

Size- and stage-dependence in cause-specific mortality of migratory brown trout

Chloé R. Nater^{*a}, Yngvild Vindenes^a, Per Aass^b, Diana Cole^c,
Øystein Langangen^a, S. Jannicke Moe^d, Atle Rustadbakken^e, Daniel
Turek^f, L. Asbjørn Vøllestad^a and Torbjørn Ergon^a

^aCentre for Ecological and Evolutionary Synthesis (CEES),
Department of Biosciences, University of Oslo, Oslo, Norway

^bZoological Museum, The Natural History Museums and Botanical
Garden, University of Oslo, Oslo, Norway

^cSchool of Mathematics, Statistics and Actuarial Science, University
of Kent, Canterbury, England

^dNorwegian Institute for Water Research (NIVA), Oslo, Norway

^eThe Freshwater Fish Administration, County Governor of Hedmark,
Hamar, Norway

^fDepartment of Mathematics and Statistics, Williams College,
Williamstown, Massachusetts, United States

Running headline: Cause- and size-specific mortality

*c.r.nater@ibv.uio.no

¹ Abstract

- ² 1. Estimating survival using data on marked individuals is a key component
³ of population dynamics studies and resulting management and conservation
⁴ decisions. Such decisions frequently require estimating not just survival but
⁵ also quantifying how much mortality is due to anthropogenic versus natural
⁶ causes, particularly when individuals vary in their vulnerability to different
⁷ causes of mortality due to their body size, life-history stage, or location.
- ⁸ 2. In this study we estimated harvest and background mortality of landlocked,
⁹ migratory salmonid over half a century. In doing so, we quantified among-
¹⁰ individual variation in vulnerability to cause-specific mortality resulting from
¹¹ differences in body size and spawning location relative to a hydropower dam.
- ¹² 3. We constructed a multistate mark-recapture model to estimate hazard rates
¹³ associated with competing harvest and background mortality risks as func-
¹⁴ tions of a discret state (spawning location) and an individual time-varying
¹⁵ covariate (body size). We further included among-year variation to inves-
¹⁶ tigate temporal patterns of and correlations among mortality hazard rates
¹⁷ and fit the model to a unique 50-year time-series of mark-recapture-recovery
¹⁸ data on brown trout (*Salmo trutta*) in Norway.
- ¹⁹ 4. We found that harvest mortality was highest for intermediate-sized trout,
²⁰ and outweighed background mortality for almost the entire observed size
²¹ range. For trout spawning above the dam, background mortality decreased
²² for larger body sizes and at lower river discharge. Both mortality causes, as
²³ well as the probability of spawning above the dam, varied substantially over

24 time but a trend was evident only for fishers' reporting rate, which decreased
25 from an average of 80% to only 10% over half a century.

26 5. Our analysis highlights the importance of body size for cause-specific mor-
27 tality and demonstrates how this can be estimated using a novel hazard
28 rate parameterisation for mark-recapture models. This approach allowed es-
29 timating effects of both size and environment on harvest- and background
30 mortality without confounding, and provided an intuitive way to estimate
31 temporal patterns within and correlation among the mortality sources. In
32 combination with computationally fast custom MCMC solutions this mod-
33 elling framework provides unique opportunities for studying individual het-
34 erogeneity in cause-specific mortality using mark-recapture-recovery data.

35 **Keywords**

36 Bayesian statistics, dam, harvesting, hazard rate, mark-recapture, mortality, nim-
37 ble, trout.

38 **Introduction**

39 Population dynamics - particularly of long-lived species - are often very sensitive
40 to changes in mortality (Sæther and Bakke 2000, Fujiwara and Caswell 2001).
41 Mortality itself can have a wide variety of causes (*e.g.* starvation, predation, dis-
42 ease, harvest), and vulnerability to cause-specific mortality depends strongly on
43 individual factors such as age or life stage (Ronget et al. 2017). As a consequence,
44 population-level responses to changes in mortality may vary greatly depending on

45 the underlying cause, and disentangling different causes of mortality may thus pro-
46 vide insights crucial for population management and conservation (Williams et al.
47 2002). This is particularly important in populations where significant mortality
48 is linked to human activity; in such cases, knowledge about the relative impact
49 of human-induced mortality and its potential effect on other sources of mortality
50 is crucial for developing sustainable and successful harvest- or culling strategies
51 (Hilborn and Walters 2013, Koons et al. 2014).

52 Studies of marked individuals constitute a highly valuable source of demo-
53 graphic data for wild animal populations and are crucial for estimating survival,
54 as well as cause-specific mortalities. The recovery of a dead marked animal of-
55 ten provides information on the cause of death. For example, it was evident from
56 the recovery of radio-collared European hares (*Lepus europaeus*) whether they
57 had died due to hunting, predation, or other causes (Devillard and Bray 2009).
58 Similarly, location and examination of recovered white storks (*Ciconia ciconia*)
59 allowed identifying whether they had died from collision with a power line, or due
60 to other causes (Schaub and Pradel 2004). However, unless animals are marked
61 with radio- or satellite transmitters, most dead individuals will not be found, and
62 this imperfect detection needs to be accounted for when estimating survival or
63 mortality parameters. Moreover, when considering multiple mortality causes, de-
64 tection probability frequently depends on the cause of mortality, and some causes
65 of mortality may not be observable at all. This is usually the case for natural
66 mortality when dead recoveries are exclusively based on the reports of hunters or
67 fishers (e.g. Servanty et al. 2010, Koons et al. 2014).

68 Schaub and Pradel (2004) developed a multistate mark-recapture-recovery frame-
69 work that allows to separately estimate mortality from different causes while ac-

70 counting for cause-dependent detection probabilities. Specifically, cause-specific
71 mortalities are estimated as transitions from an “alive” state to several “dead from
72 cause of interest” states. When this framework is extended to also include mul-
73 tiple “alive” states, it becomes possible to estimate differences in vulnerability to
74 cause-specific mortality depending on, for example, an individual’s life-stage (*e.g.*
75 juveniles vs. adults, Schaub and Pradel 2004) or location (Fernández-Chacón et al.
76 2015). Such group-level differences in mortality can be tremendous and account-
77 ing for them is crucial for modelling population dynamics (Ronget et al. 2017).
78 However, in addition to that, vital rates and population dynamics are often also
79 strongly affected by individual differences in continuous, dynamic traits such as
80 body size (De Roos et al. 2003, Vindenes and Langangen 2015). Particularly in
81 species that are harvested and/or have indeterminate growth (*e.g.* fish species),
82 cause-specific mortality is expected to depend strongly on body size. Fernández-
83 Chacón et al. (2017) demonstrated this by estimating cause-specific mortalities for
84 different sizes of Atlantic cod (*Gadus morhua*). However, they did so by lump-
85 ing individuals into either of two size classes (“small” or “large”), thus foregoing
86 the possibility of investigating the continuous relationship between body size and
87 mortality from different causes. While interesting and informative on its own,
88 knowledge about the relationships between continuous traits and vital rates like
89 mortality are also invaluable for studying dynamical processes at the population
90 level, (*e.g.* using integral projection models, Ellner and Rees 2006).

91 In this study, we extended the framework of multiple mortality cause mark-
92 recapture models to include a continuous individual- and time-varying trait (body
93 size) as a predictor of vulnerability within different groups of individuals. By mod-
94 elling survival and mortality probabilities via cause-specific mortality hazard rates

95 (Ergon et al. 2018) we estimated the effects of body size on, as well as among-
96 year environmental variation in, different mortality causes without confounding.
97 We then used this extended model to investigate size-dependence of and temporal
98 patterns in harvest and background mortality of adult brown trout (*Salmo trutta*)
99 over half a century (1966 - 2016).

100 Migratory salmonid fishes - such as piscivorous brown trout - are extensively
101 studied due to their ecological, cultural and economical value (Drenner et al. 2012).
102 Nonetheless, contrary to other parts of the life history, relatively little is known
103 about the mortality of adults residing in the sea or large lakes (Piccolo et al. 2012).
104 Many salmonid populations are heavily impacted by human activity not only in the
105 form of harvesting but also through pollution, fish farming, habitat fragmentation,
106 and hydro-electrical power production (dams) in rivers (Aas et al. 2010). Our study
107 population of migratory brown trout (hereafter “Hunder trout” or just “trout”)
108 inhabits a river-lake system in Eastern Norway and has been a popular target for
109 fishing for decades due to its large body size. The spawning river is dammed, and
110 trout migrating to spawning grounds above the dam face additional risks linked
111 to passing the dam on their up- and downriver migrations. These risks are likely
112 associated with individual body size as well as environmental conditions, and can
113 be avoided entirely if trout instead use the spawning grounds below the dam. Each
114 individual’s spawning location thus determines its exposure and vulnerability to
115 some sources of mortality (e.g. those related to the dam), and we accounted for
116 this heterogeneity by modelling cause-specific mortality hazard rates not only as
117 a function of body size, but also as dependent on whether individuals migrate
118 past the dam to spawn. By fitting the resulting model to a unique 50-year time-
119 series of recaptures and recoveries of marked trout, we investigated the detailed

120 effects of individual- (size, spawning location) and environmental (river discharge)
121 factors on the vulnerability of adult trout to mortality due to harvest, passage of a
122 hydroelectric dam, and natural causes, as well as on the probability of using a fish
123 ladder within the dam to access upriver spawning areas. Additionally, we extended
124 our analyses to also (1) investigate potential early life impacts of hatchery-rearing,
125 since part of the population consist of stocked fish, and (2) estimate the temporal
126 correlation of harvest- and background mortality.

127 Materials and methods

128 STUDY SYSTEM AND DATA

129 We studied a population of landlocked migratory brown trout inhabiting the
130 lake Mjøsa and its main inlet river, Gudbrandsdalslågen, in Eastern Norway.
131 These trout have a life history that is similar to that of Atlantic salmon (*Salmo*
132 *salar*) (Aass et al. 1989): Eggs are deposited in the river in fall and develop over
133 winter. After hatching in spring, juvenile trout remain in the river for an average
134 of 4 years before smolting and migrating to the lake. They typically mature
135 after 2 - 3 years of piscivorous diet and fast growth in the lake, and from that point
136 on migrate up the river to spawn every other year (usually in August/September,
137 Figure 1). The adult trout population consists of wild-born trout and stocked
138 (first-generation hatchery-reared) trout which are released into the river and lake
139 as smolts but then follow the same general life history. Shortly after the river was
140 dammed in the 1960's, a fish ladder was installed to enable mature trout to reach
141 their historical spawning grounds above the dam. There are spawning grounds

¹⁴² downriver of the dam as well (Aass et al. 1989), and an individual trout's spawning
¹⁴³ location is thus linked to whether or not it uses the fish ladder to travel upriver.
¹⁴⁴ This - in turn - is influenced by body size and hydrological conditions (Haugen
¹⁴⁵ et al. 2008).

