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Abstract1

1. Estimating survival using data on marked individuals is a key component2

of population dynamics studies and resulting management and conservation3

decisions. Such decisions frequently require estimating not just survival but4

also quantifying how much mortality is due to anthropogenic versus natural5

causes, particularly when individuals vary in their vulnerability to different6

causes of mortality due to their body size, life-history stage, or location.7

2. In this study we estimated harvest and background mortality of landlocked,8

migratory salmonid over half a century. In doing so, we quantified among-9

individual variation in vulnerability to cause-specific mortality resulting from10

differences in body size and spawning location relative to a hydropower dam.11

3. We constructed a multistate mark-recapture model to estimate hazard rates12

associated with competing harvest and background mortality risks as func-13

tions of a discret state (spawning location) and an individual time-varying14

covariate (body size). We further included among-year variation to inves-15

tigate temporal patterns of and correlations among mortality hazard rates16

and fit the model to a unique 50-year time-series of mark-recapture-recovery17

data on brown trout (Salmo trutta) in Norway.18

4. We found that harvest mortality was highest for intermediate-sized trout,19

and outweighed background mortality for almost the entire observed size20

range. For trout spawning above the dam, background mortality decreased21

for larger body sizes and at lower river discharge. Both mortality causes, as22

well as the probability of spawning above the dam, varied substantially over23
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time but a trend was evident only for fishers’ reporting rate, which decreased24

from an average of 80% to only 10% over half a century.25

5. Our analysis highlights the importance of body size for cause-specific mor-26

tality and demonstrates how this can be estimated using a novel hazard27

rate parameterisation for mark-recapture models. This approach allowed es-28

timating effects of both size and environment on harvest- and background29

mortality without confounding, and provided an intuitive way to estimate30

temporal patterns within and correlation among the mortality sources. In31

combination with computationally fast custom MCMC solutions this mod-32

elling framework provides unique opportunities for studying individual het-33

erogeneity in cause-specific mortality using mark-recapture-recovery data.34

Keywords35

Bayesian statistics, dam, harvesting, hazard rate, mark-recapture, mortality, nim-36

ble, trout.37

Introduction38

Population dynamics - particularly of long-lived species - are often very sensitive39

to changes in mortality (Sæther and Bakke 2000, Fujiwara and Caswell 2001).40

Mortality itself can have a wide variety of causes (e.g. starvation, predation, dis-41

ease, harvest), and vulnerability to cause-specific mortality depends strongly on42

individual factors such as age or life stage (Ronget et al. 2017). As a consequence,43

population-level responses to changes in mortality may vary greatly depending on44

3

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 26, 2019. ; https://doi.org/10.1101/544742doi: bioRxiv preprint 

https://doi.org/10.1101/544742
http://creativecommons.org/licenses/by-nd/4.0/


the underlying cause, and disentangling different causes of mortality may thus pro-45

vide insights crucial for population management and conservation (Williams et al.46

2002). This is particularly important in populations where significant mortality47

is linked to human activity; in such cases, knowledge about the relative impact48

of human-induced mortality and its potential effect on other sources of mortality49

is crucial for developing sustainable and successful harvest- or culling strategies50

(Hilborn and Walters 2013, Koons et al. 2014).51

Studies of marked individuals constitute a highly valuable source of demo-52

graphic data for wild animal populations and are crucial for estimating survival,53

as well as cause-specific mortalities. The recovery of a dead marked animal of-54

ten provides information on the cause of death. For example, it was evident from55

the recovery of radio-collared European hares (Lepus eruopaeus) whether they56

had died due to hunting, predation, or other causes (Devillard and Bray 2009).57

Similarly, location and examination of recovered white storks (Ciconia ciconia)58

allowed identifying whether they had died from collision with a power line, or due59

to other causes (Schaub and Pradel 2004). However, unless animals are marked60

with radio- or satellite transmitters, most dead individuals will not be found, and61

this imperfect detection needs to be accounted for when estimating survival or62

mortality parameters. Moreover, when considering multiple mortality causes, de-63

tection probability frequently depends on the cause of mortality, and some causes64

of mortality may not be observable at all. This is usually the case for natural65

mortality when dead recoveries are exclusively based on the reports of hunters or66

fishers (e.g. Servanty et al. 2010, Koons et al. 2014).67

Schaub and Pradel (2004) developed a multistate mark-recapture-recovery frame-68

work that allows to separately estimate mortality from different causes while ac-69
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counting for cause-dependent detection probabilities. Specifically, cause-specific70

mortalities are estimated as transitions from an “alive” state to several “dead from71

cause of interest” states. When this framework is extended to also include mul-72

tiple “alive” states, it becomes possible to estimate differences in vulnerability to73

cause-specific mortality depending on, for example, an individual’s life-stage (e.g.74

juveniles vs. adults, Schaub and Pradel 2004) or location (Fernández-Chacón et al.75

2015). Such group-level differences in mortality can be tremendous and account-76

ing for them is crucial for modelling population dynamics (Ronget et al. 2017).77

However, in addition to that, vital rates and population dynamics are often also78

strongly affected by individual differences in continuous, dynamic traits such as79

body size (De Roos et al. 2003, Vindenes and Langangen 2015). Particularly in80

species that are harvested and/or have indeterminate growth (e.g. fish species),81

cause-specific mortality is expected to depend strongly on body size. Fernández-82

Chacón et al. (2017) demonstrated this by estimating cause-specific mortalities for83

different sizes of Atlantic cod (Gadus morhua). However, they did so by lump-84

ing individuals into either of two size classes (“small” or “large”), thus foregoing85

the possibility of investigating the continuous relationship between body size and86

mortality from different causes. While interesting and informative on its own,87

knowledge about the relationships between continuous traits and vital rates like88

mortality are also invaluable for studying dynamical processes at the population89

level, (e.g. using integral projection models, Ellner and Rees 2006).90

In this study, we extended the framework of multiple mortality cause mark-91

recapture models to include a continuous individual- and time-varying trait (body92

size) as a predictor of vulnerability within different groups of individuals. By mod-93

elling survival and mortality probabilities via cause-specific mortality hazard rates94
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(Ergon et al. 2018) we estimated the effects of body size on, as well as among-95

year environmental variation in, different mortality causes without confounding.96

