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Abstract

Adverse drug effects (ADEs) are one of the leading causes of death in developed countries and
are the main reason for drug recalls from the market, whereas the ADEs that are associated with
action on the cardiovascular system are the most dangerous and widespread. The treatment of
human diseases often requires the intake of several drugs, which can lead to undesirable drug-
drug interactions (DDIs), thus causing an increase in the frequency and severity of ADEs. An
evaluation of DDI-induced ADEs is a nontrivial task and requires numerous experimental and
clinical studies. Therefore, we developed a computational approach to assess the cardiovascular
ADEs of DDIs.

This approach is based on the combined analysis of spontaneous reports (SRs) and predicted
drug-target interactions to estimate the five cardiovascular ADEs that are induced by DDIs,
namely, myocardial infarction, ischemic stroke, ventricular tachycardia, cardiac failure, and

arterial hypertension.
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26 We applied a method based on least absolute shrinkage and selection operator (LASSO) logistic
27  regression to SRs for the identification of interacting pairs of drugs causing corresponding
28  ADEs, as well as noninteracting pairs of drugs. As a result, five datasets containing, on average,
29 3100 ADE-causing and non-ADE-causing drug pairs were created. The obtained data, along with
30 information on the interaction of drugs with 1553 human targets predicted by PASS Targets
31  software, were used to create five classification models using the Random Forest method. The
32 average area under the ROC curve of the obtained models, sensitivity, specificity and balanced
33  accuracy were 0.838, 0.764, 0.754 and 0.759, respectively.

34  The predicted drug targets were also used to hypothesize the potential mechanisms of DDI-
35 induced ventricular tachycardia for the top-scoring drug pairs.

36 The created five classification models can be used for the identification of drug combinations

37  that are potentially the most or least dangerous for the cardiovascular system.

38

39  Author summary

40  Assessment of adverse drug effects as well as the influence of drug-drug interactions on their
41  manifestation is a nontrivial task that requires numerous experimental and clinical studies. We
42  developed a computational approach for the prediction of adverse effects that are induced by
43  drug-drug interactions, which are based on a combined analysis of spontaneous reports and
44  predicted drug-target interactions. Importantly, the approach requires only structural formulas to
45  predict adverse effects, and, therefore, may be applied for new, insufficiently studied drugs. We
46  applied the approach to predict five of the most important cardiovascular adverse effects,
47  because they are the most dangerous and widespread. These effects are myocardial infarction,
48  ischemic stroke, ventricular tachycardia, arterial hypertension and cardiac failure. The accuracies
49  of predictive models were relatively high, in the range of 73-81%; therefore, we performed a
50 prediction of the five cardiovascular adverse effects for the large number of drug pairs and

51 revealed the combinations that are the most dangerous for the cardiovascular system. We
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consider that the developed approach can be used for the identification of pairwise drug

combinations that are potentially the most or least dangerous for the cardiovascular system.

Introduction

Adverse drug effects (ADEs) are one of the top 10 causes of death in developed countries,
are one of the main reasons for stopping the development of new drug-candidates and are the
main reason for drug recalls from the market [1, 2]. Cardiovascular effects are some of the most
serious ADEs that may lead to hospitalization or death, and, at the same time, are widespread
[1]. The ADE profile of a particular drug-candidate is usually investigated during standard
preclinical animal tests and clinical trials according to the GLP and GCP requirements. However,
many rare, but serious, ADEs cannot be revealed by these studies, because of interspecies
differences, the limited number of patients or animals and the duration of studies; thus,
additional in vitro and in silico methods for the detection of serious ADEs are currently being
developed [3-8]. These methods are based on the determination of the relationships between
several chemical and biological features of drugs and their ADEs. Among these features are
molecular descriptors, known and predicted drug targets, gene expression changes induced by
drugs, phenotypic features such as perturbed pathways, or known ADEs. The relationships
between these features and ADEs are usually established using various machine learning
methods and network-based approaches. It is accepted that the interaction with human proteins is
the most common cause of ADEs; therefore, known and predicted human targets are the most
common type of drug features that are used in corresponding studies. Many of the developed
methods require knowledge of only the structural formula of a drug-candidate to predict its
potential ADEs; therefore, they can be used at the earliest stages of drug development, which
may sufficiently increase their effectiveness [3, 4, 8].