¹⁴⁶ From 1966 to 2016 a trap was operated within the fish ladder, allowing for
¹⁴⁷ all trout passing the ladder to be captured, measured and individually marked.
¹⁴⁸ Thus, all adult trout were marked when they used the fish ladder on an upriver
¹⁴⁹ spawning migration for the first time, and were recaptured on subsequent spawning
¹⁵⁰ migrations given that they had survived and were passing the ladder again (usually
¹⁵¹ every other year, Figure 1). Over the 50-year time period, 14,890 adult trout were
¹⁵² marked and 2,152 of these were recaptured in the ladder later. Since the population
¹⁵³ has been exposed to fishing over the entire time period, an additional 2,306 marked
¹⁵⁴ trout were reported dead by fishers. For more details on the marking scheme,
¹⁵⁵ sampling protocol, and resulting data from the mark-recapture-recovery study, see
¹⁵⁶ Moe et al. (2019).

¹⁵⁷ In the present study we performed mark-recapture analyses over intervals of two
¹⁵⁸ years, as estimating parameters for spawning and non-spawning years separately
¹⁵⁹ proved problematic (due to trout being unobservable in non-spawning years, Figure
¹⁶⁰ 1). We thus summarised the data into individual capture histories $y_{i,t}$, in which each
¹⁶¹ time index t corresponds to a two-year time step (interval from current spawning
¹⁶² year to next spawning year). For each time step within those capture histories, we
¹⁶³ coded three types of observations: 1 = alive and captured in the ladder, 2 = dead
¹⁶⁴ from harvest and reported, and 3 = not observed. Upriver spawning migrations
¹⁶⁵ occur over the period from June to November but peak in August (Figure S1.1),
¹⁶⁶ and we set $y_{i,t} = 1$ when an individual was captured in the fish ladder in any

167 month during time interval t . Harvest of trout happens year-round (Figure S1.1)
168 and if an individual was harvested and reported at any point during interval t we
169 set $y_{i,t} = 2$, unless (a) the individual had also been caught in the fish ladder during
170 interval t or (b) the harvest happened after August of the second year within the
171 interval t . If either (a) or (b) was the case, we moved the harvest observation to
172 the next interval such that $y_{i,t+1} = 2$. Furthermore, we excluded all individuals
173 that did not follow a strictly biennial spawning cycle (1.5% of all individuals), did
174 not have a single size measurement taken (7.1%), or were of unknown origin (wild
175 vs. stocked, <1%). The analyses presented here are based on the remaining 12,875
176 capture histories containing 1,588 trap recaptures and 2,252 harvest recoveries.

177 MODEL FORMULATION

178 General model structure

179 Survival and deaths due to certain causes represent mutually exclusive events and
180 can thus be incorporated into multistate mark-recapture frameworks (Lebreton
181 et al. 1999). When explicitly including not only “alive” but also (observable) cause-
182 specific “newly dead” states, the probability of transitioning from state “alive” to
183 state “newly dead from cause X” represents the probability of dying from cause
184 X (Schaub and Pradel 2004, Servanty et al. 2010). In the trout study population,
185 deaths due to harvest may be reported by fishers and are thus clearly distinguish-
186 able from deaths due to other causes. Individuals in any alive state n can therefore
187 remain alive with survival probability S_n or transition to states “newly dead from
188 harvest” (state 3) or “permanently dead” (state 4) with probabilities Ψ_n^H and Ψ_n^O
189 respectively (Figure 2). The “permanently dead” state here represents all unob-

190 servable dead individuals, which also include those that have recently died from
 191 causes other than harvest. Furthermore, we make a distinction between individuals
 192 that start the time interval by spawning above versus below the dam. Spawning
 193 location may have a considerable effect on mortality, as individuals that spawn
 194 above the dam need to pass this obstacle on both the upriver- and downriver
 195 spawning migration. Consequently, we included two “alive” states in our model:
 196 “spawning upriver” (state 1) and “spawning downriver” (state 2). Individuals in
 197 each spawning state n have a survival probability S_n , a probability of dying due
 198 to harvest Ψ_n^H , and a probability of dying due to other causes Ψ_n^O . Additionally,
 199 there is a probability of using the fish ladder, p , which links the two alive states
 200 and is assumed to be independent of previous spawning location (Figure 2). The
 201 resulting model can be expressed with the state transition matrix

		states $(t + 1)$			
		1	2	3	4
states (t)	1	$S_{1,i,t}p_{i,t+1}$	$S_{1,i,t}(1 - p_{i,t+1})$	$\Psi_{1,i,t}^H$	$\Psi_{1,i,t}^O$
	2	$S_{2,i,t}p_{i,t+1}$	$S_{2,i,t}(1 - p_{i,t+1})$	$\Psi_{2,i,t}^H$	$\Psi_{2,i,t}^O$
	3	0	0	0	1
	4	0	0	0	1

202 The elements of this matrix represent the probabilities of any individual i in a
 203 given state (rows) transitioning to another state (columns) over the time interval
 204 from t to $t + 1$. As such, all probabilities within a given row sum to 1.

205 Similarly, these same states 1-4 are linked to the three types of observations
 206 in the data through a matrix of observation probabilities (columns) given a state
 207 (rows):

		observations (t)		
		1	2	3
states (t)	1	1	0	0
	2	0	0	1
	3	0	r_t	$1 - r_t$
	4	0	0	1

208 where 1 = alive and captured in the ladder, 2 = dead from harvest and reported,
 209 and 3 = not observed. r_t is the reporting rate of fishers for the 2-year interval from
 210 $t - 1$ to t .

211 **Parameterisation by mortality hazard rates**

212 Different cause-specific mortality probabilities (Ψ) are not independent of one an-
 213 other; if a certain cause of mortality becomes more prevalent (*e.g.* due to some
 214 event or change in the environment), not only will the probability of dying from
 215 that cause increase, but the probability of dying from any other cause will decrease
 216 at the same time. This confounding complicates inference, but Ergon et al. (2018)
 217 have recently shown how it can be avoided by parameterising mark-recapture mod-
 218 els with mortality hazard rates instead of probabilities. Doing so not only facili-
 219 tates biological interpretation of model parameters, but also comes with additional
 220 advantages such as easy rescaling of covariate effects across different time inter-
 221 vals and straight-forward calculation of temporal correlations among mortality
 222 causes (Ergon et al. 2018). Assuming that the intensities of mortality from differ-
 223 ent causes remain proportional within time intervals, we can re-define the survival-
 224 and mortality probabilities in the trout model using harvest (m^H) and other-cause

²²⁵ (hereafter “background”) mortality hazard rates (m^O):

$$S_{n,i,t} = e^{-(m_{n,i,t}^H + m_{n,i,t}^O)}$$
$$\Psi_{n,i,t}^H = (1 - S_{n,i,t}) \frac{m_{n,i,t}^H}{m_{n,i,t}^H + m_{n,i,t}^O}$$
$$\Psi_{n,i,t}^O = (1 - S_{n,i,t}) \frac{m_{n,i,t}^O}{m_{n,i,t}^H + m_{n,i,t}^O}$$

²²⁶ MODEL IMPLEMENTATION

²²⁷ Individual and temporal variation in parameters

²²⁸ Body size and hydrological conditions are often key determinants of vital rate
²²⁹ variation in freshwater fish, including our study population (*e.g.* Carlson et al.
²³⁰ 2008, Letcher et al. 2015, Haugen et al. 2008). We thus used individual body size
²³¹ at the beginning of the time-interval and average river discharge during the relevant
²³² season as covariates in our model. We further accounted for additional among-year
²³³ variation in several parameters using normally distributed random effects.

²³⁴ Harvest in our study system has been done mostly using fishing rods or gillnets;
²³⁵ the former is often positively correlated with body size (Lewin et al. 2006) while
²³⁶ the latter has bell-shaped selectivity curves (Hamley 1975). To account for this,
²³⁷ we modelled harvesting mortality hazard rate as a quadratic function of size on
²³⁸ the log-scale:

$$\log(m_{i,t}^H) = \log(\mu^H) + \beta_2^H * \text{size}_{i,t} + \beta_4^H * \text{size}_{i,t}^2 + \epsilon_t^H$$

²³⁹ where μ^H is the median harvest mortality hazard rate, β_2^H and β_4^H are slope pa-

240 parameters for linear and quadratic size effects respectively, and ϵ_t^H are normally
241 distributed random effects. $size_{i,t}$ is the individual length at spawning. As harvest
242 in our study system happens predominantly in the lake, we have not included
243 an effect of river discharge on $m_{i,t}^H$. Harvest is also limited during the spawning
244 migration and as the duration of the spawning migration is also short relative to
245 the two-year interval of analysis, we further assumed that harvest mortality is the
246 same for above- and below-dam spawners (thus omitted the index n here).

247 Background mortality, on the other hand, is expected to depend on both spawning
248 location and on river discharge, as above- and below-dam spawners encounter
249 different hydrological conditions during/after spawning and only the former need
250 to pass the dam on their downriver migration. Mortality associated with the spawning
251 migration in general, and passing of the dam in particular, may also depend
252 on body size. We thus modelled background mortality hazard rate as:

$$\log(m_{n,i,t}^O) = \log(\mu_n^O) + \beta_{1,n}^O * discF_t + \beta_{2,n}^O * size_{i,t} + \epsilon_t^O$$

253 Here the index n indicates the alive state (1 or 2), $discF_t$ is the average discharge
254 during the fall when post-spawned trout are expected to migrate downriver (Oct -
255 Nov), $\beta_{1,n}^O$ and $\beta_{2,n}^O$ are slope parameters for size- and discharge effects respectively,
256 and ϵ_t^O are random effect which are independent of state n .

257 In a previous analysis of a subset of our data, Haugen et al. (2008) found that
258 the probability of using the fish ladder and thus spawning above the dam depended
259 on a complex interplay of individual body size and river discharge. We adopted
260 their basic model structure and extended it by allowing for random among-year
261 variation such that

$$\text{logit}(p_{i,t}) = \text{logit}(\mu^p) + \beta_1^p * \text{discS}_t + \beta_2^p * \text{size}_{i,t} + \beta_3^p * \text{discS}_t * \text{size}_{i,t} + \beta_4^p * \text{size}_{i,t}^2 + \epsilon_t^p$$

262 The discharge covariate used here, discS_t , represents the average discharge over the
263 summer season when trout undertake their upriver spawning migration (Jul-Oct),
264 while $\text{size}_{i,t}$ is the individual length during the upriver spawning migration.

