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Abstract 

Longitudinal studies measuring changes in cortical morphology over time are best facilitated by parcellation 

schemes compatible across all life stages. The Melbourne Children's Regional Infant Brain (M-CRIB) and M-

CRIB 2.0 atlases provide voxel-based parcellations of the cerebral cortex compatible with the Desikan-Killiany 

(DK) and the Desikan-Killiany-Tourville (DKT) cortical labelling schemes. However, there is still a need for a 

surface-based approach for parcellating neonatal images using these atlases.  

 

We introduce surface-based versions of the M-CRIB and M-CRIB 2.0 atlases, termed M-CRIB-S(DK) and M-

CRIB-S(DKT), with a pipeline for automated parcellation utilizing FreeSurfer and developing Human 

Connectome Project (dHCP) tools.  

 

Using T2-weighted magnetic resonance images of healthy neonates (n = 58), we created average spherical 

templates of cortical curvature and sulcal depth. Manually-labelled regions in a subset (n = 10) were encoded 

into the spherical template space to construct M-CRIB-S(DK) and M-CRIB-S(DKT) atlases. Labelling accuracy 

was assessed using Dice overlap measures and boundary discrepancy measures within a leave-one-out cross-

validation framework. 

 

Cross-validated labelling accuracy was high for both atlases (average regional Dice = 0.79 - 0.83). Worst-case 

boundary discrepancy instances ranged from 9.96 - 10.22 mm, which appeared to be driven by variability in 

anatomy for particular cases. 

 

The M-CRIB-S atlases and automatic pipeline allow extraction of neonatal cortical surfaces labelled according 

to the DK or DKT parcellation schemes. This will facilitate surface-based investigations of brain structure at the 

neonatal time point. The atlases and spherical surfaces, along with customised scripts for segmentation, cortical 

surface extraction and parcellation, are available for public download. 
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Introduction 

The delineation of cortical areas on magnetic resonance images (MRI) A considered to be a prerequisite for 

beginning to understand the complexities of the human brain (Brett et al. 2002). Accurate understanding of 

development of the brain is reliant on accurate parcellation of the cerebral cortex, from around the time of 

normal birth onwards.  

 

FreeSurfer (B. Fischl 2012; B. Fischl and Dale 2000; Bruce Fischl et al. 2002; B. Fischl et al. 2004) is a 

commonly used cortical extraction and parcellation software suite applicable to T1 MRI scans of children and 

adults, and its available parcellation schemes include the Desikan-Killiany (DK) (Desikan et al. 2006) and 

Desikan-Killiany-Tourville (DKT) (Klein and Tourville 2012) adult atlases. However, tools tuned for adult 

brains, such as the adult T1-based templates and atlases provided in FreeSurfer (B. Fischl et al. 1999; B. Fischl 

et al. 2004), are not directly applicable to neonatal brain images. Tissue signal intensities are different in 

neonatal brains compared to those in adults (L. Wang et al. 2019). Thus the optimal MRI sequences for the grey 

and white matter contrast required to identify cortical surfaces differ by age. While T1-weighting is optimal for 

adult brains, T2-weighted contrasts are optimal for neonatal brains. Consequently, specialized algorithms are 

required in order to contend with neonatal-specific tissue intensities (Beare et al. 2016; Makropoulos et al. 

2016). Thus, brain atlases and image segmentation and parcellation tools specific for infants are required. 

 

Methods for cortical parcellation of infant brain images have focused on warping standardized cortical atlases 

from adult brains (Klein and Tourville 2012; Desikan et al. 2006; Tzourio-Mazoyer et al. 2002) onto infant 

brains e.g. (Shi et al. 2011; Wu et al. 2018). However, labelling a neonatal brain image using adult-derived 

atlases is problematic, due to the inherent difference in anatomy and tissue composition between infant and 

adult brains (Richards et al. 2016). Recently, we introduced the Melbourne Children’s Regional Infant Brain 

(M-CRIB) atlases (Alexander et al. 2017; Alexander et al. 2019b), which are neonatal-specific, voxel-wise brain 

atlases. The cortical parcellations were constructed to be compliant with the DK (Desikan et al. 2006) and DKT 

(Klein and Tourville 2012) adult cortical parcellation schemes. Each of the M-CRIB atlases are comprised of 10 

neonatal brains that have been extensively manually parcellated to accurately reflect brain structures at this 

time-point. Parcellation of new data has been achieved using multi-atlas label fusion algorithms that 

probabilistically assign labels to each voxel after warping the set of parcellated atlases to a novel dataset e.g. 