In real clinical practice, the treatment of human diseases often requires the administration of

several drugs, which can lead to drug-drug interactions (DDIs), thus causing an increase in the

3
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78  frequency and severity of ADEs [9]. An evaluation of the effect of DDIs on the manifestation of
79  ADE:s is a nontrivial task and requires numerous preclinical and clinical studies. To solve this
80  problem various computational approaches for the prediction of DDIs were developed [10-22].
81  Most of these approaches are based on the calculation of similarities between the profiles of
82  various chemical and biological features of two drugs. These similarities can be calculated based
83 on molecular fingerprints, drug targets, their amino acid sequences, pathways and Gene
84  Ontology (http://www.geneontology.org/) annotations, the Anatomical Therapeutic Chemical
85  (ATC) Classification terms (https://www.whocc.no/atc_ddd index/), as well as known ADEs of
86 individual drugs [10, 12, 13, 15-17, 18, 20, 22]. The Tanimoto coefficient is the most common
87  similarity that is measure in these studies; however, more complicated measures can be used,
88 e.g., several approaches were developed to calculate the proximity of the protein targets of two
89  drugs in a protein-protein interaction network [12, 17]. Similarity measures based on the profiles
90 of different features can be integrated into single interaction scores that allow drug pairs to be
91 ranked according to their potential ability to interact with each other. To estimate the parameters
92  of such integration and validation of obtained results, information about known DDIs was used.
93 Such data can be obtained from various public databases, including DrugBank
94  (https://www.drugbank.ca/) and Drugs.com (https://www.drugs.com/). For example, Cheng F.
95  with colleagues [13] used several machine learning methods with drug phenotypic, therapeutic,
96 chemical and genomic similarities used as features to predict DDIs. The classifiers were trained
97 on the set of known DDIs from the DrugBank database and the same number of randomly
98  chosen drug pairs as the negative examples. The best result with the area under the ROC-curve
99  (AUC) 0.67 was achieved using a support vector machine with a Gaussian radial basis function
100  kernel. In addition to approaches that are based on similarities, some other methods were
101 developed [14, 19]. Zakharov A.V. with colleagues [19] used separate training sets of pairwise
102  drug combinations for each of four isoforms of cytochromes P450, which are examples of known

103  DDIs. The corresponding information was obtained from the literature. Drug pairs were
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represented as mixtures of compounds in ratio 1:1, and several types of molecular descriptors
were generated for them. The prediction models were generated by using the radial basis
function self-consistent regression and a Random Forest. The balanced accuracies that were
obtained from the cross-validation procedure varied from 0.72 to 0.79, depending on the dataset
[19]. Luo H., with colleagues, used the sums and differences of the docking scores for 611
human proteins to describe 6328 drug pairs, which represented known DDIs from the DrugBank
database, and the same number of drug pairs was randomly chosen as a negative example. A
predictive model was created based on 12-regularized logistic regressions to obtain their values.
The obtained accuracy, sensitivity and specificity that were calculated based on the 10-fold
cross-validation procedure were 0.804, 0.847 and 0.772, respectively [14].

Despite the significant progress in predicting DDIs, all of these methods allow for
estimating only the fact of interaction, but not the resulting ADEs, whereas such information is
important to assess the clinical significance of DDIs. The main problem is the absence of known
data for most of the DDI-induced ADEs. The major source of data on ADEs of individual drugs
is drug labels [23]; however, they usually contain very few data on ADEs that are induced by
DDIs. Nevertheless, the corresponding information can be obtained through the analysis of
spontaneous reports (SRs) which are received by regulatory agencies from healthcare
professionals and patients. Each SR contains information about all drugs that are prescribed to a
patient, as well as information about developed ADEs. An analysis of large sets of SRs allows
for relationships between certain ADEs and individual drugs [24-29], or drug combinations [30-
35], to be revealed. The datasets of individual drugs with information about ADEs obtained by
an analysis of SRs were earlier successfully used for the creation of predictive models that are
based on structure-activity relationships [27, 29]. The corresponding information on ADEs that
is induced by pairwise drug combinations may also potentially be used for this purpose.

