

1 Comparative genome analysis of 12 *Shigella sonnei* strains: virulence, resistance, and their
2 interactions

3

4 **Running Title**

5 Virulence and resistance in *Shigella sonnei*

6

7 Zuobin Zhu^{1#}, Liang Wang^{2,3#}, Feng Gu^{4#}, Ying Li⁵, Heng Zhang⁶, Ying Chen⁵, Jiajia Shi⁷,
8 Ping Ma^{5, 8}, Bing Gu^{5, 8*}

9

10 ¹Department of Genetics, Research Facility Center for Morphology, Xuzhou Medical
11 University, Xuzhou 221004, China

12 ²Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University,
13 Xuzhou 221004, China

14 ³Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, Xuzhou
15 Medical University, Xuzhou 221000, China

16 ⁴Clinical laboratory, Xuzhou tumor hospital, Xuzhou 221004, China

17 ⁵Medical Technology School of Xuzhou Medical University, Xuzhou 221004, China

18 ⁶Jining Psychiatric Hospital, Jining 272051, China

19 ⁷School of Transportation, Nantong University, Nantong 226019, China

20 ⁸Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University,
21 Xuzhou 221006, China

22

23 [#]These authors contribute equally to the study.

24

25 ^{*}For all correspondence, please contact Prof. Bing Gu. Department of Laboratory Medicine,
26 Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China. E-mail:
27 gb20031129@163.com.

28

29

30

31

32

33

34

35

36

37

38 **Abstract**

39

40 Shigellosis is a highly infectious disease that are mainly transmitted via faecal-oral contact of
41 the bacteria *Shigella*. Four species have been identified in *Shigella* genus, among which *S.*
42 *flexneri* is used to be the most prevalent species globally and commonly isolated from
43 developing countries. However, it is being replaced by *S. sonnei* that is currently the main
44 causative agent for dysentery pandemic in many emerging industrialized countries such as Asia
45 and the Middle East with unclear reasons. For a better understanding of *S. sonnei* virulence and
46 antibiotic resistance, we sequenced 12 clinical *S. sonnei* strains with varied antibiotic-
47 resistance profiles collected from four cities in Jiangsu Province, China. Phylogenomic
48 analysis clustered antibiotic sensitive and resistant *S. sonnei* into two distinct groups while pan-
49 genome analysis reveals the presence and absence of featured genes in each group. Screening
50 of 31 classes of virulence factors found out that type 2 secretion system is doubled in resistant
51 strains. Further principle component analysis based on the interactions between virulence and
52 resistance indicated that abundant virulence factors are associated with higher resistant
53 phenotypes. The result present here is based on statistical analysis of a small sample size and
54 serves basically as a guidance for further experimental and theoretical studies.

55

56

57 **Keywords** *Shigella sonnei*, Virulence factor, Comparative genomics, Antibiotics resistance,
58 Shigellosis

59

60

61

62

63

64

65

66

67

68

69

70

71

72 **Introduction**

73

74 Shigellosis is a life-threatening diarrheal infection (dysentery) and is currently a major global
75 burden. Although four species fall into the genus of *Shigella*, *S. sonnei* and *S. flexneri* are now
76 accounting for the most dysentery worldwide while the other two strains *S. dysenteriae* and *S.*
77 *boydii* experience inexplicable absence¹. Although *S. flexneri* is the leading cause of endemic
78 shigellosis in developing countries with around 75% episodes, *S. sonnei* is increasing in many
79 rapidly developing countries due to the improvement of socioeconomic conditions ^{1,2}. The
80 rapid expansion of *S. sonnei* have been attributed to a couple of speculative reasons, such as
81 passive immunization caused by *Plesiomonas shigelloides* and protected niche provided by
82 ubiquitous amoeba species *Acanthamoeba castellanii*². In addition, *S. sonnei* is more capable
83 of incorporating functional virulence factors (VFs) and/or adept at acquiring antibiotic
84 resistance (AR) from other bacteria^{1,3}. Hence, enhanced survival advantages. However, a
85 recent study showed that *S. sonnei* is not able to use amoebae as a protective host to enhance
86 its environmental survival, which makes the explanation of *A. castellanii* protection for *S.*
87 *sonnei* expansion compromised⁴. On the other hand, antibiotic resistance is thought to be
88 associated with a fitness cost⁵. Thus, resistance and virulence are historically thought to be
89 negatively correlated⁶. However, recent studies indicated that antibiotic selection pressure and
90 genetic associations could lead to the co-occurrence of resistance and virulence in multiple
91 pathogenic bacteria⁷.