265 The last main parameter in the model is reporting rate r and this can be
266 expected to vary considerably over a time period of 50 years. To accommodate
267 this large expected variation, we estimated 5 average reporting rates μ^r , each of
268 which corresponded to a period of 10 years, and further allowed for the same level
269 of random time-variation within each period.

270 **Extrapolation of individual body size**

271 Body size is a continuous individual trait that changes over time due to growth.
272 Using such a trait as a covariate in a mark-recapture model comes with a missing
273 data problem related to imperfect detection, as body size can only be measured
274 when an individual is actually captured (Pollock 2002). There are several ways to
275 deal with this problem including integrated growth models (Bonner and Schwarz
276 2006, Letcher et al. 2015) and inter-/extrapolation using other available data or
277 separate models. Here, we adopted the latter approach and used a detailed growth
278 model previously developed for the study population of brown trout (Nater et al.
279 2018) to impute missing values in the individual size covariate. Specifically, we
280 re-fitted the growth model of Nater et al. (2018) to an extended set of growth data
281 from 5,158 individuals spanning the years 1952 to 2002 and used the resulting

282 parameter estimates to calculate all missing entries in the body size covariate. We
283 chose imputation with an externally run growth model largely due to prohibitive
284 computational demands that would result from analyzing the growth- and mark-
285 recapture data in an integrated framework. The imputation procedure, as well as
286 implementation and results of the growth analysis, are described in more detail in
287 Appendix S5.

288 **Additional model extensions**

289 In addition to the model structure outlined above, we ran two sets of extended
290 models. First, we accounted for the fact that 3,183 (25%) of the 12,875 individuals
291 in our analysis were reared in a hatchery and stocked into the wild population
292 after smolting. To investigate whether these individuals differed from their wild-
293 born conspecifics, we included an effect of individual origin (stocked vs. wild) on
294 harvest- and background mortality hazard rates ($m_{i,t}^H$ and $m_{n,i,t}^O$), as well as and
295 ladder usage probability ($p_{i,t}$).

296 Second, we attempted to estimate the temporal correlation between harvest
297 and background mortality hazard rates. To do so, we re-expressed the random
298 effects on the hazard rates such that

$$\epsilon_t^H = \sigma_t^H * \xi_t^H, \quad \xi_t^H \sim \text{Normal}(0, 1)$$

$$\epsilon_t^O = \xi_t^O + \tau * \xi_t^H, \quad \xi_t^O \sim \text{Normal}(0, \sigma_t^O)$$

299 where σ_t^H and σ_t^O are the standard deviations for the random effects on harvest and
300 background mortality hazard rates respectively. The scaling parameter τ can then
301 be used to calculate the correlation between random effects as $C = \tau / \sqrt{(\sigma_t^O)^2 + \tau^2}$.

302 **Implementation with Nimble**

303 We implemented the model in a Bayesian framework using the R package **nimble**
304 (de Valpine et al. 2017). To accommodate the 2-year interval of our analysis, we
305 split the data into two sets containing only individuals spawning in even years
306 and in odd years respectively. We then formulated the likelihood for both datasets
307 separately, but analysed them jointly under the assumption that they share the
308 same intercept-, slope-, and variance parameters.

309 Markov Chain Monte Carlo (MCMC) sampling of (multistate) mark-recapture
310 models traditionally includes not only the parameters underlying state transition
311 and observation processes but also the latent states of all individuals i at every
312 point in time t (Kéry and Schaub 2011). With extensive datasets (many individ-
313 uals, long time periods), such hierarchical models can easily end up with a very
314 large number of nodes in the graphical structure, giving rise to prohibitively long
315 MCMC runtimes. This problem is exacerbated by individual covariates, as their
316 inclusion further increases the number of nodes and also makes the use of reduced
317 data representations such as “m-arrays” (e.g. Kéry and Schaub 2011) impossible.

318 To reduce the MCMC runtime for the model presented here, we implemented a
319 custom likelihood function in **nimble** for use in the hierarchical model. Building on
320 the work of Turek et al. (2016), this custom function analytically integrates over
321 the discrete set of latent states to exactly calculate the likelihood of each capture
322 history, conditional on values of the model parameters. Here, with a finite set of
323 latent states, this integration takes the form of a summation over the latent state
324 values. In doing so, we removed a total of 60,641 latent states from the hierarchical
325 model, thus reducing the dimension of the posterior distribution (and equivalently

326 the MCMC sampling problem) by that same number. This also serves to improve
327 the MCMC mixing of the remaining posterior dimensions, as it no longer relies on
328 MCMC integration over the nuisance dimensions. Specifically, for model parame-
329 ters θ and capture histories $y = \{y_1, \dots, y_n\}$, the posterior distribution is updated
330 according to:

$$p(\theta|y) \propto p(\theta) \prod_{i=1}^n p(y_i|\theta),$$

331 where the likelihood $p(y_i|\theta)$ of capture history y_i is calculated using the custom
332 likelihood function, and $p(\theta)$ is the prior specification. Our implementation extends
333 that of Turek et al. (2016) by incorporating individual-specific covariates (in this
334 case, body length) into the likelihood calculation. In addition, to further speed up
335 computation time, our custom implementation strictly uses linear calculations in
336 lieu of the matrix operations used in Turek et al. (2016). This forgoes the need
337 to construct multi-dimensional arrays for storing state transition and observation
338 probabilities, which were found to be prohibitively large. Using this approach to
339 re-define the model resulted in 5.6- and 31.7-fold increases in minimum MCMC
340 efficiency relative to the latent state model run in **nimble** and **JAGS** respectively.
341 Within **nimble**, re-defining the model also allowed 370 times faster model building,
342 twelve times faster compilation, and a 93% reduction in memory usage relative to
343 the latent state model. For more details on the comparison of the custom distribu-
344 tion and standard approaches, see Appendix S2, as well as the supplementary file
345 **nimbleDHMM.R** for code to define the custom likelihood distribution and to specify
346 the complete multistate mark-recapture model.

347 For running the model on the trout data we used non-informative priors for

348 all parameters, and made use of **nimble**'s default set of samplers. The MCMC
349 algorithm was run for 25,000 iterations, discarding the first 5,000 samples as burn-
350 in. Analyses were run in R 3.5.0(R Core Team 2018) using version 0.6-13 of the
351 **nimble** package (NIMBLE Development Team 2018).

352 MODEL IDENTIFIABILITY & VALIDATION

353 With increasing model complexity, and particularly when unobserved states are
354 included, it is not obvious whether all parameters within a multi-state mark-
355 recapture model can be estimated (Cole 2012). Failure to estimate parameters may
356 be due to intrinsic parameter redundancy or data limitations. Using an extended
357 (hybrid) symbolic method (Cole et al. 2010, Cole 2012) implemented in the com-
358 puter algebra package Maple, we looked at intrinsic parameter redundancy in the
359 above described model including different covariate- and random effect structures.
360 The analyses of parameter redundancy are described in more detail in Appendix
361 S3 and accompanying Maple code is also provided as supplementary material.

362 Subsequently, we tested the ability of our models to correctly and accurately
363 estimate parameters given the available data. This we did by running the model on
364 simulated even- and odd-year data sets generated using parameter values similar to
365 those obtained from models run on real data. We explored the overall performance
366 of models with independent and correlated random effects on sets of simulated
367 data with the same number of years and similar number of individuals as present
368 in the real data. Additionally, we looked into the sensitivity of model performance
369 to variation in the true value of a potentially problematic parameter, the median
370 background mortality of the unobservable state (below-dam spawners). The setup

³⁷¹ and results from model tests with simulated data are described in Appendix S4.

³⁷² Results

³⁷³ MODEL IDENTIFIABILITY AND PERFORMANCE

³⁷⁴ We found that in the absence of random effects the only model structures that
³⁷⁵ were intrinsically identifiable were those where harvest mortality depended on an
³⁷⁶ individual time-varying covariate (*e.g.* body size) and background mortality was
³⁷⁷ either constant or dependent on an environmental covariate (Table S3.1). However,
³⁷⁸ all models (irrespective of covariate structure) became identifiable when random
³⁷⁹ year effects were included on at least harvest mortality hazard or reporting rates
³⁸⁰ (Table S3.1).

³⁸¹ When run on simulated data, the independent random effect model produced
³⁸² posterior estimates closely resembling the true parameter values (Appendix S4.2).
³⁸³ While there was considerable uncertainty in estimates of some parameters (*e.g.*
³⁸⁴ certain random effect levels, covariate effects on m_2^O), true values were always
³⁸⁵ within the central 97% interval of posterior posterior distributions. This was also
³⁸⁶ the case for models with correlated random effects. However, we found the esti-
³⁸⁷ mation of the coefficient of the random effect correlation (C) to be problematic:
³⁸⁸ models tended to correctly predict the sign of the correlation, but uncertainty was
³⁸⁹ very large and prohibited drawing conclusions regarding the actual strength of the
³⁹⁰ correlation (Appendix S4.4).

³⁹¹ Posterior distributions for all parameters (including random effect levels) es-
³⁹² timated from the real data and using the independent random effect model are

393 plotted in Figures S1.2 to S1.10.

394 SIZE-DEPENDENT FISH LADDER USAGE

395 The probability of using the fish ladder - and thus spawning above the dam - de-
396 pended strongly on both individual size and river discharge (Figures 3). Intermediate-
397 sized trout (around 550 mm) were most likely to pass the dam under any condi-
398 tions. Smaller trout were much more likely to pass the dam when river discharge
399 was high, whereas the probability decreased rapidly with length for larger trout ir-
400 respective of hydrological conditions. Ladder usage probability fluctuated strongly
401 over time (Figures 5c) and was predicted to be slightly lower for stocked (0.722)
402 than wild-born (0.739) trout (Figures S1.11).

403 CAUSE- AND SIZE-DEPENDENT MORTALITY

404 Median mortality hazard rates were estimated at 0.889 (harvest), 0.238 (back-
405 ground above-dam), and 0.045 (background below-dam) per two years for average-
406 sized trout (670 mm). The resulting probabilities of dying during a 2-year interval
407 due to harvest (Ψ_n^H) and due to other causes (Ψ_n^O) were 0.533 and 0.143 for above-
408 dam spawners and 0.578 and 0.029 for below-dam spawners. Harvest mortality
409 hazard rate was predicted to be highest for individuals with a length around 500
410 mm while background mortality hazard rate was substantial only for small to
411 intermediate sized individuals spawning above the dam (up to ~700mm, Figure
412 4a). Background mortality hazard rate of below-dam spawners, on the other hand,
413 was predicted to be very low for all except the very largest individuals. Conse-
414 quently, survival probability increased with length for all trout, but more so for

415 those spawning above the dam (Figure 4b). River discharge was predicted to in-
416 crease background mortality of above-dam spawners only, but this effect was weak
417 compared to the effect of length (Figure S1.2). Residual among-year random vari-
418 ation was substantial in both harvest- and background mortality (Figures S1.2
419 - S1.6), with hazard rates at the 97.5 percentile being 2.86- and 4.85-fold higher
420 than at the 2.5 percentile respectively. No strong time-trends were evident in either
421 mortality cause (Figures 5a & 5b).