We developed a computational approach for the assessment of cardiovascular ADEs of

DDIs. The approach is based on a combined analysis of SRs and predicted drug-target
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interactions (DTIs) and allows for the prediction of five cardiovascular ADEs of DDIs:
myocardial infarction, ischemic stroke, ventricular tachycardia, arterial hypertension and cardiac
failure, with balanced accuracies from 0.73 to 0.81. Unlike most of the other methods, our
approach requires only structural formulas to predict cardiovascular adverse effects for any pair
of drugs, and, therefore, may be applied for new, drug-like compounds that have not yet been
studied. The developed approach can be used for the identification of pairwise drug

combinations that are potentially the most or least dangerous for the cardiovascular system.

Results and discussion

General description of the approach

We developed a new computational approach for the assessment of cardiovascular ADEs of
DDIs through a combined analysis of SRs and predicted DTIs (Fig 1).

The approach is based on two main steps: creation of datasets on cardiovascular DDI-
induced ADEs containing drug pairs that cause or do not cause ADEs, and the creation of
classification models for each dataset based on predicted drug targets as descriptors. The creation
of datasets is based on the analysis of SRs from the standardized version of publicly available
parts of the FDA database [36]. The analysis was performed using least absolute shrinkage and
selection operator (LASSO) logistic regression with the addition of propensity scores as
independent variables [35] (see Materials and Methods for details), which allows for the
identification of drug pairs that cause or do not cause cardiovascular ADEs — positive and
negative examples. Each “positive” drug pair represents a synergistic or additive effect of DDI
on the development of ADEs. This method takes into account the confounding effects of other
drugs and risk factors on the manifestation of ADEs and, thus, allows for datasets with lower
numbers of false positives to be obtained. To further improve the quality of datasets, information
about the ADEs of individual drugs [37] was used to filter out potentially false positive and false
negative examples (see Materials and Methods).

6
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Fig 1. The scheme of a developed computational approach for the assessment of
cardiovascular ADEs of DDIs. LASSO LR — least absolute shrinkage and selection operator

(LASSO) logistic regression, PS — propensity scores (see Material and Methods).

At the second step of the approach, a PASS Targets software [38] was used to predict
interactions of individual drugs that were from obtained datasets with 1553 human protein
targets. The sums and absolute values of the differences in the probability estimates of
interaction with targets were used as descriptors for drug pairs. The classification models were
built using Random Forest along with a method that allows for the applicability domain to be
determined. The accuracy of prediction is estimated using a 5-fold cross-validation procedure
(see Materials and Methods). To demonstrate the practical benefit of the obtained models,
predictions of ADEs for a large amount of drug pairs were performed. The analysis of the
biological role of predicted protein targets for the top predicted drug pairs that potentially cause

ADE:s allows for proposing the potential mechanisms of corresponding DDIs.
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Creation of datasets

At the first step of the proposed approach, we created five datasets of drug pairs that cause
and do not cause five cardiovascular ADEs through the analysis of SRs (see Materials and
Methods), namely, ventricular tachycardia, myocardial infarction, ischemic stroke, arterial
hypertension and cardiac failure (see Table S1). Each positive drug pair represents an example of
a synergistic or additive DDI that causes a corresponding ADE. The datasets contain, on average,
more than 3100 drug pairs belonging to 335 individual drugs and 166 ATC terms of the fourth
level (Table 1).

Table 1. Characteristics of created datasets on DDI-induced ADEs.

Positive pairs  Negative pairs Number of drugs Number of ATC classes

Ventricular tachycardia 933 2912 376 181
Myocardial infarction 2479 1279 352 168
Ischemic stroke 838 2101 331 169
Arterial hypertension 549 1029 273 146
Cardiac failure 1350 2108 343 166

We performed the following analysis to estimate whether the obtained datasets contain
information reflecting DDI-induced ADEs or datasets containing information that is similar to
random. One may suggest that the obtained datasets contain more positive drug pairs where both
drugs cause the ADE when administered separately (both-ADE-causing pair) than expected by
chance. Indeed, the induction of ADE by DDI is more probable when both drugs may cause a
particular ADE. Similarly, one may suggest that the obtained datasets contain more positive drug
pairs, where only one of the two drugs causes the ADE (one-ADE-causing pair), compared to the
positive drug pairs, where neither of the two drugs cause ADE (none-ADE-causing pair), than
expected by chance. We compared percentages of both-, one- and none-ADE-causing drug pairs
among the positive pairs of datasets to the corresponding percentages for background datasets
(Fig 2). The background datasets contained all pairwise drug combinations where information
about corresponding ADEs of individual drugs was available, and both drugs were

simultaneously mentioned in at least 100 SRs. The obtained result indicates that the positive drug
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pairs from our datasets were significantly enriched with both- and one-ADE-causing pairs

compared to the background.