92

93 In this study, we sequenced 12 clinically isolated strains with diverse antibiotic resistance
94 phenotypes. Sequenced *S. sonnei* genomes were aligned and compared with the reference strain
95 *S. sonnei* 53G. The relationship between the antibiotic resistance and virulence were studied
96 by combining antibiotic resistance profiles with the distribution of putative virulence factors.
97 Here, what we mean by virulence factors is gene products that enable a microorganism to
98 establish itself on or within a host of a particular species, facilitating its abilities to cause
99 diseases, which are divided into 4 categories and 31 functional groups, such as bacterial toxins,
100 cell surface proteins, and hydrolytic enzymes, *etc*⁸. All the virulence factors come from 32
101 major bacterial pathogens including the *Shigella* genus. By screening and comparing the
102 genomes of sensitive and antibiotic resistant *Shigella sonnies* using this hierarchical set of VF
103 sequence models, we attempted to quantify virulence by the number of virulence factors in
104 specific functional groups. Principal component analysis was then performed to cluster the
105 resistant and sensitive strains, separately, via incorporating both the number of virulence

106 factors and the degree of antibiotic resistance. Genes uniquely associated with sensitive and
107 resistant strains were also studied. Based on these analyses, we could get a better understanding
108 of how virulence and antibiotic resistance are interacted.

109

110 **Results**

111

112 **Genome annotation and comparison**

113

114 General features of 12 *Shigella sonnei* genomes are presented in **Supplementary Table 1**,
115 which include information about resistance profiles to 9 previously mentioned antibiotics,
116 genome size, contigs, coding sequences, and RNAs (tmRNA, tRNA, rRNA). All strains were
117 sensitive to Norfloxacin and most strains were susceptible to Amoxicillin/Clavulanic acid.
118 Genome size ranges from 4.49 Mbps to 4.76Mbps. The number of CDSs ranges from 4328
119 (S13029) to 4646 (S14049). All strains have a single tmRNA coding gene. The number of
120 ribosome RNA (rRNA) and transfer RNA (tRNA) among strains varies slightly with no
121 significant difference. All the genomes were aligned against reference genome S. sonnei G53
122 in circular form via BRIG in terms of distribution of GC content and sequence similarity in
123 **Supplementary Figure 1**⁹. Absence of large blocks in both sensitive and resistant strains were
124 observed, which requires further investigation for their biological meanings.

125

126 **Pan- and phylo-genomic analysis**

127

128 The total pan-genome for the 12 *S. sonnei* strains include 5608 protein CDSs. Of those, 3893
129 (69.42% of total CDSs) are core genes across all 12 species while 1715 (30.58% of total CDSs)
130 constitute the accessory fractions, which are unique to each genome. Strain S13029 has the
131 lowest number of the unique genes (484 CDSs) and S14031 has the highest number of unique
132 genes (803 CDSs) (**Supplementary Figure 2**). Interestingly, both strains are completely
133 sensitive to or only resistant to one of all tested antibiotics. Further comparison of all the 12 *S.*
134 *sonnei* strains give complete map of gene presence and absence in each genome (**Dataset 1**).
135 By comparing sensitive strains with resistant strains, unique genes associated with the two
136 groups were identified and annotated based on sequence homology (**Supplementary Table 2**),
137 respectively. These genes could serve as a guidance for a better understanding of the
138 differences between the two *S. sonnei* groups in terms of their virulence and resistance.
139 Phylogenomic analysis based on the concatenation of 3893 core genes clearly classified the 12

140 strains into two distinct groups (**Figure 1**). Antibiotic sensitive strains S13029 and S14031 are
141 distantly related with other 10 antibiotic resistant strains, which suggested distinct difference
142 between the two groups in terms of evolutionary pathway.

143

144 **Interactions between virulence and resistance**

145

146 In order to investigate the correlations between resistance and virulence, we divided all
147 virulence factors into 4 categories and 31 groups based on VFDB's instructions as specified
148 above⁸, which were then used to identify the presence and absence of virulence factors in all
149 studies genomes. Distribution patterns of virulence factors and their abundance in each strain
150 were presented in **Table 1**. Nine groups of virulence factors are completely missing in all *S.*
151 *sonnei* while three groups of virulence factors are equally distributed in each genome. Among
152 the rest 19 groups of virulence factors, Type 4 pili and T2SS shows apparent differences
153 between sensitive and resistant groups. If only strain S13029 was considered, the number of
154 most groups of virulence factors is reduced except for the three groups Chaperone usher,
155 Flagella, and T3SS. Principal component analysis was also performed by combining antibiotic
156 resistance profiles and distributions of virulence factors, according to which, sensitive strains
157 S13029 and S14031 are separately clustered when compared with other resistant strains
158 (**Supplementary Figure 3**). In addition, S13029 is most isolated due to its tight correlation
159 between reduced virulence and resistance loss.

160

161 Further analysis in terms of unique genes associated with sensitive strains or resistant strains
162 were also analysed, which identified 26 genes specifically associated with *Shigella sonnei*
163 sensitive strains and 39 unique genes with resistant strains (**Supplementary Table 2**).
164 Investigation into these genes could shed light on a better understanding of physiological
165 differences between resistant and sensitive *S. sonnei* strains. Genes with no assigned names are
166 generally hypothetical proteins and will not be considered in this study.