(Alexander et al. 2019a; Akhondi-Asl and Warfield 2013). 

 

While accurate labelling can be achieved using voxel-based parcellation schemes (Makropoulos et al. 2018; 

Alexander et al. 2019a; Alexander et al. 2017), surface-based registration methods lead to significantly 

improved alignment of cortical landmarks, including cortical folds, and therefore more accurate placement of 

areal boundaries (Ghosh et al. 2010; Coalson et al. 2018).  

 

The Developing Human Connectome Project (dHCP) has recently provided a pipeline for segmentation and 

cortical extraction for T2-weighted images of neonatal brains (Makropoulos et al. 2018). This process segments 

brain tissue into cerebral and cerebellar grey and white matter, and various subcortical grey matter structures, 

before extracting an inner and outer cortical surface which is automatically partitioned into lobes. These existing 
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cortical surface extraction tools can be expanded upon to incorporate a neonatal brain atlas and provide accurate 

surface-based parcellations. Thus, measures such as cortical thickness, surface area, and curvature for each 

cortical sub-division of the M-CRIB atlases can subsequently be derived for infant MRI scans.  

 

In this study we aimed to provide neonatal average surface templates and surface-based cortical atlases based on 

the M-CRIB and M-CRIB 2.0 parcellation schemes, that are compatible with FreeSurfer and the dHCP 

pipelines (B. Fischl et al. 2004; B. Fischl 2012; B. Fischl et al. 1999). Additionally, we aimed to provide 

companion scripts to perform cortical surface extraction, surface registration and atlas-based cortical 

parcellation using novel neonatal T2-weighted brain images. Given the compatibility of the neonatal M-CRIB-S 

parcellation schemes with the adult DK and DKT schemes, the proposed tools can generate parcellated neonatal 

cortical regions that are comparable with those obtained using existing tools such as FreeSurfer at older time 

points, enabling  longitudinal studies, beginning from the neonatal time-point. 

 

Methods 

Participants 

A total of 58 term-born (≥ 37 weeks’ gestation), healthy neonates (40.2 - 44.9 weeks post-menstrual age (PMA) 

at scan, M = 42.4, SD = 1.2, 26 female) were scanned as control subjects as part of preterm birth studies (Spittle 

et al. 2014; Walsh et al. 2014). Criteria for a subject being healthy were no admissions to a neonatal intensive 

care or special care unit, resuscitation at birth not required, birthweight more than 2.5 kg and no evidence of 

congenital conditions known to affect development and growth. Ethical approval for the studies was obtained 

from the Human Research Ethics Committees of the Royal Women’s Hospital and the Royal Children’s 

Hospital, Melbourne. Written informed consent was obtained from parents. Data that exhibited excessive 

movement or other corrupting artefacts were excluded. This cohort was subdivided into the following two 

subsets: labelled and unlabelled subsets. The labelled set comprised the ten subjects (40.29 – 43.00 weeks’ 

PMA at scan, M = 41.71, SD = 1.31, 4 female) of the M-CRIB atlas that had been previously selected  from this 

cohort on the basis of minimal motion or other artifact on the T2 images  (Alexander et al. 2019b; Alexander et 

al. 2017). The unlabelled subset consisted of the remaining 48 subjects (40.2 – 44.9 weeks’ PMA at scan, M = 

42.6, SD = 1.3, 22 female).  

 

MRI acquisition 

All neonate subjects were scanned at the Royal Children’s Hospital, Melbourne, Australia, on a 3T Siemens 

Magnetom Trio scanner during unsedated sleep. T2-weighted images were acquired with a turbo spin echo 

sequence with the following parameters: 1 mm axial slices, flip angle = 120°, repetition time = 8910 ms, echo 

time = 152 ms, field of view = 192 × 192 mm, in-plane resolution = 1 mm2 (zero-filled interpolated to 0.5 × 0.5 

× 1 mm in image reconstruction), matrix size = 384 × 384. All T2-weighted images were resliced to voxel-

volume-preserving size of 0.63 × 0.63 × 0.63 mm (Loh et al. 2016; Alexander et al. 2017). 