We then used this extended model to investigate size-dependence of and temporal97

patterns in harvest and background mortality of adult brown trout (Salmo trutta)98

over half a century (1966 - 2016).99

Migratory salmonid fishes - such as piscivorous brown trout - are extensively100

studied due to their ecological, cultural and economical value (Drenner et al. 2012).101

Nonetheless, contrary to other parts of the life history, relatively little is known102

about the mortality of adults residing in the sea or large lakes (Piccolo et al. 2012).103

Many salmonid populations are heavily impacted by human activity not only in the104

form of harvesting but also through pollution, fish farming, habitat fragmentation,105

and hydro-electrical power production (dams) in rivers (Aas et al. 2010). Our study106

population of migratory brown trout (hereafter “Hunder trout” or just “trout”)107

inhabits a river-lake system in Eastern Norway and has been a popular target for108

fishing for decades due to its large body size. The spawning river is dammed, and109

trout migrating to spawning grounds above the dam face additional risks linked110

to passing the dam on their up- and downriver migrations. These risks are likely111

associated with individual body size as well as environmental conditions, and can112

be avoided entirely if trout instead use the spawning grounds below the dam. Each113

individual’s spawning location thus determines its exposure and vulnerability to114

some sources of mortality (e.g. those related to the dam), and we accounted for115

this heterogeneity by modelling cause-specific mortality hazard rates not only as116

a function of body size, but also as dependent on whether individuals migrate117

past the dam to spawn. By fitting the resulting model to a unique 50-year time-118

series of recaptures and recoveries of marked trout, we investigated the detailed119
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effects of individual- (size, spawning location) and environmental (river discharge)120

factors on the vulnerability of adult trout to mortality due to harvest, passage of a121

hydroelectric dam, and natural causes, as well as on the probability of using a fish122

ladder within the dam to access upriver spawning areas. Additionally, we extended123

our analyses to also (1) investigate potential early life impacts of hatchery-rearing,124

since part of the population consist of stocked fish, and (2) estimate the temporal125

correlation of harvest- and background mortality.126

Materials and methods127

STUDY SYSTEM AND DATA128

We studied a population of landlocked migratory brown trout inhabiting the129

lake Mjøsa and its main inlet river, Gudbrandsdalslågen, in Eastern Norway.130

These trout have a life history that is similar to that of Atlantic salmon (Salmo131

salar)(Aass et al. 1989): Eggs are deposited in the river in fall and develop over132

winter. After hatching in spring, juvenile trout remain in the river for an average133

of 4 years there before smolting and migrating to the lake. They typically mature134

after 2 - 3 years of piscivorous diet and fast growth in the lake, and from that point135

on migrate up the river to spawn every other year (usually in August/September,136

Figure 1). The adult trout population consists of wild-born trout and stocked137

(first-generation hatchery-reared) trout which are released into the river and lake138

as smolts but then follow the same general life history. Shortly after the river was139

dammed in the 1960’s, a fish ladder was installed to enable mature trout to reach140

their historical spawning grounds above the dam. There are spawning grounds141
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downriver of the dam as well (Aass et al. 1989), and an individual trout’s spawn-142

ing location is thus linked to whether or not it uses the fish ladder to travel upriver.143

This - in turn - is influenced by body size and hydrological conditions (Haugen144

et al. 2008).145

From 1966 to 2016 a trap was operated within the fish ladder, allowing for146

all trout passing the ladder to be captured, measured and individually marked.147

Thus, all adult trout were marked when they used the fish ladder on an upriver148

spawning migration for the first time, and were recaptured on subsequent spawning149

migrations given that they had survived and were passing the ladder again (usually150

every other year, Figure 1). Over the 50-year time period, 14,890 adult trout were151

marked and 2,152 of these were recaptured in the ladder later. Since the population152

has been exposed to fishing over the entire time period, an additional 2,306 marked153

trout were reported dead by fishers. For more details on the marking scheme,154

sampling protocol, and resulting data from the mark-recapture-recovery study, see155

Moe et al. (2019).156

In the present study we performed mark-recapture analyses over intervals of two157

years, as estimating parameters for spawning and non-spawning years separately158

proved problematic (due to trout being unobservable in non-spawning years, Figure159

1). We thus summarised the data into individual capture histories yi,t, in which each160

time index t corresponds to a two-year time step (interval from current spawning161

year to next spawning year). For each time step within those capture histories, we162

coded three types of observations: 1 = alive and captured in the ladder, 2 = dead163

from harvest and reported, and 3 = not observed. Upriver spawning migrations164

occur over the period from June to November but peak in August (Figure S1.1),165

and we set yi,t = 1 when an individual was captured in the fish ladder in any166
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month during time interval t. Harvest of trout happens year-round (Figure S1.1)167

and if an individual was harvested and reported at any point during interval t we168

set yi,t = 2, unless (a) the individual had also been caught in the fish ladder during169

interval t or (b) the harvest happened after August of the second year within the170

interval t. If either (a) or (b) was the case, we moved the harvest observation to171

the next interval such that yi,t+1 = 2. Furthermore, we excluded all individuals172

that did not follow a strictly biennial spawning cycle (1.5% of all individuals), did173

not have a single size measurement taken (7.1%), or were of unknown origin (wild174

vs. stocked, <1%). The analyses presented here are based on the remaining 12,875175

capture histories containing 1,588 trap recaptures and 2,252 harvest recoveries.176

MODEL FORMULATION177

General model structure178

Survival and deaths due to certain causes represent mutually exclusive events and179

can thus be incorporated into multistate mark-recapture frameworks (Lebreton180

et al. 1999). When explicitly including not only “alive” but also (observable) cause-181

specific “newly dead” states, the probability of transitioning from state “alive” to182

state “newly dead from cause X” represents the probability of dying from cause183

