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Abstract: Cell wall peptidoglycan, a mesh of polysaccharides crosslinked by short
peptides, encases the bacterial cell and protects it from turgor pressure lysis.
Peptidoglycan synthesis is an effective antibiotic target. Assembly of the biopolymer
occurs in close association with the plasma membrane, but higher order organization of
the process has not been described. In mycobacteria, intracellular membrane domains
comprise biochemically and spatially distinct regions within the conventional plasma
membrane. We find that lipid-linked peptidoglycan precursors are made in these

domains and then trafficked to the conventional plasma membrane for insertion into the
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cell wall. Disorganization of the membrane rapidly delocalizes and then halts
peptidoglycan assembly. Our data show that membrane compartmentalization is an

essential feature of mycobacterial cell wall biogenesis.

Main Text: Many antibiotics target peptidoglycan synthesis, a well-conserved pathway
that spans the cytoplasm, plasma membrane and periplasm. The polyprenol-linked,
disaccharide-pentapeptide monomer lipid Il is completed by the glycosyltransferase
MurG in the inner leaflet of the plasma membrane (Fig. 1A). Lipid Il is then flipped to the
outer leaflet by MurJ and integrated into the cell wall by membrane-bound
transglycosylases and transpeptidases from the penicillin-binding protein (PBP) and
shape, elongation, division, and sporulation (SEDS) families (7-4).

The plasma membrane is a heterogeneous mixture of lipids and proteins.
Mycobacteria, for example, have intracellular membrane domains (IMD, formerly called
the PMf (5) for plasma membrane free of cell wall) that are separable from the
conventional plasma membrane (designated the PM-CW, for plasma membrane tightly
associated with cell wall) by sucrose density gradient fractionation. The proteome and
lipidome of IMD are distinct from PM-CW (5, 6). While PM-CW-resident proteins localize
along the perimeter of live mycobacteria, IMD-resident proteins localize along sidewall
but are enriched adjacent to sites of polar cell elongation (6, 7).

Our proteomics analysis indicated that MurG is present in the IMD while
sequentially-acting PBPs preferentially associate with the PM-CW (6). We also
observed in situ that the subpolar enrichment of MurG-RFP resembles that of the

validated IMD marker mCherry-GIfT2 or GIfT2-GFP (6, 8) but that nascent cell wall at
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the mycobacterial poles primarily abuts rather than colocalizes with mCherry-GIfT2 (7).
These observations suggest that lipid Il synthesis is biochemically and spatially
segregated from the subsequent steps of cell wall assembly (Fig. 1A).

We expressed a functional MurG-Dendra2 fusion in Mycobacterium smegmatis
(Fig. S1) and assayed its distribution in membrane fractions that had been separated by
density gradient (Fig. 1B). The fusion to MurG, a peripheral membrane protein, was
enriched in both the cytoplasmic and IMD membrane fractions (Fig. 1C; Fig. S2),
recapitulating the association predicted for the native protein (6). In intact cells, polar
enrichment of MurG-Dendra2 was coincident with that of mCherry-GIfT2 (Fig. 1D). The
spatial relationship between the proteins was similar to that of MurG-RFP and GIfT2-
GFP (8), suggesting that it is independent of the fluorescent protein tag.

The association of MurG with the IMD, but not with the PM-CW, implied that the
membrane domain is the site of lipid |l synthesis. We refined an in vitro b-amino acid
exchange assay to detect lipid-linked peptidoglycan precursors from M. smegmatis
membrane fractions (Fig. 2A; 9, 10). In wildtype cells, we detected biotinylated
molecules in both the IMD and PM-CW (Fig. 2B; Fig. S2). We hypothesized that the
labeled species comprised precursors in the inner leaflet of the plasma membrane as
well as lipid Il that had been flipped to the outer leaflet. We, and others, have shown
that depletion of MurJ results in an accumulation of biotinylated precursors (70, 11; Fig.
S3). By performing the D-amino acid exchange reaction on membrane fractions, we
found that precursors accumulate in the IMD (Fig. 2B; Fig. S2). These results suggest
that lipid Il is made in the IMD and transferred to the PM-CW in a MurJ-dependent

manner.