 

Processing pipeline 

The proposed processing pipeline and M-CRIB-S training data is graphically described in Figure 1.  
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Image segmentation 

Each image in the unlabelled dataset (Figure 1(i)) was segmented into cerebral white and grey matter (including 

lobar sub-divisions), cerebellum and various subcortical grey matter structures automatically using the DrawEM 

software package (Makropoulos et al. 2016; Makropoulos et al. 2014). Briefly, this technique non-linearly 

registered the non-labelled T2-weighted images to multiple pre-labelled images. The non-labelled image was 

then segmented using label fusion. The proposed pipeline utilized the wrapper script neonatal-pipeline-v1.1.sh 

included in DrawEM for execution. Figure 1(ii) shows an example voxel-based DrawEM segmentation output. 

 

The labelled M-CRIB atlas images were already segmented appropriately for DrawEM compatibility. Each M-

CRIB segmented image comprised manually traced cerebral white and grey matter, cerebellum, basal ganglia 

and thalamus, cortical, ventricular and other subcortical labels. Tracing protocols for the cortical (Alexander et 

al. 2019b; Alexander et al. 2017) and subcortical (Loh et al. 2016) segmentations have been previously 

described. Figure 1(d) shows an example M-CRIB-S segmented image. 

 

Surface extraction 

DrawEM compatible segmentations containing hemispheric white matter and grey matter, cerebellar, 

ventricular, brainstem and subcortical grey matter labels were used as input for the Deformable module 

(Makropoulos et al. 2018; Schuh et al. 2017) of MIRTK (https://github.com/BioMedIA/MIRTK). Deformable 

used to extract the inner and outer boundaries of each hemisphere of the cerebral cortices for both labelled and 

unlabelled datasets. Figure 1(iii)(a) shows inner and outer surfaces overlaid onto the original T2-weighted 

image, and Figures 1(iii)(b) and 1(iii)(c) show lateral aspects of the inner and outer surfaces in 3D, respectively. 

 

Surface inflation and spherical mapping 

The proposed pipeline used the FreeSurfer tools mris_inflate and mris_sphere (B. Fischl et al. 1999) to 

construct inflated and spherical versions of the white matter surfaces, respectively. Figure 1(iv) shows 

exemplary inflated and spherical surface outputs. Default FreeSurfer 6.0.0 options were used for both tools with 

the following exception: the negative triangle removal option “-remove_negative 1” was added to mris_sphere. 

The inflated surfaces exhibited the same gross shape features as those seen when FreeSurfer is executed on 

adult brain images. Specifically, an overall elliptical appearance, a dimple in the vicinity of the insula, and the 

smooth protrusion of the temporal and occipital poles. 

 

Curvature template generation 

Surface templates, comprised of all labelled and unlabelled subjects, were constructed using the curvature-based 

spherical mapping, alignment and averaging method as previously described (B. Fischl 2012; B. Fischl et al. 

1999). Briefly, spherical registration involves linear (rotation) and non-linear displacement of vertices in 

spherical space. The registration algorithm aims to optimise agreement of white and inflated sulcal depth maps 

of a subject’s surfaces to a template. The use of local curvatures and sulcal depth to drive registration means that 

corresponding sulci and gyri are aligned. An iterative procedure of aligning spherical surfaces from both the 

labelled and unlabelled datasets to the current template, followed by creation of a new template, was performed. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2019. ; https://doi.org/10.1101/544304doi: bioRxiv preprint 

https://doi.org/10.1101/544304
http://creativecommons.org/licenses/by-nc/4.0/


The final template curvature and sulcal depth maps were created by averaging all aligned maps (see Figure 

1(a)). 

 

The spherical mapping of each white matter surface onto a common spherical space meant that any given point 

in template space could be mapped to a point on each subject’s white matter surface, and those points were in 

correspondence across subjects. This enabled average white, pial and inflated surfaces to be constructed using 

the FreeSurfer tool mris_make_average_surface, by resampling surfaces onto the 6th order common 

icosahedron. The 6th order icosahedron was chosen due to having minimal density while still upsampling the 

original surfaces. 

 

Surface labelling 

For the 10 cases in the labelled dataset, the volumetric M-CRIB and M-CRIB 2.0 labels were projected to the 

corresponding white matter surface vertices using nearest labelled neighbour projection. Label data were 

individually checked for anatomical accuracy of label placement by one author (B.A.). For both atlases, label 

placement was considered highly accurate. In a few instances, very minor mislabelling was identified and 

manually corrected on the relevant surface and corrected volumetrically in some cases for M-CRIB 2.0 data.  