X (Schaub and Pradel 2004, Servanty et al. 2010). In the trout study population,184

deaths due to harvest may be reported by fishers and are thus clearly distinguish-185

able from deaths due to other causes. Individuals in any alive state n can therefore186

remain alive with survival probability Sn or transition to states “newly dead from187

harvest” (state 3) or “permanently dead” (state 4) with probabilities ΨH
n and ΨO

n188

respectively (Figure 2). The “permanently dead” state here represents all unob-189
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servable dead individuals, which also include those that have recently died from190

causes other than harvest. Furthermore, we make a distinction between individuals191

that start the time interval by spawning above versus below the dam. Spawning192

location may have a considerable effect on mortality, as individuals that spawn193

above the dam need to pass this obstacle on both the upriver- and downriver194

spawning migration. Consequently, we included two “alive” states in our model:195

“spawning upriver” (state 1) and “spawning downriver” (state 2). Individuals in196

each spawning state n have a survival probability Sn, a probability of dying due197

to harvest ΨH
n , and a probability of dying due to other causes ΨO

n . Additionally,198

there is a probability of using the fish ladder, p, which links the two alive states199

and is assumed to be independent of previous spawning location (Figure 2). The200

resulting model can be expressed with the state transition matrix201

states (t+ 1)

st
a
te
s

(t
)

1 2 3 4

1 S1,i,tpi,t+1 S1,i,t(1− pi,t+1) ΨH
1,i,t ΨO

1,i,t

2 S2,i,tpi,t+1 S2,i,t(1− pi,t+1) ΨH
2,i,t ΨO

2,i,t

3 0 0 0 1

4 0 0 0 1

The elements of this matrix represent the probabilities of any individual i in a202

given state (rows) transitioning to another state (columns) over the time interval203

from t to t+ 1. As such, all probabilities within a given row sum to 1.204

Similarly, these same states 1-4 are linked to the three types of observations205

in the data through a matrix of observation probabilities (columns) given a state206

(rows):207
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observations (t)

st
a
te
s

(t
)

1 2 3

1 1 0 0

2 0 0 1

3 0 rt 1− rt

4 0 0 1

where 1 = alive and captured in the ladder, 2 = dead from harvest and reported,208

and 3 = not observed. rt is the reporting rate of fishers for the 2-year interval from209

t− 1 to t.210

Parameterisation by mortality hazard rates211

Different cause-specific mortality probabilities (Ψ) are not independent of one an-212

other; if a certain cause of mortality becomes more prevalent (e.g. due to some213

event or change in the environment), not only will the probability of dying from214

that cause increase, but the probability of dying from any other cause will decrease215

at the same time. This confounding complicates inference, but Ergon et al. (2018)216

have recently shown how it can be avoided by parameterising mark-recapture mod-217

els with mortality hazard rates instead of probabilities. Doing so not only facili-218

tates biological interpretation of model parameters, but also comes with additional219

advantages such as easy rescaling of covariate effects across different time inter-220

vals and straight-forward calculation of temporal correlations among mortality221

causes (Ergon et al. 2018). Assuming that the intensities of mortality from differ-222

ent causes remain proportional within time intervals, we can re-define the survival-223

and mortality probabilities in the trout model using harvest (mH) and other-cause224
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(hereafter “background”) mortality hazard rates (mO):225

Sn,i,t = e−(mH
n,i,t+mO

n,i,t)

ΨH
n,i,t = (1− Sn,i,t)

mH
n,i,t

mH
n,i,t +mO

n,i,t

ΨO
n,i,t = (1− Sn,i,t)

mO
n,i,t

mH
n,i,t +mO

n,i,t

MODEL IMPLEMENTATION226

Individual and temporal variation in parameters227

Body size and hydrological conditions are often key determinants of vital rate228

variation in freshwater fish, including our study population (e.g. Carlson et al.229

2008, Letcher et al. 2015, Haugen et al. 2008). We thus used individual body size230

at the beginning of the time-interval and average river discharge during the relevant231

season as covariates in our model. We further accounted for additional among-year232

variation in several parameters using normally distributed random effects.233

Harvest in our study system has been done mostly using fishing rods or gillnets;234

the former is often positively correlated with body size (Lewin et al. 2006) while235

the latter has bell-shaped selectivity curves (Hamley 1975). To account for this,236

we modelled harvesting mortality hazard rate as a quadratic function of size on237

the log-scale:238

log(mH
i,t) = log(µH) + βH

2 ∗ sizei,t + βH
4 ∗ size2i,t + εHt

where µH is the median harvest mortality hazard rate, βH
2 and βH

4 are slope pa-239
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rameters for linear and quadratic size effects respectively, and εHt are normally240

distributed random effects. sizei,t is the individual length at spawning. As harvest241

in our study system happens predominantly in the lake, we have not included242

an effect of river discharge on mH
i,t. Harvest is also limited during the spawning243

migration and as the duration of the spawning migration is also short relative to244

the two-year interval of analysis, we further assumed that harvest mortality is the245

same for above- and below-dam spawners (thus omitted the index n here).246

Background mortality, on the other hand, is expected to depend on both spawn-247

ing location and on river discharge, as above- and below-dam spawners encounter248

different hydrological conditions during/after spawning and only the former need249

to pass the dam on their downriver migration. Mortality associated with the spawn-250

ing migration in general, and passing of the dam in particular, may also depend251

on body size. We thus modelled background mortality hazard rate as:252

log(mO
n,i,t) = log(µO

n ) + βO
1,n ∗ discFt + βO

2,n ∗ sizei,t + εOt

Here the index n indicates the alive state (1 or 2), discFt is the average discharge253

during the fall when post-spawned trout are expected to migrate downriver (Oct -254

Nov), βO
1,n and βH

4 are slope parameters for size- and discharge effects respectively,255

and εOt are random effect which are independent of state n.256

In a previous analysis of a subset of our data, Haugen et al. (2008) found that257

the probability of using the fish ladder and thus spawning above the dam depended258

on a complex interplay of individual body size and river discharge. We adopted259

their basic model structure and extended it by allowing for random among-year260

variation such that261
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logit(pi,t) = logit(µp)+βp
1 ∗discSt+βp