422 Model results did not support differences in harvest- or background mortal-
423 ity due to trout origin: hazard ratios of stocked and wild trout were 0.999 (95%
424 CI [0.846, 1.151]) and 1.081 (95% CI [0.749, 1.427]) for harvest and background
425 mortality respectively (Figures S1.11).

426 The temporal correlation between harvest and background mortality hazard
427 rates was estimated with large uncertainty and a negative posterior mean of -0.237
428 (Figure 6).

429 TEMPORAL PATTERNS IN REPORTING RATE

430 Reporting rates varied considerably over time with averages estimated at 0.791
431 (1966-1976), 0.544 (1977-1986), 0.366 (1987-1996), 0.118 (1997-2006), and 0.101
432 (2007-2016, Figure S1.2). Within-period among-year variation was estimated at
433 0.476 (SD on logit scale) and a clear decrease in reporting rates over the 50-year
434 time-period was evident (Figure 5d).

435 Discussion

436 Within populations of animals, individuals can differ greatly in their vulnerability
437 to various sources of mortality. Such differences can arise when mortality causes
438 are related to individual traits such as body size, or when there is heterogeneity in
439 exposure to certain mortality causes as a consequence of, for example, reproductive
440 state or movement. Accounting for individual differences in cause-specific mortality
441 rates is particularly important when some causes are directly related to human
442 activities, and in this study we investigated factors determining vulnerability to
443 harvest- and background mortality of large brown trout exposed to fishing as well
444 as a hydroelectric dam on their migration route.

445 We found harvest and background mortality of trout to strongly depend on
446 individual body size. Harvest mortality was highest for intermediate-sized trout
447 and outweighed background mortality for most of the observed range of body
448 sizes. Background mortality of trout spawning above the dam was high for small
449 individuals but decreased rapidly with increasing body size. Survival of above-
450 dam spawners was positively size-dependent as a consequence, possibly indicating
451 a survival cost of passing the dam for small individuals. Survival also generally
452 increased with size for trout spawning below the dam (up to \sim 800 mm), but data
453 limitations made direct comparisons with above-dam spawners difficult.

454 Size-dependent survival is well documented for salmonid fishes, but the direc-
455 tion and strength of size effects vary widely across populations, years, and life
456 history stages for stream-, lake- and marine habitats (Carlson et al. 2008, Drenner
457 et al. 2012). The positive size-dependence of survival found in this study aligns
458 with previous findings for the study population (Haugen et al. 2008). However, un-

459 like the previous analysis, we were able to separate the underlying size-dependent
460 mortality rates with respect to harvest and other causes. The relationship between
461 harvest mortality and trout length was non-linear with a peak mortality at around
462 500 mm (Figure 4a). This peak is well below the average length in the spawning
463 population (670 mm), indicating that smaller mature fish are harvested dispro-
464 portionately more in this population. While the bell-shaped relationship between
465 vulnerability and body size is consistent with selectivity curves for gillnets (Ham-
466 ley 1975), the lack of positive size-dependence may seem surprising given that 43%
467 of the reported captures were due to angling in our system and that vulnerabil-
468 ity to angling is usually higher for larger fish (Lennox et al. 2017). Nonetheless,
469 larger fish may be less vulnerable to angling if they had a lower probability of ap-
470 proaching lures due to lower feeding frequency, use of different foraging habitat, or
471 preferred prey characteristics differing from those of employed lures (Lewin et al.
472 2006, Wilde et al. 2003, Arlinghaus et al. 2008). Alternatively, individual learning
473 or cohort selection may have resulted in individuals that have survived to large
474 sizes being more cautious towards fishing gear (“timidity syndrome”, Lennox et al.
475 2017). Despite the relatively lower harvest mortality of large individuals, however,
476 the risk of dying due to fishing was higher than the risk of dying due to any other
477 cause for most of the observed size range. This suggests fishing as the main source
478 of adult mortality in this population (see Kleiven et al. 2016, for a similar result
479 on Atlantic cod).

480 Effects of body size on background mortality were predicted to be markedly
481 different for trout spawning above and below the dam (Figure 4a). Among above-
482 dam spawners, smaller individuals were much more likely to die from causes other
483 than harvest relative to larger individuals. Background mortality of small (but

not intermediate to large) trout spawning above the dam was also predicted considerably above the levels of natural mortality typically expected for freshwater fish of that size (Lorenzen 1996), indicating that passing the dam itself may come with a survival cost for small individuals. Several candidate mechanisms, operating during different phases of the spawning migration, could be responsible for such a cost. During upriver migration through the fish ladder, for instance, all trout were trapped and handled. This may increase stress levels (Sharpe et al. 1998, Mäkinen et al. 2000) and cause injuries or even death (Harnish et al. 2011), and smaller individuals may be more vulnerable to these (Brakensiek and Hankin 2007). However, this is unlikely to be the main cause here, as trout found dead within or in close proximity of the dam were usually larger - not smaller - than the average ascending trout (data not shown). During downriver migration after spawning above the dam, trout have to swim through the floodgates or the turbine shaft as they pass the dam again to reach the lake. On many hydroelectric dams - including the Hunderfossen dam - racks are installed in front of turbine intakes to prevent downriver migrating fish from entering and being exposed to high turbine mortality (e.g. Fjeldstad et al. 2018, Haraldstad et al. 2018). The effectiveness of such racks varies across species and sizes, but they appear to work relatively well for adult salmonids (Calles et al. 2012). Combining this with our results of negatively size-dependent mortality of above-dam spawning trout may thus indicate that the racks in front of the Hunderfossen turbine indeed protect larger (but not smaller) fish from entering and perishing in the turbine shaft. Finally, it is possible that some survival costs of passing the dam extend beyond the upriver- and downriver passages. Roscoe et al. (2011) found reduced survival of Sockeye salmon (*Oncorhynchus nerka*) that had traversed a dam relative to those that did not

509 and suggested energetic costs of the dam passage as a possible mechanism for this.
510 Additional energetic costs may also arise if passing the dam results in migration
511 delays (Fjeldstad et al. 2018), and particularly if such delays forced individuals to
512 overwinter in the river instead of the lake as has been observed in our population.
513 Since energy reserves scale positively with body size (Peters and Peters 1986) such
514 energetic costs may be heavier for smaller individuals, possibly contributing to the
515 negatively size-dependent background mortality predicted by the model.

516 We found a decrease in background mortality with body size only for above-
517 but not below-dam spawners (Figure 4a). Reliably estimating size-dependence in
518 background mortality of below-dam spawners did in fact prove difficult not only
519 because below-dam spawners were unobservable, but also because almost no small-
520 to intermediate-sized trout were spawning below the dam due to strong size de-
521 pendence in ladder usage probability (Figure 3). As a consequence of this skew in
522 the size-distribution towards larger individuals, model predictions of below-dam
523 background mortality are not very reliable for smaller trout. Similarly, any com-
524 parisons of background mortality and survival of same-size above- vs. below-dam
525 spawners will only be informative for a relatively narrow size range (~ 700 - 900
526 mm). Within this range, there is considerable overlap in model predictions for
527 above- and below-dam spawners and more detailed studies - possibly involving
528 multi-annual radio- or satellite telemetry - will be necessary to properly quantify
529 size-dependent survival costs of passing the dam.

530 Over the 50-year study period, there was substantial temporal variation in
531 cause-specific mortality (Figure 5a & b). Fluctuations in harvest mortality are
532 to be expected over such long time-periods both due to among-year differences
533 in harvest pressure (total number of fishers, amount of time spent fishing, *etc.*)

534 and differences in exposure and vulnerability of the fish (due to direct and indi-
535 rect effects of environmental conditions , Lennox et al. 2017). While background
536 mortality remained relatively low over time, it did show a marked increase around
537 1997-2001, which coincides with a documented severe disease outbreak in the study
538 population (*Saprolegnia* spp. fungal infections, possibly in combination with or as
539 a result of ulcerative dermal necrosis, Johnsen and Ugedal 2001). Notably, harvest
540 mortality was also relatively high during this period (and survival consequently
541 quite reduced, Figure S1.12), highlighting the possibility for disease to not only
542 increase background mortality but also affect vulnerability to fishing.

543 Despite harvest and background mortality increasing simultaneously during
544 the disease outbreak period, models predicted that the correlation between the
545 two mortality causes was more likely to be negative than positive (Figure 6). A
546 negative correlation coefficient indicates compensatory mortality: increased harvest
547 mortality leads to a reduction in background mortality (possibly due to reduced
548 population density). Evidence for compensatory mortality has been found in other
549 fish populations (Allen et al. 1998, Fernández-Chacón et al. 2017, Johnston et al.
550 2007), and while we acknowledge that the data used here is neither sufficient nor
551 particularly suitable for more in-depth investigations into potential compensatory
552 mortality and its underlying mechanisms, we consider this a promising venue for
553 future research.

554 The probability of a trout using the fish ladder to pass and spawn above the
555 Hunderfossen dam varied greatly depending on individual body size and river dis-
556 charge (Figure 3). Consistent with previous results (Haugen et al. 2008), ladder
557 usage probability was predicted to be highest for intermediate-sized trout, and
558 especially larger trout were unlikely to use the fish ladder. Furthermore, small to

559 intermediate-sized trout had an increased probability of using the fish ladder when
560 water flow was relatively high. Both surprisingly low fish ladder usage by large in-
561 dividuals and variable effects of hydrological conditions have been documented in
562 other salmonid populations (Caudill et al. 2007, Jonsson and Jonsson 2002). How-
563 ever, many characteristics influencing attractiveness and efficiency of fish ladders
564 are site-specific (Fjeldstad et al. 2018), and more detailed studies are necessary to
565 explain the patterns observed in this particular system. Since using the fish ladder
566 is prerequisite to accessing the spawning habitat above the dam and may thus have
567 considerable impacts on population dynamics, further studies should also aim to
568 identify additional environmental and individual factors (*e.g.* temperature, disease
569 status) responsible for the large among-year variation in ladder usage probability
570 (Figure 5c).

