al. 2018). The effectiveness of
sor  such racks varies across species and sizes, but they appear to work relatively well
so2  for adult salmonids (Calles et al. 2012). Combining this with our results of neg-
s03 atively size-dependent mortality of above-dam spawning trout may thus indicate
so« that the racks in front of the Hunderfossen turbine indeed protect larger (but not
sos smaller) fish from entering and perishing in the turbine shaft. Finally, it is possi-
sos ble that some survival costs of passing the dam extend beyond the upriver- and
sor downriver passages. Roscoe et al. (2011) found reduced survival of Sockeye salmon

sos  (Oncorhynchus nerka) that had traversed a dam relative to those that did not
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soo and suggested energetic costs of the dam passage as a possible mechanism for this.
si0 Additional energetic costs may also arise if passing the dam results in migration
su  delays (Fjeldstad et al. 2018), and particularly if such delays forced individuals to
s12 overwinter in the river instead of the lake as has been observed in our population.
s13 Since energy reserves scale positively with body size (Peters and Peters 1986) such
s14  energetic costs may be heavier for smaller individuals, possibly contributing to the
sis negatively size-dependent background mortality predicted by the model.

516 We found a decrease in background mortality with body size only for above-
517 but not below-dam spawners (Figure 4a). Reliably estimating size-dependence in
si8 background mortality of below-dam spawners did in fact prove difficult not only
510 because below-dam spawners were unobservable, but also because almost no small-
s20 to intermediate-sized trout were spawning below the dam due to strong size de-
521 pendence in ladder usage probability (Figure 3). As a consequence of this skew in
s22 the size-distribution towards larger individuals, model predictions of below-dam
523 background mortality are not very reliable for smaller trout. Similarly, any com-
s24 parisons of background mortality and survival of same-size above- vs. below-dam
s2s  spawners will only be informative for a relatively narrow size range (~ 700 - 900
s mm). Within this range, there is considerable overlap in model predictions for
527 above- and below-dam spawners and more detailed studies - possibly involving
s multi-annual radio- or satellite telemetry - will be necessary to properly quantify
s20 size-dependent survival costs of passing the dam.

530 Over the 50-year study period, there was substantial temporal variation in
s cause-specific mortality (Figure 5a & b). Fluctuations in harvest mortality are
52 to be expected over such long time-periods both due to among-year differences

533 in harvest pressure (total number of fishers, amount of time spent fishing, etc.)
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s3a and differences in exposure and vulnerability of the fish (due to direct and indi-
s3s rect effects of environmental conditions , Lennox et al. 2017). While background
s3s mortality remained relatively low over time, it did show a marked increase around
s37. 1997-2001, which coincides with a documented severe disease outbreak in the study
s3s  population (Saprolegnia spp. fungal infections, possibly in combination with or as
s30 a result of ulcerative dermal necrosis, Johnsen and Ugedal 2001). Notably, harvest
ss0 mortality was also relatively high during this period (and survival consequently
sa1  quite reduced, Figure S1.12), highlighting the possibility for disease to not only
sz increase background mortality but also affect vulnerability to fishing.

543 Despite harvest and background mortality increasing simultaneously during
saa the disease outbreak period, models predicted that the correlation between the
sss  two mortality causes was more likely to be negative than positive (Figure 6). A
sa6  Negative correlation coefficient indicates compensatory mortality: increased harvest
sa7  mortality leads to a reduction in background mortality (possibly due to reduced
sas  population density). Evidence for compensatory mortality has been found in other
sso fish populations (Allen et al. 1998, Fernandez-Chacon et al. 2017, Johnston et al.
sso 2007), and while we acknowledge that the data used here is neither sufficient nor
ss1 particularly suitable for more in-depth investigations into potential compensatory
ss2 mortality and its underlying mechanisms, we consider this a promising venue for
ss3 future research.