167

168 **Discussion**

169

170 In this study, 12 newly isolated *S. sonnei* strains were sequenced and assembled into complete
171 genomes, which were then well annotated and thoroughly analysed. It is generally accepted
172 that antibiotic resistance causes fitness costs such as slow growth rate¹⁰ and virulence
173 attenuation¹¹. However, recent studies are challenging this view by providing evidence in

174 which drug resistance leads to increased pathogenicity¹¹. This study performed a
175 bioinformatics analysis by focusing on the interplays between virulence and resistance based
176 on 12 newly sequenced *S. sonnei* strains. Through the distribution of functional groups of
177 virulence factors in *S. sonnei* strains, specific patterns were observed. Nine virulence factor
178 groups were completely absent in all *S. sonnei* strains while another three groups have equal
179 number of virulence factors in all strains (**Table 1**). Thus, their interactions with antibiotic
180 resistance were not considered. As for the rest 19 groups of virulence factors, type 4 pili and
181 T2SS genes are skewedly present in more resistant *S. sonnei* strains when compared with the
182 two sensitive strains S13029 and S14031. Type 4 pili is a bacterial extracellular appendage
183 essential for attachment to host cells while T2SS is responsible for the secretion of numerous
184 degradative enzymes and toxins for bacterial survival¹². The reasons for their association with
185 high antibiotic resistance are worthy of further exploration. Considering the versatility of
186 virulence mechanisms, PCA was performed to study the interactions between virulence and
187 resistance. It was clearly shown that completely sensitive strain S13029 and single-resistant
188 strain S14031 are distantly separated from other resistant strains that cluster together
189 (**Supplementary Figure 3**). The statistical analysis provided a theoretical support for the view
190 that high virulence is associated with high resistance¹¹. However, what the mechanisms are
191 behind this putative relationship is still unclear and requires more efforts to solve the puzzle.
192

193 On the other hand, pangenome analysis also revealed vast genome heterogeneity within the
194 same strains of *S. sonnei* according to the identified core and cloud genes (**Supplementary**
195 **Figure 1**). These cloud genes, more precisely known as strain specific genes, could reveal
196 bacterial characteristics and dynamics, leading to a better understanding of physiological,
197 pathological, and epidemiological features of *S. sonnei*¹³. In specificity, all unique genes that
198 are respectively associated with sensitive and resistant strains were listed in **Supplementary**
199 **Table 2**. Apparent differences could be observed from the comparisons of these gene functions.
200 However, more theoretical and experimental studies should be performed on a larger scale of
201 datasets in order to get a better understanding of how virulence and resistance are interacted.
202

203 Conclusion

204
205 In this study, *S. sonnei* sensitive strains was clearly separated from resistant strains based on
206 phylogenomic analysis. By combining antibiotic resistance profiles with the distribution of
207 putative virulence factors, we explored the relationships between virulence and resistance.

208 Reduced number of putative virulence factors, especially for the group of Type 4 pili and T2SS,
209 was observed to be related with antibiotic sensitivity. Principal component analysis also
210 clustered the resistant and sensitive strains, separately, via incorporating both the abundance
211 of virulence factors and the degree of antibiotic resistance. Finally, genes uniquely associated
212 with sensitive and resistant strains were also reported. In order to better understand how
213 resistance and virulence are interacted, further theoretical and experimental studies should be
214 performed.

215

216 **Methods and materials**

217

218 **Bacterial isolates and DNA extraction**

219

220 12 *Shigella sonnei* strains were isolated from different patients with either diarrhea or dysentery
221 in four cities in Jiangsu province, China. Resistance profile to 9 antibiotics (AMC, CFT, CTX,
222 GEN, NAL, NOR, TBT and SMZ) as previously described for each strain was provided by
223 Jiangsu Provincial CDC based on routine screening. Isolates of *Shigella flexneri* were plated
224 on trypticase soya agar (TSA). Picked-up single colony was then inoculated in 5ml trypticase
225 soya broth (TSB) and incubated overnight at 37 °C with shaking rate of 200 rpm. DNA isolation
226 was performed using Easy-DNA™ Kit for genomic DNA isolation (Invitrogen Life
227 Technologies, Carlsbad, CA, USA)

228

229 **Genome sequencing, assembly, and annotation**

230

231 Sequencing and assembly. Genomes of the 12 *Shigella sonnei* strains were performed using
232 Illumina Hiseq4000 by generating multiplexed paired-end libraries with an average insert size
233 of 300 bp. In order to obtain more accurate and reliable results in subsequent bioinformatics
234 analysis, the raw data will be treated: (1) Read1 selects 1 bp- 150 bp, read2 selects 1 bp- 150
235 bp; (2) Remove reads with a certain proportion of low quality (20) bases (40% as default,
236 parameter setting at 60 bp); (3) Remove reads with a certain proportion of Ns (10% as default,
237 parameter setting at 15 bp); (4) Remove adapter contamination (15 bp overlap between adapter
238 and reads as default, parameter setting at 15 bp); (5) Remove duplication contamination. We
239 assemble the short reads into genome sequence using SOAPdenovo¹⁴. De novo assembly of
240 human genomes with massively parallel short read sequencing¹⁵. Key parameter K setting at
241 89 is determined by optimal assembly result for all the 12 strains. Then the assembly result is

242 local assembled and optimized according to paired-end and overlap relationship via mapping
243 reads to Contig. The detailed description of assembly results were provided in Supplementary
244 Table 4.