571 While our model predicted no substantial time trends in either mortality com-
572 ponents or ladder usage probability, fisher's reporting rate of harvested trout was
573 predicted to have decreased substantially over the 50-year study period (Figure
574 5d). Separately estimating (harvest) mortality and reporting rate causes problems
575 when analysing tag-recovery data and usually requires auxiliary data (Pollock et al.
576 2004); by using data from individuals recaptured both alive and dead and allowing
577 for flexible temporal variation in parameters, we were able to not only estimate
578 the average reporting rates but also uncover this striking decrease of reporting rate
579 over time. This is not an uncommon pattern in fish tagging studies (Piccolo et al.
580 2012) and may have been caused by waning public interest in the study as fish-
581 ers often received neither personal nor official feedback following the reporting of
582 tags. Separating time-dependent reporting rate from other model parameters also
583 had important consequences for the interpretation of temporal patterns in general.

584 Previously, Haugen et al. (2008) analysed part of this data with a “traditional” tag
585 return model (Brownie et al. 1985) and found the joint probability of being har-
586 vested and reported to decrease over time. They interpreted this pattern under
587 the assumption of constant reporting rate and concluded that harvest mortality
588 had decreased over time and background mortality had increased (as they found
589 no trend in survival estimates). Here, on the contrary, we were able to show ex-
590 plicitly that reporting rate has decreased over time while there was no clear trend
591 in either of the two sources of mortality. This result has important implications for
592 tag recovery studies in general: assumptions of constant reporting rate have to be
593 assessed carefully when drawing conclusions about mortality patterns over time,
594 particularly when there are no rewards or other incentives for reporting tags.

595 Adult survival and its determinants are understudied but important compo-
596 nents of salmonid life history (Drenner et al. 2012), and here we have shown that in-
597 dividual differences in body size influence survival through effects on both harvest-
598 and background mortality, as well as spawning location. A trout’s origin, on the
599 other hand, did not substantially influence its survival or probability to migrate
600 past the dam (Figure S1.11). While adverse consequences of hatchery rearing are
601 widely documented in salmonids (*e.g* Einum and Fleming 2001, Fleming and Pe-
602 tersson 2001), these may be most pronounced during early life (McLean et al.
603 2003). Given that all marked individuals in our study populations have survived
604 up to at least the first spawning migration, the lack of differences between wild-
605 born and stocked trout is thus not unexpected and aligns with findings from other
606 studies focusing on adult fish (Caudill et al. 2007, Thorstad et al. 2007).

607 While our analyses did include body size, spawning location, and origin, there
608 are other sources of individual heterogeneity that we did not account for here.

609 These include - but are not limited to - disease state, birth/smolt cohort, and sex.

610 Evidence for potential effects of disease state came from the model predictions

611 themselves in the form of lower survival and ladder usage during the time period

612 of a known disease outbreak. Diseased individuals are likely to have higher mortal-

613 ity and possibly compromised reproductive output (Bakke and Harris 1998), but

614 investigating the effects of disease on the study trout population would require

615 individual-level data on disease states, which is not available. Cohort effects are

616 considered to originate from differences in environmental conditions during early

617 life (Lindström 1999). Long-term consequences of cohort effect for adult survival

618 have been found in stream-dwelling marble trout (*Salmo marmoratus*, Vincenzi

619 et al. 2016), but may be less influential for the studied trout, which leave their

620 riverine birth habitat for the large lake after 2-7 years. Unfortunately, we were not

621 able to investigate this here as birth/smolt cohort was only known for a small sub-

622 set of the population (22%) that had been aged using scales (Aass et al. 2017). Sex

623 differences in size-dependent fish survival are also not uncommon (e.g. Haraldstad

624 et al. 2018, Haugen et al. 2007) and sex effects have also attracted attention in the

625 context of migration past hydroelectric dams (Roscoe et al. 2011, Caudill et al.

626 2007). Information on sex is available for the majority of the marked Hunder trout,

627 but detailed investigations into sex differences in growth, cause-specific mortalities

628 and ladder usage probabilities were beyond the scope of this article.

629 Another aspect of the present study that would profit from further investigations

630 is among-year variability in cause-specific mortalities and ladder usage, or - more

631 specifically - the factors responsible for it. The only environmental covariate in-

632 cluded in our analyses was river discharge, and all other temporal variation (Figure

633 5) is of unknown origin. Among extrinsic environmental influences, water tempera-

ture has been documented to have substantial effects on various aspects of salmonid demography, including survival (Letcher et al. 2015, Jonsson and Jonsson 2002). Indeed, (Haugen et al. 2008) found indications that water temperature positively affected both survival and ladder usage probability in the studied trout population. In this analysis, we refrained from including river and lake temperature as covariates because the available measurement time series do not cover the earlier years of the study. Nonetheless, future efforts to include temperature into the model presented here (possibly as partially observed, latent variables with auxiliary predictors) will certainly be worthwhile, especially given the strong trend of increasing temperature in lake Mjøsa (Hobæk et al. 2012) and the potentially strong impacts of chronic and acute temperature increases on salmonid populations (Hague et al. 2011). Food availability is another factor deserving consideration in future studies. Korman et al. (2017), for example, found prey biomass to be a key driver of growth and survival in a strongly fluctuating population of rainbow trout *Oncorhynchus mykiss*. Unfortunately, no time-series data exists on the abundance of prey fish species in our system, which made investigations impossible in this study. Lack of suitable abundance data on the studied population similarly precluded investigating potential impacts of intra-specific population density, but density dependence in salmonids often occurs primarily during the juvenile and not adult life stages (Jonsson et al. 1998, Vincenzi et al. 2016).

Finally, while the fact that harvest mortality generally outweighs background mortality indicated that fishing has large impacts on this population, the present analysis of adult survival represents only one part of the life cycle of the Hunder trout. It is therefore not sufficient for making inferences about the drivers of changes in abundance and trait dynamics at the population level. However, com-

659 bining the present model with estimates for growth, reproduction, and early life
660 history in a size structured population model (*e.g.* an integral projection model,
661 Ellner and Rees 2006), will allow to gain a more thorough understanding of the
662 consequences of size-dependent harvest mortality, background mortality, and lad-
663 der usage probability, the impacts of among-year variation in vital rates, and the
664 contributions of stocked trout to the population.

665 Conclusion

666 Multi-state mark-recapture-recovery models are powerful tools for estimating and
667 understanding survival in animal populations that experience mortality from both
668 natural and anthropogenic causes (Schaub and Pradel 2004). Here, we have not
669 only separated harvest- from background mortality but also accounted for individ-
670 ual differences in vulnerability due to body size and migration-related exposure
671 to a hydroelectric dam. Within this framework, we used a recently developed re-
672 parameterisation of mark-recovery models using hazard rates instead of survival or
673 mortality probabilities (Ergon et al. 2018). This allowed to estimate body size- and
674 environmental effects on harvest- and background mortalities without confounding
675 them, and provided an intuitive way to also estimate the correlation between two
676 sources of mortality within the mark-recapture model. While formulation of the re-
677 sulting models in a Bayesian framework was straightforward, the inclusion of body
678 size as an individual time-varying covariate came with substantial computational
679 costs. These we were able to overcome by capitalizing on the flexibility of the novel
680 MCMC sampling compiler **nimble**, and writing a highly efficient custom distribu-
681 tion that is easily applicable for any type of multistate mark-recapture model.

682 Last, but not least, we have shown that identifiability issues that are common
683 to multiple mortality cause mark-recapture-recovery models (Schaub and Pradel
684 2004) can be overcome through the inclusion of appropriate time random effects.
685 Such random effects can only be estimated when data are collected over a sufficient
686 number of years, and this highlights the importance of investing in the (contin-
687 ued) collection of individual-based data over long time periods (Clutton-Brock and
688 Sheldon 2010).

689 Acknowledgements

690 This work was supported by the Research Council of Norway through the project
691 SUSTAIN (244647/E10). We thank all individuals and institutions that have been
692 involved in collecting, maintaining, and organizing the mark-recapture-recovery
693 data for their contribution (details in Moe et al. 2019), as well as the Norwegian
694 Water and Energy directorate (NVE) for providing the river discharge time-series.
695 Model fitting was performed in part on the Abel Cluster (University of Oslo and
696 Norwegian Meta-Centre for High Performance Computing).

697 Author's contributions

698 CN, TE, ØL, YV, and AV conceived the ideas; CN and TE designed methodology;
699 CN, PA, JM, and AR prepared the data for analysis; CN analysed the data and
700 led the writing of the manuscript; DT developed and tested the custom likelihood
701 and wrote Appendix S2. DC designed identifiability analyses and wrote Appendix
702 S3. All authors contributed critically to the drafts and gave final approval for

703 publication.

704 Data accessibility

705 The complete mark-recapture-recovery data set will be made available on the
706 Dryad Digital Repository (DOI to be added) accompanied by a Data Paper (Moe
707 et al. 2019).

708 References

709 Aas, Ø., A. Klemetsen, S. Einum, and J. Skurdal, 2010. Atlantic salmon ecology.
710 John Wiley & Sons.

711 Aass, P., P. S. Nielsen, and Å. Brabrand, 1989. Effects of river regulation on the
712 structure of a fast-growing brown trout (*Salmo trutta L.*) population. *Regulated
713 Rivers: Research & Management* **3**:255–266.

714 Aass, P., A. Rustadbakken, S. J. Moe, E. Lund, and T. Qvenild, 2017. Life-history
715 data on Hunder brown trout (*Salmo trutta*) from lake Mjøsa, Norway. *Freshwater
716 Metadata Journal* **25**:1–11.

717 Allen, M., L. Miranda, and R. Brock, 1998. Implications of compensatory and
718 additive mortality to the management of selected sportfish populations. *Lakes
719 & Reservoirs: Research & Management* **3**:67–79.

720 Arlinghaus, R., T. Klefoth, A. Kobler, and S. J. Cooke, 2008. Size selectivity, injury,
721 handling time, and determinants of initial hooking mortality in recreational

722 angling for northern pike: the influence of type and size of bait. *North American*
723 *Journal of Fisheries Management* **28**:123–134.

724 Bakke, T. A. and P. D. Harris, 1998. Diseases and parasites in wild Atlantic salmon
725 (*Salmo salar*) populations. *Canadian Journal of Fisheries and Aquatic Sciences*
726 **55**:247–266.

727 Bonner, S. and C. Schwarz, 2006. An extension of the Cormack–Jolly–Seber model
728 for continuous covariates with application to *Microtus pennsylvanicus*. *Biomet-*
729 *rics* **62**:142–149.