A Datasets B Ventricular tachycardia c Myocardial infarction
3000 - 100% 1 100% -
2500 - 80% - 80% -
2000 - =both 60% - mboth 60% - Eboth
1500 -
Eone 40% - Eone 40% - Eone
1000 A
none none none
500 I | B 20% 20% -
0 T T T T \ 0% T ! 0% T \
VT MI IS AH CF vT bVT MI bMI
D Ischemic stroke E Arterial hypertension F Cardiac failure
100% - 100% 1 100% -
80% - 80% 80%
60% - mboth 60% - mbhoth 60% - u both
40% "one 40% Fone 40% Fone
none none none
20% 20% 20%
0% T Y 0% T ] 0% T ,
1S blS AH bAH CF bCF

Fig 2. Percentages of both-, one- and none-ADE-causing drug pairs among positive pairs of
obtained and background datasets. VT — ventricular tachycardia, MI — myocardial infarction,
IS — ischemic stroke, AH — arterial hypertension, CF — cardiac failure; VT, MI, IS, AH, and CF
are positive drug pairs from the created datasets; bVT, bMI, bIS, bAH, and bCF are drug pairs

from background datasets.

The statistical significance of enrichment was estimated using the chi-squared test. Enrichments
for all five ADEs were statistically significant with the highest p-value 0.000035 for ST dataset.
As a result, the created datasets are relevant, representative and can be used for further
analysis.
Prediction of DDI-induced cardiovascular ADEs based on drug-target interactions
We used Random Forest to create classification models and the local (Tree) approach to
determine their applicability domain [39]. The models were created based on sums and absolute
values of differences of probability estimates of interaction with 1553 human protein targets that

had been calculated for individual drugs by PASS Targets software [38]. The accuracy estimates
9
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were obtained by a 5-fold cross-validation procedure with use of the “compound out” approach
[40] (see Materials and Methods for details). The obtained average values of AUC, sensitivity,
specificity and balanced accuracy were 0.838, 0.764, 0.754 and 0.759, respectively, whereas

95.7% of the drug pairs were in the applicability domain of the models (Table 2).

Table 2. Prediction accuracy for five cardiovascular DDI-induced ADEs based on 5-fold

cross-validation procedure.

AUC Sensitivity Specificity aB?clz:::;i :ll:);l;[i)rllicability
Ventricular tachycardia  0.807 0.743 0.718 0.731 96.1%
Myocardial infarction 0.856 0.794 0.763 0.778 95.3%
Ischemic stroke 0.808 0.734 0.724 0.729 95.6%
Arterial hypertension 0.892 0.789 0.832 0.810 95.5%
Cardiac failure 0.824 0.761 0.734 0.747 96.1%

The obtained relatively high accuracies allow for the application of the created models to solve
practical tasks, e.g., to perform a search of new pairwise combinations of drugs that potentially
interact and cause cardiovascular ADEs.
Prediction of DDI-induced ADEs for the new drug pairs

The created datasets contain from hundreds to thousands of drug pairs that cause
cardiovascular ADEs depending on the effect; however, the number of possible pairwise drug
combinations is much higher. To investigate the practical benefit of the created classification
models, we performed a prediction of the DDIs-induced ADEs for all of the possible drug pairs
that were generated from individual drugs with known data on five cardiovascular ADEs [37].
Five large datasets were generated with more than 230000 drug pairs on average, and 190000
pairs (84%) of them were in the applicability domain of the models (see Table 3). Surprisingly,
nearly half of the drug pairs in the datasets were predicted to cause corresponding DDI-induced
ADEs. The average number of positive drug pairs in the training sets (see Table 1) is almost
approximately 40%. Moreover, according to the datasets of individual drugs with information on

five cardiovascular ADEs taken from our previous work [37], nearly 40% of the single drugs
10
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also cause ADE. This is not much less than the percentages of predicted ADE-causing drug pairs
(Table 3).