245

246 Obtained sequences were assessed via FastQC, assembled via SPAdes¹⁶, and reordered via
247 MAUVE¹⁷ based on reference genome *S. sonnei* 53G by following Edwards and Holt's
248 beginner's guide to comparative bacterial genome analysis using next-generation sequence
249 data (Version 2)¹⁸. For the annotation process, assembled DNA sequences of the drafted
250 genomes from the 12 isolates were run through an automatic annotation pipeline via Prokka
251 (rapid prokaryotic genome annotation)¹⁹.

252

253 **Pan- and phylo-genomic analysis**

254

255 Core-/pan-genome analysis was performed by using standalone software Roary¹⁸. Core genes
256 (99%≤strains≤100%), soft core genes (95%≤strains<99%), shell genes (15%≤strains<95%)
257 and cloud genes (0%≤strains<15%) were calculated. Core and unique genes in the genomes
258 were illustrated in Venn diagram. Presence and absence of all genes in each genome were
259 summarized in **Supplementary Table 1**. *S. sonnei* genomes were visualized in circular form
260 by comparing to the reference genome *S. sonnei* 53G via standalone software BRIG⁹. A
261 Newick tree for 12 *Shigella sonnei* strains, was generated based on 3893 core genes in each
262 genome by the phylogenomic analysis package FastTree²¹. The tree was then visualized
263 through online webserver interactive Tree of Life (iTOL)²².

264

265 **Interactions between virulence and resistance**

266

267 31 functional groups of bacterial virulence factors belonging to four categories were
268 downloaded from the Virulence Factor Database (VFDB)⁸ and used to screen translated CDSs
269 of the 12 *Shigella sonnei* strains via phmmmer command (full-length alignment with e-value less
270 than 1e-5) in HMMER package²³. For each group in each proteome, multiple homologous
271 sequences of virulence factors were found, which were then processed to get rid of redundant
272 sequences. MDR (resistance to more than 1 antibiotics) and sensitive *S. sonnei* strains
273 (resistance to 0 or 1 antibiotics) were compared in terms of the abundance of specific groups
274 of virulence factors via Python scripts (available under request). Principal component analysis

275 was performed by incorporating both antibiotic resistance profiles and distribution of virulence
276 factors.

277

278 **Acknowledgements**

279

280 This work was supported by the National Natural Science Foundation of China (81871734,
281 81471994), Jiangsu Provincial Natural Science Foundation (BK20151154, BK20180997),
282 Jiangsu Provincial Medical Talent (ZDRCA2016053), Six Talent Peaks Project of Jiangsu
283 Province (WSN-135), Advanced Health Talent of Six-one Project of Jiangsu Province
284 (LGY2016042), and Jiangsu Provincial Commission of Health and Family Planning Research
285 Project (H201631), Startup Foundation for Excellent Researchers at Xuzhou Medical
286 University (No. D2016007), The Natural Science Foundation for the Jiangsu Higher Education
287 Institutions of China (No. 16KJB180028), Innovative and Entrepreneurial Talent Scheme of
288 Jiangsu Province (2017), The Natural Science Foundation of the Jiangsu Higher Education
289 Institutions of China (No. 17KJB360014).

290

291 **References**

- 292 1 Kotloff, K. L., Riddle, M. S., Platts-Mills, J. A., Pavlinac, P. & Zaidi, A. K. M. Shigellosis. *The*
293 *Lancet* **391**, 801-812, doi:10.1016/s0140-6736(17)33296-8 (2018).
- 294 2 Clements, A. C. A., Thompson, C. N., Duy, P. T. & Baker, S. The Rising Dominance of
295 *Shigella sonnei*: An Intercontinental Shift in the Etiology of Bacillary Dysentery. *PLOS*
296 *Neglected Tropical Diseases* **9**, doi:10.1371/journal.pntd.0003708 (2015).
- 297 3 Kozyreva, V. K. *et al.* Recent Outbreaks of Shigellosis in California Caused by Two Distinct
298 Populations of *Shigella sonnei* with either Increased Virulence or Fluoroquinolone Resistance.
299 *mSphere* **1**, doi:10.1128/mSphere.00344-16 (2016).
- 300 4 Watson, J., Jenkins, C., Clements, A. & Schottel, J. L. *Shigella sonnei* Does Not Use Amoebae
301 as Protective Hosts. *Applied and Environmental Microbiology* **84**, doi:10.1128/aem.02679-17
302 (2018).
- 303 5 Guillard, T., Pons, S., Roux, D., Pier, G. B. & Skurnik, D. Antibiotic resistance and virulence:
304 Understanding the link and its consequences for prophylaxis and therapy. *BioEssays* **38**, 682-
305 693, doi:10.1002/bies.201500180 (2016).
- 306 6 Cameron, D. R. *et al.* Impact of daptomycin resistance on *Staphylococcus aureus* virulence.
307 *Virulence* **6**, 127-131, doi:10.1080/21505594.2015.1011532 (2015).
- 308 7 Zhang, L. *et al.* Effects of Selection Pressure and Genetic Association on the Relationship
309 between Antibiotic Resistance and Virulence in *Escherichia coli*. *Antimicrobial Agents and*
310 *Chemotherapy* **59**, 6733-6740, doi:10.1128/aac.01094-15 (2015).
- 311 8 Chen, L. VFDB: a reference database for bacterial virulence factors. *Nucleic Acids Research*
312 **33**, D325-D328, doi:10.1093/nar/gki008 (2004).