730 Brakensiek, K. E. and D. G. Hankin, 2007. Estimating overwinter survival of
731 juvenile Coho salmon in a Northern California stream: accounting for effects of
732 passive integrated transponder tagging mortality and size-dependent survival.
733 *Transactions of the American Fisheries Society* **136**:1423–1437.

734 Brownie, C., D. R. Anderson, K. P. Burnham, and D. S. Robson, 1985. Statisti-
735 cal inference from band recovery data. *US Fish and Wildlife Service Resource*
736 *Publication* **156**.

737 Calles, O., S. Karlsson, M. Hebrand, and C. Comoglio, 2012. Evaluating tech-
738 nical improvements for downstream migrating diadromous fish at a hydroelectric
739 plant. *Ecological Engineering* **48**:30–37.

740 Carlson, S. M., E. M. Olsen, and L. A. Vøllestad, 2008. Seasonal mortality and
741 the effect of body size: a review and an empirical test using individual data on
742 brown trout. *Functional Ecology* **22**:663–673.

743 Caudill, C. C., W. R. Daigle, M. L. Keefer, C. T. Boggs, M. A. Jepson, B. J. Burke,

744 R. W. Zabel, T. C. Bjornn, and C. A. Peery, 2007. Slow dam passage in adult
745 Columbia River salmonids associated with unsuccessful migration: delayed neg-
746 ative effects of passage obstacles or condition-dependent mortality? *Canadian*
747 *Journal of Fisheries and Aquatic Sciences* **64**:979–995.

748 Clutton-Brock, T. and B. C. Sheldon, 2010. Individuals and populations: the role
749 of long-term, individual-based studies of animals in ecology and evolutionary
750 biology. *Trends in Ecology & Evolution* **25**:562–573.

751 Cole, D. J., 2012. Determining parameter redundancy of multi-state mark-
752 recapture models for sea birds. *Journal of Ornithology* **152**:305–315.

753 Cole, D. J., B. J. Morgan, and D. Titterington, 2010. Determining the parametric
754 structure of models. *Mathematical Biosciences* **228**:16–30.

755 De Roos, A. M., L. Persson, and E. McCauley, 2003. The influence of size-
756 dependent life-history traits on the structure and dynamics of populations and
757 communities. *Ecology Letters* **6**:473–487.

758 de Valpine, P., D. Turek, C. J. Paciorek, C. Anderson-Bergman, D. T. Lang, and
759 R. Bodik, 2017. Programming with models: writing statistical algorithms for
760 general model structures with nimble. *Journal of Computational and Graphical
761 Statistics* **26**:403–413.

762 Devillard, S. and Y. Bray, 2009. Assessing the effect on survival of natal dispersal
763 using multistate capture–recapture models. *Ecology* **90**:2902–2912.

764 Drenner, S. M., T. D. Clark, C. K. Whitney, E. G. Martins, S. J. Cooke, and

765 S. G. Hinch, 2012. A synthesis of tagging studies examining the behaviour and
766 survival of anadromous salmonids in marine environments. *PLoS One* **7**:e31311.

767 Einum, S. and I. Fleming, 2001. Implications of stocking: ecological interactions
768 between wild and released salmonids. *Nordic Journal of Freshwater Research*
769 **75**:56–70.

770 Ellner, S. P. and M. Rees, 2006. Integral projection models for species with complex
771 demography. *The American Naturalist* **167**:410–428.

772 Ergon, T., Ø. Borga, C. R. Nater, and Y. Vindenes, 2018. The utility of mortality
773 hazard rates in population analyses. *Methods in Ecology and Evolution* **9**:2046–
774 2056.

775 Fernández-Chacón, A., E. Moland, S. H. Espeland, A. R. Kleiven, and E. M. Olsen,
776 2017. Causes of mortality in depleted populations of atlantic cod estimated from
777 multi-event modelling of mark–recapture and recovery data. *Canadian Journal
778 of Fisheries and Aquatic Sciences* **74**:116–126.

779 Fernández-Chacón, A., E. Moland, S. H. Espeland, and E. M. Olsen, 2015. Demo-
780 graphic effects of full vs. partial protection from harvesting: inference from an
781 empirical before–after control-impact study on atlantic cod. *Journal of Applied
782 Ecology* **52**:1206–1215.

783 Fjeldstad, H.-P., U. Pulg, and T. Forseth, 2018. Safe two-way migration for
784 salmonids and eel past hydropower structures in Europe: a review and rec-
785 commendations for best-practice solutions. *Marine and Freshwater Research*
786 **69**:1834–1847.

787 Fleming, I. and E. Petersson, 2001. The ability of released, hatchery salmonids
788 to breed and contribute to the natural productivity of wild populations. *Nordic*
789 *Journal of Freshwater Research* pages 71–98.

790 Fujiwara, M. and H. Caswell, 2001. Demography of the endangered North Atlantic
791 right whale. *Nature* **414**:537.

792 Hague, M., M. Ferrari, J. Miller, D. Patterson, G. Russell, A. Farrell, and S. Hinch,
793 2011. Modelling the future hydroclimatology of the lower Fraser River and its
794 impacts on the spawning migration survival of Sockeye salmon. *Global Change*
795 *Biology* **17**:87–98.

796 Hamley, J. M., 1975. Review of gillnet selectivity. *Journal of the Fisheries Board*
797 *of Canada* **32**:1943–1969.

798 Haraldstad, T., E. Höglund, F. Kroglund, A. Lamberg, E. M. Olsen, and T. O. Hau-
799 gen, 2018. Condition-dependent skipped spawning in anadromous brown trout
800 (*Salmo trutta*). *Canadian Journal of Fisheries and Aquatic Sciences* **75**:2313–
801 2319.

802 Harnish, R. A., A. H. Colotel, and R. S. Brown, 2011. A review of polymer-
803 based water conditioners for reduction of handling-related injury. *Reviews in*
804 *Fish Biology and Fisheries* **21**:43–49.

805 Haugen, T. O., P. Aass, N. C. Stenseth, and L. A. Vøllestad, 2008. Changes
806 in selection and evolutionary responses in migratory brown trout following the
807 construction of a fish ladder. *Evolutionary Applications* **1**:319–335.

808 Haugen, T. O., I. J. Winfield, L. A. Vøllestad, J. M. Fletcher, J. B. James, and

809 N. C. Stenseth, 2007. Density dependence and density independence in the
810 demography and dispersal of pike over four decades. *Ecological Monographs*
811 **77**:483–502.

812 Hilborn, R. and C. J. Walters, 2013. Quantitative fisheries stock assessment: choice,
813 dynamics and uncertainty. Springer Science & Business Media.

814 Hobæk, A., J. E. Løvik, T. Rohrlack, S. J. Moe, M. Grung, H. Bennion, G. Clarke,
815 and G. T. Piliposyan, 2012. Eutrophication, recovery and temperature in lake
816 Mjøsa: detecting trends with monitoring data and sediment records. *Freshwater
817 Biology* **57**:1998–2014.

818 Johnsen, B. U. and O. Ugedal, 2001. Soppinfeksjoner (*Saprolegnia* spp.) på lakse-
819 fisk i norge - statusrapport. *NINA Oppdragsmelding* **716**:1–34.

820 Johnston, F. D., J. R. Post, C. J. Mushens, J. D. Stelfox, A. J. Paul, and B. La-
821 jeunesse, 2007. The demography of recovery of an overexploited bull trout,
822 *Salvelinus confluentus*, population. *Canadian Journal of Fisheries and Aquatic
823 Sciences* **64**:113–126.

824 Jonsson, N. and B. Jonsson, 2002. Migration of anadromous brown trout *Salmo
825 trutta* in a Norwegian river. *Freshwater Biology* **47**:1391–1401.

826 Jonsson, N., B. Jonsson, and L. Hansen, 1998. The relative role of density-
827 dependent and density-independent survival in the life cycle of Atlantic salmon
828 *Salmo salar*. *Journal of Animal Ecology* **67**:751–762.

829 Kéry, M. and M. Schaub, 2011. Bayesian population analysis using WinBUGS: a
830 hierarchical perspective. Academic Press.

831 Kleiven, A. R., A. Fernandez-Chacon, J.-H. Nordahl, E. Moland, S. H. Espeland,
832 H. Knutsen, and E. M. Olsen, 2016. Harvest pressure on coastal Atlantic cod
833 (*Gadus morhua*) from recreational fishing relative to commercial fishing assessed
834 from tag-recovery data. *PLoS One* **11**:e0149595.

835 Koons, D. N., R. F. Rockwell, and L. M. Aubry, 2014. Effects of exploitation on
836 an overabundant species: the lesser snow goose predicament. *Journal of Animal*
837 *Ecology* **83**:365–374.

838 Korman, J., M. D. Yard, and T. A. Kennedy, 2017. Trends in rainbow trout
839 recruitment, abundance, survival, and growth during a boom-and-bust cycle in
840 a tailwater fishery. *Transactions of the American Fisheries Society* **146**:1043–
841 1057.

842 Lebreton, J.-D., T. Almeras, and R. Pradel, 1999. Competing events, mixtures of
843 information and multistratum recapture models. *Bird Study* **46**:S39–S46.

844 Lennox, R. J., J. Alós, R. Arlinghaus, A. Horodysky, T. Klefth, C. T. Monk, and
845 S. J. Cooke, 2017. What makes fish vulnerable to capture by hooks? a conceptual
846 framework and a review of key determinants. *Fish and Fisheries* **18**:986–1010.

847 Letcher, B. H., P. Schueller, R. D. Bassar, K. H. Nislow, J. A. Coombs, K. Sakre-
848 jda, M. Morrissey, D. B. Sigourney, A. R. Whiteley, M. J. O'donnell, et al.,
849 2015. Robust estimates of environmental effects on population vital rates: an
850 integrated capture–recapture model of seasonal brook trout growth, survival and
851 movement in a stream network. *Journal of Animal Ecology* **84**:337–352.

852 Lewin, W.-C., R. Arlinghaus, and T. Mehner, 2006. Documented and potential

853 biological impacts of recreational fishing: insights for management and conser-
854 vation. *Reviews in Fisheries Science* **14**:305–367.

855 Lindström, J., 1999. Early development and fitness in birds and mammals. *Trends*
856 *in Ecology & Evolution* **14**:343–348.

857 Lorenzen, K., 1996. The relationship between body weight and natural mortality
858 in juvenile and adult fish: a comparison of natural ecosystems and aquaculture.
859 *Journal of Fish Biology* **49**:627–642.