Table 3. Numbers of drug pairs with predicted ADEs.

Number of pairs Number of pairs with ADE  Pairs with ADE, %  In applicability domain, %

Ventricular tachycardia 232480 157393 52.8 84.9
Myocardial infarction 195933 101063 51.6 83.3
Ischemic stroke 189275 98006 51.8 84.5
Arterial hypertension 161873 57457 355 86.2
Cardiac failure 192326 108064 56.2 82.8

The high percentages of known and predicted ADE-causing drug pairs may be explained by the
fact that most of them, such as individual drugs, may cause ADEs only in a small percentage of
patients. Therefore, the clinical significance of DDI in relation to the cardiovascular system may
be estimated based on only the number of predicted ADEs. We chose 63212 drug pairs that are
in all five of the large datasets and are in the applicability domain of all five models and found
that only 4707 drug pairs (7.4%) potentially cause all five cardiovascular ADEs (Fig 3). The

potentially most dangerous drug combinations are listed in Table S2.

18000 -
16000 -
g
‘s 14000 - 12895

15948 45384

2 9609

=]
o
Q
.é 6000 | 4669 4707
=
=

0 1 2 3 4 5
Number of ADEs

Fig 3. Number of cardiovascular ADEs predicted for a large dataset of drug pairs. Zero

(“0”) means that none of five ADEs were predicted for the pairwise drug combination.
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To estimate the relevance of the predicted ADEs, we performed an analysis of the

distribution of both-, one- and none-ADE-causing drug pairs among combinations that were

predicted to be positives and negatives in relation to the corresponding ADEs (Fig 4).

A Prediction results B Ventricular tachycardia c Myocardial infarction
200000 - 100% - 100% -
160000 - 80% - 80% -
120000 - ® both 60% - mboth 60% - ®mboth
80000 - I I I Fone 40% mone 40% - Fone
none none none
40000 - I 20% - 20% -
0 T T T T ) 0% 0% T
VT Ml IS AH CF VT(+) VT() MI(+) MI(-)
D Ischemic stroke E Arterial hypertension F Cardiac failure
100% 1 100% - 100% -
80% 80% - 80% -
60% - Eboth 60% - mboth 60% - m both
40% - Fone 40% - mone 40% - =one
none none none
20% A 20% - 20% -

0%

IS(+) | 1S(-)

0%

0%

AH(+) AH(-)

CF(+) CF(-)

Fig 4. Percentages of both-, one- and none-ADE-causing drug pairs among predicted
positive and negative pairs of large datasets. VT(+), MI(+), IS(+), AH(+), and CF(+) are
predicted to be positive drug pairs for ventricular tachycardia, myocardial infarction, ischemic
stroke, arterial hypertension and cardiac failure; VT(-), MI(-), IS(-), AH(-), and CF(-) are

predicted to be negative drug pairs for the same ADEs.

The observed distribution is similar to that shown in Fig 2. We found that drug pairs that
potentially cause ADE contain higher percentages of both- and one-ADE-causing pairs
compared to the drug pairs that potentially do not cause ADE. It means that, generally, the
prediction results are relevant.

The DrugBank database contains some data on known DDIs that lead to ventricular
tachycardia (or prolongation of the QT interval on an electrocardiogram) and arterial
hypertension. We selected corresponding drug pairs that intersect with the large created datasets

and are in the applicability domain of classification models (Table 4).
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Table 4. Prediction accuracy on positive drug pairs from the DrugBank for ventricular

tachycardia and arterial hypertension.

N of drug pairs AUC

Ventricular tachycardia 3264 0.746
Arterial hypertension 112 0.774

We compared the predicted probability estimates of these pairs with all other pairs in large
datasets. The observed AUC values indicate that the positive pairs from DrugBank are usually
the top ranking among all pairs in the datasets (Table 4).