(8]
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PBPs and SEDS proteins incorporate lipid Il into peptidoglycan. Given the
trafficking of precursors from the IMD to the PM-CW (Fig. 2B) and the association of cell
wall fragments specifically with the PM-CW (5), we hypothesized that extracellular,
peptidoglycan-acting enzymes function in the PM-CW. While our proteomics did not
detect SEDS proteins, our PM-CW dataset was enriched for all of the known
mycobacterial PBPs (6). Fluorescent derivatives of 3-lactam antibiotics such as Bocillin-
FL bind covalently to PBPs and can be used to image transpeptidase-active enzymes in
both polyacrylamide gels and intact cells. We incubated membrane fractions from
wildtype M. smegmatis with Bocillin-FL and identified fluorescent proteins in the PM-CW
but not the IMD (Fig. 2B; Fig. S2). As expected for PBPs, the signal from these bands
was diminished by pre-treatment with the B-lactam ampicillin (Fig. S4). We focused on
characterizing PonA1, a bifunctional transglycosylase/transpeptidase that is essential
for M. smegmatis growth (72, 13). Depletion of PonA1 (72) resulted in the loss of the
highest molecular fluorescent band (Fig. S4), confirming that this protein is present and
active specifically in the PM-CW (Fig. 2B). We next expressed a functional PonA1-
mRFP fusion in Mycobacterium smegmatis (13) and found that it was more evenly
distributed around the cell perimeter than MurG-Dendra2, and in a manner similar to the
functional PM-CW marker PimE-GFP (Fig. 2C, Fig. S5; 6). Together, our data show that
MurG and PonA1 occupy spatially distinct compartments along the pathway of
peptidoglycan synthesis.

Based on our biochemical data, we hypothesized that lipid Il incorporation into
the cell wall is laterally segregated from its synthesis. We previously showed that

alkynyl and azido D-amino acid dipeptides (74) incorporate into lipid-linked
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93 peptidoglycan precursors in M. smegmatis (10) and that metabolic labeling with alkynyl
94 dipeptide (alkDADA or EDA-DA) is most intense in regions adjacent to the IMD marker
95 mCherry-GIfT2 (7). We labeled MurG-Dendra2-expressing M. smegmatis with alkDADA
96 for ~1% of generation time and detected the presence of the alkyne by copper-

97 catalyzed azide-alkyne cycloaddition (CuAAC; Fig 2D; 10). To tune our detection for

98 extracellular alkynes present in lipid |l and newly-polymerized cell wall, we selected

99 picolyl azide-Cy3 as our label because the localized charge on the sulfonated cyanine
100 dye confers poor membrane permeability (75). Using this optimized protocol, we

101 observed nascent peptidoglycan deposition at the polar tip, whereas MurG-Dendra2

102 was more posterior (Fig. 2D). Our data support a model in which lipid Il synthesis is

103 laterally and biochemically partitioned from the ensuing steps of peptidoglycan

104 assembly.

105 In the Gram-positive bacterium Bacillus subtilis, MurG associates with regions of
106 increased fluidity (RIFs) in the plasma membrane that are marked by the accumulation
107 of certain lipophilic fluorescent dyes (716). Benzyl alcohol has been used to disperse

108 plasma membrane domains in plant, animal and bacterial cells, including B. subtilis

109 RIFs (716-18). Mycobacteria are also Gram-positive but have a second ‘myco’

110 membrane that is covalently attached to the cell wall. We found that benzyl alcohol did
111 not alter labeling by NalkTMM or OalkTMM (Fig. S6), which respectively incorporate into
112 the noncovalent and covalent mycolates of the mycomembrane (79). It did, however,
113 alter the distribution of FM4-64 (Fig. S7), a dye used previously to label the plasma

114 membrane (20), and altered glycolipid abundance in the IMD (Fig. S8). MurG-Dendra2

115 was also notably less enriched in the IMD following benzyl alcohol treatment (Fig. 1C)


https://doi.org/10.1101/544338
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/544338; this version posted February 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

116 and, in live cells, at the cell poles (Fig. 3A). By contrast benzyl alcohol produced subtle
117 changes in the distribution of active PBPs (Fig. 2B), although PonA1 shifted toward the
118 poles in live cells (Fig. 3A). Disruption of plasma membrane organization by benzyl

119 alcohol was accompanied by delocalization of cell wall assembly within 5 min (Fig. S9)
120 as well as an overall reduction in synthesis (Fig. 3B, Figs. S9) and halt in cell elongation
121 (Fig. S6). The phenotypes were reversible: we recovered viable, peptidoglycan-

122 synthesizing cells following benzyl alcohol washout (Figs. S10). These data suggest
123 that membrane partitioning is an essential feature of both peptidoglycan synthesis and
124 cell growth in M. smegmatis.