2 ∗sizei,t+βp
3 ∗discSt∗sizei,t+βp

4 ∗size2i,t+εpt

The discharge covariate used here, discSt, represents the average discharge over the262

summer season when trout undertake their upriver spawning migration (Jul-Oct),263

while sizei,t is the individual length during the upriver spawning migration.264

The last main parameter in the model is reporting rate r and this can be265

expected to vary considerably over a time period of 50 years. To accommodate266

this large expected variation, we estimated 5 average reporting rates µr, each of267

which corresponded to a period of 10 years, and further allowed for the same level268

of random time-variation within each period.269

Extrapolation of individual body size270

Body size is a continuous individual trait that changes over time due to growth.271

Using such a trait as a covariate in a mark-recapture model comes with a missing272

data problem related to imperfect detection, as body size can only be measured273

when an individual is actually captured (Pollock 2002). There are several ways to274

deal with this problem including integrated growth models (Bonner and Schwarz275

2006, Letcher et al. 2015) and inter-/extrapolation using other available data or276

separate models. Here, we adopted the latter approach and used a detailed growth277

model previously developed for the study population of brown trout (Nater et al.278

2018) to impute missing values in the individual size covariate. Specifically, we279

re-fitted the growth model of Nater et al. (2018) to an extended set of growth data280

from 5,158 individuals spanning the years 1952 to 2002 and used the resulting281
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parameter estimates to calculate all missing entries in the body size covariate. We282

chose imputation with an externally run growth model largely due to prohibitive283

computational demands that would result from analyzing the growth- and mark-284

recapture data in an integrated framework. The imputation procedure, as well as285

implementation and results of the growth analysis, are described in more detail in286

Appendix S5.287

Additional model extensions288

In addition to the model structure outlined above, we ran two sets of extended289

models. First, we accounted for the fact that 3,183 (25%) of the 12,875 individuals290

in our analysis were reared in a hatchery and stocked into the wild population291

after smolting. To investigate whether these individuals differed from their wild-292

born conspecifics, we included an effect of individual origin (stocked vs. wild) on293

harvest- and background mortality hazard rates (mH
i,t and mO

n,i,t), as well as and294

ladder usage probability (pi,t).295

Second, we attempted to estimate the temporal correlation between harvest296

and background mortality hazard rates. To do so, we re-expressed the random297

effects on the hazard rates such that298

εHt = σH
t ∗ ξHt , ξHt ∼ Normal(0, 1)

εOt = ξOt + τ ∗ ξHt , ξOt ∼ Normal(0, σO
t )

where σH
t and σO

t are the standard deviations for the random effects on harvest and299

background mortality hazard rates respectively. The scaling parameter τ can then300

be used to calculate the correlation between random effects as C = τ/
√

(σO
t )2 + τ 2.301
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Implementation with Nimble302

We implemented the model in a Bayesian framework using the R package nimble303

(de Valpine et al. 2017). To accommodate the 2-year interval of our analysis, we304

split the data into two sets containing only individuals spawning in even years305

and in odd years respectively. We then formulated the likelihood for both datasets306

separately, but analysed them jointly under the assumption that they share the307

same intercept-, slope-, and variance parameters.308

Markov Chain Monte Carlo (MCMC) sampling of (multistate) mark-recapture309

models traditionally includes not only the parameters underlying state transition310

and observation processes but also the latent states of all individuals i at every311

point in time t (Kéry and Schaub 2011). With extensive datasets (many individ-312

uals, long time periods), such hierarchical models can easily end up with a very313

large number of nodes in the graphical structure, giving rise to prohibitively long314

MCMC runtimes. This problem is exacerbated by individual covariates, as their315

inclusion further increases the number of nodes and also makes the use of reduced316

data representations such as “m-arrays” (e.g. Kéry and Schaub 2011) impossible.317

To reduce the MCMC runtime for the model presented here, we implemented a318

custom likelihood function in nimble for use in the hierarchical model. Building on319

the work of Turek et al. (2016), this custom function analytically integrates over320

the discrete set of latent states to exactly calculate the likelihood of each capture321

history, conditional on values of the model parameters. Here, with a finite set of322

latent states, this integration takes the form of a summation over the latent state323

values. In doing so, we removed a total of 60,641 latent states from the hierarchical324

model, thus reducing the dimension of the posterior distribution (and equivalently325
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the MCMC sampling problem) by that same number. This also serves to improve326

the MCMC mixing of the remaining posterior dimensions, as it no longer relies on327

MCMC integration over the nuisance dimensions. Specifically, for model parame-328

ters θ and capture histories y = {y1, . . . , yn}, the posterior distribution is updated329

according to:330

p(θ|y) ∝ p(θ)
n∏

i=1

p(yi|θ),

where the likelihood p(yi|θ) of capture history yi is calculated using the custom331

likelihood function, and p(θ) is the prior specification. Our implementation extends332

that of Turek et al. (2016) by incorporating individual-specific covariates (in this333

case, body length) into the likelihood calculation. In addition, to further speed up334

computation time, our custom implementation strictly uses linear calculations in335

lieu of the matrix operations used in Turek et al. (2016). This forgoes the need336

to construct multi-dimensional arrays for storing state transition and observation337

probabilities, which were found to be prohibitively large. Using this approach to338

re-define the model resulted in 5.6- and 31.7-fold increases in minimum MCMC339

efficiency relative to the latent state model run in nimble and JAGS respectively.340

Within nimble, re-defining the model also allowed 370 times faster model building,341

twelve times faster compilation, and a 93% reduction in memory usage relative to342

the latent state model. For more details on the comparison of the custom distribu-343

tion and standard approaches, see Appendix S2, as well as the supplementary file344

nimbleDHMM.R for code to define the custom likelihood distribution and to specify345

the complete multistate mark-recapture model.346

For running the model on the trout data we used non-informative priors for347
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all parameters, and made use of nimble’s default set of samplers. The MCMC348

algorithm was run for 25,000 iterations, discarding the first 5,000 samples as burn-349

in. Analyses were run in R 3.5.0(R Core Team 2018) using version 0.6-13 of the350

nimble package (NIMBLE Development Team 2018).351

MODEL IDENTIFIABILITY & VALIDATION352

With increasing model complexity, and particularly when unobserved states are353

included, it is not obvious whether all parameters within a multi-state mark-354

recapture model can be estimated (Cole 2012). Failure to estimate parameters may355

be due to intrinsic parameter redundancy or data limitations. Using an extended356

