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Abstract

Longitudinal studies measuring changes in cortical morphology over time are best facilitated by parcellation
schemes compatible across all life stages. The Melbourne Children's Regional Infant Brain (M-CRIB) and M-
CRIB 2.0 atlases provide voxel-based parcellations of the cerebral cortex compatible with the Desikan-Killiany
(DK) and the Desikan-Killiany-Tourville (DKT) cortical labelling schemes. However, there is still a need for a

surface-based approach for parcellating neonatal images using these atlases.

We introduce surface-based versions of the M-CRIB and M-CRIB 2.0 atlases, termed M-CRIB-S(DK) and M-
CRIB-S(DKT), with a pipeline for automated parcellation utilizing FreeSurfer and developing Human
Connectome Project (dHCP) tools.

Using T>-weighted magnetic resonance images of healthy neonates (n = 58), we created average spherical
templates of cortical curvature and sulcal depth. Manually-labelled regions in a subset (n = 10) were encoded
into the spherical template space to construct M-CRIB-S(DK) and M-CRIB-S(DKT) atlases. Labelling accuracy
was assessed using Dice overlap measures and boundary discrepancy measures within a leave-one-out cross-

validation framework.

Cross-validated labelling accuracy was high for both atlases (average regional Dice = 0.79 - 0.83). Worst-case
boundary discrepancy instances ranged from 9.96 - 10.22 mm, which appeared to be driven by variability in

anatomy for particular cases.

The M-CRIB-S atlases and automatic pipeline allow extraction of neonatal cortical surfaces labelled according
to the DK or DKT parcellation schemes. This will facilitate surface-based investigations of brain structure at the
neonatal time point. The atlases and spherical surfaces, along with customised scripts for segmentation, cortical

surface extraction and parcellation, are available for public download.
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Introduction

The delineation of cortical areas on magnetic resonance images (MRI) A considered to be a prerequisite for
beginning to understand the complexities of the human brain (Brett et al. 2002). Accurate understanding of
development of the brain is reliant on accurate parcellation of the cerebral cortex, from around the time of

normal birth onwards.

FreeSurfer (B. Fischl 2012; B. Fischl and Dale 2000; Bruce Fischl et al. 2002; B. Fischl et al. 2004) is a
commonly used cortical extraction and parcellation software suite applicable to T1 MRI scans of children and
adults, and its available parcellation schemes include the Desikan-Killiany (DK) (Desikan et al. 2006) and
Desikan-Killiany-Tourville (DKT) (Klein and Tourville 2012) adult atlases. However, tools tuned for adult
brains, such as the adult 71-based templates and atlases provided in FreeSurfer (B. Fischl et al. 1999; B. Fischl
et al. 2004), are not directly applicable to neonatal brain images. Tissue signal intensities are different in
neonatal brains compared to those in adults (L. Wang et al. 2019). Thus the optimal MRI sequences for the grey
and white matter contrast required to identify cortical surfaces differ by age. While T;-weighting is optimal for
adult brains, T>-weighted contrasts are optimal for neonatal brains. Consequently, specialized algorithms are
required in order to contend with neonatal-specific tissue intensities (Beare et al. 2016; Makropoulos et al.

2016). Thus, brain atlases and image segmentation and parcellation tools specific for infants are required.

Methods for cortical parcellation of infant brain images have focused on warping standardized cortical atlases
from adult brains (Klein and Tourville 2012; Desikan et al. 2006; Tzourio-Mazoyer et al. 2002) onto infant
brains e.g. (Shi et al. 2011; Wu et al. 2018). However, labelling a neonatal brain image using adult-derived
atlases is problematic, due to the inherent difference in anatomy and tissue composition between infant and
adult brains (Richards et al. 2016). Recently, we introduced the Melbourne Children’s Regional Infant Brain
(M-CRIB) atlases (Alexander et al. 2017; Alexander et al. 2019b), which are neonatal-specific, voxel-wise brain
atlases. The cortical parcellations were constructed to be compliant with the DK (Desikan et al. 2006) and DKT
(Klein and Tourville 2012) adult cortical parcellation schemes. Each of the M-CRIB atlases are comprised of 10
neonatal brains that have been extensively manually parcellated to accurately reflect brain structures at this
time-point. Parcellation of new data has been achieved using multi-atlas label fusion algorithms that
probabilistically assign labels to each voxel after warping the set of parcellated atlases to a novel dataset e.g.