860 Mäkinen, T. S., E. Niemelä, K. Moen, and R. Lindström, 2000. Behaviour of
861 gill-net and rod-captured Atlantic salmon (*Salmo salar L.*) during upstream
862 migration and following radio tagging. *Fisheries Research* **45**:117–127.

863 McLean, J. E., P. Bentzen, and T. P. Quinn, 2003. Differential reproductive suc-
864 cess of sympatric, naturally spawning hatchery and wild steelhead trout (*On-
865 corhynchus mykiss*) through the adult stage. *Canadian Journal of Fisheries and
866 Aquatic Sciences* **60**:433–440.

867 Moe, S. J., C. R. Nater, A. Rustadbakken, L. A. Vøllestad, E. Lund, T. Qve-
868 nild, O. Hegge, and P. Aass, 2019. A 50-year series of mark-recapture data
869 of large-sized brown trout (*Salmo trutta*) from Lake Mjøsa, Norway. *bioRxiv*
870 doi:10.1101/544825.

871 Nater, C. R., A. Rustadbakken, T. Ergon, Ø. Langangen, S. J. Moe, Y. Vindenes,
872 L. A. Vøllestad, and P. Aass, 2018. Individual heterogeneity and early life
873 conditions shape growth in a freshwater top predator. *Ecology* **99**:1011–1017.

874 NIMBLE Development Team, 2018. NIMBLE: MCMC, particle filtering, and pro-
875 grammable hierarchical modeling. R package version 0.6-13.

876 Peters, R. H. and R. H. Peters, 1986. The ecological implications of body size,
877 volume 2. Cambridge University Press.

878 Piccolo, J. J., J. R. Norrgård, L. A. Greenberg, M. Schmitz, and E. Bergman, 2012.
879 Conservation of endemic landlocked salmonids in regulated rivers: a case-study
880 from lake Vänern, Sweden. *Fish and Fisheries* **13**:418–433.

881 Pollock, K. H., 2002. The use of auxiliary variables in capture-recapture modelling:
882 an overview. *Journal of Applied Statistics* **29**:85–102.

883 Pollock, K. H., H. Jiang, and J. E. Hightower, 2004. Combining telemetry and
884 fisheries tagging models to estimate fishing and natural mortality rates. *Trans-
885 actions of the American Fisheries Society* **133**:639–648.

886 R Core Team, 2018. R: A Language and Environment for Statistical Computing.
887 R Foundation for Statistical Computing, Vienna, Austria.

888 Ronget, V., M. Garratt, J.-F. Lemaître, and J.-M. Gaillard, 2017. The ‘Evo-Demo’
889 implications of condition-dependent mortality. *Trends in Ecology & Evolution*
890 **32**:909–921.

891 Roscoe, D., S. Hinch, S. Cooke, and D. Patterson, 2011. Fishway passage and
892 post-passage mortality of up-river migrating sockeye salmon in the Seton River,
893 British Columbia. *River Research and Applications* **27**:693–705.

894 Sæther, B.-E. and Ø. Bakke, 2000. Avian life history variation and contribution
895 of demographic traits to the population growth rate. *Ecology* **81**:642–653.

896 Schaub, M. and R. Pradel, 2004. Assessing the relative importance of different
897 sources of mortality from recoveries of marked animals. *Ecology* **85**:930–938.

898 Servany, S., R. Choquet, É. Baubet, S. Brandt, J.-M. Gaillard, M. Schaub,
899 C. Toïgo, J.-D. Lebreton, M. Buoro, and O. Gimenez, 2010. Assessing whether
900 mortality is additive using marked animals: a Bayesian state-space modeling
901 approach. *Ecology* **91**:1916–1923.

902 Sharpe, C. S., D. A. Thompson, H. Lee Blankenship, and C. B. Schreck, 1998.
903 Effects of routine handling and tagging procedures on physiological stress re-
904 sponses in juvenile Chinook salmon. *The Progressive Fish-Culturist* **60**:81–87.

905 Thorstad, E. B., F. Økland, B. Finstad, R. Sivertsgård, N. Plantalech, P. A. Bjørn,
906 and R. S. McKinley, 2007. Fjord migration and survival of wild and hatchery-
907 reared Atlantic salmon and wild brown trout post-smolts. In *Developments in
908 Fish Telemetry*, pages 99–107. Springer.

909 Turek, D., P. de Valpine, and C. J. Paciorek, 2016. Efficient Markov chain Monte
910 Carlo sampling for hierarchical hidden Markov models. *Environmental and Eco-
911 logical Statistics* **23**:549–564.

912 Vincenzi, S., M. Mangel, D. Jesensek, J. C. Garza, and A. J. Crivelli, 2016. Within-
913 and among-population variation in vital rates and population dynamics in a
914 variable environment. *Ecological Applications* **26**:2086–2102.

915 Vindenes, Y. and Ø. Langangen, 2015. Individual heterogeneity in life histories
916 and eco-evolutionary dynamics. *Ecology Letters* **18**:417–432.

917 Wilde, G. R., K. L. Pope, and B. W. Durham, 2003. Lure-size restrictions in
918 recreational fisheries. *Fisheries* **28**:18–26.

919 Williams, B. K., J. D. Nichols, and M. J. Conroy, 2002. Analysis and management
920 of animal populations. Academic Press.

921 **Supporting information**

922 The following supporting information is available for this publication: Appendices
923 S1 - S5.

924 **Figures**

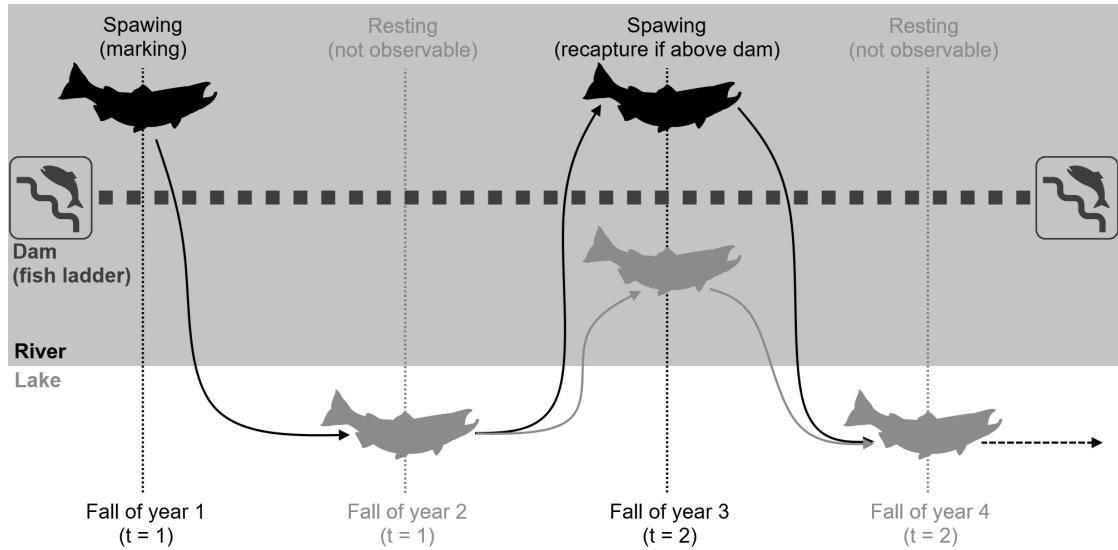


Figure 1: Illustration of the biennial spawning cycle and mark-recapture scheme of the studied trout population. All individuals are marked in the fish ladder while passing the dam on their upriver spawning migration. Two years later they may be recaptured on the next spawning migration, but only if they pass the fish ladder to spawn above the dam. Trout remain in the lake and are unobservable during non-spawning years.

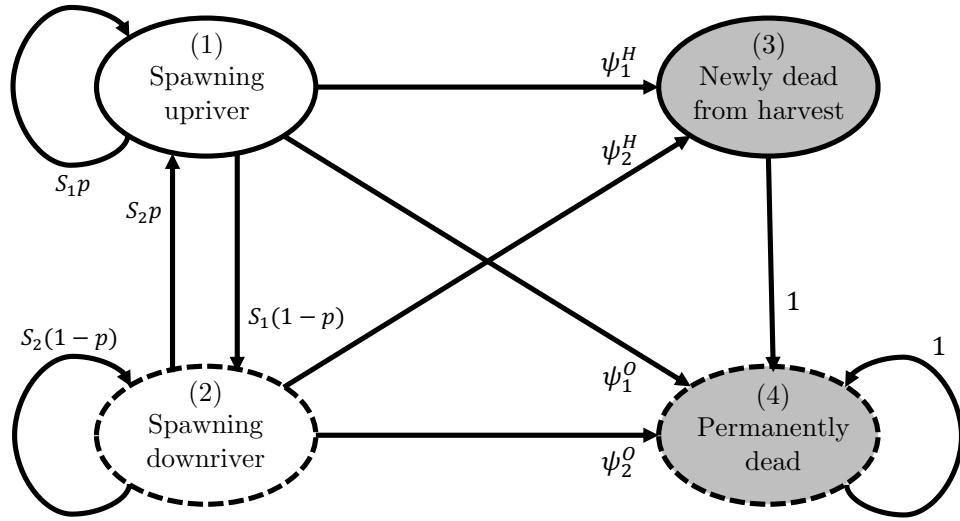


Figure 2: Design of the trout mark-recapture-recovery model (transitions on two-year intervals). White states are alive, grey stages are dead. Solid borders indicate stages that are at least partially observable, whereas dashed borders indicate unobservable stages. S_n = survival probabilities. ψ_n^H / ψ_n^O = harvest / background mortality probabilities. p = ladder usage probability. Indices for individual i and time t are omitted here for simplicity.