(hybrid) symbolic method (Cole et al. 2010, Cole 2012) implemented in the com-357

puter algebra package Maple, we looked at intrinsic parameter redundancy in the358

above described model including different covariate- and random effect structures.359

The analyses of parameter redundancy are described in more detail in Appendix360

S3 and accompanying Maple code is also provided as supplementary material.361

Subsequently, we tested the ability of our models to correctly and accurately362

estimate parameters given the available data. This we did by running the model on363

simulated even- and odd-year data sets generated using parameter values similar to364

those obtained from models run on real data. We explored the overall performance365

of models with independent and correlated random effects on sets of simulated366

data with the same number of years and similar number of individuals as present367

in the real data. Additionally, we looked into the sensitivity of model performance368

to variation in the true value of a potentially problematic parameter, the median369

background mortality of the unobservable state (below-dam spawners). The setup370
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and results from model tests with simulated data are described in Appendix S4.371

Results372

MODEL IDENTIFIABILITY AND PERFORMANCE373

We found that in the absence of random effects the only model structures that374

were intrinsically identifiable were those where harvest mortality depended on an375

individual time-varying covariate (e.g. body size) and background mortality was376

either constant or dependent on an environmental covariate (Table S3.1). However,377

all models (irrespective of covariate structure) became identifiable when random378

year effects were included on at least harvest mortality hazard or reporting rates379

(Table S3.1).380

When run on simulated data, the independent random effect model produced381

posterior estimates closely resembling the true parameter values (Appendix S4.2).382

While there was considerable uncertainty in estimates of some parameters (e.g.383

certain random effect levels, covariate effects on mO
2 ), true values were always384

within the central 97% interval of posterior posterior distributions. This was also385

the case for models with correlated random effects. However, we found the esti-386

mation of the coefficient of the random effect correlation (C) to be problematic:387

models tended to correctly predict the sign of the correlation, but uncertainty was388

very large and prohibited drawing conclusions regarding the actual strength of the389

correlation (Appendix S4.4).390

Posterior distributions for all parameters (including random effect levels) es-391

timated from the real data and using the independent random effect model are392
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plotted in Figures S1.2 to S1.10.393

SIZE-DEPENDENT FISH LADDER USAGE394

The probability of using the fish ladder - and thus spawning above the dam - de-395

pended strongly on both individual size and river discharge (Figures 3). Intermediate-396

sized trout (around 550 mm) were most likely to pass the dam under any condi-397

tions. Smaller trout were much more likely to pass the dam when river discharge398

was high, whereas the probability decreased rapidly with length for larger trout ir-399

respective of hydrological conditions. Ladder usage probability fluctuated strongly400

over time (Figures 5c) and was predicted to be slightly lower for stocked (0.722)401

than wild-born (0.739) trout (Figures S1.11).402

CAUSE- AND SIZE-DEPENDENT MORTALITY403

Median mortality hazard rates were estimated at 0.889 (harvest), 0.238 (back-404

ground above-dam), and 0.045 (background below-dam) per two years for average-405

sized trout (670 mm). The resulting probabilities of dying during a 2-year interval406

due to harvest (ΨH
n ) and due to other causes (ΨO

n ) were 0.533 and 0.143 for above-407

dam spawners and 0.578 and 0.029 for below-dam spawners. Harvest mortality408

hazard rate was predicted to be highest for individuals with a length around 500409

mm while background mortality hazard rate was substantial only for small to410

intermediate sized individuals spawning above the dam (up to ∼700mm, Figure411

4a). Background mortality hazard rate of below-dam spawners, on the other hand,412

was predicted to be very low for all except the very largest individuals. Conse-413

quently, survival probability increased with length for all trout, but more so for414
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those spawning above the dam (Figure 4b). River discharge was predicted to in-415

crease background mortality of above-dam spawners only, but this effect was weak416

compared to the effect of length (Figure S1.2). Residual among-year random vari-417

ation was substantial in both harvest- and background mortality (Figures S1.2418

- S1.6), with hazard rates at the 97.5 percentile being 2.86- and 4.85-fold higher419

than at the 2.5 percentile respectively. No strong time-trends were evident in either420

mortality cause (Figures 5a & 5b).421

Model results did not support differences in harvest- or background mortal-422

ity due to trout origin: hazard ratios of stocked and wild trout were 0.999 (95%423

CI [0.846, 1.151]) and 1.081 (95% CI [0.749, 1.427]) for harvest and background424

mortality respectively (Figures S1.11).425

The temporal correlation between harvest and background mortality hazard426

rates was estimated with large uncertainty and a negative posterior mean of -0.237427

(Figure 6).428

TEMPORAL PATTERNS IN REPORTING RATE429

Reporting rates varied considerably over time with averages estimated at 0.791430

(1966-1976), 0.544 (1977-1986), 0.366 (1987-1996), 0.118 (1997-2006), and 0.101431

(2007-2016, Figure S1.2). Within-period among-year variation was estimated at432

0.476 (SD on logit scale) and a clear decrease in reporting rates over the 50-year433

time-period was evident (Figure 5d).434
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Discussion435

Within populations of animals, individuals can differ greatly in their vulnerability436

to various sources of mortality. Such differences can arise when mortality causes437

are related to individual traits such as body size, or when there is heterogeneity in438

exposure to certain mortality causes as a consequence of, for example, reproductive439

state or movement. Accounting for individual differences in cause-specific mortality440

rates is particularly important when some causes are directly related to human441

activities, and in this study we investigated factors determining vulnerability to442

harvest- and background mortality of large brown trout exposed to fishing as well443

as a hydroelectric dam on their migration route.444

We found harvest and background mortality of trout to strongly depend on445

individual body size. Harvest mortality was highest for intermediate-sized trout446

and outweighed background mortality for most of the observed range of body447

sizes. Background mortality of trout spawning above the dam was high for small448

individuals but decreased rapidly with increasing body size. Survival of above-449

dam spawners was positively size-dependent as a consequence, possibly indicating450

a survival cost of passing the dam for small individuals. Survival also generally451

increased with size for trout spawning below the dam (up to ∼800 mm), but data452

limitations made direct comparisons with above-dam spawners difficult.453

Size-dependent survival is well documented for salmonid fishes, but the direc-454

tion and strength of size effects vary widely across populations, years, and life455

history stages for stream-, lake- and marine habitats (Carlson et al. 2008, Drenner456

et al. 2012). The positive size-dependence of survival found in this study aligns457

with previous findings for the study population (Haugen et al. 2008). However, un-458
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like the previous analysis, we were able to separate the underlying size-dependent459

mortality rates with respect to harvest and other causes. The relationship between460

harvest mortality and trout length was non-linear with a peak mortality at around461