(Alexander et al. 2019a; Akhondi-Asl and Warfield 2013).

While accurate labelling can be achieved using voxel-based parcellation schemes (Makropoulos et al. 2018;
Alexander et al. 2019a; Alexander et al. 2017), surface-based registration methods lead to significantly
improved alignment of cortical landmarks, including cortical folds, and therefore more accurate placement of

areal boundaries (Ghosh et al. 2010; Coalson et al. 2018).

The Developing Human Connectome Project (dHCP) has recently provided a pipeline for segmentation and
cortical extraction for 7>-weighted images of neonatal brains (Makropoulos et al. 2018). This process segments
brain tissue into cerebral and cerebellar grey and white matter, and various subcortical grey matter structures,

before extracting an inner and outer cortical surface which is automatically partitioned into lobes. These existing
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cortical surface extraction tools can be expanded upon to incorporate a neonatal brain atlas and provide accurate
surface-based parcellations. Thus, measures such as cortical thickness, surface area, and curvature for each

cortical sub-division of the M-CRIB atlases can subsequently be derived for infant MRI scans.

In this study we aimed to provide neonatal average surface templates and surface-based cortical atlases based on
the M-CRIB and M-CRIB 2.0 parcellation schemes, that are compatible with FreeSurfer and the dHCP
pipelines (B. Fischl et al. 2004; B. Fischl 2012; B. Fischl et al. 1999). Additionally, we aimed to provide
companion scripts to perform cortical surface extraction, surface registration and atlas-based cortical
parcellation using novel neonatal 7>-weighted brain images. Given the compatibility of the neonatal M-CRIB-S
parcellation schemes with the adult DK and DKT schemes, the proposed tools can generate parcellated neonatal
cortical regions that are comparable with those obtained using existing tools such as FreeSurfer at older time

points, enabling longitudinal studies, beginning from the neonatal time-point.

Methods

Participants

A total of 58 term-born (= 37 weeks’ gestation), healthy neonates (40.2 - 44.9 weeks post-menstrual age (PMA)
at scan, M = 42.4, SD = 1.2, 26 female) were scanned as control subjects as part of preterm birth studies (Spittle
et al. 2014; Walsh et al. 2014). Criteria for a subject being healthy were no admissions to a neonatal intensive
care or special care unit, resuscitation at birth not required, birthweight more than 2.5 kg and no evidence of
congenital conditions known to affect development and growth. Ethical approval for the studies was obtained
from the Human Research Ethics Committees of the Royal Women’s Hospital and the Royal Children’s
Hospital, Melbourne. Written informed consent was obtained from parents. Data that exhibited excessive
movement or other corrupting artefacts were excluded. This cohort was subdivided into the following two
subsets: labelled and unlabelled subsets. The labelled set comprised the ten subjects (40.29 — 43.00 weeks’
PMA at scan, M =41.71, SD = 1.31, 4 female) of the M-CRIB atlas that had been previously selected from this
cohort on the basis of minimal motion or other artifact on the T2 images (Alexander et al. 2019b; Alexander et
al. 2017). The unlabelled subset consisted of the remaining 48 subjects (40.2 — 44.9 weeks’ PMA at scan, M =
42.6, SD = 1.3, 22 female).

MRI acquisition

All neonate subjects were scanned at the Royal Children’s Hospital, Melbourne, Australia, on a 3T Siemens
Magnetom Trio scanner during unsedated sleep. 7>-weighted images were acquired with a turbo spin echo
sequence with the following parameters: 1 mm axial slices, flip angle = 120°, repetition time = 8910 ms, echo
time = 152 ms, field of view = 192 x 192 mm, in-plane resolution = 1 mm? (zero-filled interpolated to 0.5 x 0.5
x 1 mm in image reconstruction), matrix size = 384 x 384. All T>-weighted images were resliced to voxel-

volume-preserving size of 0.63 x 0.63 x 0.63 mm (Loh et al. 2016; Alexander et al. 2017).