 

Figure 2 depicts the projection of the M-CRIB and M-CRIB 2.0 labels projected onto the white matter surface 

generated by Deformable for a single labelled subject. These surface-space versions of the M-CRIB 2.0 and M-

CRIB parcellations are called M-CRIB-S(DKT) and M-CRIB-S(DK), respectively. While similar, the 

highlighted regions demonstrate some differences including label boundary changes (in, e.g., lateral 

orbitofrontal and pars orbitalis) and region removal (banks of the superior temporal sulcus). For a 

comprehensive description of the differences in regions and region boundaries between the M-CRIB and M-

CRIB 2.0 parcellations, see (Alexander et al. 2019b; Alexander et al. 2017). 

 

Parcellation training set construction 

Parcellation training sets were constructed using the labelled set for each M-CRIB-S(DKT) and M-CRIB(DK) 

cortical label, using the method of Fischl et al. (B. Fischl et al. 2004). Briefly, for each template, spatial prior 

distributions for each cortical label were constructed on the surface using the tool mris_ca_train. The M-CRIB-

S(DKT) parcellation of the average white surface is shown in Figure 1(c) and 1(d). 

 

Template surface construction 

Using both labelled and unlabelled datasets, we derived group-averaged white, pial, and inflated surfaces along 

with curvature and sulcal depth maps in a common spherical space (see Figure 3). For interoperability with the 

dHCP and UNC atlases (Wu et al. 2018; Makropoulos et al. 2018), we also provide versions of the M-CRIB-S 

spherical template surfaces registered to the dHCP 42-week and UNC 42-week spherical template surfaces. M-

CRIB-S(DKT) and M-CRIB-S(DK) parcellation maps in each labelled subject were transferred to the spherical 

template and used as the training set for the FreeSurfer tool mris_ca_label. We applied this labelling to the 

average white matter surface using the M-CRIB-S(DKT) to illustrate our cortical labelling approach (Figures 

3(i), (ii) and (iii)). For comparison, the M-CRIB-S(DK) labelling is also shown. These group-average label 
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images may be used for display of statistical analysis results using the M-CRIB-S(DKT) or M-CRIB-S(DK) 

atlases. 

 

Parcellation of a novel image 

Novel T2-weighted images can be parcellated using the M-CRIB-S atlas data using the following sequence of 

processing steps (see Figure 1): 1) Apply DrawEM and Deformable to extract white and pial surfaces, 2) 

Perform surface inflation, spherical projection and registration to the M-CRIB-S surface template using 

FreeSurfer tools, and 3) Use neonatal specific cortical label priors and the automatic labelling tool 

mris_ca_label to parcellate the surfaces. A collection of scripts are provided to execute the pipeline, which can 

be found along with the M-CRIB-S data on the GitHub page 

(https://www.github.com/DevelopmentalImagingMCRI/MCRIBS). This pipeline was used to perform cortical 

parcellation on all unlabelled images for validation. 

 

Parcellation accuracy tests 

Parcellation accuracy of the proposed automatic labelling pipeline against manual M-CRIB parcellations was 

quantified within a Leave-One-Out (LOO) cross-validation framework. For each of the 10 subjects, curvature 

templates were constructed using the remaining nine labelled subjects and all unlabelled subjects. Parcellation 

training data was constructed from the remaining nine labelled subjects. The left-out subject was then 

segmented and parcellated using the pipeline. Per-region label accuracy was assessed using Dice measures, a 

metric of overlap, and Hausdorff Distances, a metric of boundary error. The Hausdorff distance between the 

automatic and manual labelling of a region in one subject is the greatest of all shortest distances between two 

closed contours. Visualisations of these maximal boundary mismatches are provided. 

 

Results 

Results of the Leave-One-Out analysis of labelling accuracy, comparing automated labelling to manually-

defined labels in the labelled dataset (n = 10) are shown in Figures 4, 5 and 6. 

 

Figure 4 shows the vertex-wise parcellation mismatch rates for both atlases. Hemisphere-wide vertex-wise 

agreement rates were similar across parcellation schemes: the average for M-CRIB-S(DKT) was 0.84 [range 

0.78 - 0.87], and the average for M-CRIB-S(DK) was 0.83 [range 0.77 – 0.87]. The rates of high mismatch are 

confined to region boundaries, indicating that the bulk of the central portions always agreed with ground truth. 