554 The probability of a trout using the fish ladder to pass and spawn above the
sss. Hunderfossen dam varied greatly depending on individual body size and river dis-
sss charge (Figure 3). Consistent with previous results (Haugen et al. 2008), ladder
ss7  usage probability was predicted to be highest for intermediate-sized trout, and

sss  especially larger trout were unlikely to use the fish ladder. Furthermore, small to
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sso  intermediate-sized trout had an increased probability of using the fish ladder when
seo water flow was relatively high. Both surprisingly low fish ladder usage by large in-
ser  dividuals and variable effects of hydrological conditions have been documented in
se2  other salmonid populations (Caudill et al. 2007, Jonsson and Jonsson 2002). How-
se3 ever, many characteristics influencing attractiveness and efficiency of fish ladders
sea are site-specific (Fjeldstad et al. 2018), and more detailed studies are necessary to
ses explain the patterns observed in this particular system. Since using the fish ladder
se6 1S prerequisite to accessing the spawning habitat above the dam and may thus have
se7 considerable impacts on population dynamics, further studies should also aim to
ses identify additional environmental and individual factors (e.g. temperature, disease
seo status) responsible for the large among-year variation in ladder usage probability
sto (Figure 5c¢).

571 While our model predicted no substantial time trends in either mortality com-
sz ponents or ladder usage probability, fisher’s reporting rate of harvested trout was
s73 predicted to have decreased substantially over the 50-year study period (Figure
sz bd). Separately estimating (harvest) mortality and reporting rate causes problems
s7s when analysing tag-recovery data and usually requires auxiliary data (Pollock et al.
s76  2004); by using data from individuals recaptured both alive and dead and allowing
sz for flexible temporal variation in parameters, we were able to not only estimate
s7s  the average reporting rates but also uncover this striking decrease of reporting rate
s7o over time. This is not an uncommon pattern in fish tagging studies (Piccolo et al.
ss0 2012) and may have been caused by waning public interest in the study as fish-
ss1  ers often received neither personal nor official feedback following the reporting of
ss2  tags. Separating time-dependent reporting rate from other model parameters also

ss3  had important consequences for the interpretation of temporal patterns in general.
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ssa  Previously, Haugen et al. (2008) analysed part of this data with a “traditional” tag
sss return model (Brownie et al. 1985) and found the joint probability of being har-
sss vested and reported to decrease over time. They interpreted this pattern under
sz the assumption of constant reporting rate and concluded that harvest mortality
sss had decreased over time and background mortality had increased (as they found
ss0 10 trend in survival estimates). Here, on the contrary, we were able to show ex-
so0 plicitly that reporting rate has decreased over time while there was no clear trend
s in either of the two sources of mortality. This result has important implications for
s2  tag recovery studies in general: assumptions of constant reporting rate have to be
so3 assessed carefully when drawing conclusions about mortality patterns over time,
soa  particularly when there are no rewards or other incentives for reporting tags.

505 Adult survival and its determinants are understudied but important compo-
sos nents of salmonid life history (Drenner et al. 2012), and here we have shown that in-
sor  dividual differences in body size influence survival through effects on both harvest-
sos and background mortality, as well as spawning location. A trout’s origin, on the
so0 other hand, did not substantially influence its survival or probability to migrate
s00 past the dam (Figure S1.11). While adverse consequences of hatchery rearing are
o1 widely documented in salmonids (e.¢g Einum and Fleming 2001, Fleming and Pe-
e02 tersson 2001), these may be most pronounced during early life (McLean et al.
s03 2003). Given that all marked individuals in our study populations have survived
s0a Up to at least the first spawning migration, the lack of differences between wild-
sos born and stocked trout is thus not unexpected and aligns with findings from other
s0s studies focusing on adult fish (Caudill et al. 2007, Thorstad et al. 2007).