Processing pipeline

The proposed processing pipeline and M-CRIB-S training data is graphically described in Figure 1.
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Image segmentation

Each image in the unlabelled dataset (Figure 1(i)) was segmented into cerebral white and grey matter (including
lobar sub-divisions), cerebellum and various subcortical grey matter structures automatically using the DrawEM
software package (Makropoulos et al. 2016; Makropoulos et al. 2014). Briefly, this technique non-linearly
registered the non-labelled 7»-weighted images to multiple pre-labelled images. The non-labelled image was
then segmented using label fusion. The proposed pipeline utilized the wrapper script neonatal-pipeline-v1.1.sh

included in DrawEM for execution. Figure 1(ii) shows an example voxel-based DrawEM segmentation output.

The labelled M-CRIB atlas images were already segmented appropriately for DrawEM compatibility. Each M-
CRIB segmented image comprised manually traced cerebral white and grey matter, cerebellum, basal ganglia
and thalamus, cortical, ventricular and other subcortical labels. Tracing protocols for the cortical (Alexander et
al. 2019b; Alexander et al. 2017) and subcortical (Loh et al. 2016) segmentations have been previously
described. Figure 1(d) shows an example M-CRIB-S segmented image.

Surface extraction
DrawEM compatible segmentations containing hemispheric white matter and grey matter, cerebellar,
ventricular, brainstem and subcortical grey matter labels were used as input for the Deformable module

(Makropoulos et al. 2018; Schuh et al. 2017) of MIRTK (https://github.com/BioMedIA/MIRTK). Deformable

used to extract the inner and outer boundaries of each hemisphere of the cerebral cortices for both labelled and
unlabelled datasets. Figure 1(iii)(a) shows inner and outer surfaces overlaid onto the original T2-weighted

image, and Figures 1(iii)(b) and 1(iii)(c) show lateral aspects of the inner and outer surfaces in 3D, respectively.

Surface inflation and spherical mapping

The proposed pipeline used the FreeSurfer tools mris inflate and mris sphere (B. Fischl et al. 1999) to
construct inflated and spherical versions of the white matter surfaces, respectively. Figure 1(iv) shows
exemplary inflated and spherical surface outputs. Default FreeSurfer 6.0.0 options were used for both tools with
the following exception: the negative triangle removal option “-remove negative 1” was added to mris_sphere.
The inflated surfaces exhibited the same gross shape features as those seen when FreeSurfer is executed on
adult brain images. Specifically, an overall elliptical appearance, a dimple in the vicinity of the insula, and the

smooth protrusion of the temporal and occipital poles.

Curvature template generation

Surface templates, comprised of all labelled and unlabelled subjects, were constructed using the curvature-based
spherical mapping, alignment and averaging method as previously described (B. Fischl 2012; B. Fischl et al.
1999). Briefly, spherical registration involves linear (rotation) and non-linear displacement of vertices in
spherical space. The registration algorithm aims to optimise agreement of white and inflated sulcal depth maps
of a subject’s surfaces to a template. The use of local curvatures and sulcal depth to drive registration means that
corresponding sulci and gyri are aligned. An iterative procedure of aligning spherical surfaces from both the

labelled and unlabelled datasets to the current template, followed by creation of a new template, was performed.
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The final template curvature and sulcal depth maps were created by averaging all aligned maps (see Figure

1(a)).

The spherical mapping of each white matter surface onto a common spherical space meant that any given point
in template space could be mapped to a point on each subject’s white matter surface, and those points were in
correspondence across subjects. This enabled average white, pial and inflated surfaces to be constructed using
the FreeSurfer tool mris_make_average surface, by resampling surfaces onto the 6™ order common
icosahedron. The 6 order icosahedron was chosen due to having minimal density while still upsampling the

original surfaces.

Surface labelling

For the 10 cases in the labelled dataset, the volumetric M-CRIB and M-CRIB 2.0 labels were projected to the
corresponding white matter surface vertices using nearest labelled neighbour projection. Label data were
individually checked for anatomical accuracy of label placement by one author (B.A.). For both atlases, label
placement was considered highly accurate. In a few instances, very minor mislabelling was identified and

manually corrected on the relevant surface and corrected volumetrically in some cases for M-CRIB 2.0 data.