The results of these analyses and the results of 5-fold cross-validation (the average area
under the ROC curve, sensitivity, specificity and balanced accuracy were 0.838, 0.764, 0.754
and 0.759, respectively; see Table 2) indicate that the accuracy of the prediction of DDI-induced
cardiovascular ADEs is relatively high and that the created models can be applied in the search
for new pairwise combinations of drugs that are the most or the least dangerous for the
cardiovascular system. Because DTIs are needed for the creation of models that were predicted
by PASS Targets software based on structures of drugs, the developed models can be used for
any drug-like compounds, including those for which only structural formulas are known. For
example, they can be used to predict DDI-induced ADEs for drug candidates on the stage of
clinical trials.

Assessment of the potential mechanisms of DDI-induced ADEs

Since DDI-induced ADEs are effectively estimated by using data on predicted DTIs, the
corresponding information on drug targets may also be used to reveal the potential mechanisms
of cardiovascular ADEs and to influence DDIs in their manifestation.

We performed a corresponding analysis for the top 5 none-VT-causing drug pairs from the
large dataset with the highest probability scores for ventricular tachycardia (VT) (Table 5). The
drugs from these pairs cannot cause ventricular tachycardia when administered separately;

however, the drugs possibly cause VT when they are administered together.
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Table 5. Potential mechanisms of DDI-induced ventricular tachycardia (VT) for the top 5
scored none-VT-causing drug pairs. The bold and underlined gene names mean known,
experimentally confirmed drug targets from DrugBank and ChEMBL databases. Symbols 1 and

| mean up- and down-regulation of the protein function by the drug.

Common cytochromes

Drug pairs P450

Known and predicted drug targets associated with ventricular tachycardia

Dapsone-Emtricitabine - Dapsone: SGK3. Emtricitabine: PRKAA2, ULK1

Cortisone Acetate-Dapsone CYP3A4 Cortisone Acetate: NR3C11. Dapsone: SGK3

Eszopiclone: TSPO1, CAMKK1, ULK1. Chlorphenamine: HRH1 |, SLC6A2 |,

Eszopiclone-Chlorphenamine CYP3A4 HTR2B, HRI2, KCNH2, CALM

Dapsone-Dolutegravir CYP3A4 Dapsone: SGK3
CYP3A4, CYP3AS,

Voriconazole-Dapsone CYP3A7, CYP2CY, Voriconazole: HSP90AA1. Dapsone: SGK3
CYP2C19

We found that the DDIs for these drug pairs may occur at both levels of pharmacokinetics and
pharmacodynamics. First, the drugs from four of five pairs are metabolized by the same
cytochromes P450. Second, corresponding drugs potentially interact with protein targets to
influence the action potential of cardiac cells. These targets, either known or predicted, are
shown in Table 5. It is important that only chlorphenamine was predicted to interact with the
HERG (KCNH2) potassium channel, which is a well-known protein that is associated with
ventricular tachycardia [5]. However, this and other drugs from selected pairs that are known to
or are predicted to interact with human proteins form compact fragments of the regulatory
network (Fig 5) and indirectly change the action potential. Such changes may form a basis for

the induction of ventricular tachycardia in predisposed patients.
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Fig 5. Influence of known and predicted protein targets of the top 5 scored none-VT-
causing drug pairs on the action potential in the heart. VT - ventricular tachycardia. Cyan
nodes represent known and predicted protein targets of drugs from selected pairs, and white
nodes represent intermediate proteins in the regulatory network. Solid edges represent direct
interactions, and dashed edges represent indirect interactions. The figure was created based on
data from KEGG pathways (https://www.genome.jp/kegg/pathway.html) and from

corresponding information in the literature.

Materials and Methods

Assessment of DDI-induced ADEs through the analysis of SRs

In our study, we used the AEOLUS database [36] as a source of SRs. AEOLUS is a curated
version of  publicly available parts of the FDA  database of SRs
(https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/Adverse
DrugEffects/default.htm), where the names of ADEs, drugs and indications are standardized. We
selected only those SRs that contain description of drugs, ADEs and drug indications, because all
of these types of data are required for further analysis. A total of 4028051 SRs were selected.

The ADEs and indications in the database were described by the preferred terms (PTs) of the
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MedDRA dictionary (https://www.meddra.org/). Since some PTs may describe pathologies that
are related to the same or similar ADEs, we selected the main PTs, which exactly match the
investigated ADEs and support PTs, which are conditions that are similar to or are indirectly
related to ADEs. The main and supporting PTs for five investigated cardiovascular ADEs are

presented in Table 6.