Exceptionally high rates of mismatch can be seen for the frontal pole and temporal pole labels in the M-CRIB-

S(DK).  

 

Figure 5 displays regional Dice measures for M-CRIB-S(DKT) and M-CRIB-S(DK). Dice scores for both 

atlases were generally high (0.79 - 0.83). For the M-CRIB-S(DKT) parcellation scheme, per-region mean Dice 

measures were similar across hemispheres (left: mean = 0.82, SD = 0.05; right: mean = 0.83, SD = 0.05). In 

both hemispheres, the highest Dice scores were observed in the insula (left: 0.95; right: 0.94). The lowest Dice 

score observed in the left hemisphere was for the pars triangularis (0.75), and the lowest Dice score in the right 

hemisphere was for the posterior cingulate (0.75). For the M-CRIB-S(DK) parcellation scheme, per-region 
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mean Dice measures were similar to those listed above for the M-CRIB-S(DKT) parcellation, and were again 

similar between hemispheres (left: mean = 0.79 , SD = 0.10; right: mean = 0.80 , SD = 0.07). The highest Dices 

scores in each hemisphere were again seen in the insula (left: 0.95; right: 0.94). The lowest Dice scores were 

outliers observed in the frontal pole in the left hemisphere (0.50), and in the banks of the superior temporal 

sulcus region in the right hemisphere (0.55).  

 

Figure 6 shows per-region Hausdorff distances, which measure worst-case boundary discrepancy between 

automatic and manual labels for M-CRIB-S parcellation schemes. For the M-CRIB-S(DKT) parcellation 

scheme, per-region mean Hausdorff distances were similar between hemispheres (left: mean: 10.22 mm, SD = 

2.99 mm; right: mean: 10.13 mm, SD = 2.77 mm). The smallest Hausdorff distances for each hemisphere were 

both seen in the insula (left: 3.27 mm, right: 4.11 mm). The largest Hausdorff distance for the left hemisphere 

was observed in the inferior parietal region (16.18 mm), and the largest in the right hemisphere was for the 

superior parietal region (15.91 mm).  

 

For the M-CRIB-S(DK) parcellation scheme, Hausdorff distances were similar to those for M-CRIB-S(DKT) 

and were again similar between hemispheres (left: mean = 10.3 mm, SD = 3.08 mm; right: mean = 9.96 mm, SD 

= 2.67 mm). The smallest Hausdorff distances observed in each hemisphere were again both in the insula (left: 

3.23 mm, right: 4.11 mm). The largest Hausdorff distance seen in the left hemisphere was for the inferior 

parietal region (16.39 mm), and in the right hemisphere was for the superior parietal region (15.96 mm).  

 

Individual measurements of per-subject and per-label Hausdorff distances ranged from 1.9 - 25.6 mm in M-

CRIB-S(DKT) and 2.4 - 25.3 mm in M-CRIB-S(DK). Figure 7 shows some examples of individual worst- and 

best-case Hausdorff distances between ground truth and estimated labels. 

 

Discussion 

The primary contribution of this work is the provision of atlases and tools that facilitate cortical surface 

extraction and parcellation of the neonatal cortex into 31 or 34 regions. Our pipeline is based on T2-weighted 

images of neonates around term equivalent age and uses a common adult-compatible parcellation scheme, with 

neonatal-specific training data. This work extends our previous M-CRIB and M-CRIB 2.0 volume-based atlases 

to enable surface-based parcellation of the neonatal cortex. 

 

We have applied this method to a cohort of healthy, term-born infants (mean age at scan = 42.4 weeks). The full 

age range of subjects suitable for processing under the proposed pipeline will depend on whether tissue intensity 

contrast is adequate to reliably segment brain structures and extract cortical surfaces, and whether cortical 

folding complexity is enough to identify all macrostructural morphological features for surface-based template 

registration and region identification. Tissue segmentation and cortical surface extraction using DrawEM and 

Deformable are designed to be compatible with T2-weighted white/grey matter contrasts visible between 1 - 5 

months (Li Wang et al. 2012) and have been demonstrated on data acquired between 34.4 - 43 weeks PMA 

(Makropoulos et al. 2018). From 5 to 8 months’ PMA the T2-weighted grey/white matter contrast is 

transitioning to become like that of an adult by about 9 months’ PMA via an isocontrast phase (6 - 8 months) (Li 
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Wang et al. 2012). As such, tissue segmentation using these protocols would only be expected to work 

optimally up to approximately 5 months of age, before the T2-weighted image becomes isointense.  