Figure 2 depicts the projection of the M-CRIB and M-CRIB 2.0 labels projected onto the white matter surface
generated by Deformable for a single labelled subject. These surface-space versions of the M-CRIB 2.0 and M-
CRIB parcellations are called M-CRIB-S(DKT) and M-CRIB-S(DK), respectively. While similar, the
highlighted regions demonstrate some differences including label boundary changes (in, e.g., lateral
orbitofrontal and pars orbitalis) and region removal (banks of the superior temporal sulcus). For a
comprehensive description of the differences in regions and region boundaries between the M-CRIB and M-

CRIB 2.0 parcellations, see (Alexander et al. 2019b; Alexander et al. 2017).

Parcellation training set construction

Parcellation training sets were constructed using the labelled set for each M-CRIB-S(DKT) and M-CRIB(DK)
cortical label, using the method of Fischl et al. (B. Fischl et al. 2004). Briefly, for each template, spatial prior
distributions for each cortical label were constructed on the surface using the tool mris_ca_train. The M-CRIB-

S(DKT) parcellation of the average white surface is shown in Figure 1(c) and 1(d).

Template surface construction

Using both labelled and unlabelled datasets, we derived group-averaged white, pial, and inflated surfaces along
with curvature and sulcal depth maps in a common spherical space (see Figure 3). For interoperability with the
dHCP and UNC atlases (Wu et al. 2018; Makropoulos et al. 2018), we also provide versions of the M-CRIB-S
spherical template surfaces registered to the dHCP 42-week and UNC 42-week spherical template surfaces. M-
CRIB-S(DKT) and M-CRIB-S(DK) parcellation maps in each labelled subject were transferred to the spherical
template and used as the training set for the FreeSurfer tool mris _ca label. We applied this labelling to the
average white matter surface using the M-CRIB-S(DKT) to illustrate our cortical labelling approach (Figures

3(1), (ii) and (iii)). For comparison, the M-CRIB-S(DK) labelling is also shown. These group-average label


https://doi.org/10.1101/544304
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/544304; this version posted September 4, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

images may be used for display of statistical analysis results using the M-CRIB-S(DKT) or M-CRIB-S(DK)

atlases.

Parcellation of a novel image

Novel T>-weighted images can be parcellated using the M-CRIB-S atlas data using the following sequence of
processing steps (see Figure 1): 1) Apply DrawEM and Deformable to extract white and pial surfaces, 2)
Perform surface inflation, spherical projection and registration to the M-CRIB-S surface template using
FreeSurfer tools, and 3) Use neonatal specific cortical label priors and the automatic labelling tool
mris_ca_label to parcellate the surfaces. A collection of scripts are provided to execute the pipeline, which can
be found along with the M-CRIB-S data on the GitHub page
(https://www.github.com/DevelopmentallmagingMCRI/MCRIBS). This pipeline was used to perform cortical

parcellation on all unlabelled images for validation.

Parcellation accuracy tests

Parcellation accuracy of the proposed automatic labelling pipeline against manual M-CRIB parcellations was
quantified within a Leave-One-Out (LOO) cross-validation framework. For each of the 10 subjects, curvature
templates were constructed using the remaining nine labelled subjects and all unlabelled subjects. Parcellation
training data was constructed from the remaining nine labelled subjects. The left-out subject was then
segmented and parcellated using the pipeline. Per-region label accuracy was assessed using Dice measures, a
metric of overlap, and Hausdorff Distances, a metric of boundary error. The Hausdorff distance between the
automatic and manual labelling of a region in one subject is the greatest of all shortest distances between two

closed contours. Visualisations of these maximal boundary mismatches are provided.

Results
Results of the Leave-One-Out analysis of labelling accuracy, comparing automated labelling to manually-

defined labels in the labelled dataset (n = 10) are shown in Figures 4, 5 and 6.

Figure 4 shows the vertex-wise parcellation mismatch rates for both atlases. Hemisphere-wide vertex-wise
agreement rates were similar across parcellation schemes: the average for M-CRIB-S(DKT) was 0.84 [range
0.78 - 0.87], and the average for M-CRIB-S(DK) was 0.83 [range 0.77 — 0.87]. The rates of high mismatch are
confined to region boundaries, indicating that the bulk of the central portions always agreed with ground truth.
Exceptionally high rates of mismatch can be seen for the frontal pole and temporal pole labels in the M-CRIB-
S(DK).