Table 6. Main and supporting PTs for five investigated cardiovascular ADEs.

Main PTs Supporting PTs

Electrocardiogram QT Prolonged
Electrocardiogram QT Corrected Interval Prolonged
Ventricular Arrhythmia

Torsade de Pointes
Ventricular Tachycardia

Angina Pectoris
Angina Unstable
Arteriosclerosis Coronary Artery
Acute Myocardial Infarction ~ Arteriospasm Coronary
Acute Coronary Syndrome Coronary Artery Disease
Myocardial Infarction Coronary Artery Occlusion
Coronary Artery Stenosis
Coronary Artery Thrombosis
Myocardial Ischemia

Blood Pressure Increased
Blood Pressure Systolic Increased
Blood Pressure Diastolic Increased

Hypertension
Hypertensive Crisis

Cerebrovascular Accident
Cerebral Infarction
Ischemic Stroke

Cerebral Ischemia
Transient Ischemic Attack

Cardiac Failure Acute

Cardiac Failure Congestive
Cardiac Failure

Cardiogenic Shock -
Cardiopulmonary Failure

Left Ventricular Failure

Right Ventricular Failure

At the next step, we selected those drugs in the AEOLUS database that have annotations on
five investigated cardiovascular ADEs: ventricular tachycardia, myocardial infarction, ischemic

stroke, arterial hypertension and cardiac failure. The data on drugs that caused and did not cause
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five ADEs was obtained from our previous study [37]. The following numbers of drugs were
selected: 496 drugs for ventricular tachycardia, 460 drugs for myocardial infarction, 447 drugs
for ischemic stroke, 398 drugs for arterial hypertension, and 467 drugs for cardiac failure. The
data on the five ADEs of these individual drugs are represented in Table S3.

We selected drug pairs that were formed by these drugs with at least 100 SRs wherein both
drugs are mentioned. For each pair of drugs and each PT from Table 6, we performed an analysis
which is based on three steps. At the first step, we found which of the drug pairs are associated
with selected PTs. At the second step we used LASSO logistical regression [35] to estimate the
potential synergistic and additive DDIs that are associated with the drug pairs that were selected
in step 1. At this step, noninteracting drug pairs were also determined. At the third step, we
integrated the obtained data on different PTs into single ADEs to create datasets with positive
and negative examples of DDI-induced ADEs (see Table 1).

Step 1. Identification of the association between drug pairs and PTs. A proportional reporting
ratio (PRR) was used to determine the drug pairs that are associated with each PT. PRR is

calculated as follows:

A(B +D)
“B(A+0) 1)

PRR

The value A is a number of the SRs where both the drug pair and PT are mentioned; B is a

number of SRs where PT is mentioned, but the drug pair is not mentioned; C is a number of SRs

where the drug pair and other PTs are mentioned; and D is a number of SRs where the PT and
drug pair are not mentioned.

According to previously published criteria [26, 28], we considered a relationship between

the drug pair and PT if PRR>2, A>2 and chi-square>4. The selected associations were used at

the next step of analysis.
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361  Step 2. Ildentification of synergistic and additive DDIs. We identified synergistic and additive
362  pairwise DDIs that are associated with each PT by using LASSO logistic regression with
363  propensity scores (PSs). The method is described in detail in the original publication [35].

364 Briefly, PS is a conditional probability of being exposed to a drug that is calculated for each
365  SR. This probability depends on the patient’s diseases and, indirectly, on co-administered drugs.
366 The PS indirectly reflects the influence of human diseases and co-administered drugs on the
367 development of ADE, and, thus, allows for the filtering of many false positive drug-ADE
368  associations. We calculated the PSs for each drug-SR pair based on the top 100 co-administered
369  drugs and the top 100 most relevant drug indications. The relevance of co-administered drugs

370  and indications of a drug were measured by a phi correlation coefficient.