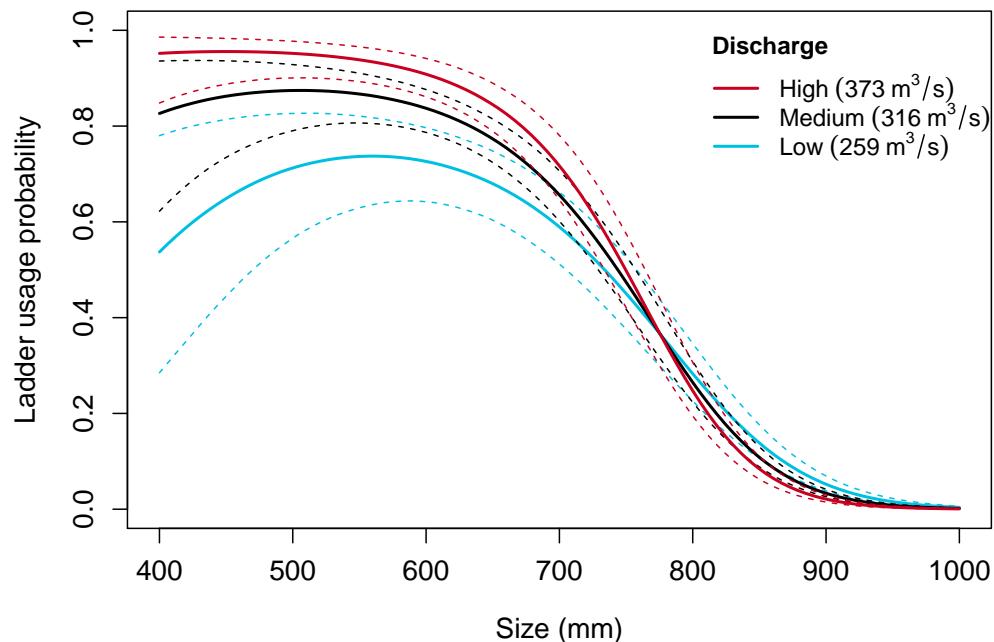


Figure 3: Predictions of the effects of body size on ladder usage probability at different levels of river discharge. Blue = low discharge (mean – SD), black = medium discharge (mean), red = high discharge (mean + SD). Solid lines represent the mean predictions while dashed lines indicate the 95% credibility intervals.

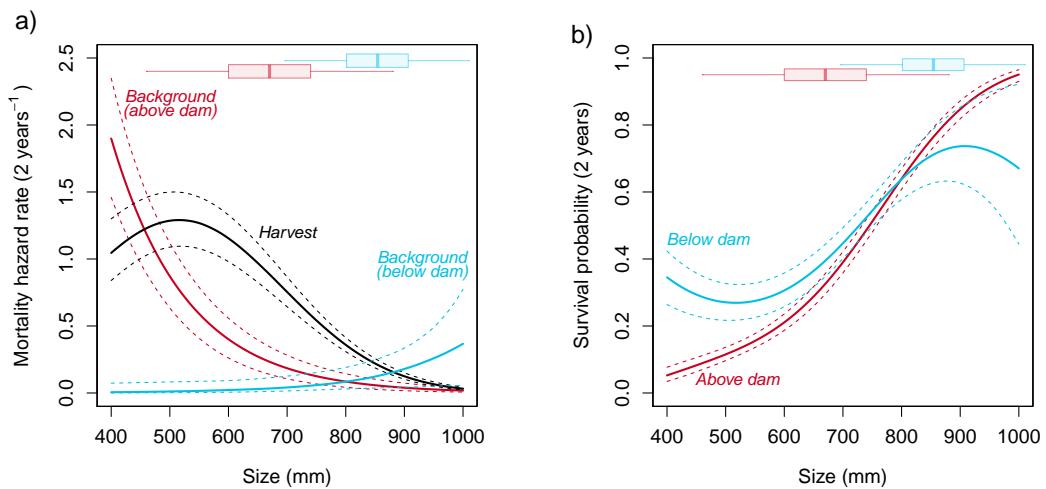


Figure 4: Predictions of the effects of body size on a) harvest and background mortality hazard rates and b) survival probabilities (under consideration of both mortality sources). Red and blue curves apply to individuals that have last spawned above and below the dam respectively. The black curve (harvest) applies to all individuals irrespective of their last spawning location. Solid lines represent the mean predictions while dashed lines indicate the 95% credibility intervals. The boxplot illustrates the informative data range: red = size distribution of individuals captured in the fish ladder (above-dam spawners), blue = simulated size distribution of below-dam spawners after surviving for two years following marking and subsequently not using the fish ladder.

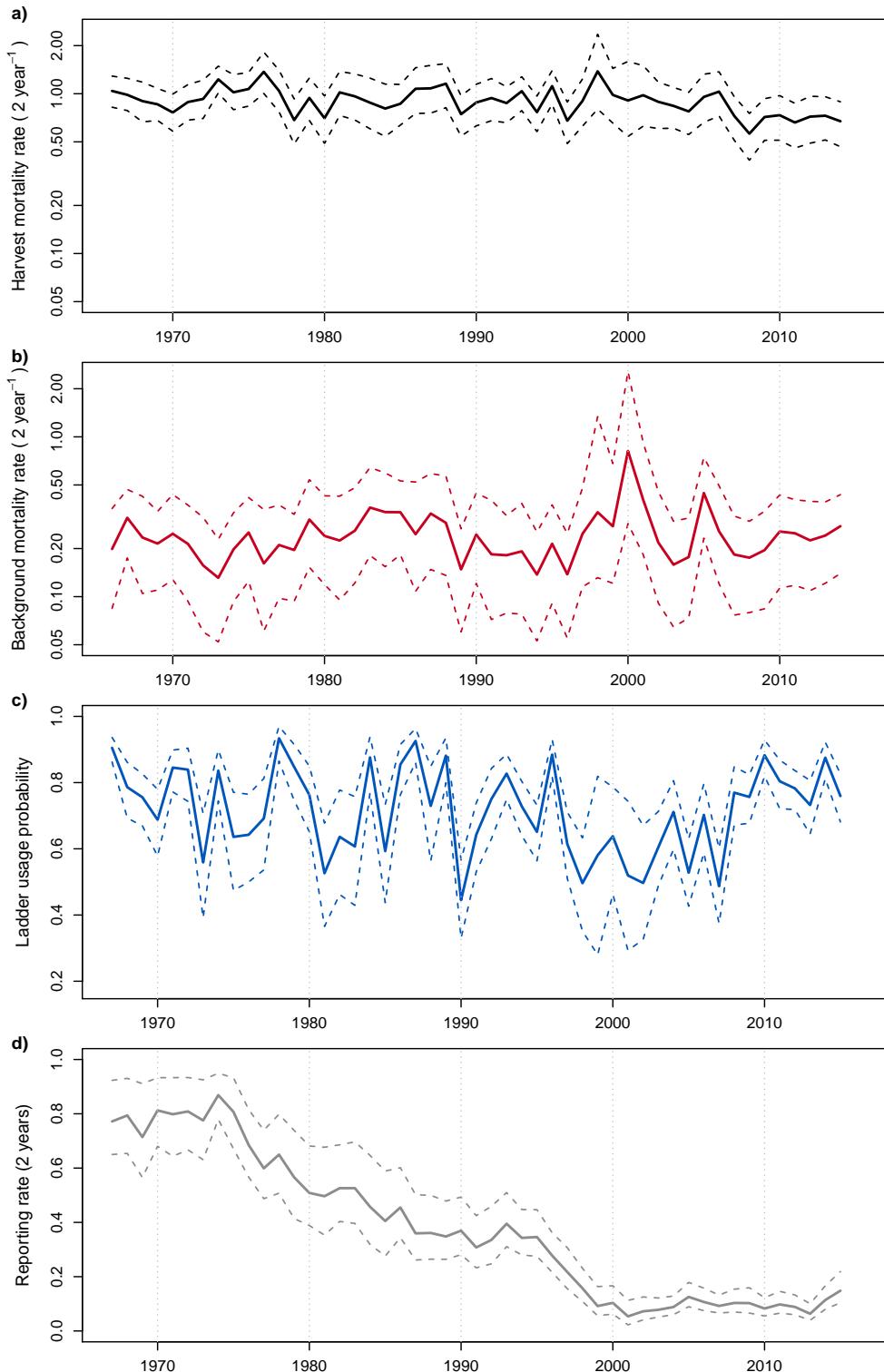


Figure 5: Estimates for time-dependent a) harvest mortality hazard rate, b) background mortality hazard rate (above-dam spawners), c) ladder usage probability, and d) reporting rate (calculated using random variation and discharge effects). Solid lines represent the mean predictions, dashed lines indicate the 95% credibility intervals. y-axes for panels a) and b) are log-scaled.

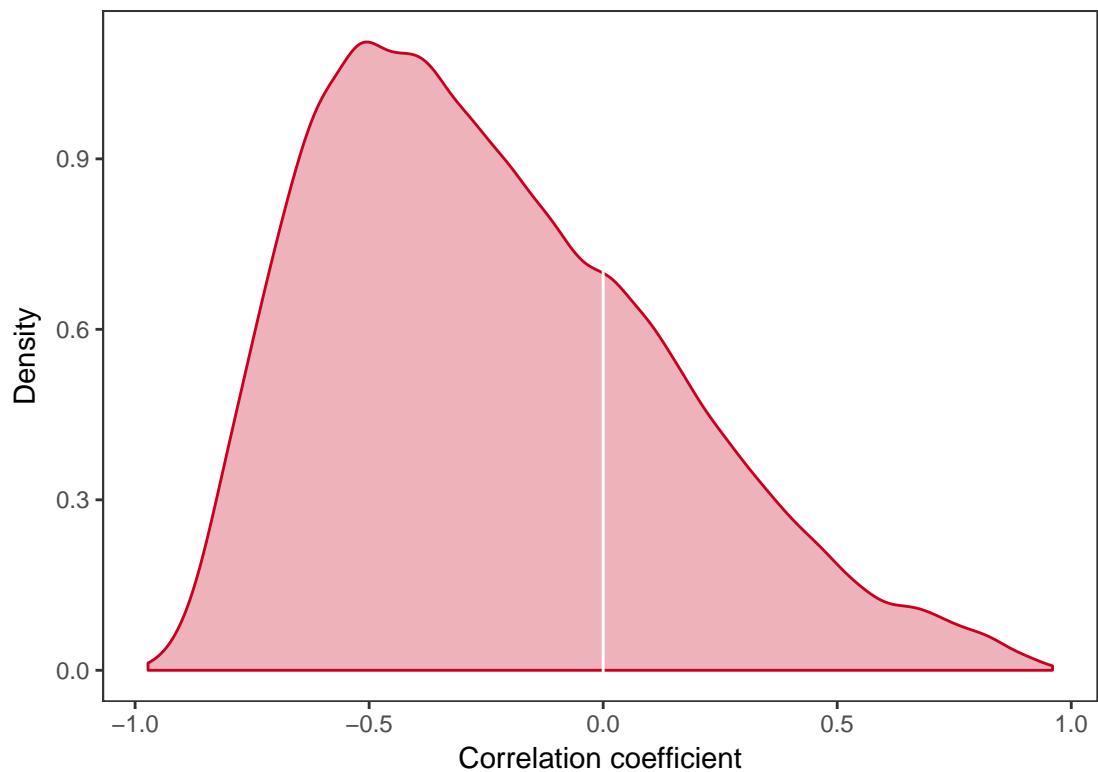


Figure 6: Posterior distributions of coefficient C of the temporal correlation between harvest and background mortality hazard rates estimated by the model.