Figure 5 displays regional Dice measures for M-CRIB-S(DKT) and M-CRIB-S(DK). Dice scores for both
atlases were generally high (0.79 - 0.83). For the M-CRIB-S(DKT) parcellation scheme, per-region mean Dice
measures were similar across hemispheres (left: mean = 0.82, SD = 0.05; right: mean = 0.83, SD = 0.05). In
both hemispheres, the highest Dice scores were observed in the insula (left: 0.95; right: 0.94). The lowest Dice
score observed in the left hemisphere was for the pars triangularis (0.75), and the lowest Dice score in the right

hemisphere was for the posterior cingulate (0.75). For the M-CRIB-S(DK) parcellation scheme, per-region


https://doi.org/10.1101/544304
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/544304; this version posted September 4, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

mean Dice measures were similar to those listed above for the M-CRIB-S(DKT) parcellation, and were again
similar between hemispheres (left: mean = 0.79 , SD = 0.10; right: mean = 0.80 , SD = 0.07). The highest Dices
scores in each hemisphere were again seen in the insula (left: 0.95; right: 0.94). The lowest Dice scores were
outliers observed in the frontal pole in the left hemisphere (0.50), and in the banks of the superior temporal

sulcus region in the right hemisphere (0.55).

Figure 6 shows per-region Hausdorff distances, which measure worst-case boundary discrepancy between
automatic and manual labels for M-CRIB-S parcellation schemes. For the M-CRIB-S(DKT) parcellation
scheme, per-region mean Hausdorff distances were similar between hemispheres (left: mean: 10.22 mm, SD =
2.99 mm; right: mean: 10.13 mm, SD = 2.77 mm). The smallest Hausdorff distances for each hemisphere were
both seen in the insula (left: 3.27 mm, right: 4.11 mm). The largest Hausdorff distance for the left hemisphere
was observed in the inferior parietal region (16.18 mm), and the largest in the right hemisphere was for the

superior parietal region (15.91 mm).

For the M-CRIB-S(DK) parcellation scheme, Hausdorff distances were similar to those for M-CRIB-S(DKT)
and were again similar between hemispheres (left: mean = 10.3 mm, SD = 3.08 mm; right: mean = 9.96 mm, SD
= 2.67 mm). The smallest Hausdorff distances observed in each hemisphere were again both in the insula (left:
3.23 mm, right: 4.11 mm). The largest Hausdorff distance seen in the left hemisphere was for the inferior

parietal region (16.39 mm), and in the right hemisphere was for the superior parietal region (15.96 mm).

Individual measurements of per-subject and per-label Hausdorff distances ranged from 1.9 - 25.6 mm in M-
CRIB-S(DKT) and 2.4 - 25.3 mm in M-CRIB-S(DK). Figure 7 shows some examples of individual worst- and

best-case Hausdorff distances between ground truth and estimated labels.

Discussion

The primary contribution of this work is the provision of atlases and tools that facilitate cortical surface
extraction and parcellation of the neonatal cortex into 31 or 34 regions. Our pipeline is based on 7>-weighted
images of neonates around term equivalent age and uses a common adult-compatible parcellation scheme, with
neonatal-specific training data. This work extends our previous M-CRIB and M-CRIB 2.0 volume-based atlases

to enable surface-based parcellation of the neonatal cortex.

We have applied this method to a cohort of healthy, term-born infants (mean age at scan = 42.4 weeks). The full
age range of subjects suitable for processing under the proposed pipeline will depend on whether tissue intensity
contrast is adequate to reliably segment brain structures and extract cortical surfaces, and whether cortical
folding complexity is enough to identify all macrostructural morphological features for surface-based template
registration and region identification. Tissue segmentation and cortical surface extraction using DrawEM and
Deformable are designed to be compatible with 7>-weighted white/grey matter contrasts visible between 1 - 5
months (Li Wang et al. 2012) and have been demonstrated on data acquired between 34.4 - 43 weeks PMA
(Makropoulos et al. 2018). From 5 to 8 months’ PMA the 7>-weighted grey/white matter contrast is

transitioning to become like that of an adult by about 9 months’ PMA via an isocontrast phase (6 - 8 months) (Li
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Wang et al. 2012). As such, tissue segmentation using these protocols would only be expected to work

optimally up to approximately 5 months of age, before the 7>-weighted image becomes isointense.