- 313 9 Alikhan, N.-F., Petty, N. K., Ben Zakour, N. L. & Beatson, S. A. BLAST Ring Image Generator
314 (BRIG): simple prokaryote genome comparisons. *BMC Genomics* **12**, doi:10.1186/1471-2164-
315 12-402 (2011).
- 316 10 Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it possible to reverse
317 resistance? *Nature Reviews Microbiology* **8**, 260-271, doi:10.1038/nrmicro2319 (2010).
- 318 11 Geisinger, E. & Isberg, R. R. Interplay Between Antibiotic Resistance and Virulence During
319 Disease Promoted by Multidrug-Resistant Bacteria. *The Journal of Infectious Diseases* **215**,
320 S9-S17, doi:10.1093/infdis/jiw402 (2017).
- 321 12 Pizarro-Cerdá, J. & Cossart, P. Bacterial Adhesion and Entry into Host Cells. *Cell* **124**, 715-
322 727, doi:10.1016/j.cell.2006.02.012 (2006).
- 323 13 Yang, F. Genome dynamics and diversity of *Shigella* species, the etiologic agents of bacillary
324 dysentery. *Nucleic Acids Research* **33**, 6445-6458, doi:10.1093/nar/gki954 (2005).
- 325 14 Li, R. , Zhu, H. , Ruan, J. , Qian, W. , Fang, X. , & Shi, Z. , et al. (2010). De novo assembly of
326 human genomes with massively parallel short read sequencing. *Genome Research*, **20**(2), 265-
327 272, doi:10.1101/gr.097261.109.
- 328 15 Li, R. , Li, Y. , Kristiansen, K. , & Wang, J. . (2008). Soap: short oligonucleotide alignment
329 program. *Bioinformatics*, **24**, 713-714, doi:10.1093/bioinformatics/btn025.
- 330 16 Bankevich, A. *et al.* SPAdes: A New Genome Assembly Algorithm and Its Applications to
331 Single-Cell Sequencing. *Journal of Computational Biology* **19**, 455-477,
332 doi:10.1089/cmb.2012.0021 (2012).
- 333 17 Darling, A. C. E. Mauve: Multiple Alignment of Conserved Genomic Sequence With
334 Rearrangements. *Genome Research* **14**, 1394-1403, doi:10.1101/gr.2289704 (2004).
- 335 18 Edwards, D. J. & Holt, K. E. Beginner's guide to comparative bacterial genome analysis using
336 next-generation sequence data. *Microbial Informatics and Experimentation* **3**,
337 doi:10.1186/2042-5783-3-2 (2013).
- 338 19 Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068-2069,
339 doi:10.1093/bioinformatics/btu153 (2014).
- 340 20 Page, A. J. *et al.* Roary: rapid large-scale prokaryote pan genome analysis. *Bioinformatics* **31**,
341 3691-3693, doi:10.1093/bioinformatics/btv421 (2015).
- 342 21 Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: Computing Large Minimum Evolution Trees
343 with Profiles instead of a Distance Matrix. *Molecular Biology and Evolution* **26**, 1641-1650,
344 doi:10.1093/molbev/msp077 (2009).
- 345 22 Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and
346 annotation of phylogenetic and other trees. *Nucleic Acids Research* **44**, W242-W245,
347 doi:10.1093/nar/gkw290 (2016).
- 348 23 Johnson, L. S., Eddy, S. R. & Portugaly, E. Hidden Markov model speed heuristic and iterative
349 HMM search procedure. *BMC Bioinformatics* **11**, doi:10.1186/1471-2105-11-431 (2010).
- 350