500 mm (Figure 4a). This peak is well below the average length in the spawning462

population (670 mm), indicating that smaller mature fish are harvested dispro-463

portionately more in this population. While the bell-shaped relationship between464

vulnerability and body size is consistent with selectivity curves for gillnets (Ham-465

ley 1975), the lack of positive size-dependence may seem surprising given that 43%466

of the reported captures were due to angling in our system and that vulnerabil-467

ity to angling is usually higher for larger fish (Lennox et al. 2017). Nonetheless,468

larger fish may be less vulnerable to angling if they had a lower probability of ap-469

proaching lures due to lower feeding frequency, use of different foraging habitat, or470

preferred prey characteristics differing from those of employed lures (Lewin et al.471

2006, Wilde et al. 2003, Arlinghaus et al. 2008). Alternatively, individual learning472

or cohort selection may have resulted in individuals that have survived to large473

sizes being more cautious towards fishing gear (“timdity syndrome”, Lennox et al.474

2017). Despite the relatively lower harvest mortality of large individuals, however,475

the risk of dying due to fishing was higher than the risk of dying due to any other476

cause for most of the observed size range. This suggests fishing as the main source477

of adult mortality in this population (see Kleiven et al. 2016, for a similar result478

on Atlantic cod).479

Effects of body size on background mortality were predicted to be markedly480

different for trout spawning above and below the dam (Figure 4a). Among above-481

dam spawners, smaller individuals were much more likely to die from causes other482

than harvest relative to larger individuals. Background mortality of small (but483
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not intermediate to large) trout spawning above the dam was also predicted con-484

siderably above the levels of natural mortality typically expected for freshwater485

fish of that size (Lorenzen 1996), indicating that passing the dam itself may come486

with a survival cost for small individuals. Several candidate mechanisms, operat-487

ing during different phases of the spawning migration, could be responsible for488

such a cost. During upriver migration through the fish ladder, for instance, all489

trout were trapped and handled. This may increase stress levels (Sharpe et al.490

1998, Mäkinen et al. 2000) and cause injuries or even death (Harnish et al. 2011),491

and smaller individuals may be more vulnerable to these (Brakensiek and Hankin492

2007). However, this is unlikely to be the main cause here, as trout found dead493

within or in close proximity of the dam were usually larger - not smaller - than494

the average ascending trout (data not shown). During downriver migration after495

spawning above the dam, trout have to swim through the floodgates or the turbine496

shaft as they pass the dam again to reach the lake. On many hydroelectric dams -497

including the Hunderfossen dam - racks are installed in front of turbine intakes to498

prevent downriver migrating fish from entering and being exposed to high turbine499

mortality (e.g. Fjeldstad et al. 2018, Haraldstad et al. 2018). The effectiveness of500

such racks varies across species and sizes, but they appear to work relatively well501

for adult salmonids (Calles et al. 2012). Combining this with our results of neg-502

atively size-dependent mortality of above-dam spawning trout may thus indicate503

that the racks in front of the Hunderfossen turbine indeed protect larger (but not504

smaller) fish from entering and perishing in the turbine shaft. Finally, it is possi-505

ble that some survival costs of passing the dam extend beyond the upriver- and506

downriver passages. Roscoe et al. (2011) found reduced survival of Sockeye salmon507

(Oncorhynchus nerka) that had traversed a dam relative to those that did not508
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and suggested energetic costs of the dam passage as a possible mechanism for this.509

Additional energetic costs may also arise if passing the dam results in migration510

delays (Fjeldstad et al. 2018), and particularly if such delays forced individuals to511

overwinter in the river instead of the lake as has been observed in our population.512

Since energy reserves scale positively with body size (Peters and Peters 1986) such513

energetic costs may be heavier for smaller individuals, possibly contributing to the514

negatively size-dependent background mortality predicted by the model.515

We found a decrease in background mortality with body size only for above-516

but not below-dam spawners (Figure 4a). Reliably estimating size-dependence in517

background mortality of below-dam spawners did in fact prove difficult not only518

because below-dam spawners were unobservable, but also because almost no small-519

to intermediate-sized trout were spawning below the dam due to strong size de-520

pendence in ladder usage probability (Figure 3). As a consequence of this skew in521

the size-distribution towards larger individuals, model predictions of below-dam522

background mortality are not very reliable for smaller trout. Similarly, any com-523

parisons of background mortality and survival of same-size above- vs. below-dam524

spawners will only be informative for a relatively narrow size range (∼ 700 - 900525

mm). Within this range, there is considerable overlap in model predictions for526

above- and below-dam spawners and more detailed studies - possibly involving527

multi-annual radio- or satellite telemetry - will be necessary to properly quantify528

size-dependent survival costs of passing the dam.529

Over the 50-year study period, there was substantial temporal variation in530

cause-specific mortality (Figure 5a & b). Fluctuations in harvest mortality are531

to be expected over such long time-periods both due to among-year differences532

in harvest pressure (total number of fishers, amount of time spent fishing, etc.)533
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and differences in exposure and vulnerability of the fish (due to direct and indi-534

rect effects of environmental conditions , Lennox et al. 2017). While background535

mortality remained relatively low over time, it did show a marked increase around536

1997-2001, which coincides with a documented severe disease outbreak in the study537

population (Saprolegnia spp. fungal infections, possibly in combination with or as538

a result of ulcerative dermal necrosis, Johnsen and Ugedal 2001). Notably, harvest539

mortality was also relatively high during this period (and survival consequently540

quite reduced, Figure S1.12), highlighting the possibility for disease to not only541

increase background mortality but also affect vulnerability to fishing.542

Despite harvest and background mortality increasing simultaneously during543

the disease outbreak period, models predicted that the correlation between the544

two mortality causes was more likely to be negative than positive (Figure 6). A545

negative correlation coefficient indicates compensatory mortality: increased harvest546

mortality leads to a reduction in background mortality (possibly due to reduced547

population density). Evidence for compensatory mortality has been found in other548

fish populations (Allen et al. 1998, Fernández-Chacón et al. 2017, Johnston et al.549