Small-scale cortical folding occurs mostly late in gestation, with many sulci and gyri that define areal
boundaries within the M-CRIB-S(DK) and M-CRIB-S(DKT) atlases not being reliably detectable until
approximately 40 weeks PMA (Shi et al. 2011). It is possible that a sulcus, for example, may not have formed a
sufficiently deep groove to be separated from neighbouring gyri. Thus, careful inspection of parcellation results
for subjects scanned at ages below 40 weeks’ PMA is required to ensure that the morphological features that
define areal boundaries are present. However, the parcellation component may be appropriate for subjects below
40 weeks and beyond 5 months of age, provided cortical surface data were obtained via other preprocessing

methods.

Parcellation accuracy of the automated surface-based labelling methods using the M-CRIB-S atlases was
quantified using Dice overlap measures and Hausdorff distances using Leave-One-Out cross-validation. Dice
overlap scores were high on average and appeared similar in the left and right hemisphere. The per-vertex
mismatch rates (Figure 4) were largely zero for the bulk of the internal portions of most regions. When
compared to accuracy measures presented for the adult DKT atlas, Klein and Tourville (2012) presented Leave-
One-Out Dice measures of overlap between FreeSurfer parcellations and manual parcellations, which ranged
from 0.72 — 0.98. This is largely similar to our Dice overlap results, suggesting that the presented pipeline

provides a labelling accuracy consistent with popular adult parcellation tools.

Boundary discrepancies between manual and automated labels were measured using Hausdorff distance. The
Hausdorff distance is the maximal distance travelled between any two nearest neighbours of manual and
automatic label boundary contours. Most regions had Hausdorff distances between 5 mm - 8 mm for both M-
CRIB-S(DKT) and M-CRIB-S(DK) atlases. Figure 7 shows individual instances of worst-case boundary
discrepancies in the middle temporal gyrus and inferior parietal labels. The subjects shown, subjects 7 and 8,
appeared to exhibit sulcation that varied more than for other subjects in the temporal and parietal cortices and,
as a result, the boundaries of these regions were shifted with respect to other training set subjects. An additional
confound in manual labelling was that in some instances, label boundaries in the protocols relied on landmarks
that were abstract or subject to large individual variability in presence or in morphology. In contrast, the best-
case boundary discrepancies (Figure 7(ii)) feature the insula and pericalcarine regions. The high accuracy of the
estimated insula boundary is likely due its particularly well-defined boundaries in the original parcellation
protocols, relatively easily identifiable in images and consistent across subjects. Other literature has reported
cross-validated boundary discrepancy measures between manual and automated segmentations of the adult DK
atlas dataset (Desikan et al.). Rather than using Hausdorff distances, discrepancies were calculated as average
per-vertex distances between manual and automated label boundaries across subjects. Graphical depictions of
these average distances appeared to show a maximum discrepancy of 1 mm. Average boundary mismatch is

incompatible with the worst-case discrepancy used in this paper and, thus, cannot be directly compared.
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The dHCP set of tools are currently available for cortical surface extraction and lobar parcellation. Makropoulos
et al. (2018) recently highlighted the potential value of incorporating M-CRIB parcellation in these tools
(Makropoulos et al. 2018), as its compatibility with the DK (Desikan et al. 2006) adult parcellation may
facilitate comparisons of cortical measures between the perinatal and adult time points. Here, we provide a

publicly available, surfaced based cortical parcellation that can accomplish this objective.

The value of this surface-based atlas and the associated processing scripts is automated parcellation of the
neonatal cortex that is straightforward to employ in longitudinal studies. The processing scripts and the M-
CRIB-S(DK) and M-CRIB-S(DKT) atlases were constructed to be used with FreeSurfer, to produce compatible
output and give a direct correspondence between region-based statistics such as cortical thickness, surface area,

and curvature measures at neonatal, childhood and adult timepoints.