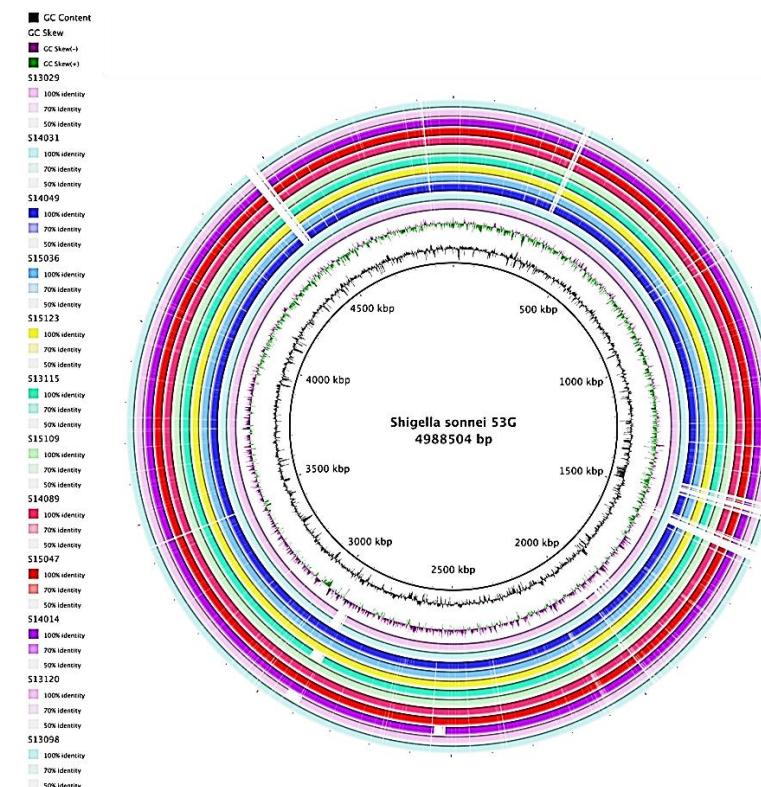
351 **Author Contribution statement:**

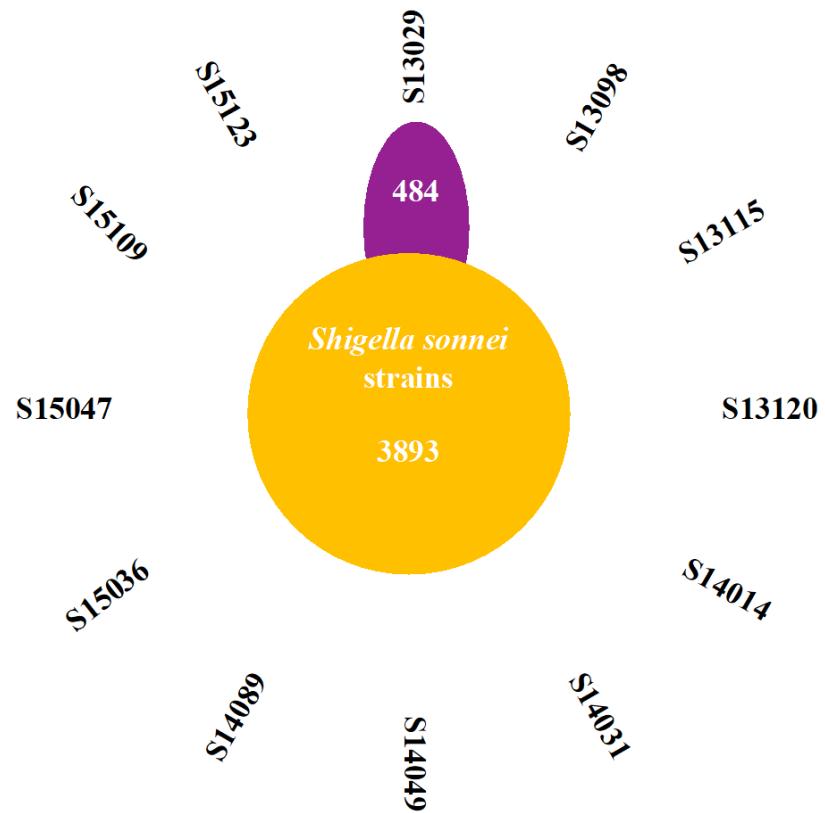
352 B.G. and Z.Z. designed the study; Z.Z. F.G. and L.W. carried out the experimental work;
353 L.W. Y.L and J.S. analyzed the data; H.Z. and Y.C. prepared the figures and the
354 supplementary tables; P.M. and B.G. do the language modification. Z.Z. and L.W. wrote the
355 manuscript. All authors read and approved the final manuscript.

Table and Figures :

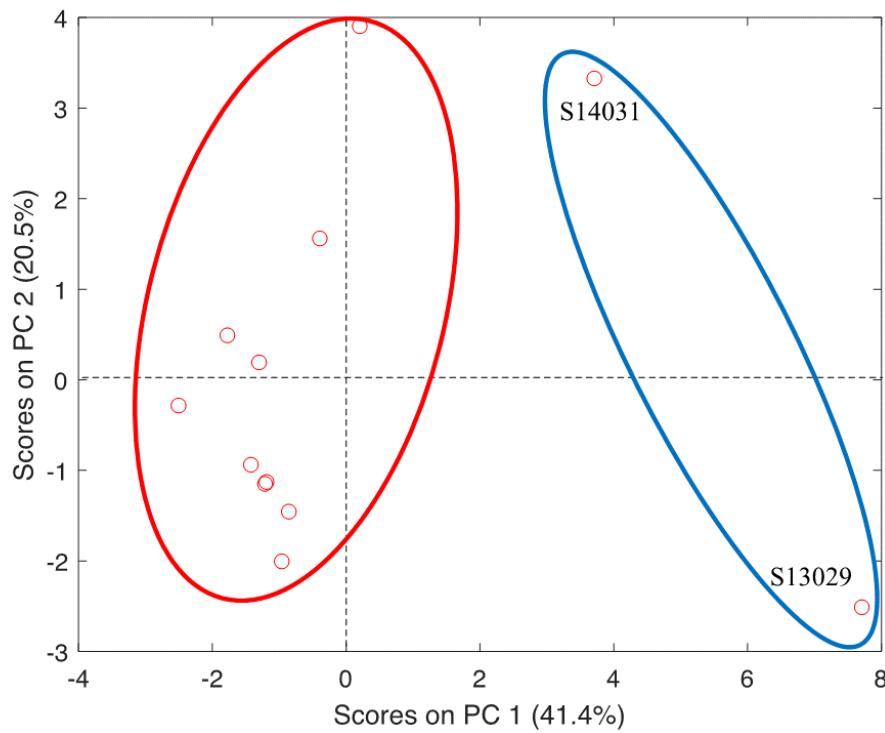
Table 1 Distribution patterns of 4 categories of virulence factors that belong to 31 groups among 12 *Shigella sonnei* strains in terms of antibiotic resistance. Sensitive strains have no resistance or only resist to one antibiotics. The four categories of VFs are Adhesion & Invasion, Secretion system & Effectors, Toxin, Iron acquisition. MDR strains have more than one resistance. PFT: Pore-forming toxins. #Nine groups of virulence factors are not present in all *S. sonnei* strains. *Three groups of virulence factors have equal number of virulence factors in all strains.