2007), and while we acknowledge that the data used here is neither sufficient nor550

particularly suitable for more in-depth investigations into potential compensatory551

mortality and its underlying mechanisms, we consider this a promising venue for552

future research.553

The probability of a trout using the fish ladder to pass and spawn above the554

Hunderfossen dam varied greatly depending on individual body size and river dis-555

charge (Figure 3). Consistent with previous results (Haugen et al. 2008), ladder556

usage probability was predicted to be highest for intermediate-sized trout, and557

especially larger trout were unlikely to use the fish ladder. Furthermore, small to558
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intermediate-sized trout had an increased probability of using the fish ladder when559

water flow was relatively high. Both surprisingly low fish ladder usage by large in-560

dividuals and variable effects of hydrological conditions have been documented in561

other salmonid populations (Caudill et al. 2007, Jonsson and Jonsson 2002). How-562

ever, many characteristics influencing attractiveness and efficiency of fish ladders563

are site-specific (Fjeldstad et al. 2018), and more detailed studies are necessary to564

explain the patterns observed in this particular system. Since using the fish ladder565

is prerequisite to accessing the spawning habitat above the dam and may thus have566

considerable impacts on population dynamics, further studies should also aim to567

identify additional environmental and individual factors (e.g. temperature, disease568

status) responsible for the large among-year variation in ladder usage probability569

(Figure 5c).570

While our model predicted no substantial time trends in either mortality com-571

ponents or ladder usage probability, fisher’s reporting rate of harvested trout was572

predicted to have decreased substantially over the 50-year study period (Figure573

5d). Separately estimating (harvest) mortality and reporting rate causes problems574

when analysing tag-recovery data and usually requires auxiliary data (Pollock et al.575

2004); by using data from individuals recaptured both alive and dead and allowing576

for flexible temporal variation in parameters, we were able to not only estimate577

the average reporting rates but also uncover this striking decrease of reporting rate578

over time. This is not an uncommon pattern in fish tagging studies (Piccolo et al.579

2012) and may have been caused by waning public interest in the study as fish-580

ers often received neither personal nor official feedback following the reporting of581

tags. Separating time-dependent reporting rate from other model parameters also582

had important consequences for the interpretation of temporal patterns in general.583
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Previously, Haugen et al. (2008) analysed part of this data with a “traditional” tag584

return model (Brownie et al. 1985) and found the joint probability of being har-585

vested and reported to decrease over time. They interpreted this pattern under586

the assumption of constant reporting rate and concluded that harvest mortality587

had decreased over time and background mortality had increased (as they found588

no trend in survival estimates). Here, on the contrary, we were able to show ex-589

plicitly that reporting rate has decreased over time while there was no clear trend590

in either of the two sources of mortality. This result has important implications for591

tag recovery studies in general: assumptions of constant reporting rate have to be592

assessed carefully when drawing conclusions about mortality patterns over time,593

particularly when there are no rewards or other incentives for reporting tags.594

Adult survival and its determinants are understudied but important compo-595

nents of salmonid life history (Drenner et al. 2012), and here we have shown that in-596

dividual differences in body size influence survival through effects on both harvest-597

and background mortality, as well as spawning location. A trout’s origin, on the598

other hand, did not substantially influence its survival or probability to migrate599

past the dam (Figure S1.11). While adverse consequences of hatchery rearing are600

widely documented in salmonids (e.g Einum and Fleming 2001, Fleming and Pe-601

tersson 2001), these may be most pronounced during early life (McLean et al.602

2003). Given that all marked individuals in our study populations have survived603

up to at least the first spawning migration, the lack of differences between wild-604

born and stocked trout is thus not unexpected and aligns with findings from other605

studies focusing on adult fish (Caudill et al. 2007, Thorstad et al. 2007).606

While our analyses did include body size, spawning location, and origin, there607

are other sources of individual heterogeneity that we did not account for here.608
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These include - but are not limited to - disease state, birth/smolt cohort, and sex.609

Evidence for potential effects of disease state came from the model predictions610

themselves in the form of lower survival and ladder usage during the time period611

of a known disease outbreak. Diseased individuals are likely to have higher mortal-612

ity and possibly compromised reproductive output (Bakke and Harris 1998), but613

investigating the effects of disease on the study trout population would require614

individual-level data on disease states, which is not available. Cohort effects are615

considered to originate from differences in environmental conditions during early616

life (Lindström 1999). Long-term consequences of cohort effect for adult survival617

have been found in stream-dwelling marble trout (Salmo marmoratus, Vincenzi618

et al. 2016), but may be less influential for the studied trout, which leave their619

riverine birth habitat for the large lake after 2-7 years. Unfortunately, we were not620

able to investigate this here as birth/smolt cohort was only known for a small sub-621

set of the population (22%) that had been aged using scales (Aass et al. 2017). Sex622

differences in size-dependent fish survival are also not uncommon (e.g. Haraldstad623

et al. 2018, Haugen et al. 2007) and sex effects have also attracted attention in the624

context of migration past hydroelectric dams (Roscoe et al. 2011, Caudill et al.625

2007). Information on sex is available for the majority of the marked Hunder trout,626

but detailed investigations into sex differences in growth, cause-specific mortalities627

and ladder usage probabilities were beyond the scope of this article.628

Another aspect of the present study that would profit from further investigations629

is among-year variability in cause-specific mortalities and ladder usage, or - more630

specifically - the factors responsible for it. The only environmental covariate in-631

cluded in our analyses was river discharge, and all other temporal variation (Figure632

5) is of unknown origin. Among extrinsic environmental influences, water tempera-633
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ture has been documented to have substantial effects on various aspects of salmonid634

demography, including survival (Letcher et al. 2015, Jonsson and Jonsson 2002).635