371 The final values of the PSs were calculated by using the following logistic regression:
372
100 100
373 PS =logit(P(drug=1))=a+ Zﬁilni + Zijrj 2
i=1 j=1
374

375  In formula (2), the values In; and Dr; are the indication and co-administered drug with relevance
376  ranksiandj.

377 Next, we used LASSO logistic regression to estimate the probability of PT for each SR that
378  depends on the presence of two drugs in SR, their possible interaction, and the corresponding
379  PSs as follows:

380

381 logit(P(PT = 1)) = Bo + [1PS1 + B2PS, + f3Drugy + BfaDrug, + BsDrug, * Drug, + 1|1 (3)
382

383  In formula (3), PS; and PS,; are PSs for drug; and drug,, |B|; is I; norm of coefficients, and A is a

384  tuning parameter of regularization. Parameter A was determined through a 3-fold cross-validation
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procedure. The potential synergistic and additive DDIs that are associated with PTs were
determined based on B3, B4 and Bs coefficients:
— synergistic DDI for drug pair-PT association was considered if s was more than 0;
— additive DDI for drug pair-PT association was considered if 5 equals 0, B; and B4 were more
than 0, and drug;, drug, have known links to the corresponding ADE in datasets from our
previous study [37].
— absence of DDI for the drug pair-PT association was considered if either 5 or B4 were less or
equal to 0, and Bs was less or equal to 0. Additionally, we considered the absence of DDIs if the
corresponding drug pair-PT association was not determined at step 1 (the condition PRR>2, A>2
and chi-square>4 was not true) and the drug pair was mentioned in at least 500 SRs.
Step 3. Integration of data on different PTs. To create final datasets with the information on
DDI-induced ADEs, we integrated data on the PTs as follows:
— The drug pair was considered to be “positive” according to the corresponding ADE if it was
linked to at least two main PTs, or at least to one main and one supporting PT at step 2 of the
analysis.
— The drug pair was considered to be “negative” according to the corresponding ADE if it was
linked to neither of the PTs that are associated with this ADE. Additionally, we removed from
this category those drug pairs in which both drugs are ADE-causing, according to data from our
previous study [37], as potentially false negatives.

As a result, datasets for the five cardiovascular ADEs were created (see Results and
Discussion, Table 1).
Prediction of drug-target interactions

Interactions of individual drugs with human proteins were predicted by the PASS Targets
software [38]. PASS (Prediction of Activity Spectra for Substances) [41-43] can be used for the
prediction of various types of biological activities and is associated with several hundred success

stories of its practical application, with experimental confirmation of the prediction results [43,
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44]. It uses Multilevel Neighborhoods of Atoms (MNA) descriptors and the Bayesian approach
and is available as a desktop program as well as a freely available web service on the Way2Drug
platform (http://www.way2drug.com/PASSOnline/) [45]. PASS Targets is a special version of
PASS that is based on training data from the ChEMBL database (https://www.ebi.ac.uk/chembl/)
and allows for predicting interactions with 1553 human protein targets with an average AUC
0.97 and a minimal AUC 0.85 [38]. The full list of human targets is presented in Table S4.

PASS provides two estimates of probabilities for each target of a chemical compound: The
Pa probability to interact with a target, and the Pi probability to not interact with a target. If a
compound has Pa > Pi, it can be considered as interacting with the target. The larger the Pa and
Pa—Pi values, the greater the probability of obtaining an activity against a target in the
experiment. In this study, we used a threshold Pa>0.3 for the estimation of protein targets of
drugs from the top 5 scored non-VT-causing drug pairs (see the last section of the Results and
Discussion).

We used sums and absolute values of differences of Pa/(Pa+Pi) values, calculated by PASS
for individual drugs, to obtain corresponding values for pairs of drugs. Thus, each drug pair was
described by a vector of 3106 values, which were further used as descriptors for the creation of
classification models (see below).

Creation of classification models for DDI-induced cardiovascular ADEs

Classification models for the prediction of five DDI-induced cardiovascular ADEs were
created by the r Random Forest method. We used the RandomForest function from
“RandomForest” R package (https://cran.r-project.org/web/packages/randomForest/) for this
purpose. All arguments of this function were set to default.

The applicability domain of the obtained models was determined by the local (Tree)

approach, which was described earlier [39].
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The accuracy of created models was determined by a 5-fold cross validation procedure

according to the “compound out” approach, wherein each drug pair in the test set must contain at

least one drug that is absent in all drug pairs of the training set [40].
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