	<i>Shigella Sonnei</i>	S13029	S14031	S14049	S13115	S15036	S15123	S13120	S14014	S14089	S15047	S15109	S13098
Adhesion & Invasion	MDR	0	1	5	6	6	6	7	7	7	7	7	8
	Chaperone usher	158	151	152	146	146	146	146	145	148	145	142	147
	Extracellular nucleation precipitation	14	14	14	14	14	14	14	14	14	14	13	14
	Type 4 pili	122	127	142	135	135	145	135	135	139	135	133	137
	Sortase assembled pili*	1	1	1	1	1	1	1	1	1	1	1	1
	Flagella	204	203	210	201	200	200	201	200	206	200	200	201
	Autotransporter	14	14	13	12	12	12	12	12	13	12	12	12
	Fibronectin-binding protein	44	47	46	43	44	44	43	44	44	43	44	44
	Fibrinogen-binding protein	4	4	3	3	3	3	3	3	3	3	3	3
	Collagen-binding protein*	5	5	5	5	5	5	5	5	5	5	5	5
	Other adherence invasion related VFs	65	70	70	69	69	69	70	69	69	69	69	70
Secretion	T2SS	6	7	14	13	14	18	13	14	15	14	13	13
	T3SS	172	164	221	163	159	163	162	160	214	163	159	164




Figure 1 Phylogenomic analysis of 12 clinically isolated *Shigella sonnei* strains with different antibiotic resistant profiles based on 3893 core genes via FastTree. S13029 is completely sensitive to all 9 tested antibiotics, that is, Amoxicillin/Clavulanic acid (AMC), Ceftiophene (CFT), Cefotaxime (CTX), Gentamicin (GEN), Nalidixic acid (NAL), Norfloxacin (NOR), Tetracycline (TBT), and compound Sulfamethoxazole (SMZ) while S14031 is only resistant to SMZ. The other ten strains are resistant to at least five out of the nine antibiotics. All the strains were isolated from 4 municipal cities (Nanjing, Suzhou, Wuxi, Zhenjiang) in Jiangsu Province, China, the geographic distribution of which was depicted in the figure with red numbers. Apparent clusters could be observed for sensitive and resistant strains, respectively. Branch length represents evolutionary distance among strains. Filled red dots indicate bootstrapping value greater than 90%.

Supplementary information:


Competing Interests statement: The authors declare no competing interests.

Supplementary Figure 1 Genome comparison of 12 isolated *S. sonnei* strains against reference genome *S. sonnei* 53G generated by BRIG 0.95. The inner cycle (black) represents the complete genome of the reference strain and the shade of each colors denote the similarities between each strain with reference strain. GC content and GC skew (+/-) were illustrated in-between.

Supplementary Figure 2 Pangenome analysis of 12 clinically isolated *Shigella sonnei* strains with different antibiotic resistant profiles. A total of 3893 core genes (99% \leq strains \leq 100%) were shared by all strains while there are 5608 total genes(0% \leq strains \leq 100%) in all the strains. S13029 and S14031 are sensitive strains while other ten strains have multiple antibiotic resistance to more than 5 antibiotics.

Supplementary Figure 3 Principal component analysis (PCA) of the relationship between antibiotic resistance profiles and virulence factors in 12 sequenced *Shigella sonnei* strains. S13029 and S14031 are antibiotics-sensitive strains while the rest strains are multi-drug resistant. (MDR) The two sensitive strains are apparently isolated from other MDR strains.

Supplementary Table 1 Comparison of 12 *S. sonnei* strains based on antibiotic resistance profiles and key genome annotation parameters. The 12 strains were isolated from 4 municipal cities, Nanjing, Suzhou, Wuxi, and Zhenjiang, the economy of which are above the average level of China and are considered the best among Jiangsu province. Antibiotics tested in this study are Amoxicillin/Clavulanic acid (AMC), Ceftiophene (CFT), Cefotaxime (CTX), Gentamicin (GEN), Nalidixic acid (NAL), Norfloxacin (NOR), Tetracycline (TBT), and compound Sulfamethoxazole (SMZ).