Indeed, (Haugen et al. 2008) found indications that water temperature positively636

affected both survival and ladder usage probability in the studied trout population.637

In this analysis, we refrained from including river and lake temperature as covari-638

ates because the available measurement time series do not cover the earlier years639

of the study. Nonetheless, future efforts to include temperature into the model640

presented here (possibly as partially observed, latent variables with auxiliary pre-641

dictors) will certainly be worthwhile, especially given the strong trend of increasing642

temperature in lake Mjøsa (Hobæk et al. 2012) and the potentially strong impacts643

of chronic and acute temperature increases on salmonid populations (Hague et al.644

2011). Food availability is another factor deserving consideration in future studies.645

Korman et al. (2017), for example, found prey biomass to be a key driver of growth646

and survival in a strongly fluctuating population of rainbow trout Oncorhynchus647

mykiss. Unfortunately, no time-series data exists on the abundance of prey fish648

species in our system, which made investigations impossible in this study. Lack of649

suitable abundance data on the studied population similarly precluded investigat-650

ing potential impacts of intra-specific population density, but density dependence651

in salmonids often occurs primarily during the juvenile and not adult life stages652

(Jonsson et al. 1998, Vincenzi et al. 2016).653

Finally, while the fact that harvest mortality generally outweighs background654

mortality indicated that fishing has large impacts on this population, the present655

analysis of adult survival represents only one part of the life cycle of the Hun-656

der trout. It is therefore not sufficient for making inferences about the drivers of657

changes in abundance and trait dynamics at the population level. However, com-658
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bining the present model with estimates for growth, reproduction, and early life659

history in a size structured population model (e.g. an integral projection model,660

Ellner and Rees 2006), will allow to gain a more thorough understanding of the661

consequences of size-dependent harvest mortality, background mortality, and lad-662

der usage probability, the impacts of among-year variation in vital rates, and the663

contributions of stocked trout to the population.664

Conclusion665

Multi-state mark-recapture-recovery models are powerful tools for estimating and666

understanding survival in animal populations that experience mortality from both667

natural and anthropogenic causes (Schaub and Pradel 2004). Here, we have not668

only separated harvest- from background mortality but also accounted for individ-669

ual differences in vulnerability due to body size and migration-related exposure670

to a hydroelectric dam. Within this framework, we used a recently developed re-671

parameterisation of mark-recovery models using hazard rates instead of survival or672

mortality probabilities (Ergon et al. 2018). This allowed to estimate body size- and673

environmental effects on harvest- and background mortalities without confounding674

them, and provided an intuitive way to also estimate the correlation between two675

sources of mortality within the mark-recapture model. While formulation of the re-676

sulting models in a Bayesian framework was straightforward, the inclusion of body677

size as an individual time-varying covariate came with substantial computational678

costs. These we were able to overcome by capitalizing on the flexibility of the novel679

MCMC sampling compiler nimble, and writing a highly efficient custom distribu-680

tion that is easily applicable for any type of multistate mark-recapture model.681
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Last, but not least, we have shown that identifiability issues that are common682

to multiple mortality cause mark-recapture-recovery models (Schaub and Pradel683

2004) can be overcome through the inclusion of appropriate time random effects.684

Such random effects can only be estimated when data are collected over a sufficient685

number of years, and this highlights the importance of investing in the (contin-686

ued) collection of individual-based data over long time periods (Clutton-Brock and687

Sheldon 2010).688
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Figures924

Figure 1: Illustration of the biennial spawning cycle and mark-recapture scheme of
the studied trout population. All individuals are marked in the fish ladder while
passing the dam on their upriver spawning migration. Two years later they may be
recaptured on the next spawning migration, but only if they pass the fish ladder
to spawn above the dam. Trout remain in the lake and are unobservable during
non-spawning years.
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Figure 2: Design of the trout mark-recapture-recovery model (transitions on two-
year intervals). White states are alive, grey stages are dead. Solid borders indicate
stages that are at least partially observable, whereas dashed borders indicate un-
observable stages. Sn = survival probabilities. ΨH

n / ΨO
n = harvest / background

mortality probabilities. p = ladder usage probability. Indices for individual i and
time t are omitted here for simplicity.
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Figure 3: Predictions of the effects of body size on ladder usage probability at
different levels of river discharge. Blue = low discharge (mean − SD), black =
medium discharge (mean), red = high discharge (mean + SD). Solid lines represent
the mean predictions while dashed lines indicate the 95% credibility intervals.

46

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 26, 2019. ; https://doi.org/10.1101/544742doi: bioRxiv preprint 

https://doi.org/10.1101/544742
http://creativecommons.org/licenses/by-nd/4.0/


400 500 600 700 800 900 1000

Size (mm)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

M
or

ta
lit

y 
ha

za
rd

 r
at

e 
(2

 y
ea

rs
−1

 )

a)

Harvest

Background
(above dam)

Background
(below dam)

400 500 600 700 800 900 1000

Size (mm)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
ur

vi
va

l p
ro

ba
bi

lit
y 

(2
 y

ea
rs

)

b)

Above dam

Below dam

Figure 4: Predictions of the effects of body size on a) harvest and background
mortality hazard rates and b) survival probabilities (under consideration of both
mortality sources). Red and blue curves apply to individuals that have last spawned
above and below the dam respectively. The black curve (harvest) applies to all indi-
viduals irrespective of their last spawning location. Solid lines represent the mean
predictions while dashed lines indicate the 95% credibility intervals. The boxplot
illustrates the informative data range: red = size distribution of individuals cap-
tured in the fish ladder (above-dam spawners), blue = simulated size distribution
of below-dam spawners after surviving for two years following marking and subse-
quently not using the fish ladder.
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Figure 5: Estimates for time-dependent a) harvest mortality hazard rate, b) back-
ground mortality hazard rate (above-dam spawners), c) ladder usage probability,
and d) reporting rate (calculated using random variation and discharge effects).
Solid lines represent the mean predictions, dashed lines indicate the 95% credibility
intervals. y-axes for panels a) and b) are log-scaled.
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Figure 6: Posterior distributions of coefficient C of the temporal correlation be-
tween harvest and background mortality hazard rates estimated by the model.
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