607 While our analyses did include body size, spawning location, and origin, there

sos are other sources of individual heterogeneity that we did not account for here.
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0o These include - but are not limited to - disease state, birth/smolt cohort, and sex.
s10 Evidence for potential effects of disease state came from the model predictions
s11  themselves in the form of lower survival and ladder usage during the time period
s12 of a known disease outbreak. Diseased individuals are likely to have higher mortal-
e13 ity and possibly compromised reproductive output (Bakke and Harris 1998), but
s« investigating the effects of disease on the study trout population would require
e1s individual-level data on disease states, which is not available. Cohort effects are
616 considered to originate from differences in environmental conditions during early
o7 life (Lindstrom 1999). Long-term consequences of cohort effect for adult survival
s1s have been found in stream-dwelling marble trout (Salmo marmoratus, Vincenzi
s10 et al. 2016), but may be less influential for the studied trout, which leave their
20 riverine birth habitat for the large lake after 2-7 years. Unfortunately, we were not
e21 able to investigate this here as birth /smolt cohort was only known for a small sub-
e22  set of the population (22%) that had been aged using scales (Aass et al. 2017). Sex
e23 differences in size-dependent fish survival are also not uncommon (e.g. Haraldstad
e2a et al. 2018, Haugen et al. 2007) and sex effects have also attracted attention in the
e2s context of migration past hydroelectric dams (Roscoe et al. 2011, Caudill et al.
e26  2007). Information on sex is available for the majority of the marked Hunder trout,
sz but detailed investigations into sex differences in growth, cause-specific mortalities
s28  and ladder usage probabilities were beyond the scope of this article.

e20 Another aspect of the present study that would profit from further investigations
630 1S among-year variability in cause-specific mortalities and ladder usage, or - more
631 specifically - the factors responsible for it. The only environmental covariate in-
e32 cluded in our analyses was river discharge, and all other temporal variation (Figure

633 D) is of unknown origin. Among extrinsic environmental influences, water tempera-
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e3¢ ture has been documented to have substantial effects on various aspects of salmonid
e3s  demography, including survival (Letcher et al. 2015, Jonsson and Jonsson 2002).
e3s Indeed, (Haugen et al. 2008) found indications that water temperature positively
37 affected both survival and ladder usage probability in the studied trout population.
638 In this analysis, we refrained from including river and lake temperature as covari-
630 ates because the available measurement time series do not cover the earlier years
sa0 Of the study. Nonetheless, future efforts to include temperature into the model
sa1 presented here (possibly as partially observed, latent variables with auxiliary pre-
ea2 dictors) will certainly be worthwhile, especially given the strong trend of increasing
sa3 temperature in lake Mjgsa (Hobaek et al. 2012) and the potentially strong impacts
saa Of chronic and acute temperature increases on salmonid populations (Hague et al.
eas  2011). Food availability is another factor deserving consideration in future studies.
s Korman et al. (2017), for example, found prey biomass to be a key driver of growth
sz and survival in a strongly fluctuating population of rainbow trout Oncorhynchus
sas  mykiss. Unfortunately, no time-series data exists on the abundance of prey fish
620 species in our system, which made investigations impossible in this study. Lack of
sso suitable abundance data on the studied population similarly precluded investigat-
es1  ing potential impacts of intra-specific population density, but density dependence
es2 in salmonids often occurs primarily during the juvenile and not adult life stages
es3 (Jonsson et al. 1998, Vincenzi et al. 2016).

654 Finally, while the fact that harvest mortality generally outweighs background
ess  mortality indicated that fishing has large impacts on this population, the present
ese analysis of adult survival represents only one part of the life cycle of the Hun-
es7 der trout. It is therefore not sufficient for making inferences about the drivers of

ess changes in abundance and trait dynamics at the population level. However, com-
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eso  bining the present model with estimates for growth, reproduction, and early life
ss0 history in a size structured population model (e.g. an integral projection model,
o1 Ellner and Rees 2006), will allow to gain a more thorough understanding of the
ss2 consequences of size-dependent harvest mortality, background mortality, and lad-
663 der usage probability, the impacts of among-year variation in vital rates, and the

ssa contributions of stocked trout to the population.