Strain ID	Region	AMC	CFT	CTX	GEN	NAL	NOR	TBT	SMZ	MDR	Contig	Bps	CDS	tmRNA	tRNA	rRNA
S13029	Zhenjiang	S	0	449	4490117	4328	1	83	5							
S13098	Zhenjiang	R	R	R	R	R	S	R	R	8	473	4642881	4505	1	77	4
S13115	Suzhou	S	R	R	R	R	S	S	R	6	409	4530601	4403	1	79	5
S13120	Wuxi	I	R	R	R	R	S	R	R	7	406	4534710	4401	1	80	5
S14014	Zhenjiang	R	R	R	S	R	S	R	R	7	409	4526456	4407	1	80	5
S14031	Nanjing	S	R	1	427	4568178	4414	1	76	5						
S14049	Wuxi	S	I	S	R	R	S	R	R	5	477	4756429	4646	1	77	5
S14089	Suzhou	S	R	R	R	R	S	R	R	7	472	4726659	4599	1	80	5
S15036	Nanjing	S	R	R	S	R	S	R	R	6	429	4553996	4425	1	78	5
S15047	Zhenjiang	S	R	R	R	R	S	R	R	7	420	4606954	4484	1	78	5
S15109	Suzhou	S	R	R	R	R	S	R	R	7	587	4541154	4378	1	80	5
S15123	Wuxi	S	R	R	S	R	S	R	R	6	425	4645117	4528	1	80	5

*MDR: the total number of multi-drug resistance; Bps: base pairs; CDS: coding sequences; S: sensitive (marked red); R: resistant; I: intermittent.

Supplementary Table 2: Comparing sensitive strains with resistant strains, unique genes associated with the two groups were identified and annotated based on sequence homology. (in a separate document)

Supplementary Table 3 Unique genes specifically associated with *Shigella sonnei* sensitive strains (26 genes) and resistant strains (39 genes). Genes with no assigned specific names are not included in the list. Functions are assigned based on sequence homology.

Sensitive Strains	Function
bdm	Biofilm-dependent modulation protein
betA	Oxygen-dependent choline dehydrogenase
betB_1	NAD/NADP-dependent betaine aldehyde dehydrogenase
betI	HTH-type transcriptional regulator
betT	Choline transport protein
elaD_1	Deubiquitinase
fimD_1	Outer membrane usher FimD-like protein
fimD_2	Outer membrane usher FimD-like protein
fimD_3	Outer membrane usher FimD-like protein
fimD_4	Outer membrane usher FimD-like protein
fimF	Fimbrial protein
fimG	Fimbrial morphology protein
fimH_1	Adhesin
flhE	Flagellar biosynthesis protein
focC_2	Chaperone protein
gpFI_1	Putative prophage major tail sheath protein
intS_4	Integrase
ompX_2	Outer membrane protein X
pdeL	Cyclic di-GMP phosphodiesterase
sat	Serine protease sat autotransporter
uacT_1	Uric acid transporter
yahB_2	Putative HTH-type transcriptional regulator
ybdO_1	Putative HTH-type transcriptional regulator
ydiO	Putative fimbrial chaperone

ynfE	Putative dimethyl sulfoxide reductase chain
yrA1	Putative fimbrial chaperone
Resistant Strains	Function
ail	Attachment invasion locus protein
ant1	Streptomycin 3'-adenylyltransferase
citC_2	[Citrate [pro-3S]-lyase] ligase
clpP_2	ATP-dependent Clp protease proteolytic subunit
dhfrI	Dihydrofolate reductase type 1
dmlR_2	HTH-type transcriptional regulator
elfC_4	Putative outer membrane usher protein
erfK_1	Putative L,D-transpeptidase
eutB_1	Ethanolamine ammonia-lyase heavy chain
fhuE_1	FhuE receptor
fucI_2	L-fucose isomerase
gabP	GABA permease
gatA_1	PTS system galactitol-specific EIIA component
gspA_1	Putative general secretion pathway protein A
gspB	Putative general secretion pathway protein B
gspE	Putative type II secretion system protein E
hcaR_2	Hca operon transcriptional activator
hyuA_1	D-phenylhydantoinase
mhpC_2	2-hydroxy-6-oxononadienedioate/2-hydroxy-6-oxononatrienedioate hydrolase
mngB_2	Mannosylglycerate hydrolase
murP_2	PTS system N-acetylmuramic acid-specific EIIBC component
puuC_2	NADP/NAD-dependent aldehyde dehydrogenase
rhaR_2	HTH-type transcriptional activator
tnsA	Transposon Tn7 transposition protein
tnsB	Transposon Tn7 transposition protein

tnsC	Transposon Tn7 transposition protein
tnsE	Transposon Tn7 transposition protein
torZ_2	Trimethylamine-N-oxide reductase 2
umuC_1	Protein UmuC
umuD_1	Protein UmuD
wecD_2	dTDP-fucosamine acetyltransferase
xerC_2	Tyrosine recombinase
xerD_2	Tyrosine recombinase
yadC_3	Putative fimbrial-like protein
ycaM_2	Inner membrane transporter
ycjP_2	Inner membrane ABC transporter permease protein
ygeA	Putative racemase
ygfK_2	Putative oxidoreductase
YPD_A_2	Sensor histidine kinase

Supplementary Table 4: The detailed description of assembly results. (in a separate document)