 

Small-scale cortical folding occurs mostly late in gestation, with many sulci and gyri that define areal 

boundaries within the M-CRIB-S(DK) and M-CRIB-S(DKT) atlases not being reliably detectable until 

approximately 40 weeks PMA (Shi et al. 2011). It is possible that a sulcus, for example, may not have formed a 

sufficiently deep groove to be separated from neighbouring gyri. Thus, careful inspection of parcellation results 

for subjects scanned at ages below 40 weeks’ PMA is required to ensure that the morphological features that 

define areal boundaries are present. However, the parcellation component may be appropriate for subjects below 

40 weeks and beyond 5 months of age, provided cortical surface data were obtained via other preprocessing 

methods. 

 

Parcellation accuracy of the automated surface-based labelling methods using the M-CRIB-S atlases was 

quantified using Dice overlap measures and Hausdorff distances using Leave-One-Out cross-validation. Dice 

overlap scores were high on average and appeared similar in the left and right hemisphere. The per-vertex 

mismatch rates (Figure 4) were largely zero for the bulk of the internal portions of most regions. When 

compared to accuracy measures presented for the adult DKT atlas, Klein and Tourville (2012) presented Leave-

One-Out Dice measures of overlap between FreeSurfer parcellations and manual parcellations, which ranged 

from 0.72 – 0.98. This is largely similar to our Dice overlap results, suggesting that the presented pipeline 

provides a labelling accuracy consistent with popular adult parcellation tools.   

 

Boundary discrepancies between manual and automated labels were measured using Hausdorff distance. The 

Hausdorff distance is the maximal distance travelled between any two nearest neighbours of manual and 

automatic label boundary contours. Most regions had Hausdorff distances between 5 mm - 8 mm for both M-

CRIB-S(DKT) and M-CRIB-S(DK) atlases. Figure 7 shows individual instances of worst-case boundary 

discrepancies in the middle temporal gyrus and inferior parietal labels. The subjects shown, subjects 7 and 8, 

appeared to exhibit sulcation that varied more than for other subjects in the temporal and parietal cortices and, 

as a result, the boundaries of these regions were shifted with respect to other training set subjects. An additional 

confound in manual labelling was that in some instances, label boundaries in the protocols relied on landmarks 

that were abstract or subject to large individual variability in presence or in morphology. In contrast, the best-

case boundary discrepancies (Figure 7(ii)) feature the insula and pericalcarine regions. The high accuracy of the 

estimated insula boundary is likely due its particularly well-defined boundaries in the original parcellation 

protocols, relatively easily identifiable in images and consistent across subjects. Other literature has reported 

cross-validated boundary discrepancy measures between manual and automated segmentations of the adult DK 

atlas dataset (Desikan et al.). Rather than using Hausdorff distances, discrepancies were calculated as average 

per-vertex distances between manual and automated label boundaries across subjects. Graphical depictions of 

these average distances appeared to show a maximum discrepancy of 1 mm. Average boundary mismatch is 

incompatible with the worst-case discrepancy used in this paper and, thus, cannot be directly compared.  
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The dHCP set of tools are currently available for cortical surface extraction and lobar parcellation. Makropoulos 

et al. (2018) recently highlighted the potential value of incorporating M-CRIB parcellation in these tools 

(Makropoulos et al. 2018), as its compatibility with the DK (Desikan et al. 2006) adult parcellation may 

facilitate comparisons of cortical measures between the perinatal and adult time points. Here, we provide a 

publicly available, surfaced based cortical parcellation that can accomplish this objective. 

 

The value of this surface-based atlas and the associated processing scripts is automated parcellation of the 

neonatal cortex that is straightforward to employ in longitudinal studies. The processing scripts and the M-

CRIB-S(DK) and M-CRIB-S(DKT) atlases were constructed to be used with FreeSurfer, to produce compatible 

output and give a direct correspondence between region-based statistics such as cortical thickness, surface area, 

and curvature measures at neonatal, childhood and adult timepoints.  