125 We find that benzyl alcohol also inhibits cell wall assembly in B. subtilis (Fig. 3C),
126 demonstrating that plasma membrane architecture may optimize peptidoglycan

127 biogenesis in bacterial phyla with divergent cell envelope structures and modes of

128 growth. Moreover, our previous work suggests that the biosynthetic pathways for

129 phosphatidylethanolamine, a major phospholipid of mycobacterial plasma membrane,
130 phosphatidylinositol mannoside, a cell envelope glycolipid, and menaquinone, the

131 primary lipid electron carrier of the mycobacterial respiratory chain, are partitioned

132 across the IMD and PM-CW (5, 6, 21). In the absence of a standard set of membrane-
133 bound organelles, plasma membrane compartmentalization may be a general bacterial
134 strategy for organizing pathways with lipid-linked intermediates and enzymes.
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215 Figures S1-S10

216 Tables S1

217

218 Fig. 1. MurG is enriched in the IMD. (A) Membrane-bound steps of peptidoglycan

219 synthesis with hypothesized partitioning into the IMD and PM-CW. NAM, N-

220 acetylmuramic acid; NAG, N-acetylglucosamine; circles, amino acids: light green, L-ala;
221 red, D-glu; deep blue, diaminopimelic acid; yellow, D-ala. (B) Plasma membrane

222 fractionation. Bacteria are lysed by nitrogen cavitation and cell lysate is sedimented on
223 a sucrose density gradient. (C) Lysates from MurG-Dendra2-expressing M. smegmatis
224 were fractionated as in (B) and separated by SDS-PAGE. Protein detected by in-gel
225 fluorescence. Incubation of bacteria with 100 mM benzyl alcohol (BA) for 1 hour

226 decreased the enrichment of MurG-DendraZ2 in the IMD. (D) M. smegmatis

227 coexpressing MurG-Dendra2 and mCherry-GIfT2 was imaged by structured illumination

10
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228 microscopy (SIM-E, left). Fluorescence distribution of the fusion proteins from 59 cells
229 was quantitated from parallel conventional fluorescence microscopy (right). Signal was
230 normalized to the length and total fluorescence intensity of the cell. Cells were oriented
231 such that the brighter pole is on the right hand side of the graph. a.u., arbitrary units,
232 scalebar 5 ym.

233

234 Fig. 2. Lipid Il is synthesized in the IMD and trafficked to the PM-CW. (A) Detection of
235 lipid-linked peptidoglycan precursors from organic extracts of M. smegmatis membrane
236 fractions. Terminal D-alanines (yellow) of endogenous precursors are exchanged for
237 biotin-D-lysine (BDL; pink) via purified S. aureus PBP4. Biotinylated species are

238 detected by blotting with streptavidin-HRP. (B) Detection of peptidoglycan precursors
239 and PonA1 activity from density gradient fractions. Precursors are in both the IMD and
240 PM-CW in wildtype M. smegmatis but accumulate in the IMD upon MurJ depletion (70).
241 PonA1 binds Bocillin-FL in the PM-CW before or after 1 hour of 100 mM benzyl alcohol
242 treatment. Wildtype M. smegmatis membrane fractions (50 ug/mL of total protein each)
243 were incubated with 40 uM Bocillin-FL and separated by SDS-PAGE. Active PBPs

244 detected by in-gel fluorescence in PM-CW. PonA1 was identified in Fig. S3. (C) SIM-E
245 of M. smegmatis coexpressing PonA1-mRFP and PimE-GFP, scalebar 5 um. (D) Top,
246 metabolic labeling of mycobacterial cell wall synthesis (70). Bottom, M. smegmatis

247 expressing MurG-Dendra2 were incubated with alkDADA for 2 min (~1% generation).
248 Surface-exposed alkynes on fixed cells were detected by CUAAC with picolyl azide-Cy3
249 (70). Cells imaged by SIM-E, scalebar 5 ym.

250
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Fig. 3. Perturbation of plasma membrane organization disrupts peptidoglycan
biogenesis. (A) M. smegmatis coexpressing PonA1-mRFP and MurG-Dendra2 were
imaged +/- benzyl alcohol by SIM-E (left). Fluorescence distribution of the fusion
proteins from 42<n<56 cells was quantitated from parallel conventional fluorescence
microscopy (right). Signal was normalized as Fig. 1D, scalebar 5 ym. (B) Wildtype M.
smegmatis +/- benzyl alcohol were incubated with both azido b-amino acid dipeptide
and mycomembrane probe OalkTMM (70, 19) for 15 min and fixed in 2% formaldehyde.
Alkynes and azides were detected by sequential CUAAC reactions with picolyl azide
TAMRA and alkyne carboxyrhodamine 110 (Click Chemistry Tools) labels with a wash
step between, scalebar 5 um. (C) B. subtilis were exposed to indicated antibiotics or
benzyl alcohol for 10 min then incubated with alkDADA for an additional 5 min. Cells
were fixed and alkynes were detected by CuAAC with picolyl azide CR 110. MFI,
median fluorescence intensity obtained by flow cytometry. Experiments performed three
times in triplicate. Error bars, +/- standard deviation of biological replicates. ***, p <

0.0005; ****, p < 0.00005, Tukey multiple comparison test.
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