es Conclusion

ess Multi-state mark-recapture-recovery models are powerful tools for estimating and
sz understanding survival in animal populations that experience mortality from both
s natural and anthropogenic causes (Schaub and Pradel 2004). Here, we have not
sso only separated harvest- from background mortality but also accounted for individ-
e70 ual differences in vulnerability due to body size and migration-related exposure
enn to a hydroelectric dam. Within this framework, we used a recently developed re-
ez parameterisation of mark-recovery models using hazard rates instead of survival or
ez mortality probabilities (Ergon et al. 2018). This allowed to estimate body size- and
e7a environmental effects on harvest- and background mortalities without confounding
e7s them, and provided an intuitive way to also estimate the correlation between two
e7e sources of mortality within the mark-recapture model. While formulation of the re-
ez sulting models in a Bayesian framework was straightforward, the inclusion of body
e7s size as an individual time-varying covariate came with substantial computational
70 costs. These we were able to overcome by capitalizing on the flexibility of the novel
ss0  MCMOC sampling compiler nimble, and writing a highly efficient custom distribu-

es1  tion that is easily applicable for any type of multistate mark-recapture model.
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es2  Last, but not least, we have shown that identifiability issues that are common
es3 to multiple mortality cause mark-recapture-recovery models (Schaub and Pradel
ssa 2004) can be overcome through the inclusion of appropriate time random effects.
sss Such random effects can only be estimated when data are collected over a sufficient
esss number of years, and this highlights the importance of investing in the (contin-
ee7 ued) collection of individual-based data over long time periods (Clutton-Brock and

688 Sheldon 2010).
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Figure 1: Illustration of the biennial spawning cycle and mark-recapture scheme of
the studied trout population. All individuals are marked in the fish ladder while
passing the dam on their upriver spawning migration. Two years later they may be
recaptured on the next spawning migration, but only if they pass the fish ladder
to spawn above the dam. Trout remain in the lake and are unobservable during
non-spawning years.
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Figure 2: Design of the trout mark-recapture-recovery model (transitions on two-
year intervals). White states are alive, grey stages are dead. Solid borders indicate
stages that are at least partially observable, whereas dashed borders indicate un-
observable stages. S,, = survival probabilities. ¥ / w9 = harvest / background
mortality probabilities. p = ladder usage probability. Indices for individual ¢ and
time t are omitted here for simplicity.
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Figure 3: Predictions of the effects of body size on ladder usage probability at
different levels of river discharge. Blue = low discharge (mean — SD), black =
medium discharge (mean), red = high discharge (mean + SD). Solid lines represent
the mean predictions while dashed lines indicate the 95% credibility intervals.
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Figure 4: Predictions of the effects of body size on a) harvest and background
mortality hazard rates and b) survival probabilities (under consideration of both
mortality sources). Red and blue curves apply to individuals that have last spawned
above and below the dam respectively. The black curve (harvest) applies to all indi-
viduals irrespective of their last spawning location. Solid lines represent the mean
predictions while dashed lines indicate the 95% credibility intervals. The boxplot
illustrates the informative data range: red = size distribution of individuals cap-
tured in the fish ladder (above-dam spawners), blue = simulated size distribution
of below-dam spawners after surviving for two years following marking and subse-
quently not using the fish ladder.
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Figure 5: Estimates for time-dependent a) harvest mortality hazard rate, b) back-
ground mortality hazard rate (above-dam spawners), c) ladder usage probability,
and d) reporting rate (calculated using random variation and discharge effects).
Solid lines represent the mean predictions, dashed lines indicate the 95% credibility
intervals. y-axes for panels a) and b) ariéglog—scaled.
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Figure 6: Posterior distributions of coefficient C' of the temporal correlation be-
tween harvest and background mortality hazard rates estimated by the model.
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