 

Conclusion 

This paper presented the M-CRIB-S(DKT) and M-CBRIB-S(DK) atlases: surface-based versions of the 

volumetric M-CRIB and M-CRIB 2.0 atlases. It also presented an automated pipeline that involves 

segmentation of novel T2-weighted neonatal images, extraction of cortical surfaces, followed by cortical 

parcellation with the M-CRIB-S(DK) and M-CRIB-S(DKT) atlases, which are neonatal versions of the adult 

DK and DKT atlases. The curvature template registration targets, average surfaces, labelling training data, and 

pipeline execution scripts are available. Additionally, for interoperability with the dHCP atlas we have provided 

a registered version of the spherical template surfaces to be in correspondence to the dHCP template.  
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Figures: 

 

Figure 1: Exemplary surface extraction pipeline output for one labelled subject. Panels show: (i) the original T2-

weighted image; (ii) segmentations according to the DrawEM techniques; (iii) Deformable-extracted cortical 

surfaces, where the top panel shows inner (yellow) and outer (red) cortical surfaces overlaid onto the original 

image, and the middle and bottom panels show lateral aspects of the left hemisphere inner and outer surfaces in 

3D; (iv) “inflated” and spherical versions of the white surface; (v) spherical surface registered to the template 

surface (a); (vi) automatic parcellation using the M-CRIB-S(DKT) scheme shown on the subject inflated surface 

for lateral (left) and medial (right) aspects. The label training data are depicted in volume format (b), and in 3D 

on the average inflated surface for lateral (c), and medial (d) aspects. Surface vertices in (iii), (iv) and (v) are 

coloured according to local mean curvature.  
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Figure 2: Illustrative surface projections of the manual parcellation for one subject from the labelled set using 

the M-CRIB-S(DKT) and M-CRIB-S(DK) labels for left (LH) and right (RH) hemispheres. The ellipses 

highlight some differences between M-CRIB-S(DKT) and M-CRIB-S(DK). The white ellipses highlight 

location disagreements of the lateral orbitofrontal (LORB) and pars orbitalis (PORB) regions between atlases. 

The black ellipses encompass the banks of the superior temporal sulcus region, which is not present in the DKT. 

 

 

Figure 3: Average white (i), pial (ii), and inflated (iii) surfaces for all subjects with the vertices coloured 

according to M-CRIB-S(DKT) labels. The average white matter curvature map is shown on the inflated surfaces 

in (iv). The lateral view of the M-CRIB-S(DK) atlas is shown in (v). The annotations in panel (iii) and (v) 

highlight selected differences between the atlases. The white ellipses focus on the lateral orbitofrontal and pars 

orbitalis regions. The black ellipses centre on the bank of the superior temporal sulcus (BSTS), which is absent 

in the M-CRIB-S(DKT) atlas. 
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Figure 4: Vertex-wise parcellation mismatch rates for the M-CRIB-S(DKT) and M-CRIB-S(DK) atlases using 

the Leave-One-Out cross-validation method shown on the template inflated surfaces. Aspects shown are as 

follows: midline (i), lateral (ii), superior (iii), inferior (iv), frontal (v), and occipital (vi). Warmer colours 

indicate greater vertex-wise mismatch between automatic and manual labels. 

 

  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2019. ; https://doi.org/10.1101/544304doi: bioRxiv preprint 

https://doi.org/10.1101/544304
http://creativecommons.org/licenses/by-nc/4.0/


 

Figure 5: Per-region Dice coefficients for the Leave-One-Out cross-validation test for labelled datasets 

comparing (i) automated with manual M-CRIB-S(DKT) parcellations, and (ii) automated with manual M-CRIB-

S(DK) parcellations. The banks of the superior temporal sulcus (BSTS), frontal pole (FP), and temporal pole 

(TP) regions are greyed out in (i) because they are not present in the DKT parcellation scheme. 

 

 

Figure 6: Per-region Hausdorff distances, in mm units, for the Leave-One-Out cross-validation test for labelled 

datasets comparing (i) automated with manual M-CRIB-S(DKT) parcellations and (ii) automated with manual 

M-CRIB-S(DK) parcellations. The BSTS, FP, and TP regions are greyed out in (i) because they are not present 

in the DKT parcellation scheme. 
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Figure 7: Worst-case (i) and best-case (ii) instances of boundary discrepancies, measured by Hausdorff 

distances, between estimated (green) and manual (red) label boundaries. The star markers and white paths depict 

the traversal between nearest neighbours. Other surface vertices are shaded according to curvature, with light 

and dark grey denoting gyri and sulci, respectively. 
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