Conclusion

This paper presented the M-CRIB-S(DKT) and M-CBRIB-S(DK) atlases: surface-based versions of the
volumetric M-CRIB and M-CRIB 2.0 atlases. It also presented an automated pipeline that involves
segmentation of novel 7>-weighted neonatal images, extraction of cortical surfaces, followed by cortical
parcellation with the M-CRIB-S(DK) and M-CRIB-S(DKT) atlases, which are neonatal versions of the adult
DK and DKT atlases. The curvature template registration targets, average surfaces, labelling training data, and
pipeline execution scripts are available. Additionally, for interoperability with the dHCP atlas we have provided

a registered version of the spherical template surfaces to be in correspondence to the dHCP template.
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Figure 1: Exemplary surface extraction pipeline output for one labelled subject. Panels show: (i) the original 7»-
weighted image; (ii) segmentations according to the DrawEM techniques; (iii) Deformable-extracted cortical
surfaces, where the top panel shows inner (yellow) and outer (red) cortical surfaces overlaid onto the original
image, and the middle and bottom panels show lateral aspects of the left hemisphere inner and outer surfaces in
3D; (iv) “inflated” and spherical versions of the white surface; (v) spherical surface registered to the template
surface (a); (vi) automatic parcellation using the M-CRIB-S(DKT) scheme shown on the subject inflated surface
for lateral (left) and medial (right) aspects. The label training data are depicted in volume format (b), and in 3D
on the average inflated surface for lateral (c), and medial (d) aspects. Surface vertices in (iii), (iv) and (v) are

coloured according to local mean curvature.
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Figure 2: Illustrative surface projections of the manual parcellation for one subject from the labelled set using
the M-CRIB-S(DKT) and M-CRIB-S(DK) labels for left (LH) and right (RH) hemispheres. The ellipses
highlight some differences between M-CRIB-S(DKT) and M-CRIB-S(DK). The white ellipses highlight
location disagreements of the lateral orbitofrontal (LORB) and pars orbitalis (PORB) regions between atlases.

The black ellipses encompass the banks of the superior temporal sulcus region, which is not present in the DKT.

Figure 3: Average white (i), pial (ii), and inflated (iii) surfaces for all subjects with the vertices coloured

according to M-CRIB-S(DKT) labels. The average white matter curvature map is shown on the inflated surfaces
in (iv). The lateral view of the M-CRIB-S(DK) atlas is shown in (v). The annotations in panel (iii) and (v)
highlight selected differences between the atlases. The white ellipses focus on the lateral orbitofrontal and pars
orbitalis regions. The black ellipses centre on the bank of the superior temporal sulcus (BSTS), which is absent

in the M-CRIB-S(DKT) atlas.
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Figure 4: Vertex-wise parcellation mismatch rates for the M-CRIB-S(DKT) and M-CRIB-S(DK) atlases using
the Leave-One-Out cross-validation method shown on the template inflated surfaces. Aspects shown are as
follows: midline (i), lateral (ii), superior (iii), inferior (iv), frontal (v), and occipital (vi). Warmer colours

indicate greater vertex-wise mismatch between automatic and manual labels.
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Figure 5: Per-region Dice coefficients for the Leave-One-Out cross-validation test for labelled datasets
comparing (i) automated with manual M-CRIB-S(DKT) parcellations, and (ii) automated with manual M-CRIB-
S(DK) parcellations. The banks of the superior temporal sulcus (BSTS), frontal pole (FP), and temporal pole

(TP) regions are greyed out in (i) because they are not present in the DKT parcellation scheme.
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Figure 6: Per-region Hausdorff distances, in mm units, for the Leave-One-Out cross-validation test for labelled
datasets comparing (i) automated with manual M-CRIB-S(DKT) parcellations and (ii) automated with manual

M-CRIB-S(DK) parcellations. The BSTS, FP, and TP regions are greyed out in (i) because they are not present

in the DKT parcellation scheme.
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Figure 7: Worst-case (i) and best-case (ii) instances of boundary discrepancies, measured by Hausdorff
distances, between estimated (green) and manual (red) label boundaries. The star markers and white paths depict
the traversal between nearest neighbours. Other surface vertices are shaded according to curvature, with light

and dark grey denoting gyri and sulci, respectively.
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